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Generalized polarizabilities and the spin-averaged amplitude
in virtual Compton scattering off the nucleon
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We discuss the low-energy behavior of the spin-averaged amplitude of virtual Compton scattering off a
nucleon. Based on gauge invariance, Lorentz invariance, and the discrete symmetries, it is shown that to first
order in the frequency of the final real photon only two generalized polarizabilities appear. Different low-
energy expansion schemes are discussed and put into perspepfig66-28187)02201-2

PACS numbeps): 24.70+s, 13.40.Gp, 13.60.Fz, 14.20.Dh

I. INTRODUCTION order. Finally, the low-energy expansion [df5] and its ap-
plication in the framework of a heavy-baryon calculation

Virtual Compton scatteringVCS) off the proton, as [14] are connected to this work.
tested in, e.g., the reacti@ +p—e~ +p+ vy, has recently
attracted considerable interg4f. Several experiments have
been proposef2—6], utilizing the opportunities which a vir-
tual spacelike photon offers, namely, an additional longitu- For the purpose of simplicity, we consider the VCS am-
dinal polarization degree of freedom and the fact that energplitude for a spinless target, e.g., a positively charged pion:
and momentum transfer of the virtual photon can be variedy* (q,€)+ 7 (p)—y*(q’,e')+ a7+ (p’). In the following
independently. At the same time, in comparison with realdiscussion, we will thus always refer to the pion, but the
Compton scattering, the extraction of new experimental ingeneral results also apply to the spin-averaged amplitude of
formation will be more difficult since the process VCS off the protor{16,17], which is, of course, the reaction
e +p—e +p+y contains an interference between VCS of current experimental and theoretical interfist _
and the Bethe-Heitler contribution, describing radiation off ~Using the conventions of Bjorken and Dréll8], the in-
the electron. On the theoretical side, the low-energy theoretf@riant amplitude may be written as
(LET) of Low [7] and Gell-Mann and Goldberg¢8] has
lately been extended to include virtual photons as well M=—2Mie%e, e, * M~ (1)
[9,10. The structure-dependent part beyond the LET was
analyzed in9] in terms of a multipole expansion. Keeping
only terms linear in the energy of the final real photon, thewheree and e’ denote “polarization vectors™ of the initial
model-dependent amplitude was parametrized in terms of teand final photons, respectivelyg>0 is the elementary
“generalized polarizabilities,” and these polarizabilities charge €°/47=1/137), andM is the mass of the target, here
were evaluated in the framework of a nonrelativistic quarkthe pion. According t¢18], the normalization of the respec-
model[9,11]. Predictions for the spin-averaged polarizabil-tive invariant amplitudeM differs by a factor of M be-
ities a(|a|) and ,3(|a|) were obtained by several authors tween the pion and proton cases. Wher! con3|de_r|ng \(CS off
within various frameworks, such as an effective Lagrangiari"® Proton, one therefore has to omit this factor in 89.in
including resonances artéchannel exchangdd2], the lin- order to obtain the same normallza.tlon of.the Compton ten-
earo model[13], and the heavy-baryon formulation of chiral SOF M*” as for the pion case. In this section we still allow
perturbation theor§14]. An alternative low-energy expan- both _photon_s to be virtual, and only_ln t.he foIIowmg section
sion for virtual Compton scattering off a spin-zero target, Ve will restrlgt our+selve_s to t+he application we are interested
and thus implicitly also for the spin-averaged part of thel» namely,e”+a"—e +m"+7y.
nucleon VCS amplitude, has been obtainedi1if]. We split the tota_l VCS tensor into two pgn@sandB [8], _

In [13] an interesting observation was made: Within theWhere clasg contains the pole terms, possibly together with
framework of the linear- model only two of the three scalar SCMe appropriate piece to ensure gauge invariance, and class
generalized polarizabilities introduced 8] were found to B contains the rest,
be independent. In the following, we will reinvestigate the
spin-independent part of the VCS amplitude and demonstrate MAY=MAEY+ MEY 2
that the findings of 13] can be proved to be a general con-
sequence of charge-conjugation symmetry combined with
crossing symmetry. Unless charge-conjugation invariance i¥Ve assume that the division inf® andB was done in such
violated, there are only two independent scalar generalized fashion that all symmetry principles are individually satis-
polarizabilities. Furthermore, we illustrate how the standardied byM4” andMg”. With the above separatioM§” is by
limit of real Compton scattering is naturally obtained, if the construction regular ag“—0 or q'#—0. In fact, there is
expansion in the final-photon energy is not truncated at firssome degree of arbitrariness concerning which contribution

IIl. GENERAL FORMALISM
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is included into clasé. Different choices will differ by sepa- Under Lorentz transformationgl4” transforms as a proper
rately gauge-invariant, regular ternisee[10,15 for more  second-rank Lorentz tensor which can be constructed in

details. terms ofg*, q'#, P#=p*+p’#, andg””. A complete set of
We will now discuss a few general properties M”.  independent tensors is given by
|
g**,P#P",P*q”,q*P",P*q"",q"*P",q*q",0"#q"",9*a"",q"*q". 3
|
These tensors are multiplied by scalar functions of the invari- M£%(q,q9',P)=M%%(q,q',— P), (6)

ants available, e.gq?, q'2, q-q’, andq- P=q’ - P. Symme-
try with respect to charge conjugation implies that the VCSwhere from now on we omit the subscript® and, using
tensor is the same for both™ and 7, four-momentum conservation, exprdds,” as a function of
the three independent momerda q’, and P. In order to
Mg +(p".a"ip.a)=Mg" -(p",q":p,q). (4 easily implement the constraints due to photon-crossing sym-

. : L . metry,
This can be converted into a constraint involving, say, y

M’B‘YV + only, by making use of pion crossirigee, e.g.[19]), ME£%(g.9',P)=Mg“(—q’,—q,P), )

ks

Mg" -(p".a";p.a)=Mg" .(=p,q’;—p".q), (5 and the combination of charge-conjugation symmetry with
pion-crossing symmetry, Eq6), we choose the following
yielding finally parametrization oM&” [15,18:

M&”(q,q’,P)=Ag"+BP*P"+C(P#q"—q'*P")+ C(P*q"+q'*P*)+ D(P*q' "~ q“P")+ D(P*q' "+ g*P")

+E(q"q"+q'q'") +E(q"q"~q'q"") + Fa“q' "+ Gq' g, ®

where the scalar functions have the following properties:
f(a%9'%,9-9',9-P)=+f(q’%9%9-9q',—q-P) for f=A,B,C,D,E,F,G, 9
f(a%a'%.9-9'.q-P)=—f(a'>,q%.q-q',—q-P) for =C,D,E, (10)
f(929'%49-9'.9-P)=+f(¢%,q9'2,q-q’,—q-P) for f=A,B,E,E,F,G, (11
f(4%,9'%9-9',9-P)=—f(q%q9'%,q-q’,—q-P) for f=C,C,D,D. (12)

Because of gauge invariance
q.Mg"=0, Mg"q,=0, (13

the scalar functions of Eq8) are not independent; i.e., they are related by a homogeneous set of five independent linear
equationg15]. The constraints imposed by gauge invariance can be solved order by oidentierek refers to eitheiy or

q’. This was done iff15], where the structure-dependent part upctk*) was parametrized in terms of 11 low-energy
coefficients, based on Lorentz invariance, gauge invariance, crossing symmetry, and the discrete symmetries. Alternatively, a
method suggested by Bardeen and T{2@] may be applied to construct independent invariant amplitudes which are free
from both kinematic singularities and zeros.[lt6] it was pointed out that this method requires a slight generalization when
applied to the VCS case where both photons are virtual. Here we will make use of the refLik where it was shown that

M#” and thus, of courseM£” can be written as

ME = T4"By 4 T4 By g2/ 2 | + T4 Byt (0 P | + T4 By 2q- P24 q'2)
q-q a-q 2 q-q
+TE” B5+3q-P<q2—q'2>—BG,}, (14)
2 aq-q

with

T{"=d'#9"-q-q'g"",
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T5"=q-P(P*q"+q'*P")—q-q'P*P"~(q-P)*g"",
TéLV:qquzg}LV+q'q!q/.l,qlV_qIZquV_qzq!Mq!V,

Ti"=9-P(a’+0'%)g""—q-P(qq"+q'#a'") —q'?P*q"~g’q"*P"+q-q' (P*q' "+ q"P"),
T6"=9-P(a°~q'%)g"’'—q-P(q"q"~q'#a'") +q'*P*q"~0*q"*P"~q-q'(P*q' "~ g"P"). (15
The functionsB; depend on the usual scalar variables and satisfy the following properties:
Bi(9%,d'%9-9'.9-P)==Bi(q'%0%q-9',—q-P), +:i=1,2,3,56, —:i=4, (16)

Bi(d%9'%9-9',9-P)=*B;(q%q9'%49-9',—q-P), +:i=1,23,6, —:i=45. (17)

Each_element o_f the_tensorlal basls_ of Ef5) is by CON-  in terms of ' =|q’|, =|q|, and z=cos@)=d-§'. Using
struction gauge invariant. The basis is not "minimal” in the gauge invariance of the hadronic VCS tensor, the invariant
sense that the scalar functions multiplying the tensorial Strucémplitude of Eq(1) can be rewritten as '
tures still contain kinematical singularities. [46] it was '

shown that it is impossible to construct such a “minimal” It

basis. However, when Eq(14) is multiplied out, the M=2Mie2< €7 MT+—262MZ). (20
1/9-q' singularities disappear, and the result reduces to the Yo

low-energy expression ¢fL5] Choosing the Coulomb gauge for the final real photon,

€'#=(0,e'), which implies €' -q’'=0, the transverse and
longitudinal parts ofM can be described in terms of two

Let us now turn to the VCS contribution to the processfunctionsA;, A, and one functiorAg, respectively,
e +x7"—e +a"+ 1y, where the virtual photon generated

Ill. APPLICATION

by the leptonic transition current is spacelik@<0, and the er-Mr=er- € *(Ay+2A) —qXer-Q' Xe'* Ay, (2D)
final photon is realg’?=0, q’ - €’ =0. The virtual Compton- R
scattering tensor for this situation thus reduces to €M, =¢€,€'* -QA,, (22
M&"=[q'#q"—q-q’'g*"]f,+[q- P(P*q"+q'*P") where we have used the convention and nomenclature of
_ ’ v__ 2 v [14]
q-q'P*P"=(q-P)%g"’]f, We now contract the parametrization of E@.8) with
+[q-Pg?g“’—q- Pg“q”—q3q’ “P” €, ande,*, make use of Eq20), and expand the result for
Mg up to and including terms of order’2. In order to keep
+9-9'g“P"]fs, (18 the result as transparent as possible, we do this in two steps.

We first expand the kinematical factors of the tensorial basis
in terms ofw’, still keeping the function$; with their full

set of arguments. The clags contribution to the functions
A4, Ay, andAq then reads

where the function$; are related to the functior® through

fl(qz,Q'qI,Q' P):Bl(QZIOIQ'q,!q' P)!

2 ’ _ 2 ’
f2(q q-q !qP)_BZ(q ,O,Q'q vq'P)l /-\1+ZA2=—w’[(w0+w’)f1+w’(4M2—4Mw0
f3(0%.9-9',9- P)=B4(9%,0,9-9',q- P) + w3~ zwo0) fo+ 2M O 2f 5]+ O(w'3),
+Bs(9%0,49-9',g-P). (19 (23

Note that for the case of at least one real photon, the terms of A,=—w'q[f;— o' (4M—wy+2q )+ 2Mwf3]
Eq. (14) proportional toBg/q-q’ precisely cancel.

13
Here, we are not interested in the Bethe-Heitler contribu- +0(0"), (24)
tion, where the real photon is radiated off the initial or final ) ) —
electron. Because of current conservation at the leptonic ver- Ag=—~w'{(wotw")f1+[—2Mq
tex, the polarization vector of the virtual photon can be writ- + o' (4M2— 02— zog) If )+ O(0'?), (25

NN 2 e H
ten ase,=euy,u/q“, whereu and u refer to the Dirac

spinors of the initial and final electrons, respectively. We, q1q ©0=0o| o’ —o=M— YyMZ+ g7 corresponds to the en-
describe the reaction in the photon-pion center-of-mass Syssqy of the initial virtual photon in the limit of zero energy of
tem, p=—q and p'=—q’, and we choose the three- the final real photon. In Eq$23)—(25) we already made use
momentum transfer of the initial photon to be along the of the fact thatf,, in an expansion im’, is of O(w'). This
axis,ﬁ:|ﬁ|éz. All kinematical quantities can be expressed property results from the definition d, Eq. (19), in terms
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of B, andBg which, in accordance with their charge conju- ,
gation properties, Eq.(17), are odd functions of COA
g-P=q’-P, and thus must start at leasta@s. For this state-
ment to be true it is crucial that we have already separated
the dynamical singularities in the cladscontribution.

In the next step we also expand the functidpn terms
of ', where we can restrict ourselves to first orderwih
since the expansion of the tensorial basis has already resulted  (y),
in terms which are at least of ordex'. The relevant expan-
sions read

fi(d%,9-9',9-P)=fi(w5—q 2,0,0

+20' wof; 1(w5—q 2,0,0

’ pny 27 .
o' (0= 20)f; (w;—9%0,0 FIG. 1. Thew’-q plane for virtual Compton scattering with

o i . : . 12
+ o' (2M— wo+2q )fi,g(wS—EZ,O,O) electron-scattering kinematicg3<0, q'?=0).

+0(w'?), (26) accessible to electron-scattering kinematics. Using energy
conservation in the center-of-mass frame <<, one
wheref; ; denotes the first partial derivative 6f with re-  J. .o do¢<d
spect to the jth argument, ie., f;1(9%9-9',q-P)
=(d/199%)fi(9%,9-q9',q-P), etc. Our final result for the ex- o'+ \MZF 0" 2= o+ M2+ q 2<q+ VM2+q 2,
pansion of Mg to second order i’ is (30)

A1+ZA2=—w’{w0f1+w’[f1+Zwalil-l-wo(wo—Zafl‘z . o
and thusw’ <q. The diagonalk’ =g corresponds to the case

) —
+(4M?=4M wo+ w5 — 2we0) > of real Compton scattering.
oM 2(2M — wont 70 f " '3 2 Let us first _conS|der a Iow—energy expansion in te_rms of
a - @02 fagl}+ O™, (27 o' and g as simultaneous expansion parameters which, for
Ar=—0'q{f 1+ o' [20of 1 1+ (0o~ 2 f 1, example, would be a natural expansion scheme in the frame-
. L work of chiral perturbation theory. In general, such an ex-
—(4M —wotz0Q)fr+2Mwo(2M — wo+20g)f3 3]} pansion is applied whea' andq are smaller than a charac-

teristic energyw,. of the model or theory in question. This

13
+O0(w"), (28 characteristic energy is associated with either the energy gap
Ac=— ' dwnf1—2MT 260+ o' -+ 202f to the first parucle—producuon threshold or the excitation en-
o=~ 0'{wofy q "ot o’[fat20ph, ergy of the lowest excited state above the ground state and,
+ wo(wo—2Q) f1 4 (4M Z_wg_Zw()@fz thus, sets an upper limit to the convergence radius of the
. ' —, o low-energy expansion. For example, in VCS off the nucleon
—4Mooq “f31-2Ma“(wo—2g)f2 ]} . is equal to the pion massi,. In Fig. 1 the grey area
+O('?), (29 denotes the region of the'-q plane where such a low-

energy expansion is expected to converge. Clearly, if the
where the arguments of the functiohsandf; ; are taken to expansion is truncated at a certain order, the domain where it
be (wZ—q 20,0). When expanding the fun’ctiomswe ex- IS expected to give a reasonable description of the full am-
plicitly made use of the consequences of charge—conjugatioﬁ“tUde is smaller. ThIS regime is symbolically indicated by
symmetry; namelyf, andf, are even functions aj-P and  the black area of Fig. 1.

f5 is odd which follows from Eqs(17) and (19). The multipole expansion dB] is restricted to first order
in the energy of the real photon which implies thdt has to
IV. DISCUSSION be small compared witlv. but, in principle, no restrictions

apply toq. In particular, it is expected to work for large

Equationg27)—(29) contain the central result of this work  However, wherq is of the same order of magnitude a$,
and serve as the Starting pOiI’lt for diSCUSSing various |0Wth|s scheme cannot be expected to provide an adequate pa-
energy approximations. To be specific, we will consider therametrization of the VCS amplitude, because terms beyond
multipole expansion of9], comment on the limit of real the jinear order inw’ are likely to be equally important as
Compton scattering, and, finally, compare the result of gne nhigher-order terms ig included in the multipole expan-
1/M expansion with the parametrization [df5]. In order to  gjon. This can be seen, e.g., for the term proportioné} o
fully appreciate the different expansion schemes it is usefutq_ (27), as soon a®’ is of the same order as the absolute
to first discuss the kinematics @f +7*—e”+7"+yin  yajue of w,. In Fig. 1 the crosshatched area schematically
the w’-q plane. denotes the domain of application of the expansion of
Guichonet al. However, one has to keep in mind that it is
difficult to decide which value of is sufficiently large with-
Figure 1 shows that region of the’-q plane which is out an explicit model calculation.

A. Kinematical considerations
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B. Multipole expansion and generalized polarizabilities which is exactly the relation that has been found within the
We now turn to a comparison of Eq@7)—(29) with the framev_vork of the linearwr m_odel [13]. We stress that th_is
corresponding low-energy expansion in terms of generalizef€Sult is due to the constraint of E(), and therefore ulti-
polarizabilities as introduced by Guicheet al. [9]. These ~Mately follows from the symmetry with respect to charge
authors truncated the expansion at first ordesint conjugation and pion crossing. Ir_n the multipole expansmn_qf
[9] no use has been made of this symmetry. To be specific,
E 3 o without this constraint the functiofiy; would appear in the
AitzA=o' \/% - \ﬁwoP(Ol’ODO(Q) transverse amplitudes, Eq7) and (28), already at linear
order inw’, as can be seen from Eq23) and(24), resulting
3. o in one additional independent function. In the framework of
- EEZP(OLDO(Q) +0(w'?), (31)  [15], this would correspond to the term proportionalég
indicating a violation of charge-conjugation or time-reversal

E I3 symmetry.
A=’ \/:\/:agm,mo(er O(w'?), (32 The most surprising consequence of E2f) concerns the
M V8 low-energy behavior of the spin-independent electric multi-

= 3 pole H?12Dq ' q), describing electric dipole radiation in
Ag=— o' \/%\/;wopml,ono(@Jr 0(w'?), (33 both the initial and final states. Using E@8) one gets

where E denotes the energy of the initial pion. Up to nor- 47 |8 .
malization factors, the quantitieB(°>°0° and P(1110 gre H@200( ' q) = ?\[gw’woﬁ(Q)ﬂL@(w'z); (39
generalizations of the electric and magnetic polarizabilities
of real Compton scatteringee, e.g.[21]) to the virtual pho-
ton case: i.e., to lowest order ino’ the electric multipole, for alf, is
> 3 given by the generalized magnetic polarizability. Since
a(@)=— e_\/:P(Ol,Ol)O(m, wo~ —__2/2I_\/I,_the right-hand side of E(39) \_/anlshes in
4 N 2 the static limit, M—o. Therefore the relation between
H?1210and B is a recoil effect and not due to an intrinsic
_ e? \/5 (11,1907 property of the target. Nevertheless, it is interesting to note
Bla)=-— A §P (). (34 that the magnetic polarizability determines the recoil contri-
bution of an electric multipole, even though, after all, it
The third scalar polarizabilit)ﬁ’(m'l)o expresses, to lowest Might not be so surprising, since it is well known that elec-
order inw’, the difference between the charge multipole andic and magnetic effects mix when transforming from one

the electric multipole. frame to another. .
Comparing the two low-energy expansions of Egs. Finally, we emphasize that, as a result of E88), to
(27)—(29) and (31)—(33), we obtain the relations lowest order inw’ both transverse amplitudes, E¢&7) and

(28), are completely given in terms of the magnetic polariz-
__ e ™M > —» ability. The electric polarizabilityr, as defined in Eq35), is
a(q)=7-\ g ~fi(@—a%00 part of thew'?2 contribution to the amplituda, + zA,, which

can be seen by making use of the identify= w5— 2M w,.

(35) However, since at the same order there are other independent
contributions in Eq(27), a(q) cannot be determined from
this amplitude. Thus, contrary to real Compton scattering, in

__ é? \/M 2 — VCS it is impossible to extract the generalized electric po-

B(Q):E Efl(“’o_q 0,0, (36)  Jarizability from the transverse amplitude, and one has to

resort to the longitudinal amplituddy in order to obtain

a(q).

q—z
+2M—f2(w§—az,o,0)},
o

e? . __ e M4
EP(OLM(QFE\/;§Mf2(wg—q_2,0,0). (37

- . C. Real Compt tteri
From Egs.(35)—(37), it is now evident that one of the three cal -omplon scattering

polarizabilities may be written as a linear combination of the  We now take the limit of real Compton scatteri@CS
remaining two. For instance, we can elimindé?10 jn  in EQs.(27) and (28), w=q=w’, considering terms up to
favor of a(q) and 3(q), second order inw. Of course, the contribution of the longi-
tudinal amplitude to the invariant matrix element vanishes.
. 2wy Making use of the expansiomg=—w?/2M + (%), we
P(OI'DO(QFﬁ[a(QHB(Q)], (38)  obtain

ARCSL 2 ABCS= — »?[£,(0,0,0 + 4M?,(0,0,0 1+ O(0?)

e2

4

For details about the notation and the definition of the general-

4
__ " 2 + 4
ized polarizabilities we refer the reader[®). e’ @ a(0)+ 0, (40)
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A The remaining three structure constant§ld] involve terms
AZ%S= — 0?f1(0,0,0 + O(w*) = — Ez-wzﬂ(o)+(9(w4), of O(»'3q) andO(w'#) and, thus, cannot be related to the

(41) functions f; by means of Eqs(27)—(29). Furthermore, the
presence of thé; ; piece in Eq.(42) makes it impossible to
extract the derivatived/dg?) a(q=0) from thew’?q? term.
However, in the longitudinal part of the amplitude, the;
piece is absent and the coefficients of #/&q 2 term add up
to the slope of the electric polarizability with respectqd
%see the discussion at the end of Sec. VB

leading to the correct low-energy behavior of the RCS am
plitudes[21]. We stress that in order to obtain this result, it is
mandatory to keep the terms quadratieihin Egs.(27) and
(28). These terms are beyond the accuracy of the multipol
expansion of 9].

D. Low-energy expansion V. SUMMARY AND CONCLUSION

In [15] the structure-dependent claBseontribution was . . .
parametrized up to and including terms of fourth ordegin We discussed the general amplitude for VCS off a spin-
less target. The results may also be applied to the spin-

andq’. Recently, the corresponding structure coefficients foravera ed amplitude of the nucleon case. We restricted our
VCS off the nucleon have been calculated within the frame_consic?erationg to the matrix element invblvin a spacelike
work of heavy-baryon chiral perturbation theory to third or- 9 P

) . : ' -~ virtual photon in the initial state and a real photon in the final
der in the moment@l4], by expanding the invariant ampli- . ) o
. , =" state which can be expressed in terms of one longitudinal
tude in terms ofw’ and g simultaneously. Our general

o . and two transverse amplitudes. We assumed that the general
expansion in Eqs27)—(29) can be compared with a heavy- ; : L
A . matrix element may be separated into a pole contribution and
_Zbaryon calculation if we expand EqR7)-(29) in terms of a residual part which is regular as either of the two photon
g ¢ and neglect all but the leading terms of M1éxpansion. P 9 b

In our final result we only list the terms to quadratic order mfour-momenta approaches zero. We then discussed a low-
, : y ! ﬂ_ energy expansion of the regular amplitude up to and includ-
o' and to quartic order im, wherer e {w’,q}:

ing terms of second order in the frequeney of the final
photon, without restrictions on the absolute vatyef the

AB+zAB= — »)'2(£,(0,0,0 +4M?f,(0,0,0 three-momentum of the initial virtual photon. A multipole
expansion, truncated at first order in the energy of the final
_—z[fljl(o,o'QJrAfM 2f2'1(0'0’0 photon, results in two independent functidgeneralized po-

larizabilities instead of three as previously claimed. This
) '3 reduction is obtained as a consequence of charge-conjugation
—4M“f340,0,0]}+ O(w™), (42 invariance in combination with piofor nucleon crossing.
Whether charge-conjugation symmetry also leads to a reduc-
tion in the number of spin-dependent generalized polarizabil-
ities remains to be seen. At leading orderah, we found
that both transverse amplitudes are determineg(y), the

A;B: - w,q_{f 1(01010 _q_zfl,l(oaovq - w’ﬁ f]-VZ(O'O’Q}

13
+O(0™), 43 generalization of the magnetic polarizability of RCS to arbi-
trary g. On the other hand, the generalized electric polariz-
AHB= _ ,120£(0.0.0 +4M2f,(0,0,0—q [ f, (0,0, ability a(qg) appears in the longitudinal amplitude only.
° ©"{f,(00.0 2(0.00-0°11:1,(0.0.0 Even in an expansion to second ordewrih, the generalized
+4M 2f2’l(0,0,m}+ O(w'?). (44) electric polarizability cannot be extracted from the transverse

part since additional independent terms appear at the same
order. Furthermore, at leading order tHel(E1) transition
We find the fO”OWing identities for the structure ConstantSmatrix element is governed by the genera“zed magnetic po-
defined in[15]: larizability and vanishes in the static limit, indicating a recoil
effect. In order to obtain the standard limit of RCS involving
9o="11(0,0,0, the usual electromagnetic polarizabilitie$0) and 8(0), it
is necessary to include the terms of second order'irbeing
so far beyond the standard analysis of VCS in terms of gen-
T,=131,(0,0,0, eralized polarizabilities. Finally, we performed aMLexpan-
sion as used in a heavy-baryon calculation and, within that
framework, established the connection between the general
0,2="7140,0,0, expression and the coefficients of a recently proposed low-
energy expansion.

O2p= fl,l(OIO!QI
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