Low-energy ⁷Li $(n, \gamma_0)^8$ Li and ⁷Li $(p, \gamma_0)^8$ Be cross sections

F. C. Barker

Department of Theoretical Physics, Research School of Physical Sciences and Engineering, The Australian National University,

Canberra, ACT 0200, Australia

(Received 3 September 1996)

The lack of *p*-wave strength in a recent measurement of the low-energy ${}^{7}\text{Li}(n,\gamma_{0})^{8}\text{Li}$ cross section, as compared with significant strength found in the ${}^{7}\text{Li}(p,\gamma_{0})^{8}\text{Be}$ reaction, may be attributed to the qualitatively different low-energy behaviors of penetration factors for neutron and charged-particle channels. [S0556-2813(97)05001-2]

PACS number(s): 25.40.Lw, 27.20.+n

Blackmon *et al.* [1] recently measured the ⁷Li(n, γ_0)⁸Li cross section for $E_n = 1.5 - 1340$ eV, in part to look for evidence of *p*-wave contributions. They found none. Earlier a ⁷Li(p, γ_0)⁸Be measurement by Chasteler *et al.* [2] at $E_p = 70$ keV had indicated substantial *p*-wave strength, of uncertain origin. Chasteler *et al.* pointed out that such strength could significantly reduce the zero-energy astrophysical *S* factor obtained by assuming pure *s* waves, and that a similar phenomenon might be present in the ⁷Be(p, γ)⁸B reaction, which is of importance in the solar neutrino problem and to which ⁷Li(n, γ_0)⁸Li is the mirror reaction. Here we show that the difference in the observed low-energy *p*-wave strengths may be attributed to the qualitatively different low-energy behaviors of penetration factors for neutron and charged-particle channels.

The ℓ -wave contributions to the low-energy cross sections for the three reactions ${}^{7}\text{Li}(n, \gamma_0){}^{8}\text{Li}$, ${}^{7}\text{Li}(p, \gamma_0){}^{8}\text{Be}$, and ${}^{7}\text{Be}(p, \gamma){}^{8}\text{B}$ are proportional to the penetration factors P_{ℓ} in the initial channels ${}^{7}\text{Li} + n$, ${}^{7}\text{Li} + p$ and ${}^{7}\text{Be} + p$, respectively. We are particularly interested in the ratio P_1/P_0 . For the charged-particle channels, the low-energy penetration factors are determined mainly by the Coulomb potential, which extends to larger distances than either the centrifugal potential or the nuclear interaction. Since the Coulomb potential is ℓ independent, the ratio of the P_{ℓ} for different ℓ values tends to a constant as the energy tends to zero. With the penetration factor defined as in *R*-matrix theory [3],

$$P_{\ell} = \rho/(F_{\ell}^2 + G_{\ell}^2),$$

where F_{ℓ} and G_{ℓ} are the regular and irregular Coulomb functions evaluated at the channel radius *a*, and $\rho = ka$, the formulas in Ref. [4] lead to

$$[P_{\ell}/P_{\ell-1}]_{E=0} = [K_{2\ell-1}(x)/K_{2\ell+1}(x)]^2,$$

where $K_n(x)$ is a Bessel function [5] and $x = (8\rho \eta)^{1/2}$, with η the Sommerfeld parameter. For neutron channels, however, the ℓ -dependent centrifugal potential dominates at large distances, and at low energies one has

$$P_{\ell}/P_{\ell-1} = \rho^2/(2\ell-1)^2$$
,

which tends to zero as E tends to zero.

For the conventional value of the channel radius, $a = 1.45(7^{1/3}+1)$ fm=4.22 fm, the ratio P_1/P_0 has the zeroenergy values 0.034 and 0.048 for ⁷Li+p and ⁷Be+p, respectively, and increases with energy. For ⁷Li + n, P_1/P_0 has the values 1.2×10^{-6} and 4.7×10^{-4} at $E_n = 1.78$ eV and 721 eV, the average energies for the extreme bins in the measurement of Blackmon *et al.* [1].

Chasteler *et al.* [2] obtained fits to their ${}^{7}\text{Li}(p, \gamma_0){}^{8}\text{Be}$ data with (18-95)% p-wave strength and found that these could reduce the zero-energy S factor by (7-38)%. By attributing the *p*-wave strength to the tails of known 1^+ levels of ⁸Be, Barker [6] found acceptable fits to the data of Chasteler et al. with $\leq 9\%$ p-wave strength. Suppose that there were appreciable p-wave strength in ⁷Li(p, γ_0)⁸Be, say 10%. If all relevant quantities except penetration factors are assumed the same for ${}^{7}\text{Li}(n,\gamma_0){}^{8}\text{Li}$ as for ${}^{7}\text{Li}(p,\gamma_0){}^{8}\text{Be}$, then the different values of the ratio P_1/P_0 would imply p-wave strengths in ${}^{7}\text{Li}(n,\gamma_{0})^{8}\text{Li}$ of 3.8×10^{-4} % and 0.15% at 1.78 and 721 eV, respectively. The uncertainties in the measurement of Blackmon et al. [1] are, however, only sufficient to limit the *p*-wave strength to less than about 30%. Similarly, this measurement would not impose any significant restriction on possible low-energy p-wave strength in the ⁷Be $(p, \gamma)^{8}$ B reaction.

- J.C. Blackmon, A.E. Champagne, J.K. Dickens, J.A. Harvey, M.A. Hofstee, S. Kopecky, D.C. Larson, D.C. Powell, S. Raman, and M.S. Smith, Phys. Rev. C 54, 383 (1996).
- [2] R.M. Chasteler, H.R. Weller, D.R. Tilley, and R.M. Prior, Phys. Rev. Lett. **72**, 3949 (1994).
- [3] A.M. Lane and R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958).
- [4] F.L. Yost, J.A. Wheeler, and G. Breit, Phys. Rev. 49, 174 (1936).
- [5] G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, England, 1958), p. 78 and Table IV.
- [6] F.C. Barker, Aust. J. Phys. 48, 813 (1995).