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Regularization, renormalization, and range: The nucleon-nucleon interaction
from effective field theory

Thomas D. Cohen
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 26 June 1996!

Regularization and renormalization is discussed in the context of low energy effective field theory treatments
of two or more heavy particles~such as nucleons!. It is desirable to regulate the contact interactions from the
outset by treating them as having a finite range. The low energy physical observables should be insensitive to
this range provided that the range is of a similar or greater scale than that of the interaction. Alternative
schemes, such as dimensional regularization, lead to paradoxical conclusions such as the impossibility of
repulsive interactions for truly low energy effective theories where all of the exchange particles are integrated
out. This difficulty arises because a nonrelativistic field theory with repulsive contact interactions is trivial in
the sense that theSmatrix is unity and the renormalized coupling constant zero. Possible consequences of low
energy attraction are also discussed. It is argued that in the case of large or small scattering lengths, the region
of validity of effective field theory expansion is much larger if the contact interactions are given a finite range
from the beginning.@S0556-2813~97!01401-5#

PACS number~s!: 13.75.Cs, 11.10.2z, 21.30.Fe
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I. INTRODUCTION

One common issue in particle physics is the existence
phenomena on widely differing energy scales. In study
the low energy phenomenology in such situations, the te
niques of effective field theory~EFT! have proven extremely
useful @1#. They allow one to include systematically on
those effects of the short range physics which contribute
the long range phenomena up to some given level of ac
racy. The philosophy underlying this is that one can integr
the short wavelength degrees of freedom, i.e., those deg
of freedom whose momenta are larger than some separ
scalem out of the functional integral. Of course, in doing th
one obtains an effective action which is nonlocal. Howev
the nonlocality is on the scale of the degrees of freed
which have been integrated out. At scales far below this
legitimate to expand this in the form of a derivative expa
sion. It is often the case that one cannot, in fact, carry out
partial functional integration of the underlying fundamen
theory either because it is technically intractable or beca
one does not know the underlying theory in detail. In th
case, one can use a knowledge of the form of the symme
of the underlying theory to develop an effective field theo
with phenomenological coefficients which corresponds to
derivative expansion of the full theory. A classic example
this approach is chiral perturbation theory which has b
used to describe the interactions of pseudo-Goldstone bo
with each other@2#.

Several years ago, Weinberg suggested that the tech
ogy of EFT—when properly modified—could be used to d
scribe low energy nuclear phenomena such as nucle
nucleon scattering and bound states and the interactio
nuclei with pions and photons@3#. The key to this approach
was the development of a formalism based on a system
power counting scheme describing the interactions of he
particles~where ‘‘heavy’’ means that the mass is very lar
compared to the momentum scale being probed!. The funda-
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mental insight is that the power counting should apply
n-particle irreducible graphs~i.e., potentials! and not to the
full amplitudes. The full amplitudes are obtained by iterati
of these potentials. The approach is implemented via an
fective Lagrangian containing explicit light degrees of fre
dom ~e.g., pions! along with contact interactions whose co
pling constants serve to parametrize the effects of sho
range physics. Weinberg’s suggestion has inspired a con
erable amount of research on effective field theoretic
proaches to low energy nuclear phenomena@4–16#.

In this paper it will be shown that great care must
exercised when renormalizing this effective theory. A ve
sion of the formalism elucidated by Weinberg has a rat
perverse feature which can be traced to the renormaliza
scheme: The approach is apparently incapable of descri
systems whose low energy interactions are repulsive in
limit of very low energy scattering, i.e., the limit where th
momenta are much less than all of the masses in the prob
~so that in the nuclear case one could integrate out the pi!.
In such a case, as discussed in Refs.@3# and @16#, one can
integrate out all of the light degrees of freedom to obtain
effective Lagrangian with contact interactions only. To low
est order in the power counting, theT matrix for s-wave
scattering of heavy fermions~e.g., nucleons! in Weinberg’s
treatment@3# depends on only a single parameter which c
responds to a particular combination of spin-independent
spin-dependent contact interactions whose renormal
value is fixed by the scattering lengtha:

T0~p8,p!5
4p/M

1/a1 iAME1 i e
, ~1!

whereM is the mass of the particles andp is the magnitude
of the momentum of the nucleon in the center-of-ma
frame. The subscript 0 indicates that thisT matrix was de-
rived from the contact interaction with no derivatives. T
67 © 1997 The American Physical Society
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energy of the state,E, is p2/M for scattering states and th
i e fixes the boundary conditions in extrapolations to nega
energies.

The difficulty is easy to see from Eq.~1!. Elementary
considerations show that a negative value ofa necessarily
corresponds to attraction. On the other hand, a positive v
of a can either correspond to repulsion or to attraction w
at least one bound state. Bound states give rise to poles i
T matrix for negative energies. Purely repulsive interactio
always correspond to aT matrix without negative energy
poles. From the form of theT matrix in Eq.~1!, however, it
is apparent that whena is positive, there is always a pole i
theT matrix atE521/(Ma2). Thus, regardless of the sig
of a, the T matrix in Eq. ~1! corresponds to an attractiv
interaction.

How serious a problem is this? One might argue that
problem is purely formal and is of no phenomenological co
cern. After all, in nuclear physics the potentialis attractive at
low energies; the inability to describe repulsion may sim
not be relevant. On the other hand, the EFT methods use
derive Eq.~1! are not particular to nuclear physics and nev
explicitly use the fact the interaction is attractive—if the a
guments are valid they ought to apply equally well to ca
where the interaction is repulsive. Nothing in Weinberg
power counting scheme depends on the sign of the inte
tion. Thus, the inability to describe repulsion suggests t
something is seriously wrong with the formalism. As will b
seen in this paper the difficulty can ultimately be traced
the fact that the interaction in the effective Lagrangian h
zero range. The only way which an explicit range can en
into the dynamics in this approach is through regulation a
renormalization prescriptions. The general issues of reg
tion and renormalization are clearly important in the attr
tive case.

It will be shown here that the problem is technical and
related to the renormalization scheme used in the deriva
of Eq. ~1!. It should be recalled that the contact terms in
effective Lagrangian do not, in fact, describe zero ran
physics. Rather, they serve to parametrize the effects
physics of shorter range than the separation scale. U
mately, the contact terms lead to divergences which nece
tate some regularization prescription and an associated re
malization of the coefficients in the Lagrangian. T
regularization prescription should be consistent with the f
that the interactions are, in fact, of finite range. For exam
one can introduce a regulator into the contact interact
thus making it a finite range interaction. The range of t
interaction should not be taken to be zero in any intermed
step of the calculation. At the end of the calculation, t
regulator parameter should be fixed by the separation s
m. As will be discussed here, it must correspond to a lar
range than the typical range of the potential~e.g., the effec-
tive range!. If there is a true separation of scales in the pro
lem, one will find that low energy physical observables w
be insensitive to the precise choice of the separation s
and the form of the regulator.

In the derivation of Eq.~1!, however, it was implicitly
assumed that the range is, in fact, zero. That is, at var
points in the calculation the contact interaction is trea
literally, as opposed to merely serving to parametrize so
short range physics. It has been known for some time tha
e
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repulsived function interaction in nonrelativistic quantum
mechanics is trivial—the renormalized coupling consta
must be zero and theS matrix, unity @17#; this is a conse-
quence of Friedman’s theorem@18#. Thus, it is not surprising
that Eq.~1! fails to describe repulsion. Treating the conta
terms literally is incompatable with the derivation of the e
fective field theories from an underlying theory since in
grating out short range physics yields a nonlocal theory.
course, in most applications of EFT this inconsistency is
nocuous in that errors induced by it are small and can
systematically corrected at higher orders. However, in
case of two heavy particles where one must iterate the
tential to all orders the problem can be serious. The inabi
to describe repulsion should be viewed as an artifact of
inconsistent treatment.

It is important to use a consistent regularization sche
even in the case of attractive interactions. For example
recently noted in Ref.@16#, the convergence of Weinberg’
scheme is controlled by the scattering length; as the sca
ing length diverges the region of validity of the expansi
tends to zero. In nature the scattering length is quite la
implying a very limited regime of applicability of the ap
proach. As will be discussed briefly in this paper and in mo
detail in a subsequent work this is also a consequence
renormalization scheme based on true zero range inte
tions. The central point of this paper is that if one wishes
use EFT methods in nuclear interactions, it is essentia
regulate the contact interactions from the outset by giv
them a finite range.

It is worth noting that excepting work based on a ne
expansion scheme proposed in Ref.@16#, numerical studies
of theNN force based on effective field theories and chi
counting do not employ the renormalization prescripti
used in the derivation of Eq.~1!. Rather, they cut off the
integrals in the momentum-space Schro¨dinger equation
which effectively gives a finite range to the interaction
Thus the problems discussed here do not afflict the calc
tions in Refs.@4,7,13#.

II. LOW ENERGY T MATRIX

Before discussing the problem of repulsion in any deta
is useful to review how theT matrix in Eq.~1! emerges in an
effective field theory treatment. In order to use effective fie
theories one needs a systematic power counting scheme.
ditionally in effective field theory treatments this pow
counting is for a Feynman amplitude. However, as poin
out in Ref. @3#, such a scheme fails for the situation whe
two or more heavy particles interact strongly at low ener
The difficulty is that if the particles typically have a mome
tumQ, the free propagator goes asM /Q2 and becomes large
in the limit of smallQ, destroying simple power counting i
Q/L. The solution to this is quite simple—instead of usin
power counting for the Feynman amplitude itself, one dev
ops a systematic power counting only for then-particle irre-
ducible graphs—i.e., for potentials. The details of the pow
counting argument will not be given here as it is well d
scribed in Ref.@3#.

To obtain scattering amplitudes, one can iterate these
tentials to all orders which corresponds to solving the Sch¨-
dinger equation for these potentials. Recently Kaplan, S
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55 69REGULARIZATION, RENORMALIZATION, AND . . .
age, and Wise ~KSW! have proposed a differen
resummation@16#, in which the lowest order potential i
summed to all orders as a Schro¨dinger equation and subse
quently the inverse of the real part of the Feynman amplit
is expanded systematically. This apparently greatly impro
the convergence of the expansion when the scattering le
is large. However, the problem discussed here applies to
lowest order calculation of the scattering amplitude and
affects both the Weinberg and the KSW schemes.

In the case where all of the particles are treated as he
including all exchanged bosons, it is trivial to write down t
potentials to some order. They are given in terms of an
fective Lagrangian which consists entirely of contact int
actions with various numbers of derivatives. This effect
Lagrangian is

L5N†i ] tN2N†
¹2

2M
N2

1

2
CS~N

†N!22
1

2
CT~N

†sWN!2•••,

~2!

where the ellipsis indicates contact terms with two or m
derivatives. Such terms are higher order in the power co
ing. Isoscalars-wave scattering only depends on the com
nationC[(CS23CT).

The next step is to solve the Schro¨dinger equation with
appropriate boundary conditions for scattering and thus
termine theT matrix. This is done most naturally in the form
of the Lippmann-Schwinger equationT5V1VG0T, where
G051/(E2p2/M1 i e) andp is the relative momentum op
erator. Clearly, this corresponds to iterating the potentia
all orders. As written above, the Lippmann-Schwinger eq
tion is an operator equation; in momentum space, it is
integral equation:

T~p,p8!5V~p,p8!1~2p!23E d3p9V~p,p9!G0~p9;E!

3T~p9,p8!, ~3!

whereG0(p;E)51/(E2p2/M1 i e). For an arbitraryV one
must solve this equation via standard numerical means.

For the present case the zeroth order potential is simp
delta function in configuration space and therefore a cons
in momentum space,V0(k,k8)5C. Formally, it is straight-
forward to solve the Lippmann-Schwinger equation with t
potential. SinceV0 is a constant, the equation becomes al
braic; the solution is

T0~p,p8!5
1

1/C2~2p!23*d3p9G0~p9,E!
. ~4!

Unfortunately, the solution is only formal sinc
(2p)23*d3p9G0(p9,E) diverges, and so as written the s
lution is meaningless. This is hardly surprising—it is we
known that in 311 dimensions, delta function potentials wi
finite strength are sufficiently singular as to have no we
behaved solutions.

Thus, to make sense of Eq.~4! one must renormalize. Th
bare parameterC must go to zero, but must do so in such
way that theT matrix remains finite. Weinberg introduces
renormalized couplingCR given by
e
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1/CR51/C2~2p!23E d3p9G0~p9,E50!. ~5!

In terms ofCR theT matrix is given by

T0~p,p8!

5
1

1/CR2~2p!23*d3p9@G0~p9,E!2G0~p9,E50!#

5
4p

4p/CR1 iMAME1 i e
. ~6!

The second equality is easily obtained since the integra
now convergent. Finally, identifying the zero energyT ma-
trix as 4pa/M immediately gives a renormalization cond
tion thatCR54pa/M and yields Eq.~1!. It is also worth
observing at this stage Weinberg’s renormalization schem
completely equivalent to dimensional regularization with t
MS renormalization scheme as discussed in KSW.

III. REGULARIZATION, RENORMALIZATION, RANGE,
AND REPULSION

This section addresses the question of why the calcula
based on the renormalization prescription discussed in Se
cannot describe repulsion. As mentioned in the Introducti
this occurs because the calculation implicitly assumes
the range of the interaction is zero and not simply sho
than some separation scale. One indication that Eq.~1! is
based on a true zero range interaction is the absence of
dependence on a regulator mass in the final expression
theT matrix. Indeed, in Weinberg’s derivation no regulariz
tion scheme is explicitly introduced. In fact, the regulat
mass has implicitly been taken to infinity at two distin
places in this calculation. The first is the derivation of E
~4!; had a finite range been given to the interaction via a
form of a regulator, one could not obtain the simple result
Eq. ~4!. Instead one would have had to solve an integ
equation. The second place where the regulator mass
implicitly taken to infinity is in the second equality in Eq
~6!.

KSW reproduce Weinberg’s result using dimension
regularization. This is to be expected, since by construc
dimensional regularization introduces no regulator mass
principle, a scale can enter the problem through renormal
tion but, as noted by KSW, at this order the renormalizat
scale dependence is trivial:

m]m~1/CR!50. ~7!

The KSW result is the same as Weinberg’s and suggests
the lack of a regulator in the derivation of Eq.~4! is sufficient
for the system to lose the information that the range of
interaction is finite.

To see that Eq.~1! does correspond to a truly zero rang
interaction one should study finite range interactions a
then show that Eq.~1! is the zero range limit. Consider
regularization prescription where one replaces thed function
potential by a finite range potential at the beginning of t
problem. If one is in the regime in which the effective fie
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theory is valid, then the results are insensitive to the pre
form of the regulator and the precise value of the regula
mass.

For simplicity, consider a simple form for the regulate
d function—a square well of radius 1/m:

dR~xW ;m!5
3m3u~1/m2uxu!

4p
, ~8!

wherem is the regulator mass. In coordinate space, the
tential is just

V0~xW !5C~m!dR~xW ;m!. ~9!

The bare coefficient is written asC(m) to indicate that the
value of the coupling depends on the regulator massm
through a renormalization condition.

It is an elementary exercise to find theT matrix associated
with this potential. The phase shifts satisfy

p cot~d!5
k cot~k/m!1p tan~p/m!

12k/p cot~k/m! tan~p/m!
, ~10!

with

k5Ap22
3C~m!Mm3

4p
. ~11!

This expression is valid for both attractive and repulsive
teractions. For repulsive interactions and sufficiently sm
p, k becomes imaginary. The on-shellT matrix is related to
cot(d) by
at
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it
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-
ll

T~p!5
22p

Mp~ cot~d!2 i !
. ~12!

The expression for the phase shift in Eqs.~10! and ~11!
depends on the bare couplingC(m). It is useful to express
this in terms of a physical observable. This amounts to pi
ing a renormalization condition forC(m). The most natural
choice is to use the scattering length which is related to
phase shifts nearp50,

lim
p→0

p cot~d!521/a, ~13!

to fix C(m). Using Eqs.~10!, ~11!, and ~13!, one finds the
following renormalization condition forC(m):

A2
3C~m!Mm

4p
cotSA2

3C~m!Mm

4p D 5
1

12am
. ~14!

It is straightforward to demonstrate that for attracti
interactions in the limit ofm→`, one recovers Eq.~1!.
The key point is that in this limit2C(m)m3→` and thus
k also diverges. Moreover, as 2C(m)m3→`,
k→@23C(m)m3/4p#1/2 which is independent ofp. Al-
thoughC(m)m3 diverges,C(m)m can remain finite. More-
over p/m→0. Imposing the limit, one finds that Eq.~10!
becomes
lim
m→`,C~m!m fixed

pcot~d!5
@23C~m!Mm3/4p#1/2cot$@23C~m!Mm/4p#1/2%

12@23C~m!Mm/4p#1/2cot$@23C~m!Mm/4p#1/2%
, ~15!
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where the right-hand side of Eq.~15! is independent ofp.
Imposing the renormalization condition in Eq.~14! on the
expression in Eq.~15! one sees thatp cot(d)521/a; Eq. ~1!
immediately follows. The conclusion of this analysis is th
as expected, Eq.~1! corresponds to an interaction of literal
zero range.

Now consider what happens for a repulsive potential w
C(m).0. Formally, Eq.~15! still applies. There is a diffi-
culty, however, in implementing the renormalization con
tion. ForC(m).0, Eq. ~14! becomes

A3C~m!Mm

4p
cothSA3C~m!Mm

4p D 5
1

12am
. ~16!

For repulsive interactions,C(m).0 and the left-hand side o
Eq. ~16! is positive so that the renormalization condition c
only be satisfied if

m,1/a. ~17!
,

h

-

Thus, when describing repulsion, one cannot take the re
lator mass to infinity while still describing the correct sca
tering length. Indeed, when one letsm→` one is forced to
havea→0 which implies a zero cross section; asm→0, all
effects of the repulsive interaction must vanish.

Of course, the preceding analysis is just an alterna
demonstration of the triviality of the repulsive delta functio
interaction discussed in the context of the nonrelativis
limit of f4 field theories by Be´g and Furlong@17#. A rigor-
ous mathematical proof of this was provided by Friedm
@18#.

There is no great mystery here. A regulated delta funct
of the form in Eq.~8!, with an infinite strength repulsive
interaction, is simply a hard core interaction of radius 1/m.
The scattering length for a hard core potential is just
radius of the hard core. Thus, no matter how strong the
pulsion in the regulatedd function, one cannot get a scatte
ing length greater than 1/m. It is very clear why this happens
asm→`, C(m) gets large. The effect of a potential whic
has a large positive value over some finite region is simply
exclude the wave function from that region. Asm→`, how-
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ever, the size of the region over which the wave function
excluded goes to zero and the effect of the repulsion v
ishes.

It is worth stressing that Friedman’s theorem guarant
that the inability to describe repulsion when one takes
regulator mass to infinity is a general feature and not sim
a peculiar feature of the square-well regulator. This can
explicitly verified by choosing various alternative forms. F
example, the regulated delta function can be chosen to
surface delta function on a shell of radius 1/m:

dR~xW ;m!5
m2

4p
d~ uxu21/m!. ~18!

TakingV0(xW )5C(m)dR(xW ;m), calculating theT matrix, and
using the scattering length to fixC(m) gives the following
renormalization condition:

C~m!5
4pa

M ~12ma!
. ~19!

As in the case of the square well regulator, one can sat
the renormalization condition for repulsive interactio
@which of necessity haveC(m).0 and a.0# only for
m,1/a.

IV. ATTRACTIVE INTERACTIONS
AND THE CONVERGENCE OF THE EFT EXPANSION

The preceding section showed that, in order to desc
repulsion in an effective field theory with all exchanged p
ticles integrated out, it was necessary to regulate the the
by giving the contact interactions a finite range. Moreover
was seen that it was not possible to let the regulator par
eter go to infinity. This section briefly discusses possi
consequences of taking the regulator mass to infinity for
tractive interactions. It is easy to see that the problems a
with such a scheme when the scattering length is either v
large or very small. The case of large scattering length is
particular importance since in the nuclear physics case
scattering length in the singlet channel is very large. T
situation was discussed by KSW who point out that We
berg’s scheme, when implemented with dimensional regu
ization andMS renormalization, breaks down at a mome
tum scale set by the scattering length. As the scatte
length goes to infinity, Weinberg’s approach breaks down
lower and lower momenta; ifa were infinite, Weinberg’s
expansion would break down for arbitrarily smallp and thus
be of no utility.

KSW suggest that this breakdown is a consequence
strong correlations between the coefficients of contact te
at different orders in the EFT expansion of the potent
They propose to avoid this difficulty by expandingp cotd
rather than by expanding the potentials and iterating to
orders as proposed by Weinberg. At first glance the expla
tion for the breakdown of Weinberg’s scheme seems q
unnatural; it depends on a conspiracy among the higher o
terms. On the other hand, one might argue that generic
the scattering length should be of order 1/L and that having
a very long scattering length—one much longer th
1/L—is, in itself, unnatural. Thus, one might expect that
s
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describe such a situation ana priori unlikely correlation
among various terms in the expansion is not absurd. H
ever, even if there are correlations of the form postulated
KSW, there is still a problem. The conventional pow
counting scheme requires that the contribution ofV2, the
two-derivative contact interaction, to theT matrix be down
by a power ofp2/L2, compared to the effect ofV0; this
should hold up to momenta of orderL. KSW show explicitly
that this fails for largea when dimensional regularizatio
andMS renormalization is used. This raises a thorny qu
tion since there is no obvious flaw with conventional pow
counting arguments and the power counting does not o
ously depend on the scattering length being small.

In this section, an alternative explanation for the brea
down of Weinberg’s scheme at lowp for large a will be
explored. It will be argued that the breakdown is anoth
consequence of taking the regulator mass to infinity and
not an intrinsic defect in the expansion.

In many ways, this problem is quite analogous to the d
ficulty of describing repulsion. In the repulsion case, t
range of the interaction was intrinsic to the description—
scattering length was always smaller than the range of
potential. Thus any scheme which treats the range as b
zero is destined to fail. The effective range in the case
infinite scattering length is similar. Recall that the effecti
ranger 0 is defined in terms of an expansion ofp cot(d),

p cot~d!521/a1 1
2 r 0p

21•••. ~20!

Suppose, for example, that the underlying dynamics wer
fact a square well. Then it is trivial to show from Eqs.~10!,
~11!, and~20! that when the scattering length is infinite, th
effective range is just the radius of the well. Thus, the phy
cal size of the well is an essential part of the physics of
effective range whena is infinite. It will hardly be surprising
if it turns out not to be possible to describe this by a ze
range interaction.

Consider the treatment of the physics of the effect
range in Weinberg’s scheme. Clearly it depends onV2, the
two-derivative contact term in the effective Lagrangian. F
mally, the effects of this are orderp2/L2 suppressed relative
to V0. Although there are several terms in the Lagrangian
this order, only one linear combination plays a role in t
singlets-wave channel and one can writeV2 as

V2~pW 8,pW !5
C2

2
~p21p82!. ~21!

Iterating this potential, using dimensional regularization a
MS renormalization, and using the scattering lengthr 0 to fix
the renormalizedC2 gives the followingT matrix @16#:

T2~p8,p!5
4p/M

~a1 1
2 a

2r 0p
2!211 iAME1 i e

. ~22!

The subscript 2 indicates that thisT matrix includes the ef-
fects of contact interactions with up to two derivatives.

By conventional power counting one expec
T25T0@11O(p2/L2)#. However, expanding Eqs.~22! and
comparing with Eq.~1! one sees that
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T2~p8,p!5T0~p8,p!@11 1
2ar0p

21O~p3a2r 0!#. ~23!

Thus, fora@r 0, the effects ofV2 becomes comparable to th
the effectsV0 whenp;(ar0)

21/2. This is a signature of the
breakdown of the power counting argument. Ifa→`, the
momentum scale at which the power counting breaks do
goes to zero.

This problem can be avoided quite simply if th
d-function interactions are regulated from the beginning. T
basic strategy is to exploit the freedom in choosingm. If one
begins with regulatedd functions, the strength of bothC0
and C2 depends on both the renormalization conditio
~fixed bya andr 0) and the regulator massm. In principle, all
physical results should be independent ofm since it is an
artificial parameter introduced only for convenience. Ho
ever, the full theory is not being solved; within a given a
proximation scheme, results do depend onm, albeit only
weakly. One can exploit the freedom in choosingm to im-
prove the convergence of the approximation scheme. An
timal choice ofm is one which minimizes the errors assoc
ated with truncating the expansion. Thus, for example,
perturbative QCD treatments of deep inelastic scattering
chooses the factorization scalem to be of orderQ2 in order
to avoid large logarithms in the higher order corrections.
an analogous fashion, for the present problem one can
m so as to minimize the higher order corrections of the E
expansion. In particular, one can choosem so thatC250.
This is possible for any reasonable regulator since one
fix r 0 and a from the range and depth of the regulatedd
ld
r
e
-
l
r-
n

e

s

-
-

p-

n
e

n
fix
T

an

function of V0. With this optimal regulatorT25T0 for all
p and the difficulty of the expansion breaking down at lo
p is avoided. More generally, one expects that if a nono
mal regulator massm comparable to or less than 1/r 0 were
chosen, thenT25T0@11O(p/m)#. This will be studied in a
subsequent publication.

There is also a problem with this treatment in the lim
a→0. This corresponds to a zeroT matrix at zero energy.
This situation can occur in a nontrivial way if the underlyin
potential has both attraction and repulsion whose effects c
cel at zero energy; it can also occur in an attractive poten
with a sufficiently deeply bound state. In general, for scatt
ing problems with nonzero potentials anda50, theT matrix
is zero only for zero energy. For a generic interaction tun
to givea50, normal power counting would lead one to e
pect thatT;p2/L2. In contrast, consider Eq.~22!. As a goes
to zero,T2 goes to zero for allp violating the conventional
power counting arguments. Again this represents a ser
difficulty since nothing in the conventional power countin
depends in an obvious way ona being nonzero. This prob
lem is also an artifact of imposing an infinite cutoff.
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