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S-matrix and R-matrix determination of the low-energy ®He and °Li resonance parameters
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We study the low-energy 372and 1/2 states of"He and®Li in a microscopic cluster model. The scattering
phase shifts of Bond«+n) and of Schwandtd4+ p), respectively, are well reproduced. We determine the
resonance parameters by localizing the poles of the analytically contBueatrix at complex energies. Our
results differ from conventionaR-matrix resonance parameters, that were extracted from experimental data
using the definition of a resonance based on the positions and widths of reaction cross section peaks. However,
they nicely agree with the results of an extendRematrix method that works at complex energies.
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PACS numbe(s): 27.10+h, 24.30.Gd, 21.60.Gx

Wigner's R matrix is one of the most powerful tools in these states have been determined from conventional
nuclear physics. It is routinely used to analyze experimentaR-matrix analyses of certain experimental data. In those
data. Just to mention one example, the analysis of thaorks the definition of the resonance position and width was
12C(a, y) %0 process, which is a key reaction in nuclear as-based on the positions and widths of peaks in the reaction
trophysics[1], is heavily based omR-matrix fits [2]. The  Cross sections.
beauty of Wigner's method is that all scattering quantities FOr narrow isolated single-channel resonances the two
are parametrized in terms of real, energy-independent quafiefinitions of resonance parameterS-roatrix pole and
tities. It is true that the values of some of the parameters of'0SS-Section peak, respectivelgre consistent with each
the theory, namely the reduced-width amplitudes, and other, and give the same results. However, for broad reso-

energy eigenvaluegk, , are somewhat arbitrary due to their nances the results coming from th? two deflnl_tlons may _be
" different, because only the scattering theoretical quantities
dependence on the boundary-condition numbBgs and

channel radiia,. However, any sufficiently robust descrip- defined at complex energiés.g., theS matrix, the Frednolm
o ot ’ . determinant, and the Jost function on the multisheeted Rie-
tion (i.e., one including enough levelsf the scattering data 1, energy surfageontain the correct dynamical informa-
in a given energy region will give stablendependent of {5, Even in the case of a narrow multichannel resonance
a,Bc) resonance parameters when they are based on thge results coming from the two definitions can disagree, and
actual complex-momentum poles and residues of3ea-  siydying the complex-energy scattering quantities can give a
trix, as calculated from continuing tiematrix into the com-  much deeper insight into the dynamics of the prob[&m].
plex energy plane. The extraction of thew+ N resonance parameters from
We will call this method [3] based on the actual observables that are continued to complex energies was first
S-matrix pole structure in the complex plane the “extended” suggested by Ahmed and Shan[&y. They pointed out that
R-matrix prescription for defining resonance parameters, inhe determination of the resonance parameters from real en-
order to distinguish it from the usual resonance-parametesrgy observables is difficult because, e.g., the™ 1fhase
prescriptions that are defined entirely on the real-energy axishift does not even pass through 90 degrees. Here we deter-
The real-energy parameters are easier to obtain, especialifine these parameters from the analytic continuation of the
when they are extracted directly from the measurementsy+N scattering matrix to complex energies in a microscopic

which of course exist only on the real-energy axis of themodel. We also extract theHe and °Li resonance param-
physical sheet. However, it is sometimes difficult to interpreteters from the extenddgg@-matrix method.

experimental results based solely on methods that work at Qur model is a microscopiax+N resonating group
real energies. We mention here two examples: the large crosgethod (RGM) approach to the five-nucleon system. The
section of thet(d,n)« reaction and the problem of the soft trjg| function of the five-body problem reads
dipole resonance in neutron halo nuclei. Only analyses at
complex energies were able to reveal that the large reaction N
cross section is caused by a shadow pole of the scattering 3 o N N
matrix in the former casg3,4], and that the soft dipole reso- ‘1'=i§1 AP Isx " (Pan) om (1)
nance does not exist ifHe in the latter ong5].

It is an intriguing question whether or not the results of
methods that are not confined to real energies agree witivhere A is the intercluster antisymmetrizer, tpgy vector is
those of conventional analyses for the relatively broad resaothe intercluster Jacobi coordinateandS is the total angular
nances encountered in light systems. As an exploratory inmomentum and spin, respectively, dnd - ] denotes angular
vestigation, in this paper we study the low-energy 3#hd  momentum coupling. Whil@N (N=n or p) is a neutron or
1/2" states of the®He and °Li nuclei. The parameters of proton spin-isospin eigenstate, the antisymmetrized ground
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200 (et mechanisms into the model, which would make this model
[ 1 rather phenomenological and ambiguous.

We use the Minnesota effectivé—N interaction[9]. The
same model(for the °He and®Li subsystemsand interac-
tion were used if10,11,9 to successfully describe the struc-
ture and beta delayed deuteron emission®die, and the
three-body resonances of the=6 nuclei.

In Fig. 1 we show ouS andP wave «+ N phase shifts,
together with the experimental data of Bofi] for a+n
and Schwandf13] for a+p. A rather good agreement is
observed, especially in the resonance region. We do not
, show the higher partial waves because they do not influence

15 our results, and they are practically zero at low energies in
agreement with the experiments.
_ o The experimental parameters of the low-lyidgle and

FIG. 1. Phase shifts for+n () anda+p (b) scattering in our 5 j gtates are listed in Table 1. We compare our results with
RGM model. The dashed lines are results from calculations Whe"ﬁwose of Barkef14] and with the compilatiofi15]. The re-
the resonance parameters differ from those in Table | by 10%Sults of Ref[6] are also shown
Experimental data points are taken fr¢f®] (&) and[13] (b), re- The 3/2 'and 1/Z resonancé parameters are determined
spectively. 20 degrees are added to $g phase shifts, for clarity. . - ) .

by analytically continuing thé& matrix to complex energies
[4]. In practice this is done by solving the Sctiger equa-
tion for the a«— N relative motion at complex energies with
the following boundary condition fop ,n— ©

10
E_ . (MeV) E.. (MeV)

state {=1) and monopole excited states(1) of the «
particle are represented by the wave functions

N!X
D=3 Ay, =12, N, (2 Xt M(er pa) = H (Kipan) = SL(eDH] (Kipar).  (3)

Here ¢j is a translationally invariant shell-model wave Heree; andk; are thecomplexenergies and wave numbers

function of thea particle with size parametes;, and the of the relative motions, anti~ andH™ are the incoming
Aj; parameters are to be determined by minimizing the en@nd outgoing Coulomb functions, respectively. The function
ergy of the a particle [7]. Putting Eq.(1) into the five- S has no physical meaning, except if it is singular at the
nucleon Schidinger equation, which contains a two-nucleonenergye. ThenS coincides with the physicab matrix de-
strong and Coulomb interaction, we arrive at an equation fopcribing a purely outgoing solution, that is a resonance. So
the intercluster relative motion functions This equation is we search for the poles & at complex energies. All quan-
solved by utilizing a Kohn-Hulthe variational method for tities are defined on the multisheeted Riemann energy sur-
the S matrix, which uses square integrable basis functiongace, and are analytic almost everywhere. The complex Cou-
matched with the correct scattering asymptofgk lomb functions were calculated by usipg6].

The input data for th&R-matrix studies are the cross sec- The positions E,) and widths (") of the resonances are
tions and polarizations for all possible reactions involvingextracted from thee=E,—iI'/2 complex pole positions of
SHe and®Li. In the present RGM approach we concentratethe S matrix. We compare these parameters with those com-
on reproducing thex+ N scattering phase shifts becauseing from the cross-section peak definition of a resonance,
they are most closely related to the usual definition of theused in conventionaR-matrix approaches. We can see in
resonance position and width. So, if our model reproduce3able |, that our parameters are rather different from the
the phase shifts, then our resonance parameters are hopefuRymatrix results off14]. It is especially intriguing that the
close to the ones that characterize the reactions. Moreover, Bplitting of the 3/2 and 1/2 states is much smaller than in
order to analyze cross sections, we should build reactiopl4], not to mentiorj 15]. We explored the dependence of the

TABLE |. Parameters of the low-energ3He and 5Li resonances in the center-of-mass frame, coming fromStmeatrix pole and
cross-section peak definitions, respectivély.is the resonance position relative to the-N threshold, and” is the full width at half
maximum. All numbers are in MeV.

SHe SLi
Method E,.(3/27) r'(3/2) E.(1/27) T(2) EJ(3/2) I'(3/27) E.(1/27) T(1/2)
Compilation[15] 0.89+0.05 0.60-0.02 4.89-1 4+1  1.96+0.05 ~15 7-12 5-2

R-matrix, stripping[14] 0.838-0.018 0.643:0.046 2.77&0.46 3.6:1.2 1.76:0.06 1.18:0.13 3.630.56 4.x25
R-matrix, pickup[14] 0.869-0.003 0.72%0.019 3.44%04 5323 1.86:0.01 1.44-0.08 4.54-05 6.1+x2.8
Scattering ampl[6] 0.778 0.639 1.999 4.534 1.637 1.292 2.858 6.082
S-matrix, RGM 0.76 0.63 1.89 5.20 1.67 1.33 2.70 6.25
ExtendedR-matrix 0.80 0.65 2.07 5.57 1.69 1.23 3.18 6.60
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TABLE Il. Parameters of the low-energiHe and 5Li resonances in the center-of-mass frame, deter-
mined by assuming thats/dE has a maximum &=E, , andl'=2/(d/d E)E,- E, is the resonance position
relative to thea+ N threshold, and” is the full width at half maximum. All numbers are in MeV.

SHe SLi
Phase shifts E.(3/27) T'(3/27) E/(127) T(1/27) E.(3/27) TI'(3/27) E/(1/27) T(1/2))
Expt. data[12,13 0.77 0.69 2.13 7.26 1.53 1.42 2.77 8.89
RGM 0.76 0.68 2.07 7.18 1.67 1.46 2.92 8.88
R-matrix 0.75 0.85 2.21 7.98 1.67 1.37 3.35 9.40

phase shifts on the resonance parameters by slightly chanfprms. This is, however, an ambiguous procedure for broad
ing the NN interaction. In Fig. 1a) the dashed lines show resonances where the phase shift is not “ideélé., not
the change of the resonant phase shifts when the resonangeing from 0 to 180 degrees within a short energy interval
parameters of Table | are changed by 10%. We also checkddr an “ideal,” isolated, narrow resonance the phase shift,

the effect of including thel+t channel in Eq(1), and found ~ given by  scattering  theory,  behaves like
that the resonance parameters are little changed, provided tfRS(E) =0.5I'/(E, — E), which implies thatdé/dE has a
phase shifts have the same quality as in Fig).1 maximum atE=E, , andI'=2/(d6/dE)g . This prescription

We also used the extend&dmatrix method 3] to extract  to extractE, andI is also used for broader resonanfag].
resonance parameters for the=5 ground state and first In Table Il we show the 3/2 and 1/2 parameters coming
excited states from multichannB-matrix analyses of reac- from this definition applied to the experimental and model
tions in the °He and °Li systems. TheA=5 analyses in- phase shifts. One can see that this simple procedure provides
cluded the two-body channeN+a« andd+t or d+3He, resonance parameters that are close to the RGM results, ex-
along with pseudo-two-body configurations to represent theept that it systematically overestimates the widths.
breakup channels+p-+t or n+p+23He. Included in the In a very recent papdB3] the authors extracted the reso-
n— « data are the differential elastic scattering cross sectionsance parameters of ttiéle and®Li ground states by deter-
of Morgan [17], Hoop [18], Niiler [19], and Shamy20]; mining the pole positions of th& matrix corresponding to
polarization and analyzing-power measurements by SawerdH(d,y) °He and 3He(d,y) °Li measurement§34]. Their
[21], Broste[22], May [23], and Perking24]; and neutron results, Es,-(°He)=0.8+0.02 MeV, I';, (°He)=0.65
total cross sections measured by Haedi@&]. The p—« +0.02 MeV, andEg,-(°Li) =1.72+0.03 MeV, I'5;,- (°Li)
data include the differential elastic scattering cross sections-1.28+0.03 MeV are in good agreement with our values in
of Freier[26], Jarmie[27], Garreta[28], and Plattnef29]; Table I.
polarization and analyzing-power measurements by In summary, we have determined the parameters of the
Schwandt[13], Plattner [29], and Hardekopf[30]; and low-energy®He and®Li resonances from the complex pole
polarization-transfer measurements by Kedigti. positions of thea+N scattering matrix in a microscopic

The results are given in Table I. It is remarkable that mostluster model. Our results are different from the results com-
of the resonance parameters agree nicely with the RGM rdng from a conventionaR-matrix method, which define the
sults, but differ from the convention&-matrix results. Per- resonance parameters based on the real-energy properties of
haps the only exception is the I/Ztate of°Li, where the  cross-section peaks. However, they are in good agreement
agreement between the RGM and extenBeghatrix results  with the results of an extendd®t-matrix method that works
is not so good. The small differences between the extendeiéd the complex energy plane. We emphasize that the ex-
R matrix and RGM results in the case ¥fle probably come tendedR-matrix method involves no difference in the way
from the fact that oulR matrix gives phase shifts that are that R-matrix parameters are extracted from experimental
slightly different from[13] at higher energies. Our RGM data, but only in the way that they are subsequently used to
results are also in good agreement wWisfi, where a higher- define resonance parameters. However, it is quite clear that
order scattering amplitude expansion was used. the dependence on the channel radius of the usual real-

In addition to the dependence of the resonance parametegsiergy prescription for defining resonance parameters from
of Ref. [14] on the mechanism by whicAHe and®Li are  R-matrix parameters is characteristic of that prescription.
formed, there is also a marked dependence on the channel The S-matrix pole prescription gives consistent resonance
radius. Barker has argued that this dependence can be usedgrameters for the ground state and first excited state of the
determine a “best” value of channel radius, which for A=5 nuclei, which are approximately independent of the
n+« is taken to be 5.5 fm. It is therefore quite interestingmethod used to describe the nuclear dynamics or the reaction
that when then— o R-function parameters from Table 8 of in which the resonance is observed, and in the case of the
Ref. [14] are used in thé&-matrix pole prescription3], the  R-matrix parametrizations, also independent of the channel
resulting resonance parametersks,-=0.77 MeV, radii and boundary conditions. We expect this would also be
I'3»-=0.65 MeV,E,,-=2.10 MeV,I';,,-=5.37 MeV, are the case for relatively broad levels in other light systems,
in good agreement with the RGM values and with the ex-where different resonance-parameter prescriptions can lead
tendedR-matrix values, defined foa,,_,=3.0 fm. to quite different result$35], and so we recommend using

The simplest way to extract resonance parameters is to fthe complexS-pole prescription to specify resonance param-
the cross-section or phase-shift data with Breit-Wignereters in all cases.
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