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Regularization and renormalization is discussed in the context of low energy effective field theory treatments
of two or more heavy particlesuch as nucleonslt is desirable to regulate the contact interactions from the
outset by treating them as having a finite range. The low energy physical observables should be insensitive to
this range provided that the range is of a similar or greater scale than that of the interaction. Alternative
schemes, such as dimensional regularization, lead to paradoxical conclusions such as the impossibility of
repulsive interactions for truly low energy effective theories where all of the exchange particles are integrated
out. This difficulty arises because a nonrelativistic field theory with repulsive contact interactions is trivial in
the sense that th® matrix is unity and the renormalized coupling constant zero. Possible consequences of low
energy attraction are also discussed. It is argued that in the case of large or small scattering lengths, the region
of validity of effective field theory expansion is much larger if the contact interactions are given a finite range
from the beginning[S0556-28137)01401-5

PACS numbegp): 13.75.Cs, 11.16-z, 21.30.Fe

I. INTRODUCTION mental insight is that the power counting should apply to
n-particle irreducible graphé.e., potentials and not to the
One common issue in particle physics is the existence ofull amplitudes. The full amplitudes are obtained by iteration
phenomena on widely differing energy scales. In studyingof these potentials. The approach is implemented via an ef-
the low energy phenomenology in such situations, the techfective Lagrangian containing explicit light degrees of free-
niques of effective field theor§EFT) have proven extremely dom(e.g., piong along with contact interactions whose cou-
useful [1]. They allow one to include systematically only Pling constants serve to parametrize the effects of shorter
those effects of the short range physics which contribute t§2ng€ physics. Weinberg's suggestion has inspired a consid-
the long range phenomena up to some given level of acclgrable amount of research on effective field theoretic ap-
racy. The philosophy underlying this is that one can integraté’ro"’whetS to low energy nuclear phenomphal@.
the short wavelength degrees of freedom, i.e., those degrees " this paper it will be shown that great care must be

of freedom whose momenta are larger than some separatic%emised when renormalizing this effective theory. A ver-
scaleu out of the functional integral. Of course, in doing this sion of the formalism elucidated by Weinberg has a rather
one (ﬁ)tains an effective actiongwhi.ch is nonlc;cal HO\?VGVE perverse feature which can be traced to the renormalization

r . . .
o scheme: The approach is apparently incapable of describing
the nonlocality is on the scale of the degrees of free‘jor@ystems whose low energy interactions are repulsive in the

which have been integrated out. At scales far below this it igjrit of very low energy scattering, i.e., the limit where the
legitimate to expand this in the form of a derivative expan-momenta are much less than all of the masses in the problem
sion. It is often the case that one cannot, in fact, carry out thi§SO that in the nuclear case one could integrate out the.pion
partial functional integration of the underlying fundamental | sych a case, as discussed in REB.and[16], one can
theory either because it is technically intractable or becausgytegrate out all of the light degrees of freedom to obtain an
one does not know the underlying theory in detail. In thiseffective Lagrangian with contact interactions only. To low-
case, one can use a knowledge of the form of the symmetriasst order in the power counting, tie matrix for s-wave
of the underlying theory to develop an effective field theoryscattering of heavy fermion&.g., nucleonsin Weinberg's
with phenomenological coefficients which corresponds to thereatmen{3] depends on only a single parameter which cor-
derivative expansion of the full theory. A classic example ofresponds to a particular combination of spin-independent and
this approach is chiral perturbation theory which has beespin-dependent contact interactions whose renormalized
used to describe the interactions of pseudo-Goldstone bosonralue is fixed by the scattering lenggh
with each othef2].

Several years ago, Weinberg suggested that the technol-

ogy of EFT—when properly modified—could be used to de- T (o' p)— 4m/M R
scribe low energy nuclear phenomena such as nucleon- o(P",P) = 1a+iME+ie

nucleon scattering and bound states and the interaction of

nuclei with pions and photori8]. The key to this approach

was the development of a formalism based on a systematiwzhereM is the mass of the particles apds the magnitude
power counting scheme describing the interactions of heavgf the momentum of the nucleon in the center-of-mass
particles(where “heavy” means that the mass is very largeframe. The subscript O indicates that tHismatrix was de-
compared to the momentum scale being prob&He funda- rived from the contact interaction with no derivatives. The
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energy of the stateE, is p2/M for scattering states and the repulsive § function interaction in nonrelativistic quantum
i € fixes the boundary conditions in extrapolations to negativenechanics is trivial—the renormalized coupling constant
energies. must be zero and th8 matrix, unity [17]; this is a conse-
The difficulty is easy to see from Edl). Elementary quence of Friedman’s theorgh8]. Thus, it is not surprising
considerations show that a negative valueaofiecessarily ~that Eq.(1) fails to describe repulsion. Treating the contact
corresponds to attraction. On the other hand, a positive valu&rms literally is incompatable with the derivation of the ef-
of a can either correspond to repulsion or to attraction withfective field theories from an underlying theory since inte-
at least one bound state. Bound states give rise to poles in tig§ating out short range physics yields a nonlocal theory. Of
T matrix for negative energies. Purely repulsive interaction$OUrse, in most applications of EFT this inconsistency is in-
always correspond to @ matrix without negative energy NOCUOUS in that errors mduced by it are small and can be
poles. From the form of th& matrix in Eq.(1), however, it systematically correctec_i at higher orders. Ho_wever, in the
is apparent that whea is positive, there is always a pole in ¢@S€ of two heavy particles where one must iterate the po-
the T matrix atE= — 1/(M az). Thus, regardless of the sign tential tq all order; the problem can be serious. T_he |nab|llty
of a, the T matrix in Eq. (1) corresponds to an attractive to deS(_:nbe repulsion should be viewed as an artifact of this
interaction. inconsistent treatment.

How serious a problem is this? One might argue that the It is important to use a consistent regularization scheme

problem is purely formal and is of no phenomenological con-£VeN N the case of attractive interactions. For example, as

cern. After all, in nuclear physics the potentighttractive at recently noted in Refl16], the convergence of Weinberg's
low energies: the inability to describe repulsion may Simp|yscheme is controlled by the scattering length; as the scatter-

not be relevant. On the other hand, the EFT methods used {89 'ength diverges the region of validity of the expansion

derive Eq.(1) are not particular to nuclear physics and neverl€nds to zero. In nature the scattering length is quite large,

explicitly use the fact the interaction is attractive—if the ar_lmplylng a very I|m_|ted regime of f_;lpph_cablllty of th_e ap-
guments are valid they ought to apply equally well to Caseiproa_ch. As will be discussed brl_efl_y in this paper and in more
where the interaction is repulsive. Nothing in Weinberg'sd€tail in a subsequent work this is also a consequence of a
power counting scheme depends on the sign of the interadén0rmalization scheme based on true zero range interac-
tion. Thus, the inability to describe repulsion suggests thafions: The central point of this paper is that if one wishes to
something is seriously wrong with the formalism. As will be use EFT methods m_nuclea_r Interactions, It Is essentl_a_l to
seen in this paper the difficulty can ultimately be traced toregulate_the contact interactions from the outset by giving
the fact that the interaction in the effective Lagrangian haghem.a finite range. .
zero range. The only way which an explicit range can enter It is _worth noting that excepting work bas_ed on a new
into the dynamics in this approach is through regulation an@*Pansion scheme proposed in Réf6], numerical studies
renormalization prescriptions. The general issues of reguls2f the NN force based on effective field theories and chiral
tion and renormalization are clearly important in the attrac-counting do not employ the renormalization prescription
tive case. used in the derivation of Eq1). Rather, they cut off the
It will be shown here that the problem is technical and is'Nt€grals in the momentum-space Sdlinger equation
related to the renormalization scheme used in the derivatiofNich effectively gives a finite range to the interactions.
of Eq. (1). It should be recalled that the contact terms in an'l_'hus _the problems discussed here do not afflict the calcula-
effective Lagrangian do not, in fact, describe zero rangé'Ons in Refs[4,7,13.
physics. Rather, they serve to parametrize the effects of
physics of shorter range than th_e separation _scale. UIti—. IIl. LOW ENERGY T MATRIX
mately, the contact terms lead to divergences which necessi-
tate some regularization prescription and an associated renor- Before discussing the problem of repulsion in any detail it
malization of the coefficients in the Lagrangian. Theis useful to review how th& matrix in Eq.(1) emerges in an
regularization prescription should be consistent with the faceffective field theory treatment. In order to use effective field
that the interactions are, in fact, of finite range. For exampletheories one needs a systematic power counting scheme. Tra-
one can introduce a regulator into the contact interactionditionally in effective field theory treatments this power
thus making it a finite range interaction. The range of thiscounting is for a Feynman amplitude. However, as pointed
interaction should not be taken to be zero in any intermediateut in Ref.[3], such a scheme fails for the situation where
step of the calculation. At the end of the calculation, thetwo or more heavy particles interact strongly at low energy.
regulator parameter should be fixed by the separation scalEhe difficulty is that if the particles typically have a momen-
w. As will be discussed here, it must correspond to a largetum Q, the free propagator goes &5 Q? and becomes large
range than the typical range of the potentialg., the effec- in the limit of smallQ, destroying simple power counting in
tive range. If there is a true separation of scales in the prob-Q/A. The solution to this is quite simple—instead of using
lem, one will find that low energy physical observables will power counting for the Feynman amplitude itself, one devel-
be insensitive to the precise choice of the separation scalgps a systematic power counting only for thgarticle irre-
and the form of the regulator. ducible graphs—i.e., for potentials. The details of the power
In the derivation of Eq(1), however, it was implicitly —counting argument will not be given here as it is well de-
assumed that the range is, in fact, zero. That is, at variouscribed in Ref[3].
points in the calculation the contact interaction is treated To obtain scattering amplitudes, one can iterate these po-
literally, as opposed to merely serving to parametrize somégentials to all orders which corresponds to solving the Schro
short range physics. It has been known for some time that theéinger equation for these potentials. Recently Kaplan, Sav-
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age, and Wise (KSW) have proposed a different

resummation[16], in which the lowest order potential is 1/CR=1/C—(27T)_3f d*p”Gy(p”,E=0). (5
summed to all orders as a ScHinger equation and subse-

quently the inverse of the real part of the Feynman amplituden terms ofCg the T matrix is given by

is expanded systematically. This apparently greatly improves

the convergence of the expansion when the scattering lengify(p,p’)

is large. However, the problem discussed here applies to the

lowest order calculation of the scattering amplitude and it 1
affects both the Weinberg and the KSW schemes. T UCa—(2m 3P0 TG0 .E)—G(p".E=0

In the case where all of the particles are treated as heavy, R (2m) AP [Go(P",B) = Go(p )]
including all exchanged bosons, it is trivial to write down the A
potentials to some order. They are given in terms of an ef- = - —. (6)
fective Lagrangian which consists entirely of contact inter- 4m/CrtiMJME+ie

actions with various numbers of derivatives. This effective

Lagrangian is The second equality is easily obtained since the integral is

now convergent. Finally, identifying the zero enefgyma-
v2 1 1 R trix as 4ra/M immediately gives a renormalization condi-
£=NTiatN—NTmN— ECS(NTN)Z_ECT(NTUN)Z' - tion that Cx=4ma/M and yields Eq.(1). It is also worth
observing at this stage Weinberg'’s renormalization scheme is
(2) completely equivalent to dimensional regularization with the

where the ellipsis indicates contact terms with two or morg¥!S renormalization scheme as discussed in KSW.
derivatives. Such terms are higher order in the power count-
ing. Isoscalas-wave scattering only depends on the combi- !ll. REGULARIZATION, RENORMALIZATION, RANGE,
nationC=(Cs—3C-). AND REPULSION

The next step is to solve the Schinger equation with
appropriate boundary conditions for scattering and thus d
termine theT matrix. This is done most naturally in the form

This section addresses the question of why the calculation
%ased on the renormalization prescription discussed in Sec. II

. . . cannot describe repulsion. As mentioned in the Introduction,
of the Lippmann-Schwinger equation=V+VGoT, where s ocours because the calculation implicitly assumes that

G0=1/(E—p2/Mf|e) andp is the re_Iatlvg momentum op- e range of the interaction is zero and not simply shorter

erator. Clearly, t_hls corresponds t_o iterating the _potentlal '9han some separation scale. One indication that (Egis

a.‘” or_ders. As written abov_e, th_e L|ppmann-SchW|nger €qUaphased on a true zero range interaction is the absence of any

tion Is an operator equation; in momentum space, It IS alyenendence on a regulator mass in the final expression for

integral equation: the T matrix. Indeed, in Weinberg’s derivation no regulariza-
tion scheme is explicitly introduced. In fact, the regulator

T(p,p’)=V(p pr)+(27.,)73f d3p"V(p,p")Go(p";:E) mass has implicitly been taken to infinity at two distinct
’ ’ ' ' places in this calculation. The first is the derivation of Eq.
XT(p",p") &) (4); had a finite range been given to the interaction via any

form of a regulator, one could not obtain the simple result of
Eqg. (4). Instead one would have had to solve an integral
equation. The second place where the regulator mass was
implicitly taken to infinity is in the second equality in Eq.

whereGy(p;E)=1/(E— p?/M+i€). For an arbitraryv one

must solve this equation via standard numerical means.
For the present case the zeroth order potential is simply

delta function in configuration space and therefore a consta

In momentum spaceyo(k,k’)=C. Formally, it is straight- regularization. This is to be expected, since by construction
forward to solve the Lippmann-Schwinger equation with this -guiart : 1S 10 be exp ’ y
dimensional regularization introduces no regulator mass. In

potential. Since/, is a constant, the equation becomes alge-_ . . .
braic: the solution is principle, a scale can enter the problem through renormaliza-

tion but, as noted by KSW, at this order the renormalization
scale dependence is trivial:

KSW reproduce Weinberg's result using dimensional

1
To(P:P)= 6= 2m) =3 1d%p"Gy(p",E)’ @ 120,(1/Cg)=0. @)

Unfortunately, the solution is only formal since The KSW result is the same as Weinberg's and suggests that

(2m) ~3[d®p"Gy(p”,E) diverges, and so as written the so- the lack of a regulator in the derivation of Ed) is sufficient

lution is meaningless. This is hardly surprising—it is well for the system to lose the information that the range of the

known that in 3+1 dimensions, delta function potentials with interaction is finite.

finite strength are sufficiently singular as to have no well- To see that Eq(l) does correspond to a truly zero range

behaved solutions. interaction one should study finite range interactions and
Thus, to make sense of E@) one must renormalize. The then show that Eq(l) is the zero range limit. Consider a

bare paramete€ must go to zero, but must do so in such aregularization prescription where one replacesdHenction

way that theT matrix remains finite. Weinberg introduces a potential by a finite range potential at the beginning of the

renormalized couplin@r given by problem. If one is in the regime in which the effective field
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theory is valid, then the results are insensitive to the precise — 2
' Tp)=—————. 12
:;);r;wsof the regulator and the precise value of the regulator (p) Mp(cotd)—1) (12
For simplicity, consider a simple form for the regulated
6 function—a square well of radius A1 The expression for the phase shift in E¢s0) and (11)

depends on the bare coupli@gu). It is useful to express
this in terms of a physical observable. This amounts to pick-
ing a renormalization condition foa€(x). The most natural

. . choice is to use the scattering length which is related to the
where u is the regulator mass. In coordinate space, the POphase shifts negr=0,

tential is just

- 3ud0(1Upn—|x
sy = LD, ®

Vo(X) = C(() 3r(X; ). 9 lim p cot(8) = — 1/a, (13
p—0
The bare coefficient is written &(u) to indicate that the
value of the coupling depends on the regulator mass
through a renormalization condition. to fix C(u). Using Egs.(10), (11), and(13), one finds the
Itis an elementary exercise to find thematrix associated following renormalization condition fo€(u):
with this potential. The phase shifts satisfy

_ kcot(«/p)+ptan(p/u) | 3C(w)Mpu < /_3C(M)MM): 1
POl = I Tocotni ) tar(plp) L0 47 © 4rr i—ap 14

It is straightforward to demonstrate that for attractive

) 3C(u)Mu’ interactions in the limit ofu—~, one recovers Eq(1).
K=ENP = (1) The key point is that in this limit- C(u)x3—= and thus

k also diverges. Moreover, as —C(u)u’—o»,
This expression is valid for both attractive and repulsive in-k—[ —3C(u) «3/47]Y? which is independent ofp. Al-
teractions. For repulsive interactions and sufficiently smalthoughC(u)u® diverges,C(u)u can remain finite. More-
p, k becomes imaginary. The on-sh&limatrix is related to over p/u—0. Imposing the limit, one finds that E¢10)
cot(d) by becomes

with

[—3C(u)M p®/4m]?cot{[ — 3C ()M uldm]V?
1-[—3C(u)M u/4m]¥?co][ —3C ()M ul/dm]¥2

lim pcot(8) = (15

p—2,C(u)u fixed

where the right-hand side of E@l5) is independent op.  Thus, when describing repulsion, one cannot take the regu-
Imposing the renormalization condition in E(L4) on the lator mass to infinity while still describing the correct scat-
expression in Eq(15) one sees that cot(d)=—1/a; Eq.(1)  tering length. Indeed, when one lgis— one is forced to
immediately follows. The conclusion of this analysis is that,havea—0 which implies a zero cross section; as-0, all
as expected, Eq1) corresponds to an interaction of literally effects of the repulsive interaction must vanish.
zero range. . ~ Of course, the preceding analysis is just an alternative
Now consider what happens for a repulsive potential withgemonstration of the triviality of the repulsive delta function
C(u)>0. Formally, Eq.(15) still applies. There is a diffi- interaction discussed in the context of the nonrelativistic
culty, however, in implementing the renormalization condi- |jmit of ¢* field theories by Bg and Furlond17]. A rigor-
tion. ForC(u)>0, Eq.(14) becomes ous mathematical proof of this was provided by Friedman
[18].
There is no great mystery here. A regulated delta function
+ /wcot}( \ /3C(“)M’“>: ! . (16) of the form ingEq.(8),ywithyan infinitegstrength repulsive
4m 4m 1-auw interaction, is simply a hard core interaction of radiug.1/
The scattering length for a hard core potential is just the
f radius of the hard core. Thus, no matter how strong the re-
pulsion in the regulated function, one cannot get a scatter-
ing length greater than 4/ It is very clear why this happens,
asu—o, C(u) gets large. The effect of a potential which
has a large positive value over some finite region is simply to
p<lla. (17) exclude the wave function from that region. As—c, how-

For repulsive interaction&(x) >0 and the left-hand side o
Eq. (16) is positive so that the renormalization condition can
only be satisfied if
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ever, the size of the region over which the wave function isdescribe such a situation an priori unlikely correlation
excluded goes to zero and the effect of the repulsion vanamong various terms in the expansion is not absurd. How-
ishes. ever, even if there are correlations of the form postulated by
It is worth stressing that Friedman’s theorem guarantee&KSW, there is still a problem. The conventional power

that the inability to describe repulsion when one takes the&ounting scheme requires that the contribution\gf the
regulator mass to infinity is a general feature and not simplytwo-derivative contact interaction, to tie matrix be down
a peculiar feature of the square-well regulator. This can bé&y a power ofp?/A2, compared to the effect o¥,; this
explicitly verified by choosing various alternative forms. For should hold up to momenta of ordar. KSW show explicitly
example, the regulated delta function can be chosen to bethat this fails for largea when dimensional regularization
surface delta function on a shell of radiug:1/ and MS renormalization is used. This raises a thorny ques-

tion since there is no obvious flaw with conventional power
(18) counting arguments and the power counting does not obvi-

ously depend on the scattering length being small.

In this section, an alternative explanation for the break-

Taking Vo(X) = C() S(X; &), calculating thel matrix, and  down of Weinberg’s scheme at low for large a will be
using the scattering length to fik(«) gives the following explored. It will be argued that the breakdown is another

- w?
SROG )= 5 — 8(|X| = Llpw).

renormalization condition: consequence of taking the regulator mass to infinity and is
not an intrinsic defect in the expansion.

47a In many ways, this problem is quite analogous to the dif-

C(ﬂ):m- (19) ficulty of describing repulsion. In the repulsion case, the

range of the interaction was intrinsic to the description—the
As in the case of the square well regulator, one can satisfgcattering length was always smaller than the range of the
the renormalization condition for repulsive interactionspotential. Thus any scheme which treats the range as being

[which of necessity haveC(u)>0 and a>0] only for  zero is destined to fail. The effective range in the case of
pn<lla. infinite scattering length is similar. Recall that the effective
ranger is defined in terms of an expansion ptot(),

IV. ATTRACTIVE INTERACTIONS

__ 1r 24 ...
AND THE CONVERGENCE OF THE EFT EXPANSION pCot(d)=—1latzrop™+---. (20)

The preceding section showed that, in order to describ&uppose, for example, that the underlying dynamics were in
repulsion in an effective field theory with all exchanged par-fact a square well. Then it is trivial to show from Eq$0),
ticles integrated out, it was necessary to regulate the theorjl1), and(20) that when the scattering length is infinite, the
by giving the contact interactions a finite range. Moreover, iteffective range is just the radius of the well. Thus, the physi-
was seen that it was not possible to let the regulator paraneal size of the well is an essential part of the physics of the
eter go to infinity. This section briefly discusses possibleeffective range whea is infinite. It will hardly be surprising
consequences of taking the regulator mass to infinity for atif it turns out not to be possible to describe this by a zero
tractive interactions. It is easy to see that the problems arisenge interaction.
with such a scheme when the scattering length is either very Consider the treatment of the physics of the effective
large or very small. The case of large scattering length is ofange in Weinberg's scheme. Clearly it dependsvgnthe
particular importance since in the nuclear physics case thivo-derivative contact term in the effective Lagrangian. For-
scattering length in the singlet channel is very large. Thignally, the effects of this are ord@?/A? suppressed relative
situation was discussed by KSW who point out that Wein-to V,. Although there are several terms in the Lagrangian of
berg’s scheme, when implemented with dimensional regularthis order, only one linear combination plays a role in the
ization andMS renormalization, breaks down at a momen-singlets-wave channel and one can wrig as
tum scale set by the scattering length. As the scattering

length goes to infinity, Weinberg’s approach breaks down for N O

lower and lower momenta; i& were infinite, Weinberg's Va(p'.p)= 5 (p7+p"). (21)
expansion would break down for arbitrarily smalland thus

be of no utility. Iterating this potential, using dimensional regularization and

KSW suggest that this breakdown is a consequence QIS renormalization, and using the scattering lenggto fix
strong correlations between the coefficients of contact termge renormalizedC, gives the followingT matrix [16]:

at different orders in the EFT expansion of the potential.

They propose to avoid this difficulty by expandipgcots A7IM
rather than by expanding the potentials and iterating to all T(p',p)= T 1 —. (22
orders as proposed by Weinberg. At first glance the explana- (a+za%rgp?) "+iVME+ie

tion for the breakdown of Weinberg's scheme seems quite

unnatural; it depends on a conspiracy among the higher orddthe subscript 2 indicates that tiismatrix includes the ef-
terms. On the other hand, one might argue that genericallfects of contact interactions with up to two derivatives.

the scattering length should be of ordeA ldnd that having By conventional power counting one expects
a very long scattering length—one much longer thanT,=Ty[1+O(p?A?)]. However, expanding Eq$22) and
1/A—is, in itself, unnatural. Thus, one might expect that tocomparing with Eq(1) one sees that
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T,(p',p)=To(p',p)[1+ sarep?+O(p3a?ry)]. (23  function of V. With this optimal regulatof,= T, for all
p and the difficulty of the expansion breaking down at low
Thus, fora>r,, the effects o/, becomes comparable to the p js avoided. More generally, one expects that if a nonopti-
the effectsv, whenp~(aro) ~* This is a signature of the ma| regulator masg. comparable to or less thanr3/were
breakdown of the power counting argumer_1t.ah‘—>oc, the chosen, the,=To[1+ O(p/w)]. This will be studied in a
momentum scale at which the power counting breaks dow%ubsequent publication.
goes to zero. _ . . _ There is also a problem with this treatment in the limit
This problem can be avoided quite simply if the 5 .0 This corresponds to a zefo matrix at zero energy.
6-function interactions are regulated from the beginning. Therps sjtuation can occur in a nontrivial way if the underlying
basic strategy is to exploit the freedom in choosindf one  potential has both attraction and repulsion whose effects can-
begins with regulated functions, the strength of bot,  ce| at zero energy; it can also occur in an attractive potential
and C, depends on both the renormalization conditionsyith a sufficiently deeply bound state. In general, for scatter-
(fixed bya andr) and the regulator mags. In principle, all  jng problems with nonzero potentials aae0, the T matrix
physical results should be independent,ofsince it is an s zero only for zero energy. For a generic interaction tuned
artificial parameter introduced only for convenience. How-q givea=0, normal power counting would lead one to ex-
ever, the full theory is not being solved; within a given ap- pect thafT~p?/A2. In contrast, consider E¢22). As a goes
proximation scheme, results do depend mnalbeit only g zero, T, goes to zero for alp violating the conventional
weakly. One can exploit the freedom in choosiago im-  power counting arguments. Again this represents a serious
prove the convergence of the approximation scheme. An opyitficulty since nothing in the conventional power counting
timal choice ofu is one which minimizes the errors associ- depends in an obvious way @nbeing nonzero. This prob-

ated with truncating the expansion. Thus, for example, inem is also an artifact of imposing an infinite cutoff.
perturbative QCD treatments of deep inelastic scattering one

chooses the factorization scaleto be of orderQ? in order

to avoid large logarithms in the higher order corrections. In
an analogous fashion, for the present problem one can fix
& SO as to minimize the higher order corrections of the EFT The author gratefully acknowledges discussions with
expansion. In particular, one can chogseso thatC,=0. Daniel Phillips, Manoj Banerjee, and Ubirajara van Kolck.
This is possible for any reasonable regulator since one cahhis work was supported in part by the U.S. Department of
fix ro anda from the range and depth of the regulatéd Energy through Grant No. DE-FG02-93ER-40762.

ACKNOWLEDGMENTS

[1] For pedagogic reviews, see D. B. Kaplan, “Effective Field [9] T.-S. Park, D.-P. Min, and M. Rho, Phys. Rev. Lé#, 4143

Theories,” Lectures given alth Summer School in Nuclear (1995.

Physics SymmetrieSeattle, Washington, 1995; e-print achive [10] T.-S. Park, D.-P. Min, and M. Rho, Nucl. Phy&596, 515
nucl-th/9506035; or A. V. Manohar, * Effective Field Theo- (1996.

fies,” Lectures given aB5th International University School (111 S: R. Beane, C.'Y. Lee, and U. van Kolck, Phys. Re\sZ>
of Nuclear and Particle Physics: Perturbative and Nonpertur- 2914(1999.

bative Aspects of Quantum Field TheoBchladming, Austria, [12] E:l.ggédonez, L. Ray, and U. van Kolck, Phys. ReVSE; 2086

1996, e-print archive hep-ph/9606222.

[2] J. Gasser and H. Leutwyler, Ann. Phy@.Y.) 158 142
(1984); Nucl. Phys.B250, 465 (1985.

[3] S. Weinberg, Phys. Lett. B51, 288(1990; Nucl. PhysB363

[13] B. Y. Park, F. Myhrer, J. R. Morones, T. Meissner, and K.
Kubodera, University of South Carolina Report No. USC-NT-
95-6, nucl-th/9512023.

[14] T. D. Cohen, J. L. Friar, G. A. Miller, and U. van Kolck, Phys.

3 (199). Rev. C53, 2661(1996.
[4] C. Ordonez and U. van Kolck, Phys. Le291, 459 (1992. [15] U. van Kolck, J. L. Friar, and T. Goldman, Phys. Lett381,
[5] S. Weinberg, Phys. Lett. B95, 114 (1992. 169 (1996.
[6] T. S. Park, D.-P. Min, and M. Rho, Phys. Rep33 341  [16] D. B. Kaplan, M. J. Savage, and M. Wise, University of Wash-
(1993. ington Report No. DOE-ER-40561-257-INT96-00-125, nucl-
[7] C. Ordonez, L. Ray, and U. van Kolck, Phys. Rev. L&, th/9605002, 1996.
1982(19949. [17] M. A. B. Bég and R. C. Furlong, Phys. Rev. B1, 1370
[8] T.-S. Park, I. Towner, and K. Kubadera, Nucl. Php&79, (1984.

381(1994. [18] C. N. Friedman, J. Funct. Anal0, 346 (1972.



