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No evidence for large charge-symmetry breaking effects in théP; nucleon-nucleon interactions
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Rigorous calculations of proton-deuteron and neutron-deuteron analyzing pg¢érangular distributions
in the incident nucleon energy range from 1 to 3 MeV are presented. It is shown that the sizable difference in
the magnitude oA\ () for p-d andn-d scattering is caused by the Coulomb interaction in the cagedf
scattering and is not due to charge-symmetry-breaking effects ifRRenucleon-nucleon interactions. The
calculated relative difference in the angular region of Ay¢6) maximum is in agreement with the existing
experimental datd.S0556-28187)01901-9

PACS numbds): 21.45+v, 24.70+s, 25.40--h, 13.75.Cs

Experimental progress over the last 15 years made it pogeproduced, as was later pointed out by Witata,dRle, and
sible to definitely establish small differences between protonTakemiya[6]. Furthermore, Takemiya assumed, like Witata
deuteron p-d) and neutron-deuterom{d) analyzing power and Glakle, that theAg’a" difference was solely caused by
A,(0) data in the incident nucleofN) energy range from 3 CSB. On the other hand, in Réf’] it was argued that most,
to 14 MeV. These differences occur both at forward anglesf not all, of the observed\;“axdifference is due to the Cou-
and in the region of the maximum in ti#g(¢) angular dis-  Jomb interaction in the case @id scattering and not due to
tribution around. ,= 90°-120°. Except for electromag- CSB in the®P; N-N interactions. Very recently, this conclu-
netic effects(i.e., Rutherford scattering, Mott-Schwinger in- sjon was questioned in a paper by Soldi, Vlahovic, and Slaus
teraction, etg.which are known to be important at forward [4] where strategies were described to firmly establish the
scattering angleg)-d scattering is governed by-p andn-  size of CSB in the®P; N-N interactions.

p nuclear forces while-d scattering is governed by-n and In this Brief Report we want to point out that t}@ax

n-p nuclear forces. Therefore, the comparisonpefl and  gifference is theoretically well understood. In fact, the main
n-d data in the angular region of the maximumAf(¢) (in  result was already published by the Pisa group in short form
the following referred to as AJ'™’) can provide estimates in Ref. [8]. Using the pair correlated hyperspherical har-
of possible charge-symmetry-breakif@SB) effects in the  monic method and the Argonne AVI&] and AV18[10]
underlyingN-N interaction. SinceA,(#) in N-d scattering  N-N potentials the Pisa groud1] treated the Coulomb in-
has been shown to be extremely sensitive to 1Rg N-N  teraction inp-d scattering in a rigorous way. This approach
interactions[1], it is not surprising that attempts have beenis currently limited to energies below the deuteron breakup
made to extract information about CSB in these interactionghreshold(i.e., to incident nucleon energiés,<3.33 MeV).
[2—4]. Based on quark-model studi¢S], sizable CSB ef-  Fortunately, accurate-d andn-d A (6) data are available at

fects are predicted to exist. En=3 MeV [12,13. Similar to the situation fon-d scatter-
The theoretical studies of Ref2—4] were hampered by

two shortcomings. First, rigorousNBcalculations of then-

d A,(6) using realistioN-N potential models fail to describe 0.08 e T I

the magnitude oA (6) by more than 25%. Second, rigorous I n-d AVI8 E=3.0MeV

3N p-d calculations that include the Coulomb interaction L~ ~ p-dAVIE :
. . : 006 - ndAV14 s g

exactly were not available. Nevertheless, the detailed studies L p-dAVI4 ]

of Witata and Glakle [2] clearly demonstrated that a set of [ o Shimizuetal ¥ 2% ¥ ]

3p 3 N-N interactions can be found that not only describes € 004 | = McAninchetal = = ]

the n-d andp-d Ay(#6) data aroundAy"™, but alsop-p and
n-p observables. In the latter work, thg'® difference was
attributed completely to CSB in th&; interactions. How-
ever, the resulting’P; phase shifts exhibit a much larger

002 |

degree of CSB and charge-independence breaking than ex- ol

pected from theoretical studies. In addition, the sign of the

CSB effects was opposite from that predicted by meson- 0 (deg)

exchange-basedN-N potential models. The approach of

Takemiya[3] provided a good description qf-d and n-d FIG. 1. Comparison oh-d [13] and p-d [12] analyzing power

Ay(0), but at the same time tH¢-N A (6) data were poorly A, (6) data and rigorous calculations &f=3.0 MeV.
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FIG. 2. Calculated-d andp-d analyzing poweA,(6) angular
distributions betweeity=1.0 and 3.0 MeV.

ing below and above the deuteron breakup threshbd-
16], the p-d calcualtions underestimate tiped A, (6) data
considerably. Figure 1 shows calculatagl #) angular dis-
tributions atEy=3 MeV for n-d (solid and dotted curves
andp-d (dashed and dash-dotted curyesattering in com-
parison ton-d (solid square§13]) and p-d (open circles
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FIG. 3. Calculatedsolid circles and open squajesnd mea-
sured(crosses with error barenergy dependence of the relative
difference between the-d and p-d analyzing powerA,(6) ob-
tained at the maximum of th&,(¢) angular distribution. The ex-
perimental results &y=5.0 MeV and above were taken from Ref.

[7].

AV18 and the older AVIANN potentials fail to describe the
experimental data by a considerable amount. This phenom-
enon is referred to as theA|(¢) puzzle” and it represents
the most spectacular discrepancy between rigorduical-
culations and experimental scattering data. However, more
important for the present work is the difference between the
solid and dashed curvg®\V18) and the dotted and dash-
dotted curvegAV14). It clearly documents th&y™* differ-
ence referred to above. The AV14 potential does not contain
any charge dependence in tHi@; interactions. Therefore,
the difference between the dotted and dash-dotted curves is
caused solely by the Coulomb interaction. It should be men-
tioned that the AV14 potential does not provide an optimal
description of theN-N A, (6) data. Therefore, it is not too
surprising that the predictions calculated with AV14 deviate
even further from the experimentdlld data than the calcu-
lations using AV18. The latter potential is fitted to thieN
database of the Nijmegen gro{ip7] and describes the ex-
perimental data withy? per datum of 1.09. The AV18 po-
tential includes a small charge dependence in*fRg phase
shifts, i.e., 3P;(n-p) #3P;(p-p) # 3P,(n-n).

Figure 2 represents the calculatedd and p-d A (6) in
the incident nucleon energy range from 1 to 3 MeV in 0.5
MeV steps. Experimentat-d data are not available below
E,=3 MeV. At Ey=1.0 MeV [see Fig. Pa)] the calculated
p-d Ay(0) is about a factor of 2 smaller than thed
A,(0) in the angular range of interest. This observation holds
for both AV14 and AV18. AtEy=1.5 and 2.5 MeV[see
Figs. 2b) and 2d)] calculations were performed with the
AV18 potential only. Figure 2 shows clearly how the differ-
ence between the-d andp-d A (6) increases with decreas-
ing incident nucleon energy. In order to make a more quan-
titative comparison, the relative difference between ribe
andp-d A (6) at the maximum oA (#) is given in Fig. 3 as
a function ofEy . The crosses with error bars represent the-
experimentally observed relative differences. As expected
from simple Coulomb-force argumenitg], the relative dif-
ference increases dramatically with decreasiBg. At

[12]) data. Clearly, the calculations using both the newEy=3 MeV, the only energy where a comparison can be
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made, the calculated and the experimentally observed rela- In summary, aEy=3 MeV the calculated relative differ-
tive differences agree rather well. In addition, at this energyence between the-d and p-d A, (6) in the region of the
the AV14 and AV18 potential models give almost identical Maximum in the angular distribution agrees with the experi-
results. At 1.0 and 2.0 MeV small differences are visibleMental result. Since thN-N potentials used in the rigorous

between the AV14 and AV18 predictions. These difference%CaaiInC:(Ijat(':osns ‘évggfrigﬁgg:lg\é}rlg; 'i%dfhpeegg@r\,fllﬁ) i?];ecrc;ré'
3 N- .

are difficult to interpret because of the AV18 potential’s SU-;iohs we conclude that the Coulomb interaction. and not
perior description of thé&l-N A,(#6) in comparison to AV14. CsB, is responsible for the vast majority of the sizable
Therefore, it is not clear whether the inherent charge deperA;‘ax difference observed betweend and p-d data at low
dence of AV18 is responsible for this fact. Obviously, accu-incident nucleon energies.

rate experimentah-d data are needed belok,=3 MeV to

verify the calculations shown in Fig.[®-d A,(6) data exist : . : "
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