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Generalized polarizabilities and the spin-averaged amplitude
in virtual Compton scattering off the nucleon

D. Drechsel, G. Kno¨chlein, A. Metz, and S. Scherer
Institut für Kernphysik, Johannes Gutenberg-Universita¨t, J. J. Becher-Weg 45, D-55099 Mainz, Germany

~Received 28 August 1996!

We discuss the low-energy behavior of the spin-averaged amplitude of virtual Compton scattering off a
nucleon. Based on gauge invariance, Lorentz invariance, and the discrete symmetries, it is shown that to first
order in the frequency of the final real photon only two generalized polarizabilities appear. Different low-
energy expansion schemes are discussed and put into perspective.@S0556-2813~97!02201-2#

PACS number~s!: 24.70.1s, 13.40.Gp, 13.60.Fz, 14.20.Dh
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I. INTRODUCTION

Virtual Compton scattering~VCS! off the proton, as
tested in, e.g., the reactione21p→e21p1g, has recently
attracted considerable interest@1#. Several experiments hav
been proposed@2–6#, utilizing the opportunities which a vir-
tual spacelike photon offers, namely, an additional long
dinal polarization degree of freedom and the fact that ene
and momentum transfer of the virtual photon can be var
independently. At the same time, in comparison with r
Compton scattering, the extraction of new experimental
formation will be more difficult since the proces
e21p→e21p1g contains an interference between VC
and the Bethe-Heitler contribution, describing radiation
the electron. On the theoretical side, the low-energy theo
~LET! of Low @7# and Gell-Mann and Goldberger@8# has
lately been extended to include virtual photons as w
@9,10#. The structure-dependent part beyond the LET w
analyzed in@9# in terms of a multipole expansion. Keepin
only terms linear in the energy of the final real photon, t
model-dependent amplitude was parametrized in terms o
‘‘generalized polarizabilities,’’ and these polarizabilitie
were evaluated in the framework of a nonrelativistic qua
model @9,11#. Predictions for the spin-averaged polarizab
ities a(uqW u) and b(uqW u) were obtained by several autho
within various frameworks, such as an effective Lagrang
including resonances andt-channel exchanges@12#, the lin-
ears model@13#, and the heavy-baryon formulation of chir
perturbation theory@14#. An alternative low-energy expan
sion for virtual Compton scattering off a spin-zero targ
and thus implicitly also for the spin-averaged part of t
nucleon VCS amplitude, has been obtained in@15#.

In @13# an interesting observation was made: Within t
framework of the linears model only two of the three scala
generalized polarizabilities introduced in@9# were found to
be independent. In the following, we will reinvestigate t
spin-independent part of the VCS amplitude and demonst
that the findings of@13# can be proved to be a general co
sequence of charge-conjugation symmetry combined w
crossing symmetry. Unless charge-conjugation invarianc
violated, there are only two independent scalar general
polarizabilities. Furthermore, we illustrate how the stand
limit of real Compton scattering is naturally obtained, if th
expansion in the final-photon energy is not truncated at
550556-2813/97/55~1!/424~7!/$10.00
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order. Finally, the low-energy expansion of@15# and its ap-
plication in the framework of a heavy-baryon calculatio
@14# are connected to this work.

II. GENERAL FORMALISM

For the purpose of simplicity, we consider the VCS a
plitude for a spinless target, e.g., a positively charged pi
g* (q,e)1p1(p)→g* (q8,e8)1p1(p8). In the following
discussion, we will thus always refer to the pion, but t
general results also apply to the spin-averaged amplitud
VCS off the proton@16,17#, which is, of course, the reactio
of current experimental and theoretical interest@1#.

Using the conventions of Bjorken and Drell@18#, the in-
variant amplitude may be written as

M522Mie2emen8*M
mn, ~1!

wheree ande8 denote ‘‘polarization vectors’’ of the initial
and final photons, respectively,e.0 is the elementary
charge (e2/4p51/137), andM is the mass of the target, her
the pion. According to@18#, the normalization of the respec
tive invariant amplitudeM differs by a factor of 2M be-
tween the pion and proton cases. When considering VCS
the proton, one therefore has to omit this factor in Eq.~1! in
order to obtain the same normalization of the Compton t
sorMmn as for the pion case. In this section we still allo
both photons to be virtual, and only in the following sectio
we will restrict ourselves to the application we are interes
in, namely,e21p1→e21p11g.

We split the total VCS tensor into two partsA andB @8#,
where classA contains the pole terms, possibly together w
some appropriate piece to ensure gauge invariance, and
B contains the rest,

Mmn5MA
mn1MB

mn . ~2!

We assume that the division intoA andB was done in such
a fashion that all symmetry principles are individually sat
fied byMA

mn andMB
mn . With the above separation,MB

mn is by
construction regular asqm→0 or q8m→0. In fact, there is
some degree of arbitrariness concerning which contribu
424 © 1997 The American Physical Society
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55 425GENERALIZED POLARIZABILITIES AND THE SPIN- . . .
is included into classA. Different choices will differ by sepa-
rately gauge-invariant, regular terms~see@10,15# for more
details!.

We will now discuss a few general properties ofMB
mn .
ar

CS

ay
Under Lorentz transformationsMB
mn transforms as a prope

second-rank Lorentz tensor which can be constructed
terms ofqm, q8m, Pm5pm1p8m, andgmn. A complete set of
independent tensors is given by
gmn,PmPn,Pmqn,qmPn,Pmq8n,q8mPn,qmqn,q8mq8n,qmq8n,q8mqn. ~3!
ym-

ith
These tensors are multiplied by scalar functions of the inv
ants available, e.g.,q2, q82, q•q8, andq•P5q8•P. Symme-
try with respect to charge conjugation implies that the V
tensor is the same for bothp1 andp2,

MB,p1
mn

~p8,q8;p,q!5MB,p2
mn

~p8,q8;p,q!. ~4!

This can be converted into a constraint involving, s
MB,p1

mn only, by making use of pion crossing~see, e.g.,@19#!,

MB,p2
mn

~p8,q8;p,q!5MB,p1
mn

~2p,q8;2p8,q!, ~5!

yielding finally
i-

,

MB
mn~q,q8,P!5MB

mn~q,q8,2P!, ~6!

where from now on we omit the subscriptp1 and, using
four-momentum conservation, expressMB

mn as a function of
the three independent momentaq, q8, and P. In order to
easily implement the constraints due to photon-crossing s
metry,

MB
mn~q,q8,P!5MB

nm~2q8,2q,P!, ~7!

and the combination of charge-conjugation symmetry w
pion-crossing symmetry, Eq.~6!, we choose the following
parametrization ofMB

mn @15,16#:
t linear

y
atively, a
free
hen
t

MB
mn~q,q8,P!5Agmn1BPmPn1C~Pmqn2q8mPn!1C̃~Pmqn1q8mPn!1D~Pmq8n2qmPn!1D̃~Pmq8n1qmPn!

1E~qmqn1q8mq8n!1Ẽ~qmqn2q8mq8n!1Fqmq8n1Gq8mqn, ~8!

where the scalar functions have the following properties:

f ~q2,q82,q•q8,q•P!51 f ~q82,q2,q•q8,2q•P! for f5A,B,C,D,E,F,G, ~9!

f ~q2,q82,q•q8,q•P!52 f ~q82,q2,q•q8,2q•P! for f5C̃,D̃,Ẽ, ~10!

f ~q2,q82,q•q8,q•P!51 f ~q2,q82,q•q8,2q•P! for f5A,B,E,Ẽ,F,G, ~11!

f ~q2,q82,q•q8,q•P!52 f ~q2,q82,q•q8,2q•P! for f5C,C̃,D,D̃. ~12!

Because of gauge invariance

qmMB
mn50, MB

mnqn850, ~13!

the scalar functions of Eq.~8! are not independent; i.e., they are related by a homogeneous set of five independen
equations@15#. The constraints imposed by gauge invariance can be solved order by order ink, wherek refers to eitherq or
q8. This was done in@15#, where the structure-dependent part up toO(k4) was parametrized in terms of 11 low-energ
coefficients, based on Lorentz invariance, gauge invariance, crossing symmetry, and the discrete symmetries. Altern
method suggested by Bardeen and Tung@20# may be applied to construct independent invariant amplitudes which are
from both kinematic singularities and zeros. In@16# it was pointed out that this method requires a slight generalization w
applied to the VCS case where both photons are virtual. Here we will make use of the results of@16#, where it was shown tha
Mmn and thus, of course,MB

mn can be written as

MB
mn5T1

mnB11T2
mnFB22q2q82

B6

q•q8G1T3
mnFB31~q•P!2

B6

q•q8G1T4
mnFB42

1

2
q•P~q21q82!

B6

q•q8G
1T5

mnFB51
1

2
q•P~q22q82!

B6

q•q8G , ~14!

with

T1
mn5q8mqn2q•q8gmn,
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T2
mn5q•P~Pmqn1q8mPn!2q•q8PmPn2~q•P!2gmn,

T3
mn5q2q82gmn1q•q8qmq8n2q82qmqn2q2q8mq8n,

T4
mn5q•P~q21q82!gmn2q•P~qmqn1q8mq8n!2q82Pmqn2q2q8mPn1q•q8~Pmq8n1qmPn!,

T5
mn5q•P~q22q82!gmn2q•P~qmqn2q8mq8n!1q82Pmqn2q2q8mPn2q•q8~Pmq8n2qmPn!. ~15!

The functionsBi depend on the usual scalar variables and satisfy the following properties:

Bi~q
2,q82,q•q8,q•P!56Bi~q82,q2,q•q8,2q•P!, 1: i51,2,3,5,6, 2: i54, ~16!

Bi~q
2,q82,q•q8,q•P!56Bi~q

2,q82,q•q8,2q•P!, 1: i51,2,3,6, 2: i54,5. ~17!
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Each element of the tensorial basis of Eq.~15! is by con-
struction gauge invariant. The basis is not ‘‘minimal’’ in th
sense that the scalar functions multiplying the tensorial st
tures still contain kinematical singularities. In@16# it was
shown that it is impossible to construct such a ‘‘minima
basis. However, when Eq.~14! is multiplied out, the
1/q•q8 singularities disappear, and the result reduces to
low-energy expression of@15#.

III. APPLICATION

Let us now turn to the VCS contribution to the proce
e21p1→e21p11g, where the virtual photon generate
by the leptonic transition current is spacelike,q2,0, and the
final photon is real,q8250, q8•e850. The virtual Compton-
scattering tensor for this situation thus reduces to

MB
mn5@q8mqn2q•q8gmn# f 11@q•P~Pmqn1q8mPn!

2q•q8PmPn2~q•P!2gmn# f 2

1@q•Pq2gmn2q•Pqmqn2q2q8mPn

1q•q8qmPn# f 3 , ~18!

where the functionsf i are related to the functionsBi through

f 1~q
2,q•q8,q•P!5B1~q

2,0,q•q8,q•P!,

f 2~q
2,q•q8,q•P!5B2~q

2,0,q•q8,q•P!,

f 3~q
2,q•q8,q•P!5B4~q

2,0,q•q8,q•P!

1B5~q
2,0,q•q8,q•P!. ~19!

Note that for the case of at least one real photon, the term
Eq. ~14! proportional toB6 /q•q8 precisely cancel.

Here, we are not interested in the Bethe-Heitler contri
tion, where the real photon is radiated off the initial or fin
electron. Because of current conservation at the leptonic
tex, the polarization vector of the virtual photon can be w
ten asem5eūgmu/q

2, where u and ū refer to the Dirac
spinors of the initial and final electrons, respectively. W
describe the reaction in the photon-pion center-of-mass
tem, pW 52qW and pW 852qW 8, and we choose the three
momentum transfer of the initial photon to be along thez
axis, qW 5uqW uêz . All kinematical quantities can be express
c-

e

of

-
l
r-
-

s-

in terms ofv85uqW 8u, q̄[uqW u, and z[cos(u)5q̂•q̂8. Using
gauge invariance of the hadronic VCS tensor, the invari
amplitude of Eq.~1! can be rewritten as

M52Mie2S eWT•MW T1
q2

q0
2 ezMzD . ~20!

Choosing the Coulomb gauge for the final real photo
e8m5(0,eW8), which implies eW8•qW 850, the transverse and
longitudinal parts ofM can be described in terms of tw
functionsA1, A2 and one functionA9, respectively,

eWT•MW T5eWT•eW8* ~A11zA2!2q̂3eWT•q̂83eW8*A2 , ~21!

ezMz5ezeW8* •q̂A9 , ~22!

where we have used the convention and nomenclature
@14#.

We now contract the parametrization of Eq.~18! with
em anden8* , make use of Eq.~20!, and expand the result fo
MB up to and including terms of orderv82. In order to keep
the result as transparent as possible, we do this in two st
We first expand the kinematical factors of the tensorial ba
in terms ofv8, still keeping the functionsf i with their full
set of arguments. The classB contribution to the functions
A1, A2, andA9 then reads

A11zA252v8@~v01v8! f 11v8~4M224Mv0

1v0
22zv0q̄! f 212Mq̄ 2f 3#1O~v83!,

~23!

A252v8q̄ @ f 12v8~4M2v01zq̄ ! f 212Mv0f 3#

1O~v83!, ~24!

A952v8$~v01v8! f 11@22Mq̄ 2

1v8~4M22v0
22zv0q̄!# f 2%1O~v83!, ~25!

wherev0[q0uv8505M2AM21q̄2 corresponds to the en
ergy of the initial virtual photon in the limit of zero energy o
the final real photon. In Eqs.~23!–~25! we already made use
of the fact thatf 3, in an expansion inv8, is ofO(v8). This
property results from the definition off 3, Eq. ~19!, in terms
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of B4 andB5 which, in accordance with their charge conj
gation properties, Eq. ~17!, are odd functions of
q•P5q8•P, and thus must start at least asv8. For this state-
ment to be true it is crucial that we have already separa
the dynamical singularities in the classA contribution.

In the next step we also expand the functionsf i in terms
of v8, where we can restrict ourselves to first order inv8
since the expansion of the tensorial basis has already res
in terms which are at least of orderv8. The relevant expan
sions read

f i~q
2,q•q8,q•P!5 f i~v0

22q̄ 2,0,0!

12v8v0f i ,1~v0
22q̄ 2,0,0!

1v8~v02zq̄! f i ,2~v0
22q̄2,0,0!

1v8~2M2v01zq̄ ! f i ,3~v0
22q̄2,0,0!

1O~v82!, ~26!

where f i , j denotes the first partial derivative off i with re-
spect to the j th argument, i.e., f i ,1(q

2,q•q8,q•P)
5(]/]q2) f i(q

2,q•q8,q•P), etc. Our final result for the ex
pansion ofMB to second order inv8 is

A11zA252v8$v0f 11v8@ f 112v0
2f 1,11v0~v02zq̄! f 1,2

1~4M224Mv01v0
22zv0q̄! f 2

12Mq̄ 2~2M2v01zq̄! f 3,3#%1O~v83!, ~27!

A252v8q̄$ f 11v8@2v0f 1,11~v02zq̄! f 1,2

2~4M2v01zq̄! f 212Mv0~2M2v01zq̄! f 3,3#%

1O~v83!, ~28!

A952v8$v0f 122Mq̄ 2f 21v8@ f 112v0
2f 1,1

1v0~v02zq̄! f 1,21~4M22v0
22zv0q̄! f 2

24Mv0q̄
2f 2,122Mq̄2~v02zq̄! f 2,2#%

1O~v83!, ~29!

where the arguments of the functionsf i and f i , j are taken to
be (v0

22q̄ 2,0,0). When expanding the functionsf i we ex-
plicitly made use of the consequences of charge-conjuga
symmetry; namely,f 1 and f 2 are even functions ofq•P and
f 3 is odd which follows from Eqs.~17! and ~19!.

IV. DISCUSSION

Equations~27!–~29! contain the central result of this wor
and serve as the starting point for discussing various l
energy approximations. To be specific, we will consider
multipole expansion of@9#, comment on the limit of rea
Compton scattering, and, finally, compare the result o
1/M expansion with the parametrization of@15#. In order to
fully appreciate the different expansion schemes it is us
to first discuss the kinematics ofe21p1→e21p11g in
thev8-q̄ plane.

A. Kinematical considerations

Figure 1 shows that region of thev8-q̄ plane which is
d

ted

n

-
e

a

ul

accessible to electron-scattering kinematics. Using ene
conservation in the center-of-mass frame anduvu,q̄, one
obtains

v81AM21v825v1AM21q̄ 2,q̄1AM21q̄ 2,
~30!

and thusv8,q̄. The diagonalv85q̄ corresponds to the cas
of real Compton scattering.

Let us first consider a low-energy expansion in terms
v8 and q̄ as simultaneous expansion parameters which,
example, would be a natural expansion scheme in the fra
work of chiral perturbation theory. In general, such an e
pansion is applied whenv8 andq̄ are smaller than a charac
teristic energyvc of the model or theory in question. Thi
characteristic energy is associated with either the energy
to the first particle-production threshold or the excitation e
ergy of the lowest excited state above the ground state
thus, sets an upper limit to the convergence radius of
low-energy expansion. For example, in VCS off the nucle
vc is equal to the pion massmp . In Fig. 1 the grey area
denotes the region of thev8-q̄ plane where such a low
energy expansion is expected to converge. Clearly, if
expansion is truncated at a certain order, the domain whe
is expected to give a reasonable description of the full a
plitude is smaller. This regime is symbolically indicated b
the black area of Fig. 1.

The multipole expansion of@9# is restricted to first order
in the energy of the real photon which implies thatv8 has to
be small compared withvc but, in principle, no restrictions
apply to q̄. In particular, it is expected to work for largeq̄.
However, whenq̄ is of the same order of magnitude asv8,
this scheme cannot be expected to provide an adequate
rametrization of the VCS amplitude, because terms bey
the linear order inv8 are likely to be equally important a
the higher-order terms inq̄ included in the multipole expan
sion. This can be seen, e.g., for the term proportional tof 1 in
Eq. ~27!, as soon asv8 is of the same order as the absolu
value ofv0. In Fig. 1 the crosshatched area schematica
denotes the domain of application of the expansion
Guichonet al. However, one has to keep in mind that it
difficult to decide which value ofq̄ is sufficiently large with-
out an explicit model calculation.

FIG. 1. Thev8-q̄ plane for virtual Compton scattering with
electron-scattering kinematics (q2,0, q8250).
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B. Multipole expansion and generalized polarizabilities

We now turn to a comparison of Eqs.~27!–~29! with the
corresponding low-energy expansion in terms of generali
polarizabilities as introduced by Guichonet al. @9#. These
authors truncated the expansion at first order inv8:1

A11zA25v8AE

M F2A3

2
v0P

~01,01!0~ q̄!

2
3

2
q̄2P̂~01,1!0~ q̄!G1O~v82!, ~31!

A25v8AE

M
A3

8
q̄P~11,11!0~ q̄!1O~v82!, ~32!

A952v8AE

M
A3

2
v0P

~01,01!0~ q̄!1O~v82!, ~33!

whereE denotes the energy of the initial pion. Up to no
malization factors, the quantitiesP(01,01)0 and P(11,11)0 are
generalizations of the electric and magnetic polarizabilit
of real Compton scattering~see, e.g.,@21#! to the virtual pho-
ton case:

a~ q̄!52
e2

4p
A3

2
P~01,01!0~ q̄!,

b~ q̄!52
e2

4p
A3

8
P~11,11!0~ q̄!. ~34!

The third scalar polarizabilityP̂(01,1)0 expresses, to lowes
order inv8, the difference between the charge multipole a
the electric multipole.

Comparing the two low-energy expansions of Eq
~27!–~29! and ~31!–~33!, we obtain the relations

a~ q̄!5
e2

4p
AM

E F2 f 1~v0
22q̄2,0,0!

12M
q̄ 2

v0
f 2~v0

22q̄2,0,0!G , ~35!

b~ q̄!5
e2

4p
AM

E
f 1~v0

22q̄2,0,0!, ~36!

e2

4p
P̂~01,1!0~ q̄!5

e2

4p
AM

E

4

3
M f 2~v0

22q̄ 2,0,0!. ~37!

From Eqs.~35!–~37!, it is now evident that one of the thre
polarizabilities may be written as a linear combination of t
remaining two. For instance, we can eliminateP̂(01,1)0 in
favor of a(q̄) andb(q̄),

e2

4p
P̂~01,1!0~ q̄!5

2v0

3q̄2
@a~ q̄!1b~ q̄!#, ~38!

1For details about the notation and the definition of the gene
ized polarizabilities we refer the reader to@9#.
d

s

d

.

which is exactly the relation that has been found within t
framework of the linears model @13#. We stress that this
result is due to the constraint of Eq.~6!, and therefore ulti-
mately follows from the symmetry with respect to char
conjugation and pion crossing. In the multipole expansion
@9# no use has been made of this symmetry. To be spec
without this constraint the functionf 3 would appear in the
transverse amplitudes, Eqs.~27! and ~28!, already at linear
order inv8, as can be seen from Eqs.~23! and~24!, resulting
in one additional independent function. In the framework
@15#, this would correspond to the term proportional toẽ1,
indicating a violation of charge-conjugation or time-revers
symmetry.

The most surprising consequence of Eq.~38! concerns the
low-energy behavior of the spin-independent electric mu
pole H (21,21)0(v8,q̄), describing electric dipole radiation in
both the initial and final states. Using Eq.~38! one gets

H ~21,21!0~v8,q̄!5
4p

e2
A8

3
v8v0b~ q̄!1O~v82!; ~39!

i.e., to lowest order inv8 the electric multipole, for allq̄, is
given by the generalized magnetic polarizability. Sin
v0'2q̄ 2/2M , the right-hand side of Eq.~39! vanishes in
the static limit, M→`. Therefore the relation betwee
H (21,21)0 andb is a recoil effect and not due to an intrins
property of the target. Nevertheless, it is interesting to n
that the magnetic polarizability determines the recoil con
bution of an electric multipole, even though, after all,
might not be so surprising, since it is well known that ele
tric and magnetic effects mix when transforming from o
frame to another.

Finally, we emphasize that, as a result of Eq.~38!, to
lowest order inv8 both transverse amplitudes, Eqs.~27! and
~28!, are completely given in terms of the magnetic polar
ability. The electric polarizabilitya, as defined in Eq.~35!, is
part of thev82 contribution to the amplitudeA11zA2, which

can be seen by making use of the identityq̄25v0
222Mv0.

However, since at the same order there are other indepen
contributions in Eq.~27!, a(q̄) cannot be determined from
this amplitude. Thus, contrary to real Compton scattering
VCS it is impossible to extract the generalized electric p
larizability from the transverse amplitude, and one has
resort to the longitudinal amplitudeA9 in order to obtain
a(q̄).

C. Real Compton scattering

We now take the limit of real Compton scattering~RCS!
in Eqs. ~27! and ~28!, v[q̄5v8, considering terms up to
second order inv. Of course, the contribution of the long
tudinal amplitude to the invariant matrix element vanish
Making use of the expansionv052v2/2M1O(v4), we
obtain

A1
RCS1zA2

RCS52v2@ f 1~0,0,0!14M2f 2~0,0,0!#1O~v4!

5
4p

e2
v2a~0!1O~v4!, ~40!l-
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A2
RCS52v2f 1~0,0,0!1O~v4!52

4p

e2
v2b~0!1O~v4!,

~41!

leading to the correct low-energy behavior of the RCS a
plitudes@21#. We stress that in order to obtain this result, it
mandatory to keep the terms quadratic inv8 in Eqs.~27! and
~28!. These terms are beyond the accuracy of the multip
expansion of@9#.

D. Low-energy expansion

In @15# the structure-dependent class-B contribution was
parametrized up to and including terms of fourth order inq
andq8. Recently, the corresponding structure coefficients
VCS off the nucleon have been calculated within the fram
work of heavy-baryon chiral perturbation theory to third o
der in the momenta@14#, by expanding the invariant ampli
tude in terms ofv8 and q̄ simultaneously. Our genera
expansion in Eqs.~27!–~29! can be compared with a heavy
baryon calculation if we expand Eqs.~27!–~29! in terms of
q̄ 2 and neglect all but the leading terms of a 1/M expansion.
In our final result we only list the terms to quadratic order
v8 and to quartic order inr , whererP$v8,q̄%:

A1
HB1zA2

HB52v82$ f 1~0,0,0!14M2f 2~0,0,0!

2q̄ 2@ f 1,1~0,0,0!14M2f 2,1~0,0,0!

24M2f 3,3~0,0,0!#%1O~v83!, ~42!

A2
HB52v8q̄$ f 1~0,0,0!2q̄ 2f 1,1~0,0,0!2v8q̄z f1,2~0,0,0!%

1O~v83!, ~43!

A9
HB52v82$ f 1~0,0,0!14M2f 2~0,0,0!2q̄ 2@ f 1,1~0,0,0!

14M2f 2,1~0,0,0!#%1O~v83!. ~44!

We find the following identities for the structure constan
defined in@15#:

g05 f 1~0,0,0!,

c̃15
1
2 f 2~0,0,0!,

g2a5 f 1,2~0,0,0!,

g2b5 f 1,1~0,0,0!,

c35
1
4 f 3,3~0,0,0!,

c̃3b5
1
2 f 2,1~0,0,0!2 1

4 f 3,3~0,0,0!. ~45!
-

le

r
-

The remaining three structure constants of@15# involve terms
of O(v83q̄) andO(v84) and, thus, cannot be related to th
functions f i by means of Eqs.~27!–~29!. Furthermore, the
presence of thef 3,3 piece in Eq.~42! makes it impossible to
extract the derivative (d/dq̄2)a(q̄50) from thev82q̄2 term.
However, in the longitudinal part of the amplitude, thef 3,3
piece is absent and the coefficients of thev82q̄ 2 term add up
to the slope of the electric polarizability with respect toq̄ 2

~see the discussion at the end of Sec. IVB!.

V. SUMMARY AND CONCLUSION

We discussed the general amplitude for VCS off a sp
less target. The results may also be applied to the s
averaged amplitude of the nucleon case. We restricted
considerations to the matrix element involving a spacel
virtual photon in the initial state and a real photon in the fin
state which can be expressed in terms of one longitud
and two transverse amplitudes. We assumed that the ge
matrix element may be separated into a pole contribution
a residual part which is regular as either of the two pho
four-momenta approaches zero. We then discussed a
energy expansion of the regular amplitude up to and incl
ing terms of second order in the frequencyv8 of the final
photon, without restrictions on the absolute valueq̄ of the
three-momentum of the initial virtual photon. A multipol
expansion, truncated at first order in the energy of the fi
photon, results in two independent functions~generalized po-
larizabilities! instead of three as previously claimed. Th
reduction is obtained as a consequence of charge-conjug
invariance in combination with pion~or nucleon! crossing.
Whether charge-conjugation symmetry also leads to a red
tion in the number of spin-dependent generalized polariza
ities remains to be seen. At leading order inv8, we found
that both transverse amplitudes are determined byb(q̄), the
generalization of the magnetic polarizability of RCS to ar
trary q̄. On the other hand, the generalized electric pola
ability a(q̄) appears in the longitudinal amplitude onl
Even in an expansion to second order inv8, the generalized
electric polarizability cannot be extracted from the transve
part since additional independent terms appear at the s
order. Furthermore, at leading order the (E1,E1) transition
matrix element is governed by the generalized magnetic
larizability and vanishes in the static limit, indicating a reco
effect. In order to obtain the standard limit of RCS involvin
the usual electromagnetic polarizabilitiesa(0) andb(0), it
is necessary to include the terms of second order inv8, being
so far beyond the standard analysis of VCS in terms of g
eralized polarizabilities. Finally, we performed a 1/M expan-
sion as used in a heavy-baryon calculation and, within t
framework, established the connection between the gen
expression and the coefficients of a recently proposed l
energy expansion.
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