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Dirac-Foldy term and the electromagnetic polarizability of the neutron
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We reconsider the Dirac-Foldy contributionm2/m to the neutron electric polarizability. Using a Dirac
equation approach to neutron-nucleus scattering, we review the definitions of Compton continuum (ā), clas-
sical static (aE

n), and Schro¨dinger (aSch) polarizabilities and discuss in some detail their relationship. The latter
aSch is the value of the neutron electric polarizability as obtained from an analysis using the Schro¨dinger
equation. We find in particularaSch5ā2m2/m, wherem is the magnitude of the magnetic moment of a
neutron of massm. However, we argue that the static polarizabilityaE

n is correctly defined in the rest frame of
the particle, leading to the conclusion that twice the Dirac-Foldy contribution should be added toaSch to obtain
the static polarizabilityaE

n . @S0556-2813~97!00101-5#

PACS number~s!: 14.20.Dh, 13.40.2f, 13.60.2r, 25.40.2h
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I. INTRODUCTION

The electromagnetic polarizabilities of the nucleon co
tinue to attract interest because of their importance for
understanding of the substructure of the nucleon. The pro
and neutron form an isospin doublet with~presumably! simi-
lar substructure, and so it is expected that comparing exp
mental polarizabilities of the two would lead to more insig
into this substructure@1,2#. This comparison should take int
account the differentdefinitionsof electromagnetic polariz
abilities actually used in the measurements on the proton
the neutron. The electric and magnetic polarizabilities of
proton can be defined@3,4# and measured@5# via Compton
scattering at relatively low energies because of the inter
ence of the Rayleigh amplitude~from the polarizabilities!
with the Thomson amplitude~from the charged proton!. Be-
cause the neutron is neutral, there is no such interference
the cross section for elastic Compton scattering is m
smaller. Furthermore, the data must come from a neu
bound in a nucleus, say, a deuteron@6#, and it is a challenge
to interpret it in terms of neutron polarizabilities@7,8#. An
alternative would be to determine neutron polarizabilities
quasifree Compton scattering, but the first experiment co
only obtain an upper limit for the electric polarizability@9#. It
is expected to be redone at SAL with a considerable red
tion in the statistical error@10#. The best determination of th
electric polarizability of the neutron is obtained, at prese
from low-energy neutron-atom scattering@11#. The intense
electric field near the surface of the nucleus208Pb induces a
dipole moment in the neutron which makes a tiny but e
tractable contribution to the scattering amplitude. The el
tric polarizability of the neutron is defined as the coefficie
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of the r24 nonrelativistic potential acting between these tw
systems.

We wish to reexamine the relationship between the d
nitions of neutron electric polarizability in use, noting th
the Compton scattering definition is manifestly relativis
and the neutron-atom scattering definition is not. Furth
more, the Compton scattering definition actually used to
tract the electric polarizability of the proton~soon to be ex-
tended to the neutron! does not employ a Hamiltonian or
wave equation and the neutron-atom scattering definitio
in the context of the Schro¨dinger equation with its implied
Hamiltonian. The common meeting ground of these see
ingly disparate definitions in current use is given by the
lationship of each one to the classical definition ofaE

n as the
coefficient ofE2 in Vpol52 1

2aE
nE2'2Q2aE

n /(2r 4), where
Vpol represents the interaction of a neutral particleat rest
with the Coulomb fieldE;Qr̂/r 2 of an infinitely heavy
charged system@12#. In the following we establish these re
lationships. That is, we~1! remind the reader of the defini
tion of as extracted by experimentalists from the spi
averaged Compton cross section and the definition of
more intuitive Compton polarizabilityā of, for example, chi-
ral perturbation theory calculations~only the latterā corre-
sponds to a true ‘‘deformation’’ effect on the nucleon!; ~2!
quote the classical limitaE

n of the Compton polarizability of
a neutral particle,aE

n5ā1m2/m5as12m2/m, wherem is
the anomalous~in this case, total! magnetic moment of the
neutron@13#; ~3! embed the Compton-definedā in a relativ-
istic Dirac description of neutron-atom scattering to estab
the nonrelativistic classical limitaE

n5ā1m2/m, where the
static polarizabilityaE

n is the coefficient ofE2 in the neu-
tron’s rest frame; with thecorrect rest frame wave equation
this result is identical with the classical limit of the Compto
result of~2!; ~4! assert that the rest frame of a neutron in
external electric field is defined by a vanishing value of t
velocity operator, as confirmed by experimental measu
ments of the Aharonov-Casher effect;~5! note that Schmied-
mayeret al. @11# and others@14# use the Schro¨dinger equa-
ni-
419 © 1997 The American Physical Society
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420 55M. BAWIN AND S. A. COON
tion in order to analyze low-energy neutron-atom scatter
experiments; the coefficient ofE2 in this equation is then
aSch and was considered the electric polarizability of t
neutron from those experiments; and~6! show that theaSch
of Schmiedmayeret al. @11# and others@14# is neither the
Compton-defined ā nor the static aE

n , but aSch5aE
n

22m2/m.
We conclude from this chain of arguments that twice

Dirac-Foldy contributionm2/m should be added toaSch to
obtain the static polarizabilityaE

n from the existing analysis
of neutron-atom scattering experiments. That is the mess
of our paper.

The details of the discussion of Compton-defined pola
abilities are given in Sec. II, and our Dirac equation disc
sion of the electromagnetic aspects of neutron-atom sca
ing is given in Sec. III.

II. POLARIZABILITIES IN COMPTON SCATTERING

Already in the earliest experimental studies of low-ene
Compton scattering from the proton@15# it was realized that
the ‘‘polarizabilities’’ entering into the Rayleigh amplitud
had two contributions. That is, the external electromagn
fields both deform the particle and act upon the static dis
bution of the electric charge and the magnetic moment. T
we read in Ref.@15# that ‘‘the term ‘polarizability’ used here
is not equivalent to the one normally employed for neut
particles.’’ The situation is made more difficult by the fa
that the nucleon is a spin-1/2 particle with an anomalo
magnetic moment and is described by the Dirac equat
The Compton scattering matrix for a spin-1/2 particle is
sum of six Lorentz-invariant quantum field amplitudes whi
are free of kinematic singularities and constraints@3#. These
six amplitudes each contain single-nucleon pole terms~a
structureless Dirac nucleon with chargeZ and magnetic mo-
ment m and on-shell vertices!. For each amplitude the re
mainder is called a continuum contribution and is now fr
of both kinematic singularities and dynamical singularit
~from the nucleon poles!. If one thinks of polarizabilities as a
‘‘deformation’’ effect on the structure of the nucleon, the
would seem to be most naturally defined in terms of the la
continuum contributions. However, there is a freedom in
definition of Compton polarizabilities of spin-1/2 particle
due to the fact that the entire Compton matrix is not m
sured. Instead present experiments measure the s
averaged cross section which corresponds to only the s
independent part of the Compton matrix. Bernabe´u and
Tarrach@16# ~BT! note that the nucleon pole contributions
the amplitudes of the complete spin-1

2 Compton scattering
matrix generate both poleandcontinuum contributions to the
spin-averaged amplitudes actually measured as a differe
cross section. The most common choice~labeledas by BT
and used in this paper as well! includes in the ‘‘polarizabil-
ity’’ terms from the magnetic moment of the structurele
Dirac particle. For this choice the differential cross sect
takes the form

S ds

dV D
L

5S ds

dV D
poles

proton

2
a

mp
v2F12

3v

mp
~12z!G

3@~11z2!as
p12zbs

p#1O~v4!, ~1!
g

e
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valid through the first three moments of the photon labo
tory energyv, wherez5cosuL @3,13#. The Born terms of the
invariant amplitudes go into the Thomson cross section fo
pointlike particle with massm and chargeZ in its rest frame
and the~actually used! Powell cross section of Eq.~1!, also
for a pointlike particle, but one which includes an anomalo
magnetic moment@17#. Equation ~1! or its extension to
higher energy is used to extractas

p from proton Compton
scattering data@5#.

Now we return to the classical definition ofaE
n as the

coefficient of anE2 or r24 term in a nonrelativistic wave
equation. The concept of a potential as it applies to the
teraction of two systems in relativistic quantum field theo
and the computation of such van der Waals potentials du
induced dipoles~when the systems are far apart! have been
discussed extensively by Feinberg and Sucher@18#. The elec-
tromagnetic forces between charged and/or neutral syst
are due to the exchange of photons and can be calcul
with the aid of dispersion relations from the relativist
Compton amplitudes of photons scattering from the syst
Specifically, the potential is to be defined iteratively in su
a way that when used in a specified two-body~Dirac! wave
equation in the c.m. system it will reproduce, up to a giv
order, the field-theory amplitude associated with one-phot
and two-photon-exchange graphs. The potential then ca
reduced to the Schro¨dinger form and its long-ranged pa
compared with the nonrelativistic polarizability potentia
Thus there is a clear line of connection between the elec
Compton polarizability and the classical electric polarizab
ity which does not depend upon an intuitively appealing b
theoretically uncertain mixture of relativistic and nonrelati
istic concepts@19#.

This program of connecting classical polarizability wi
the low-energy Compton scattering parameters has been
ried out by Feinberg and Sucher for a variety of systems~two
spinless and uncharged particles, one neutral spinless
one charged spin-12 particle @20#, etc.!, all but the one rel-
evant to our examination of neutron-atom scattering. T
long-range potential of these two systems, a very mas
charged spin-zero nucleus and a neutral spin-1

2 neutron~with
an anomalous magnetic moment!, has been worked out by
Bernabe´u and Tarrach@16#. They note that the nucleon pol
contributions to the six amplitudes of the complete spin1

2

Compton scattering matrix generate both poleand con-
tinuum contributions to the spin-averaged amplitudes ac
ally measured as a differential cross section. Thus one
define~in their notation but our units@13#! anas which does
include a term with the anomalous magnetic mom
@2(emZ/m21m2/m)# or aā which is given only in terms of
the continuum~nonpole! contributions of the spin-average
amplitudes. The former definition corresponds to the act
analysis of Compton scattering data@5# according to Eq.~1!
and the latter is advocated by Bernabe´u and Tarrach and use
in some theoretical treatments@21#. The latter polarizabilities
so defined do not receive any contribution from Born grap
involving the anomalous magnetic moment of the proton a
the neutron. The polarizabilities are entirely given in term
of the continuum part of the Compton amplitude. Equiv
lently ā is definedto be zero for a point neutral Dirac pa
ticle. In the classical limit of a static electric field acting on
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55 421DIRAC-FOLDY TERM AND THE ELECTROMAGNETIC . . .
neutral particle of massm and magnetic momentm the co-
efficient of ther24 potential which survives is given by

aE
n5ā1

m2

m
5as1

2m2

m
. ~2!

It is then this sum which is measured in the scattering
neutrons by heavy nuclei at low energies.

III. DIRAC EQUATION ANALYSIS
OF NEUTRON-ATOM SCATTERING

We see then how a natural definition of the polarizabil
of a neutral particleā arises in the context of Compton sca
tering and understand its connection via the Feinbe
Sucher-Bernabe´u-Tarrach analysis with the polarizability po
tential Vpol52 1

2aE
nE2 of a Schro¨dinger analysis of low-

energy neutron scattering. We now establish such
connection again, this time starting from a relativistic Dir
description of the neutron-nucleus scattering. We derive
neutron polarizability as the nonrelativistic limit of a relati
istic Dirac Hamiltonian

HD5bm1a•p2 imba•E2 1
2 āE2, ~3!

where the first three terms comprise the standard form
@17,22,23# for a point neutral Dirac particle with an anom
lous magnetic momentm in an electric field. As in the BT
treatment of Compton scattering,ā is that part of the neu-
tron’s polarizability that does not contain the nucleon ma
netic momentm. Even so, the nonrelativistic reduction of E
~3! has a term inE2 in addition to the nominal polarizability
ā:

S p22m2
p

m
•~E3m!1

m

2m
~¹•E!1

m2E2

2m
2 1

2 āE2Dc5Ec,

~4!

where we have neglected interaction terms that vanish fa
thenr24 at large distance. The second and third terms in
~4! are the Schwinger term arising from the interaction b
tween the~moving! magnetic moment of the neutron and t
electric field of the atom, and the Foldy-Darwin scatteri
from the electric charge distribution of the atom~nucleus1
electrons!. These terms are taken into account in the non
ativistic analysis of neutron-atom scattering@24–26#. Then it
would seem that the coefficient in the polarizability potent
is

aSch5ā2m2/m, ~5!

rather than the Compton-definedā.
This ~premature! result could have been anticipated b

Foldy’s observation that a structureless~point! neutral Dirac
particle with an anomalous magnetic momentm in a homo-
geneous static electric fieldEW is an exactly soluble mode
@22#. That is,

H5bm1a•p2 imba•E. ~6!

This Hamiltonian can be diagonalized, in the frame wh
p50, by simply squaring and one finds the energy eigenv
uesW56Am21m2E2.6@m1m2E2/2m1•••#. The non-
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relativistic limit of this model has a positive coefficient o
E2 which implies a negative polarizability of magnitude
m2/m from this Dirac-Foldy term, just as we find in Eq.~5!.
Moreover, now we see that the analysis leading to Eq.~5!
has been carried out in the framep50.

But we must be careful to define the polarizability of
particle in that particle’s rest frame@12# and the rest frame o
a particle is defined by a vanishing value of the veloc
operatorv. The particle velocity operator is given as a de
rivative of the Hamiltonian on the left-hand side of Eq.~4!:

v[
]H

]p
5
1

m
@p2~E3m!#. ~7!

That is, the (v50) frame isnot the (p50) frame leading to
Eq. ~5!. From Eq.~7! one can rewrite Eq.~4! in the form
familiar from discussions of the Aharonov-Casher effe
@27–29#:

F 1

2m S @p2~E3m!#21
m

2m
~¹•E!2

m2E2

2m
2 1

2 āE2D Gc5Ec.

~8!

From this equation one identifies

aE
n5ā1m2/m ~9!

to be the coefficient ofE2 in the particle rest frame (v50)
andaE

n is then the static polarizability of the neutron.
This rest frame result is in agreement with the Comp

scattering analysis of BT in Eq.~2!. In order to avoid any
possible misunderstanding, let us emphasize that our dis
sion of polarizability terms in neutron-nucleus scattering
entirely in the framework of the nonrelativistic limit of th
Dirac equation. From that viewpoint, one may argue tha
provides an intuitive way of understanding the results
Bernabeu and Tarrach@16# which were obtained from dis
persion relations calculations. We do, however, discuss
detail the form of the nonrelativistic wave equation~8! rather
than Eq.~4! to be used in conjunction with the BT results

The observation@30# of the phase shift predicted by Aha
ronov and Casher@27# for a neutral particle with a magneti
moment~neutron! diffracted around a line of electric charg
shows conclusively that Eq.~8! is the correct rest frame
equation. For a neutron diffracting around a line charge i
region where¹•E50, the Aharonov-Casher phase shift
obtained by evaluating the line integral ofp5mv1(E3m)
along the path of the diffracted neutrons.~Of course,ā could
not play any role in this macroscopic experiment, and
fact that the termm2E2/2m disappears in the Aharonov
Casher geometry is explained in Refs.@28,29#.! More recent
experiments involving neutral atoms with magnetic mome
have measured Aharonov-Casher phase shifts to within a
percent of the theoretically predicted value@31#.

The neutron optics experiment, fortified by more exa
measurements with atomic systems, demonstrates
Aharonov-Casher insight that velocity is the meaningful re
tivistic kinematic operator for a neutron in an external ele
tric field. We have used this insight to define the corre
static polarizability of a neutral particle with a magnetic m
ment. From Eqs.~5! and~9! it is clear that theaSchmeasured
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422 55M. BAWIN AND S. A. COON
in the experiments of Schmiedmayeret al. @11# and others
@14# is neitherā nor aE

n . Indeed from Eqs.~5! and ~9! we
learn that

aSch5aE
n22m2/m. ~10!

Numerically,

uaSch2aE
n u51.231024 fm3 ~11!

can be compared with

aSch~@11# !51261.562.031024 fm3,

aSch~@14# !50.06531024 fm3. ~12!

This difference is about 10% on the scale of the result
Schmiedmayeret al. @11# and quite significant for the centra
value of the result of Koesteret al. @14#. Both results came
from a Schro¨dinger equation analysis like Eq.~4!. The dis-
crepancy in Eq.~12! perhaps comes from the treatment
individual terms in the electromagnetic interaction of Eq.~4!
or from the treatment of the strong interaction between
neutron and the nucleus. In any case, our Dirac equa
analysis has nothing to say about the origin of the pres
experimental discrepancy. We note that these experim
are being repeated@32,33# with an expected experimenta
error smaller in magnitude than our correction term of E
~11!.
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Finally we note that L’vov@34# obtains~by another argu-
ment! a relationship betweenaE

n and ā which agrees with
Eq. ~5! if one equatesaE

n andaSchas he does. In the neutro
rest frame, however, the correct relationship is that of E
~10!.

In summary, we have reviewed the definition of the ele
trical polarizability of a neutral spin-12 particle with a mag-
netic momentm in the analysis of Compton scattering. W
have shown how a Dirac equation analysis of low-ene
neutron-atom scattering yields a static polarizabilitydefined
in the rest frame of the neutron. Our result~10! means that
twice the Dirac-Foldy contributionm2/m should be added to
the existing Schro¨dinger values to obtain the static polari
ability of the neutron.
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