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S-matrix and R-matrix determination of the low-energy 5He and 5Li resonance parameters

Attila Csótó1,2 and G. M. Hale2
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We study the low-energy 3/22 and 1/22 states of5He and5Li in a microscopic cluster model. The scattering
phase shifts of Bond (a1n) and of Schwandt (a1p), respectively, are well reproduced. We determine the
resonance parameters by localizing the poles of the analytically continuedSmatrix at complex energies. Our
results differ from conventionalR-matrix resonance parameters, that were extracted from experimental data
using the definition of a resonance based on the positions and widths of reaction cross section peaks. However,
they nicely agree with the results of an extendedR-matrix method that works at complex energies.
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PACS number~s!: 27.10.1h, 24.30.Gd, 21.60.Gx
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Wigner’s R matrix is one of the most powerful tools i
nuclear physics. It is routinely used to analyze experime
data. Just to mention one example, the analysis of
12C(a,g)16O process, which is a key reaction in nuclear a
trophysics@1#, is heavily based onR-matrix fits @2#. The
beauty of Wigner’s method is that all scattering quantit
are parametrized in terms of real, energy-independent q
tities. It is true that the values of some of the parameters
the theory, namely the reduced-width amplitudesglc , and
energy eigenvaluesEl , are somewhat arbitrary due to the
dependence on the boundary-condition numbersBc , and
channel radiiac . However, any sufficiently robust descrip
tion ~i.e., one including enough levels! of the scattering data
in a given energy region will give stable~independent of
ac ,Bc) resonance parameters when they are based on
actual complex-momentum poles and residues of theS ma-
trix, as calculated from continuing theRmatrix into the com-
plex energy plane.

We will call this method @3# based on the actua
S-matrix pole structure in the complex plane the ‘‘extende
R-matrix prescription for defining resonance parameters
order to distinguish it from the usual resonance-param
prescriptions that are defined entirely on the real-energy a
The real-energy parameters are easier to obtain, espec
when they are extracted directly from the measureme
which of course exist only on the real-energy axis of t
physical sheet. However, it is sometimes difficult to interp
experimental results based solely on methods that wor
real energies. We mention here two examples: the large c
section of thet(d,n)a reaction and the problem of the so
dipole resonance in neutron halo nuclei. Only analyses
complex energies were able to reveal that the large reac
cross section is caused by a shadow pole of the scatte
matrix in the former case@3,4#, and that the soft dipole reso
nance does not exist in6He in the latter one@5#.

It is an intriguing question whether or not the results
methods that are not confined to real energies agree
those of conventional analyses for the relatively broad re
nances encountered in light systems. As an exploratory
vestigation, in this paper we study the low-energy 3/22 and
1/22 states of the5He and 5Li nuclei. The parameters o
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these states have been determined from conventi
R-matrix analyses of certain experimental data. In tho
works the definition of the resonance position and width w
based on the positions and widths of peaks in the reac
cross sections.

For narrow isolated single-channel resonances the
definitions of resonance parameters (S-matrix pole and
cross-section peak, respectively! are consistent with each
other, and give the same results. However, for broad re
nances the results coming from the two definitions may
different, because only the scattering theoretical quanti
defined at complex energies~e.g., theSmatrix, the Fredholm
determinant, and the Jost function on the multisheeted R
mann energy surface! contain the correct dynamical informa
tion. Even in the case of a narrow multichannel resona
the results coming from the two definitions can disagree,
studying the complex-energy scattering quantities can giv
much deeper insight into the dynamics of the problem@3,4#.

The extraction of thea1N resonance parameters fro
observables that are continued to complex energies was
suggested by Ahmed and Shanley@6#. They pointed out that
the determination of the resonance parameters from rea
ergy observables is difficult because, e.g., the 1/22 phase
shift does not even pass through 90 degrees. Here we d
mine these parameters from the analytic continuation of
a1N scattering matrix to complex energies in a microsco
model. We also extract the5He and 5Li resonance param
eters from the extendedR-matrix method.

Our model is a microscopica1N resonating group
method ~RGM! approach to the five-nucleon system. T
trial function of the five-body problem reads

C5(
i51

Na

A$†@~Fa iFN!#SxL
a iN~raN!‡JM%, ~1!

whereA is the intercluster antisymmetrizer, theraN vector is
the intercluster Jacobi coordinate,L andS is the total angular
momentum and spin, respectively, and@•••# denotes angular
momentum coupling. WhileFN (N5n or p) is a neutron or
proton spin-isospin eigenstate, the antisymmetrized gro
536 © 1997 The American Physical Society
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state (i51) and monopole excited states (i.1) of the a
particle are represented by the wave functions

Fa i5(
j51

Na

Ai jfb j

a , i51,2, . . . ,Na . ~2!

Here fb j

a is a translationally invariant shell-model wav

function of thea particle with size parameterb j , and the
Ai j parameters are to be determined by minimizing the
ergy of thea particle @7#. Putting Eq. ~1! into the five-
nucleon Schro¨dinger equation, which contains a two-nucle
strong and Coulomb interaction, we arrive at an equation
the intercluster relative motion functionsx. This equation is
solved by utilizing a Kohn-Hulthe´n variational method for
the S matrix, which uses square integrable basis functio
matched with the correct scattering asymptotics@8#.

The input data for theR-matrix studies are the cross se
tions and polarizations for all possible reactions involvi
5He and5Li. In the present RGM approach we concentra
on reproducing thea1N scattering phase shifts becau
they are most closely related to the usual definition of
resonance position and width. So, if our model reprodu
the phase shifts, then our resonance parameters are hop
close to the ones that characterize the reactions. Moreove
order to analyze cross sections, we should build reac

FIG. 1. Phase shifts fora1n ~a! anda1p ~b! scattering in our
RGM model. The dashed lines are results from calculations wh
the resonance parameters differ from those in Table I by 1
Experimental data points are taken from@12# ~a! and @13# ~b!, re-
spectively. 20 degrees are added to theS1/2 phase shifts, for clarity.
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mechanisms into the model, which would make this mo
rather phenomenological and ambiguous.

We use the Minnesota effectiveN–N interaction@9#. The
same model~for the 5He and 5Li subsystems! and interac-
tion were used in@10,11,5# to successfully describe the stru
ture and beta delayed deuteron emission of6He, and the
three-body resonances of theA56 nuclei.

In Fig. 1 we show ourS andP wavea1N phase shifts,
together with the experimental data of Bond@12# for a1n
and Schwandt@13# for a1p. A rather good agreement i
observed, especially in the resonance region. We do
show the higher partial waves because they do not influe
our results, and they are practically zero at low energies
agreement with the experiments.

The experimental parameters of the low-lying5He and
5Li states are listed in Table I. We compare our results w
those of Barker@14# and with the compilation@15#. The re-
sults of Ref.@6# are also shown.

The 3/22 and 1/22 resonance parameters are determin
by analytically continuing theSmatrix to complex energies
@4#. In practice this is done by solving the Schro¨dinger equa-
tion for thea2N relative motion at complex energies wit
the following boundary condition forraN→`

xL
a iN~« i ,raN!→HL

2~kiraN!2S̃L~« i !HL
1~kiraN!. ~3!

Here« i andki are thecomplexenergies and wave numbe
of the relative motions, andH2 andH1 are the incoming
and outgoing Coulomb functions, respectively. The funct
S̃ has no physical meaning, except if it is singular at t
energy«. Then S̃ coincides with the physicalS matrix de-
scribing a purely outgoing solution, that is a resonance.
we search for the poles ofS̃ at complex energies. All quan
tities are defined on the multisheeted Riemann energy
face, and are analytic almost everywhere. The complex C
lomb functions were calculated by using@16#.

The positions (Er) and widths (G) of the resonances ar
extracted from the«5Er2 iG/2 complex pole positions o
theSmatrix. We compare these parameters with those co
ing from the cross-section peak definition of a resonan
used in conventionalR-matrix approaches. We can see
Table I, that our parameters are rather different from
R-matrix results of@14#. It is especially intriguing that the
splitting of the 3/22 and 1/22 states is much smaller than i
@14#, not to mention@15#. We explored the dependence of th

re
.

TABLE I. Parameters of the low-energy5He and 5Li resonances in the center-of-mass frame, coming from theS-matrix pole and
cross-section peak definitions, respectively.Er is the resonance position relative to thea1N threshold, andG is the full width at half
maximum. All numbers are in MeV.

5He 5Li

Method Er(3/2
2) G(3/22) Er(1/2

2) G(1/22) Er(3/2
2) G(3/22) Er(1/2

2) G(1/22)

Compilation@15# 0.8960.05 0.6060.02 4.8961 461 1.9660.05 ' 1.5 7–12 562
R-matrix, stripping@14# 0.83860.018 0.64560.046 2.77860.46 3.661.2 1.7660.06 1.1860.13 3.6360.56 4.162.5
R-matrix, pickup@14# 0.86960.003 0.72360.019 3.44960.4 5.362.3 1.8660.01 1.4460.08 4.5460.5 6.162.8
Scattering ampl.@6# 0.778 0.639 1.999 4.534 1.637 1.292 2.858 6.082
S-matrix, RGM 0.76 0.63 1.89 5.20 1.67 1.33 2.70 6.25
ExtendedR-matrix 0.80 0.65 2.07 5.57 1.69 1.23 3.18 6.60
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TABLE II. Parameters of the low-energy5He and 5Li resonances in the center-of-mass frame, de
mined by assuming thatdd/dE has a maximum atE5Er , andG52/(dd/dE)Er. Er is the resonance position
relative to thea1N threshold, andG is the full width at half maximum. All numbers are in MeV.

5He 5Li

Phase shifts Er(3/2
2) G(3/22) Er(1/2

2) G(1/22) Er(3/2
2) G(3/22) Er(1/2

2) G(1/22)

Expt. data@12,13# 0.77 0.69 2.13 7.26 1.53 1.42 2.77 8.89
RGM 0.76 0.68 2.07 7.18 1.67 1.46 2.92 8.88
R-matrix 0.75 0.85 2.21 7.98 1.67 1.37 3.35 9.40
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phase shifts on the resonance parameters by slightly ch
ing theN–N interaction. In Fig. 1~a! the dashed lines show
the change of the resonant phase shifts when the reson
parameters of Table I are changed by 10%. We also chec
the effect of including thed1t channel in Eq.~1!, and found
that the resonance parameters are little changed, provide
phase shifts have the same quality as in Fig. 1~a!.

We also used the extendedR-matrix method@3# to extract
resonance parameters for theA55 ground state and firs
excited states from multichannelR-matrix analyses of reac
tions in the 5He and 5Li systems. TheA55 analyses in-
cluded the two-body channelsN1a and d1t or d13He,
along with pseudo-two-body configurations to represent
breakup channelsn1p1t or n1p13He. Included in the
n2a data are the differential elastic scattering cross sect
of Morgan @17#, Hoop @18#, Niiler @19#, and Shamu@20#;
polarization and analyzing-power measurements by Saw
@21#, Broste@22#, May @23#, and Perkins@24#; and neutron
total cross sections measured by Haesner@25#. The p2a
data include the differential elastic scattering cross sect
of Freier @26#, Jarmie@27#, Garreta@28#, and Plattner@29#;
polarization and analyzing-power measurements
Schwandt @13#, Plattner @29#, and Hardekopf@30#; and
polarization-transfer measurements by Keaton@31#.

The results are given in Table I. It is remarkable that m
of the resonance parameters agree nicely with the RGM
sults, but differ from the conventionalR-matrix results. Per-
haps the only exception is the 1/22 state of 5Li, where the
agreement between the RGM and extendedR-matrix results
is not so good. The small differences between the exten
Rmatrix and RGM results in the case of5He probably come
from the fact that ourR matrix gives phase shifts that ar
slightly different from @13# at higher energies. Our RGM
results are also in good agreement with@6#, where a higher-
order scattering amplitude expansion was used.

In addition to the dependence of the resonance param
of Ref. @14# on the mechanism by which5He and 5Li are
formed, there is also a marked dependence on the cha
radius. Barker has argued that this dependence can be us
determine a ‘‘best’’ value of channel radius, which f
n1a is taken to be 5.5 fm. It is therefore quite interesti
that when then2a R-function parameters from Table 8 o
Ref. @14# are used in theS-matrix pole prescription@3#, the
resulting resonance parameters,E3/2250.77 MeV,
G3/2250.65 MeV,E1/2252.10 MeV,G1/2255.37 MeV, are
in good agreement with the RGM values and with the
tendedR-matrix values, defined foran2a53.0 fm.

The simplest way to extract resonance parameters is t
the cross-section or phase-shift data with Breit-Wign
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forms. This is, however, an ambiguous procedure for bro
resonances where the phase shift is not ‘‘ideal’’~i.e., not
going from 0 to 180 degrees within a short energy interva!.
For an ‘‘ideal,’’ isolated, narrow resonance the phase sh
given by scattering theory, behaves lik
tand(E)50.5G/(Er2E), which implies thatdd/dE has a
maximum atE5Er , andG52/(dd/dE)Er. This prescription
to extractEr andG is also used for broader resonances@32#.
In Table II we show the 3/22 and 1/22 parameters coming
from this definition applied to the experimental and mod
phase shifts. One can see that this simple procedure prov
resonance parameters that are close to the RGM results
cept that it systematically overestimates the widths.

In a very recent paper@33# the authors extracted the res
nance parameters of the5He and5Li ground states by deter
mining the pole positions of theS matrix corresponding to
3H(d,g) 5He and 3He(d,g) 5Li measurements@34#. Their
results, E3/22(5He)50.860.02 MeV, G3/22(5He)50.65
60.02 MeV, andE3/22(5Li)51.7260.03 MeV, G3/22(5Li)
51.2860.03 MeV are in good agreement with our values
Table I.

In summary, we have determined the parameters of
low-energy 5He and5Li resonances from the complex po
positions of thea1N scattering matrix in a microscopi
cluster model. Our results are different from the results co
ing from a conventionalR-matrix method, which define the
resonance parameters based on the real-energy propert
cross-section peaks. However, they are in good agreem
with the results of an extendedR-matrix method that works
in the complex energy plane. We emphasize that the
tendedR-matrix method involves no difference in the wa
that R-matrix parameters are extracted from experimen
data, but only in the way that they are subsequently use
define resonance parameters. However, it is quite clear
the dependence on the channel radius of the usual r
energy prescription for defining resonance parameters f
R-matrix parameters is characteristic of that prescription.

TheS-matrix pole prescription gives consistent resonan
parameters for the ground state and first excited state of
A55 nuclei, which are approximately independent of t
method used to describe the nuclear dynamics or the reac
in which the resonance is observed, and in the case of
R-matrix parametrizations, also independent of the chan
radii and boundary conditions. We expect this would also
the case for relatively broad levels in other light system
where different resonance-parameter prescriptions can
to quite different results@35#, and so we recommend usin
the complexS-pole prescription to specify resonance para
eters in all cases.
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