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Dispersion theory of proton Compton scattering in the first and second resonance regions
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Dispersion theory of proton Compton scattering is extended to energies-up @eV where excitations of
higher resonances and nonresonance double-pion photoproduction become important photoabsorption mecha-
nisms. To saturate-channel dispersion relations, the VPI partial-wave analysis of single-pion photoproduction
and resonance photocouplings is used. Models for double-pion photoproduction and dispersion asymptotic
contributions are constructed. The latter are mainly giverbgnd o(600 exchanges. Being used in disper-
sion calculations, they result in a reasonable agreement with all available data on both differential cross
sections and polarization observables in Compton scattering. Some unsolved problems are outlined.
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I. INTRODUCTION ally, hadron polarizabilities remains to be a challenge for
models of hadrong30].

Probing nucleons with photons through elastic Compton In the last years, measurements of the differential cross
scattering opens many interesting possibilities to learn abowgection do/dQ(yp—yp) [8-11] and the asymmetry
the structure of hadror{d4—3]. During the last years a lot of 3 (yp— yp) [9] were performed in the energy region of the
work has been done along this line and many experimentak resonance. This has led to a very accurate determination of
data[4—12] were obtained. the M1 photocoupling of the\ [11], which is about 3% less

The experiment§4—7] were carried out at energies below than adopted in the contemporary analysis of the resonance
the pion photoproduction threshold. They were aimed at ghotocouplingg31]. Such measurements have also a poten-
more reliable determination of the electric and magnetic potial to constraint the ratio of the electric quadrupole and mag-
larizabilities of the nucleongy and By, as compared with netic dipole amplitudes ok photoexcitatiorf32] (for recent
pioneering workg§13—15. Certain progress has been made,theoretical work seqd33] and references therginwhich
but room for further efforts still remains. For example, the mainly was investigated through pion photoproduction with
present experimental uncertainties in the magnetic polarizanpolarized and linearly polarized photdrsst].
ability even prevent one from determining for sure the sign At energies above tha region, up to 1 GeV, the Erevan
of By group [12] recently reported on first measurements of the

Even larger are uncertainties in the neutron polarizabilitybeam asymmetng, (yp— yp) with linearly polarized pho-

a, as constrained via quasifreg scattering[4]. The most  tons and concluded that none of the existing theoretical ap-
precise value for the neutron electric polarizability was re-proaches describes the asymmetry at all energies. In prin-
ported from measurements of the neutron transmission crogdple, available [12,35-4] and expected experimental
section of?%%Pb [16]. However, the high accuracy of the differential cross sections and polarization observablegin
announced result has been questiofed, so that a further scattering at energies above th¢1232-resonance region
study of quasifreeyn scattering would be a promising way render it possible to carry out a multipole analysis of the data
to determine independently,, and 3,, . and to study mechanisms ofN scattering at intermediate

It is very interesting that the experimental values foundenergies. Such data provide additional information on the
for the polarizabilities of the nucleon are in severe disagreeradiative widths of higher nucleon resonan¢8g,39 and
ment with predictions of the naive quark mod#B,19 and  can be used to find those parameters-ohannel exchanges
indicate large effects of the pion clo(iti8,20, thus reviving in Compton scattering which are unknown presently. The
old models of the nucleon structur21,2Z. However, quan- latter are mainly coupling constants or, in the regime of high
titative estimates of the pion contribution found in the frame-energies, residues of Regge padl2s].
works of dispersion calculationg23—-25, the chiral bag To briefly characterize the status of available theories of
model[18], the chiral perturbation theory26,27), and soli- elastic photon scattering on the nucleon, we may note that
ton modelq20,28,29 are very different and even contradic- predictions ofs-channel dispersion relatiori§42,43 and an
tory. Until now an explanation of the nucledmore gener- improved version described in the present paperee with

all of the most exact data at energies up to 0.4 Ge¥e
recent discussions if2,7,8 and, for yn scattering, in

*Electronic address: Ivov@sgi.lpi.msk.su [4,44]). There are also other successful schemes of using
TElectronic address: petrun@sgi.lpi.msk.su dispersion relations for explaining proton Compton scatter-
*Electronic address: schumacher@up200.dnet.gwdg.de ing in the first resonance regig5-48. They use a differ-
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ent technique to treat-channel exchangedhrough a sub- essential degrees of freedom, since with essentially one free
traction at fixedu). parametel(the o-meson “mass’] we are able to satisfacto-

In all these applications the dispersion relations use phorly describe all the data on proton Compton scattering at
toproduction amplitudes taken from other experiments andE, <1 GeV, including the data on the beam asymméiry
thus do not directly refer to fundamental parameters of hadand proton polarizatio®. _
ron physics(like Aqcp) or hadron modelglike the quark- In the following parts of this paper we describe the for-
core radius in the chiral bag modé#9]. Nevertheless, even malism we use anq confron_t its results.wnh_ expenme_ntal
in this role the dispersion theory turns out to be somethindjata- Lengthy technical details are described in appendixes.
more than a numerical instrument for giving precise numeri-
cal predictions. Because of its ability to find separate contri- Il. DISPERSION RELATIONS AND THEIR SATURATION
butions of different intermediate states, the dispersion theory
clearly reveals mechanismer degrees of freedopwhich
dominate photon scattering. In the first resonance region th
latter were found to be nucleon andexchanges in the and
u channels, a rather visible contribution of nonresonant ex
citation of the nucleon to the-wave =N state, and-channel
exchanges withr° and effectives (two pion) mesons. Fol-
lowing these findings, successful phenomenological models

Assuming Lorentz, gauge, ar®, T invariance, the gen-
%ral amplitude T;; of elastic scattering y(K)N(p)
—y(k’")N(p’) at arbitrary spin projections is characterized
by six cross-even invariant amplitudés which depend on
the laboratory energf, and c.m. scattering anglé or on
the invariant variableg andt, where

incorporating these degrees of freedom can be easily con-  _S™U —E. + L t=(k—k")2 —(k+ D)2
structed. Examples of such models are described in Refs. 4m Y 4m’ ( )% s=(k+p)
[50-53. _ "2

Much less is reliably known about mechanisms of Comp- u=(k=p"% @

ton scattering at higher energies, and accurate dispersion cal- ) )
culations would be of great help. The only reported calcula@nds+u+t=2m". These amplitudes can be constructed to

tion in the second resonance regi®6] which is based on Nave no kinematic singularities and constraints and to obey
dispersion relations with a subtraction @tm? (m is the the usual dispersion relations. The differential cross section

nucleon massworks rather well at c.m. angleg<90°. It
fails (as was claimed if37]) at backward angles. The details do 1 2 T2
%< fi

of the calculation of Ref[36] are not completely specified, dQ ~ 647%s &ihs
especially those concerning the adjustment of contributions

from the unphysical region, and it is not clear why this cal- 344 other observabléasymmetry> and proton polarization

cglation gave so unrealistic results at lower e_nergies, €SPe) in terms of the amplituded; are specified in Appendix
cially for the asymmetng, and the proton polarizatiof.

Less precise alternative approaches were also tried. One We formulate fixed- dispersion relations foA;(v,t) by

of those is a phenomenological resonance m8eJ39. It ,5ing a Cauchy loop of finite sizé closed semicircle of
represents the scattering amplitude as a sum of Breit-Wignegy, is Vi), SO that[23,47]

nucleon resonances and an adjusted real background which
is assumed to be a modified Born term. We will expose its
results in the following discussion.

A more ambitious and deep approach to the description of
Compton scattering in the resonance region uses the coMut
stituent quark model which includes all appropriate reso-
nance states and no continu{i). Its great advantage is that
it contains only a few parameters. The predictions of this
model are very instructive, but unfortunately are too qualita-
tive to be directly compared with experimental data on dif- >
ferential cross sections. A:m(y,t): — P f

In the present paper the dispersion approach28{42, Vihd(t)
which is based on relativistis-channel dispersion relations
at finite energies for six independent invariant amplitudes ofThe first term in Eq.(3) represents a singular contribution
photon scattering, is extended to energies ugjo1 GeV.  due to the nucleon in the intermediate state. It is completely
In calculating the imaginary part of the Compton scatteringdetermined by the electric charge and magnetic moment of
amplitude, we include all known mechanisms leading tothe nucleon(see Appendix A
large photoabsorption cross sections at these energies. We We label the second term in E) as the integral con-
use the experimentally available photopion amplitudes of théribution. This is the usual dispersion integral taken, how-
reactionyN— 7N and inelastic contributions of well-known ever, in between the pion photoproduction threshold,
7N resonances. We construct a model to include the lessy,(t) =E,+t/4m with E;,,=150 MeV, to the maximum en-
well-known nonresonance contributions to photoabsorptionergy vy,ax, below which the imaginary part can be evaluated
We also construct a simple model to includehannel ex- from unitarity and known amplitudes of meson photoproduc-
changes which formally appear through the so-called asymgion. In  our calculations we will use Ep
totic contributions. We believe that we have identified all the=y,,,(t) —t/4m=1.5 GeV.

@)

Re Ai(v,t)=AP%p,t) + A1) +AXNw,t), (3

a;(t)
A= e
) , v'dy’

IMA(Y ) . ()

Vmaxt
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The contribution of higher energies is represented by théhen multiplied by appropriate polynomials of high power in
last term, the so-called asymptotic contributigfi( v,t). We  z'. To partly resolve this problem, we used as an experimen-
discussA™ and A% in the following two subsections. tal input to the integrand at low energies 150—400 MeV only
the j<3/2 waves, and used the theoretical OPE values for
higher multipoles. This is quite sufficient for high-quality
: representation of the photoproduction amplitudes at energies

The integral contributionsAf™ are determined by the yp to 400 MeV. At higher energies all the waves ug +67/2
imaginary part of the Compton scattering amplitude which iswere taken, as they are, from the VPI analysis. Such a pro-

A. Integral contributions

given by the unitarity relation of the generic form cedure enabled us to stabilize numerical predictions of the
dispersion calculations up to backward angles and energies
2 ImTﬂ=2 (2m)4s4P,— POT*Thi. (5) E,=1 GeV. At_higher energies th_e pont.ribution ofwaves
n from small v’ introduces uncertainties in the very far ex-

trapolation to large unphysical cosingsand destroys sta-
In Appendix B details are specified as for taking into accountijlity of the predictions. We checked that the cutoff of the
the intermediate statas= 7N. In those formulas we insert waves at energies below400 MeV was not necessary for
the pion photoproduction multipolds .. ,M,.. from a recent  our purposes because it did not change to any essential ex-
analysis of the VPI groufB1], viz., variant SM95, up to and  tent the calculated amplitudes at energies GeV. Physi-
including the angular momentuiy,,,=7/2, and take higher cally, it is very improbable that small amplitudes in the near-
partial waves in the one-pion-exchan¢@PE) approxima- threshold excitation of the nucleon play any role when
tion. We introduce a small 2.8% reduction of the resonancecattering at-1 GeV is considered, and their cutoff does not
strength ofA photoexcitatior(see Appendix Bas compared seem unreasonable. Nevertheless, in general, divergences in
with that read out from the VPI-SM95 solution. This more the partial-wave expansions at laww make it difficult to get

correct resonance strength &fwas recently established by reliable predictions of the fixetl-dispersion relations at

the Mainz experiments on Compton scattering in thee- —t=1 Ge\?, and other approachébke perturbative QCID
gion[11], and is already incorporated in the very recent ver-might work there better.

sion of the VPI multipoles(the solution SP96K of April In the energy range considered here, photoproduction of
1996, the codesAID [31]). pion pairs becomes very essential for a correct evaluation of

Instead of summing up the partial-wave sels; ., ImA; and, therefore of the integral contributiosg™. We
with the OPE amplitudes,,;, we have evaluated analytically used the following procedure consisting of four steps.
the total contribution®;_ ,,, of the OPE diagram to Irii; (1) Rescaling of the resonance contributions 7l to
(see Appendix € and then subtracted the contribution Im A; to include inelastic decays of theN resonances. The

E}Zalx/z of the lowest OPE partial waves by using EB11).  resonance couplings were taken from the VPI analysis SM95

Such a procedure makes the partial-wave series better cok31l- We also introduced a correction for a different phase

vergent at higft. space of two-pion decays of the resonan(se Appendix
In fact, the OPE amplitude is a part of the total Born D). )
amplitude of the reactioyN— =N which includess-, u-, The other step&2), (3), and(4) are necessary to take into

and t-channel exchange54]. Taken alone, the-channel account the nanesonan_t mephanisms of photo_producti(_)n.
contribution(C1) is not gauge invariant. Therefore, it would (%) Calculation of the imaginary parts due to intermediate
be meaningful to use the Born amplitude rather than its OPEFA States by using the amplitudes of the quasi-two-body
part (C1). This, however, makes no difference because wé&action[55]
consider via the OPE approximation only multipoles with
high j. In the gaugee,p*=0 we use, wher@* is the mo- YN—7A (6)
mentum of the initial nucleon, the Born amplitude of
yp— 7" n differs from the OPE amplitude by treechannel in the one-pion-exchange approximation. This approxima-
contribution which contains onlg and p waves with total tion accurately takes into account pionic states with “high”
angular momenturp=1/2[54]. In the case of other reactions angular moment& =L ,,,, provided the second pion corre-
yn—m~p or yN—7°N, the Born amplitude does differ lates with the nucleon to form th&. In practice, however,
from the OPE approximation in all partial waves, but thiswe took as they are all the contributions of the OPE diagram
difference is very small at all energies considered whén of Eq. (6) [56,57 starting fromL,;,=1. We calculated
as large as 7/2. In general, the OPE approximation is verggain, in an analytical form, an exact contribution of the
appropriate to treat partial waves with high angular momenwhole diagram to InA; and kept the.=0 part to be changed
tum. afterwarddin the step(4)]. Then a cutoffA=0.5 GeV in the
The contributions with high angular momenta, whenmomentum transfer was applied to the whole OPE contribu-
evaluated analytically, do not result in a pathological behaviion to emphasize its peripheral part and to ensure a decrease
ior of ImA;(»',t) in the unphysical region of very small of the OPE cross section of E@) at energie€ ,>1 GeV, in
(near-thresholdy’ and very high—t which corresponds to accordance with experimental data. Detailed are given in Ap-
an unphysical cosine of the photon scattering angie>1  pendix E.
(such kinematics arises in the integrand when we consider (3) Another mechanism which might lead to high angular
photon scattering at high energies and backward ahglesmomenta is the diffraction one. We assume that photopro-
This, however, may not be the case when partial waves witlluction of p° mesons aE,>1 GeV [55] is of diffractive
high j are taken approximately from experimental fits andorigin and obeyss-channel helicity conservatiorb8]. This
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assumption enables us to disentangle contributions of thkigh ». Using a Cauchy loop of finite size, we can recast the
reactionyN— p°N to the different helicity amplitudes Iy, asymptotic contribution?\{% to an integral over the upper
and to find all InA; (see Appendix F semicircle:

(4) After isolation, during the previous steps, of the

mechanisms which are able to produce peripheral states WithAa 1 Aly v'dy’
“high” angular momentum, we assume that all the rast Fnt) = - 'm V= v a0El®, 0< g (v, 1) p'2— 2"
of the photoabsorption cross section includes only short- (10)

range states which are mainly excited throlgh transitions
at the energies considered. The cross sediiens found as  In fact, this form is valid for any of the amplitudés . Being
a difference of the smoothed experimental total photoabsorgequivalent to Eq(9) for i=3,4,5,6, it is obligatory only for
tion cross sectiof59,60 and the cross sections found during A, ,. Both Eq.(9) and Eq.(10) imply that the energy depen-
the stepg1)—(3). We attribute to those rest states the angulardence of the asymptotic contributiod§(»,t) can be ne-
momentumj =3/2 (rather thenj =1/2) both because of sta- glected provided?<wv7,,. Accordingly, in the following we
tistical weight and since there is a prominent contact Kroll-will consider the asymptotic contributions as functionst of
Ruderman-like diagram in the reactidf) generatingmA only.
mainly in thes wave, at least when th& is not relativistic. We expect that the asymptotic ContribUti0A§?4,5'5 are
Then individual contributions to ImM; can be determined small, i.e., that the convergent dispersion integf&)sand
(for details see Appendix)GWe can partly change the quan- (9) for the amplitudesh; , 55 are saturated by low energies
tum numbers of these statfs.g., by assuming that 30% of <y, ... One can get an exact estimate in the particular case
Ao is caused by th&1(j=1/2)] and see the changes in the of forward Compton scattering by using the optical theorem
results of the computations. Generally, they are not too largeyhich reads in terms of the amplitudés like
but do favor theE1(j =3/2) ansatz.

Schematically, we may write ste¥)—(4) as an equation Ol v)=—2v Im[A3(v,0)+ Ag(v,0)]

=-2v ImA ,0). 11
Oiot= 0Nt ON* 7N, 9N,... T O za-nonrest 050N v 3+6(7.0) (1)
+A0E1 =372 7) Using the datg59,6Q for the total photoabsorption cross
sectionoy,, we find that the asymptotic part @5, 5 with
used to calculate the-channel absorptive parts of the ampli- Ymax=1.5 GeV contributes only 6% to the sum of the electric
tudesA, at energies up to 1.5 GeV. and magnetic polarizabilities of the nucleon as given by the
' Baldin-Lapidus sum rule:

B. Asymptotic contributions

1
__ AgcinéBorrto,O)

® dv
2 2

To evaluate the asymptotic contributions in Eg), we anthAn=5 2 f Vthro-tot( v)
have to consider high-energy behavior of the amplituies
Using (i) the standard assumption of a power behavior
~12® of the helicity amplitudesT, ;. ., at fixedt and

v—o With the Regge pole trajectory(t) <1 in the physical
region and (ii) relations of the helicity amplitudes

Tajg aqn, With the amplitudesh; (see in Appendix B we Among the small asymptotic piecé&€s, s ) the largest
find the amplitude\; to be one is expected to bA2{t). This expectation is motivated
by the approximate helicity independence of Compton scat-
tering [61] or related photoproduction of vector mesons at
(8) high energied58]: Only the amplitude IMg(»',t) gets a
contribution of the leading orded(»’ “V~2) from the larg-
; : est(helicity-non-flip amplitudesT .. 1 15 +1 ¥’ ,t) (see Ap-
Thus, the amplitudeds 4 5,c vanish wheny—- and hence pendix B. Nowadays the helicity independence of high-

satisfy unsubtracted dispersion relations. Therefore, the aener Compton scattering is questioned because of a visible
ymptotic contributions for these amplitudes are given by the 9y P g1sq

. N . - violation of the Gerasimov-Drell-Hearn sum rulésee
dispersion integrals taken over the energies/may: [62,63 and references thergin If so, the amplitude

L Im A,(»',t) in Eqg. (9 may also be not quite negligible at
AN v t) = 2 fx IMA (' ) =5  (i=3,4,5,6. energiesy’=1.5 GeV and contribute throu_ghisto the dif-
™ vo—v ferential cross section of Compton scattering at low energies
(99 only few times less than the amplitudg, does. However,
this is still marginal for our present calculations since the
In contrast, the two other amplitud&s andA, do not vanish  asymptotic contributiorA2® itself is rather small. For these
at high » and the corresponding asymptotic contributionsreasons we keep onkg® and notAZ° or A5,
cannot be determined through Am i.e., in terms of photo- The optical theorem unambiguously determines the as-
production. Their estimates should be based on differengmptotic contributionA2=A%5 ¢ at zero angle. As for the
physical input, for example, on the Regge pole model whictdependence oA5{t), we suppose that it is given by et/
can describe the amplitudes in the complex energy plane & with B=6 GeV ?, i.e., that it follows thet dependence of

1 .
=5 [A3:6(0,0 +A356(0,0]

=14x10"% fm® for the proton. (12

Ar v, Agge V72

and A,~v*V73 at p—oo,

Yma;
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the differential cross section of proton Compton scattering ifmore generallyt-channel singularities and the latter pro-
the few-GeV energy regiofb4]. Again, the exact form of vide a convenient way to handle the tails in the imaginary
thist dependence is marginal for our consideration. parts.

Much more important are asymptotic contributions to the Accordingly, we assume here that the asymptotic contri-
amplitudesA; , which do not satisfyunsubtractedlispersion  butions AT, are nothing but the contributions ofchannel
relations. Both amplitudeA, , are related to photon helicity- exchanges with the lightest scalar and pseudoscalar particles.
flip transitions without and with nucleon helicity flip, respec- They ares and 7° mesons, where, as usual, is an effective
tively. They are coefficients of the Lorentz-invariant struc-particle representing a correlated pion paiote, however,
tures F, F*"#*"u’u and ie,,,zF*"F* '*fu”ysu in the thatthere is growing evidence that t&an be more than an
scattering amplitudethere F,, =k, e,—k,e,, F, =k e, effective particle[65-67). Our assumption is in line with
—kie/, are the electromagnetic fields of initial and final pho- the experimental fa¢68,61 that the dominating Regge-pole
tons, andu,u’ are the nucleon bispinorsnd get contribu- ~€xchange with the highesi(t) entering into Eq.(8) (i.e.,
tions from scalar and pseudoscalathannel exchanges with Pomeron has very small couplings in helicity-flip vertices
JP€=0"" and 0 ", respectively. At high energies such am- and, therefore, may be less important at low energies of

. . - ; 0
plitudes are not well known from experiment or theory, al- »<1.5 GeV than the exchanges with lowe(t), such asm
though some constraints can be obtaifeek in[23,42). To ando.
practically treat this situation, in the present work we prefer Thus, we use the Low amplitude of thé exchange as
to try and confront with experimental data a simple saturathe substitute for the asymptotic contributionAg:
tion by t-channel resonances of the asymptotic contributions

oAz | R ARO=AF ()= T e, 1
Note that the integral contributions™ in Eq. (3) cannot t—m o

have pole singularities in because In#\;(v’,t) do not have ) ) )

them. For example, with a finite number of partial waves ofWhere the isospin factor ig;=*1 for the proton andoneu—
photoproduction amplitudes used to evaluate these imaginaf{on, respectively, and the product of theNN and 7yy
parts, the latter become polynomials in cosine of the scatte€OUPlings is

ing angle and, hence, ih Therefore, whenever the ampli- >

tudesA, , have a pole irt related to &-channel exchange by 9onnF 0, = — 167 (9N T 702y

a stable particle, such a pole can enter to the right-hand side TNNT Ty A mio

(RHY of Eg. (3) only through the asymptotic contribution.

Referring for a more refined discussion to Ref83,42, =(—0.331+0.012 GeV ', (16)
where they,,,, dependence is also considered, we can give rovided g2, /4m—13.75+0.15 [68] and Tyo 0 =7.74

here a simplified explanation which is directly relevant to theP

0 : ; +0.55 eV [69]. The minus sign in Eq(16) is chosen in
7 exchange. In the physical region of negativihe Regge . . . Lo
trajectory of the pion isx(t)<0 anda,(0)=—0.02. There- accordance with the sign of the axial anomaly contribution

- : 70]). In the chiral limit ther®yy coupling follows from
fore, the exchange by° and its numerous partners lying at (seef . . . ! :
the same Regge trajectory gives the contribution to the crosdhe Wess-Zumino-Witten effective chiral Lagrangigrd]

even amplitudeA,, and thus
m e’N, )
Ag(v' t)ecp @V (—p') sV 9annFr0y=0a 7 | ~ o7 | = ~0:321 GeV
={1+exd —ima,(t)]}v %Y, (13 (17

(with ga=1.2573:0.0028, f ,=92.4+0.3 MeV [69], and
which vanishes at infinity and does not prevent us from usingN.=3), in remarkable agreement with the experimental num-
the unsubtracted dispersion relation #s. Therefore, one ber (16). We insert in Eq.(15 an off-shell form factor
can certainly represent the asymptotitcontribution to the  F_(t), which stems fromrNN and 7°yy vertices, and take
amplitude A, in the form (9). However, according to Eg. it in the monopole formF _(t)=(A 2—m?2)/(A 2—1) with
(13), the imaginary part oA,(v',t) considered as a function the cutoff parameteA .=0.7 GeV estimated from the axial
of v/ has a tail ImA,(¢',t)=C(t)»'*® which is very long radius of the nucleon and the size of the p[a&]. Its spe-
whenevera,(t) is a small negative number. If the coupling cific choice is less important than a choice of #eneson
C(t) does not vanish, the corresponding integral of this tail,mass” below, and, for example, witth ;=1 GeV the nu-

merical results for the differential cross section of Compton
% dy’ 1 scattering are very similar to those obtained with the
f vt —-=— D) vard), (14 o-meson “mass” increased by-20 MeV.
Vmax v Ko In case of ther exchange we use a simpler form

develops an®-exchange pole when extrapolated to the point
t=m2 in which a,(t)=0. At negativet the pole is absent,
but the integrand still retains the long tail which is not taken
into account through the integr@l) taken over low energies We do not include here any form factor because at moderate
V' <. We may state that the asymptotic contributions int its influence cannot be distinguished from the foth®)

Eq. (3) are related to the nearesthannel pole exchanges with a smallerm,. As we will see, phenomenologically

go’NNFa'yy
t-m2

o

A =AJ(t)= (18
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m,=600 MeV works rather successfully. To pin down the available information about thiechannel reactiongy— mmr
coupling constants in Eq18), we use the relation of the and77—NN, though giving a correct sign of the contribu-

amplitudeA; with the polarizabilitied 76] tion, reveal problems in reproducing its huge magnitude. A
, I similar situation is seen in refined calculations in the frame-
A’1‘°“'B°”KO,0) :A{“(0,0) +A%10,0=—27(ay—Bn), work of chiral perturbation theory78], although it is masked

(19 there by rather uncertain counterterms. This is, probably, a
very interesting point for further investigations. On the ex-
where perimental side, studies of the distribution of the “hidden”
- — 43 polarizability (21) over the nucleon would be very helpful
ap= Bp=(10£2)X10"" fm (20 and desirable. It can be achieved by measuring thepen-
dence of the Compton scattering cross sections in appropri-
ate kinematicgsee beloy, and by using polarized photons
since the beam asymmet®y is very sensitive to the ampli-
tude A, especially at high energid23]. Also, the use of
virtual photong[79] has a great potential in discovering the
space structure of the “hidden” polarizabili{21).

is a world averagg7] over recent proton experiments. In this
way the polarizabilities constrain the asymptotic contribution
A% att=0, whereas the parameter> determines the slope
of Ai{t) and, what is most important, the scaleAf{t) at
high —t. We may mention that the exponential form of
A%~expBt/2) with B=6 GeV 2 used in[42] in applica-
tions to lower energies results in a too strong suppression of

A, at hight and, correspondingly, in a too low cross section IIl. RESULTS AND DISCUSSION
at backward angles in the dip region between the first and
second resonances. Now we compare the predictions of the described disper-

One should not consider E(L8) as an assumption of an Sion approach to the daf@-12,35-41,80-850n proton
existence of a stable particte giving the t-channel contri- Compton scattering in the first and second resonance regions.
bution of a pole form. Equatioil8) rather is a monopole We pay most attention to high energies, beyondAhegion,
parametrization of the functioA{t) at negativet,—t<1  Where dispersion predictions were not availafid&cept a
GeV2. Moreover, since any mechanism ofchannel ex- restricted consideration ir86]). The situation at lower ener-
change involves vertex form factors, the effective parametegies was considered rather completely elsewté(2,7.8,

m, in Eq. (18) provides a lower bound for the mass of a realand the present improvements introduce no essential changes
particle (if any), resulting in the effective exchange ampli- there and keep the overall good agreement between the
tude (18). theory and experiments.

Although the o exchange used here is considered as an Our predictions depend on quite a number of physical
effective one, it is interesting that the coupling constants ofiuantities and a few additional parameters, such as radiative
the o, which are needed to get the magnitude of the phenomwidths of nucleon resonances, theneson “mass,” the cut-
enologically introduced contributiofi8) and evaluated from Off A in the OPE contribution of the reactioyN—mA, etc.
the proton datd20) and the previously calculatedl™(0,0,  We did not try to fit all these quantitigpartly because many

ie. data from different experiments contradict each othir-
stead, we found that a reasonable agreement with the data
1 a o as. 9oNNFoyy can be achieved when théN— 77N multipoles and the reso-
o [AT(0)]p=(ap—By) _W nance parameters of the VPI grol§i] were used, provided

the o-meson “mass” was chosen to be about 600 MeV. This

~(12+3)x10 % fm?, (21) is demonstrated by the solid lines in Figs. 1-6, showing the
energy and angular dependence of the differential cross sec-

are not unrealisti¢73]. In fact, they perfectly correspond to tion, the asymmetry, and the proton polarizatioR. For the

the couplings of ther particle in the pion-nucleon linear  “mass” of o much higher than 600 MeV the asymptotic

model. In the chiral limit(i.e.,m2<m? m?) the o exchange  contribution A2{t) becomes a less steep function toand

in this model gives the contribution contributes more at backward angles, thus leading to a too

high differential cross section in the energy range between

the first and the second resonan¢ese dashed lines in Fig.

1). Choosing a larger cutoff parameté&rin the OPE contri-

bution of the reactiori6), one could diminish the differential

where the parametdr,=92.4 MeV determines botbryy (to  cross section and hence reduce the contradiction between the

one loop andaNN couplings(cf. [74,75]). We cannot, how- data and theoretical variants with high,. However, when

ever, claim that ther modelexplainsthe asymptotic contri- A>0.5 GeV, the cross section of the reactigN— A turns

bution A$®because, in the framework of this model, the termout to be unreasonably large. At smalte, the differential

of orderO(m;2) in the amplitudeA, vanishes av—x and  cross section in between the resonances becomes too small.

A%is finite in the chiral limit; cf.[24]. A realistic estimate of ~With the presently available experimental data one can ex-

the asymptotic contribution might be carried out by usingcludem, less than=400 MeV and more thar=700 MeV.

o 2
(an= BN =ge 7z = 13410 ¢ fm’, (22

data on the asymmetiy at high energies, similar {®3,76, To describe the Erevan data for the asymmeiryit is
or on the base of dispersion relations at backward anglealso better to choosen,<600 MeV [see Fig. 8)]. This
[25,77. indication is rather important because the theoretical predic-

__Presently, the origin of the large contributiq®1) to  tions for X are not sensitive td\. There is a general agree-
an— By is not understood. Recent calculatig28] based on  ment of the present calculations with the Erevan data, al-
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FIG. 1. Energy dependences of the c.m. differential cross sectigqp stattering at several angles. Solid lines: the main vafisad in
the tex). Dashed linesm,, is increased from 600 to 800 MeV. Short-dashed lines: the cutoff parametérthe OPEA contribution is
increased from 0.5 to 1 GeV. Dotted lines: prediction of the present approach based on the old photo pion arfg8itueesdictions of
the isobar model are taken from its versi@Y]. Data are froni8,36—41,80—8p

though the predicted asymmetry is not high enough at angles In Figs. 1-4 we also show results calculated from the
0#<120° and energies in thB 5 region (700-800 MeV. older and now obsolete photopion multipoles and resonance
Available data on the proton polarizatidh [35,38 are in  photocouplings 0f86], simply to check whether recent im-
agreement with the theory as wéBee Fig. 4. However, provements in knowing the resonance couplings are crucial
they are not precise enough to put any strict constraints to thier getting an agreement with the Compton scattering data. A
parameters involved. difference is seen mostly at energie§00-800 MeV and is
We could change our ansatz for the-tvave” partAc of  more distinct in the asymmetry than in the differential
double-pion photoproduction as being of puréBi , j =3/2) cross section. In general, the results of dispersion calcula-
type. If we attribute 30% of the cross sectiarr to the(E1,  tions are sensitive to the strengths of the nucleon resonances
i =1/2) strength(see Appendix G the differential cross sec- P33(1232, D 51520, D35(1670, P,51680, F,5(1680, and
tion gets a maximal change of abouB% atE,~550 MeV ~ some others, as is illustrated in Fig. 5 where different curves
and backward angles which could be compensated by thare obtained by a smalll0%) variation of the resonance
~80 MeV increase irm,. However, with such parameters strengthsA" of the Breit-Wigner term, Eq:D1), contributing
the asymmetry gets a negative shift o —0.1 at energies to one- and two-pion photoproduction amplitudes. This was
= 800 MeV and central angles, which is not favored by thedemonstrated before in frames of the Tokyo resonance
Erevan data which are described best by tB&, j=3/2) model [37,39 where these strengths were fitted and ex-
ansatz. tracted from proton Compton scattering data.
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FIG. 3. Beam asymmetry in the reactigp— yp with linearly

FIG. 2. Angular dependences of the c.m. differential cross secpolarized photons. Notation of curves is as in Fig. 1. Data are from
tion. Unitarity bounds(i.e. contributions to the cross section from [9,12,83.
Im Ty; only) are shown by short-dashed lines. The other notation is
as in Fig. 1. Data at 320 MeV include those[8f-11]. Dash-dotted  the ansatz of a fixed background does not respect the Watson
lines in cases 0E=750 and 900 MeV: the isobar model in the theorem and therefore is not completely satisfactory, espe-
version of[39], i.e., with adjusted relative phases of different reso-cially for E,, having a relatively large background part.
nances and background. Nevertheless, we expect that this inconsistency is not very

important for fine-tuning the resonance parameters.

In the case of thé35(1232 resonance, its excitation am- The best fit of the Mainz datd 0,11] at the fixed ratio of
plitude becomes very well constrained by the dispersiorthe A-resonance photocouplings,
theory and recent data on Compton scattering inXhregion
[9-11]. Splitting the physical photopion amplitudes
M,,,E,. into theA-resonance partsl |, ,E’ . and a back-
ground (see Appendix D for the explicit form and energy as inferred from31], gives the resonance strength for the
dependence of the resonance parts jysed can rescale the M1 excitation of theA slightly smaller, by—2.8 = 0.9%
resonance parts, keeping the background fixed, and thus firghcluding both statistical and systematic erjorthan that
the physical amplitude®l , , ,E;, modified in the vicinity of  found in the SM95 solution by the VPI grolpl] (see Fig.
the resonance. In this way we calculd¢p , ,E;, and the 6). Systematic uncertainties of these data are not shown in
corresponding Ind\; and ReA; at differentM1 andE2 pho-  the figure and, therefore, the agreement between the theory
tocouplings of the\ resonance. We are aware of the fact thatand the data at 90° is better than the figure suggests.

EMR=E} /M|, =—1.6%, (23)
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06 | e ant(solid line) is compared with variants where the radiative widths
04 | - of the D15(1520 (dashed ling and F{5(1680 (dotted ling reso-
. nances are increased by 20%.

7 E,>600 MeV the differential cross section found in the

T present work through unitarity and dispersion relations is
06 § essentially higher than that in the resonance m¢&@|39
08 F . \ . O [see Figs. @) and 2c)], and so we believe that the latter
B 0 200 400 600 300 1000 model is inapplicable there. Estimating the success of the

isobar model, one should remember that the parameters used
in [37] and in[39] for the description of different kinematic
regions were different tofcf. Fig. 1(e)].

We did not observe a strong sensitivity of the differential
cross section, of the asymmetRy or the polarizatiorP to

The M1 strength found from Compton scattering is in the P;,(1470 (Ropep andS;4(1535 resonances, in contrast
very good agreement with the data on the total photoabsorge findings of [37,88. Probably, in part this difference is
tion cross section near thé peak[60]. Note that precise related to the large amount of nonresonance contributions to
knowledge ofM 1 excitation of theA is certainly needed to the scattering amplitude we have in our approach. In our
reliably study smaller photoproduction multipoles in the calculations we take the total photoabsorption cross section
resonance region. With more data at forward and backwards a fixed experimental input. Therefore, at forward angles
angles information on th&2 strength ofA photoexcitation our results are not very sensitive to model-dependent details
can be inferred too. For illustration we give in Figga2and and parameters, and only @=90° the predictions get a
3(a) predictions obtained with the quadrupole amplitudemodel dependence. Correspondingly, this is the most inter-

| . rescaled to EMR —5%. esting region for comparison with experiments.

Although the presented results of the dispersion calcula- In conclusion, we presented a dispersion calculation of
tions seem to be very similar to those found in the Tokyothe yp-scattering amplitude at energies over the first and
resonance modéB7,39, the nonresonant parts of the Comp- second resonance regions which was based on experimental
ton scattering amplitude are very different in the two ap-information about single-pion photoproduction and reason-
proaches. They are real and have the form of the Born terrable hypotheses concerning the dynamics of double-pion
times a form factof87] in Ref.[37] and are complex in the photoproduction and high-energy behavior of the helicity-
present approach, getting a sizable imaginary contributioflip amplitudesA; ,. Comparing with the older attemps6],
from the nonresonant part of the total photoabsorption croswe achieved a much better agreement with available data
section (see in Fig. 7. At forward angles and energies including polarization observables. One may expect that the

E, (MeV)

FIG. 4. Proton polarization. Notation of curves is as in Fig. 1.
Data are fron{35,3§.
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300 T T T r special case of forward scattering. New accurate measure-
O =75° M,,=100% St P98 o ments of the differential cross sectidior/d) and asymme-
] try 2 at energies above 1 GeV which are feasible at CEBAF
could shed more light on the role of thehannel exchanges
in the amplitudes\;(v,t). The dip region between the and
D,; peaks is another promising place to study Aheampli-
tude and the relateat exchange. Accurate data on the differ-
ential cross sectiodo/d{) and asymmetry, are highly de-
sirable there. They could help to reveal the nature of the
“hidden” polarizability of the nucleon21). New data in the
dip region are expected from the LARA experiment carried
out in Mainz[89].
Our results suggest a dominanceménd o exchanges in
: thet channel and an equally important role of both resonant
Mainz-96a +—e— and nonresonarttike 7A) contributions in thes andu chan-
w0 T M,,=100% of VBIo nels in the region of the second resonance. This qualitative
. guidance may be valuable for improving dynamical models
> [50-53 of nucleon Compton scattering, which successfully
work in the A region, and extending them to higher energies.
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approach developed here can be used to get quantitative in-

formation on the resonance photocouplings, the partial-wave (fls—1li)y=i(2m)*6%k+p—k'—p")Tsi, (A1)

structure of inclusive double-pion photoproduction, and the

asymptotic behavior of spin-dependent Compton amplitudesye use the orthogonal basis suggested by Prio@je

provided more precise experimental data are available. The

latter subject is the most intriguing one because it cannot be

investigated in photoproduction experiments, except for the Ty=u’(p’)e’**

APPENDIX A: INVARIANT AMPLITUDES
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FIG. 7. Total photoabsorption cross section on the proton and its P.=Pu.=K, K2 P=3(p+p’), K=3z (k'+k),
components. Dashed line:N channel. Dotted line: inelastic reso-
nance contribution. Dash-dotted line: OPE contribution of
yN—mA. Short-dashed lines-wave correction. Data are from N,=€,a5,P “QPK?, Q=1 (p—p')=13 (k'—k),
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where €,,,5, IS an antisymmetric tensor ang;,3=1; also do, —da do\ 1
=@ 9 Y = =64’ oo
Y51 0 . . . . do, +do dQ
The six amplituded; introduced are analytical functions
of energy and scattering angle with the only singularities X{L(AmP—1)(|Ts|2—|T4/?)
related to one-particle exchanges and inelastic thresholds in 2
the s, u, andt channels[91,92. As a result of crossing —3(s—m?)(u—m?)(|T,4|2—|T,|?)
symmetry, the amplitudeB,(v,t) andT,(»,t) are odd func- . .
tions of v; the other four amplitudes are even functions. +m(s—u)ReT3T; —T1T3)}, (A7)

It is convenient to introduce linear combinations of the
amplitudesT; which are free from kinematic constraints
[93]. Such constraints arise because the denominators in thend polarization of recoil protons is
kinematic structures in EqA2) vanish at forward and back-
ward angles like

doy—do_y do| 1 (s—m?)?
5 t 1 202 =——2=|64n’s —~| —r—
K=~ 7= gg (s~ m*)*(1—cos), doy+do_, dQ 2\s
. . Xsing IM(T T+ T5T,). (A8)
122_ " M T (e m2)\2
P’“K 7 (su—m?) 8s (s—m*)“(1+cos),
N2=P'2(K2)2~sir?6. (A4) The amplitudesA; have poles at zero energy because of
contributions of the nucleon in the intermediate state.
These linear combinations aré2] These poles are contained in two Born diagrams with the
pole propagator (y-p—m)”* and on-shell vertices
1 1 I, (p+k,p)=vy,+[v Kk y,]xldm,  where «k=1.793
—— _ _ _ ABT ,u,p P 7,4/. Y !YMK d K '
A1 t [Tt T+ v(T2+Ta)] 2 A —1.913(1—q) is the nucleon anomalous magnetic moment.
We introduced here the electric charge of the nucleon,
1 m .. g=(1+73)/2=1 or 0. The Born contributions to the ampli-
AZ:T [2Ts+v(To+Ta)]= 2 Az tudesA,; have a pure pole form

2 t
Ag=—g—— Tl_T3__(T2_T4)} me?r;(t
m*—su 4y AiBorn(Mt):Aipole(V,t): 5 i(t) -~ (A9)
(s—m)(u—m?)
m? m?
= — ABT_ __ pBT
4 "0 4y 78
) ) wheree is the elementary electric char¢e?/47=1/137 and
m t m
__ T __ 0 oaBT
Aq m—su 2mTg 4y (T2 T4)} 4y As

t
ri=—2q+(x*+2qx) ame’

1 m BT
ASZE[T2+T4]:ZA3 ,
t

r,=2qk+2q+(k>+2 :
A_l N mABT+4m2_t 2=20k+29+(k qK)W
6_41/[2 al= 24 16v

A, (A5)

where we also give their relations with similar invariant am-  ry=rg=«?+2qx, r,=«2 rg=—k’—20x—2q.
plitudesAPT introduced by Bardeen and Tufig3]. The am- (A10)
plitudesA;(v,t) are even functions of and have no kine-
matic singularities or kinematic constraints.

In terms of the amplitudes; the differential cross section

. S APPENDIX B: CONTRIBUTION OF «N
in the c.m. frame is given by

INTERMEDIATE STATES

do 1
30" 8% {2(Am2—1t)(|T4%+|T4?) Our procedure used to explicitly find the imaginary parts
™ of the amplitude\,; in the s channel is based on the formal-
—1(s—mA) (u—m)(|T,|%2+|T4? ism of heIi_ci_ty amplitu.des. First we introduce six indepen—
dent helicity amplitudes for Compton scattering,
+m(s—u)ReT,T; +T3T}) Taing ap,(S:6,¢), and define the reduced helicity ampli-
—|To|2+ (m*—su)| Te|2. (A6)  tudesr which are free from the kinematic factors of the

form  [cog@2) M [sin(ar2) ANl ¢ A2 N=N =Ny,
The beam asymmetry with linearly polarized photonsis ~ N'=\;—\j:
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6 6 ) st
Tiw2102=€085 71, To1a), 109~ cos’ 5 T2, o =sin’ 27 (s—m)?% 64
.0 The helicity amplitudes have a standard partial-wave de-
T1- 2,102 = €OS 5 Sins 73, composition in terms ofl functions:
o 6 - _ - j
T1(1/2)1_1(1/2)=COS§ S“"l2 z T4y T)\l)\z,)\l)\z(si 0’ d)) 8W\/§$ (ZJ +1)T)\:’L)\é’)\1)\2(3)

0 xdl (e, (B5)
T—l—(llz),l(l/z)zsmi s, T1i-(12,—11/2=SIM 5T _ _ _
(B1) !n thg case of two-body |n.termed|ate statgshke 7N, the _
imaginary parts of the partial waves are given by the partial
Here is the c.m. scattering angle, and the scattering plane i¥aves of the reactioyN—n as follows:
chosen to be the azimuthal platg=0). Other helicity am-
plitudes Tx;xg,xlxz(syev@ can be found througt® or T

piiuce ImITL s (917 =2 Ty (9T T, (9),
inversion:

(B6)
r ’ = = )\ )\ . . . .
Tona a0, = T, = (2 ) ZTA PR ST whereq is the c.m. momentum of the intermediate particles
and the sum is taken over helicities and other quantum num-
at $=0. (B2)  pers of these particles. Of course, different intermediate
states contribute additively to the imaginary parts.

In terms of the helicity amplitudes the invariant amplitudes Normally partial waves for single-pion photoproduction

Ai(s;t) read are given in terms of multipole amplitudes with definite par-
5 s ity and orbital momentuni, E,.. and M., or those with
A :_12_2 _ ( - s+_m a— VS (75+ 0 7g) definitel and helicity,A,. andB,... They are related with
1 (s—md) 2s 4200 ' the helicity partial waves in the form
__ 1t | s 2 s—m? j=k+1/2 k+1/2 i
AZ_(S—m2)3 _E(Ser) 1=o 2s | ™4 Tjo<1/2),1(1/2)__To (1/2)—141/2):%(_Ak+_A<k+1)—),
2
S s—m
—g(s—mz)r5+23\/§<l—o 75 )TG , i
k+(1/2) k+(1/2
TJo (f/é) 112~ T!)(l/;r) 1) 2= (_Ak++A(k+l>—)*
A ! [ [+ (1-0)7]
<R Iy y— m- 7, —0)72 i=k+(1/2) j=k+(1/
(S m ) (S m +t/2) T0(1/§%2(1/2 TO (]T/Z} 2)1(1/2)
s+m?
52 _ ~ [k(k+2)
2m \/5(1 T s | 73| =I\/—8 (By+ +Bkr1)-),
1 m? j=k+(1/2) i =k+(1/2)
A4:(S_m2)2(s—m2+t/2) m37'1—m3(1+(r?) T2 TO (1/2)1 = T0(1/2) 1(1/2)
- Jk(k+2)
omt =1 T(Bk+_5<k+1)—)- (B7)
+—= o073,
\/g 3
Also
A ! [m(s+m?) 1
= m(s+m9) o,
° (s—mH)A(s—m?+1/2) ! A =5 [(k+2)E +kMi ], Byy =Eice =My
2Vs(75+ o7g)],
1
1 A(k+1)—:§[_kE(k+1)—+(k+2)M(k+1)—]v

AGZ

m
(S— m2)2(s_ m2+t/2) - 5 (S+m2)[7'1+(1_0-)72]

Bik+1)- =Ex+1)- tMk+1)- - (B8)

+2m2\s(1— o) 75|. (B3)

Using these relations and explicit representations ofithe
functions, we may write the imaginary parts of the reduced
Here helicity amplitudesr, in the form



lm[r1]<“>=8wqfsk§0 (2k+2)(|Ak: [P+ Ak 1)-1D)

XF(—kk+2,1,0),

lm[rs]<“>=8wq@k20 2(k+1)2(| Ak 2= Ak -1

XF(—k,k+2,2,0),

1= 870,53, k(k+1)(k+2)
X(|Bk+|2+|B(k+1)—|2)|:(—k+1,k+3,1,0),

2(k+1)%(k+2)?

Im[rg] i =8mq 5, Y

X (= By >+ |Bs1)-[DF(—k+1k+3,4,0),

Im[ 73] 2™ =8mq JEkEl k(k+1)(k+2)

X (= Ak B — A1) Blksn)-)
XF(—k+1k+3,2,0),
k(k+1)%(k+2
Im[r4](1”)=877q\/§2 %
=1

X (A B = Ay - Bl 1))

XF(—k+1k+3,3,0), (B9)

whereq is the pion momentum and the sum over different

isotopic channels is implied: is a hypergeometric polyno-
mial of the o=sir(4/2):

Fiab 1 ab x a(at+1)b(b+1) x?
@D T vy 2

(B10)
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k k+2
Ar="5 f3,3k+Tf4:3k+li k+ =~ FaBit faBiia,
k k+2
Akr1)- faBi— faBrs1,
Bikr1)- = —faBkt 3B 1, (B11)
where
eg,nNN /EN,+m
f3: + y
4725 Entm
_ €0;nN [Entm
fa= , B12
4 477\/— En/+M (B12)

with Ey and Ey being the c.m. energies of the initial and
final nucleons, respectively, amdbeing the c.m. velocity of
the pion. The quantityg >0 is the #NN coupling con-
stant,g 2, \/4m=13.75, and the sigit has to be taken for
" photoproduction. Alsog, are functions ofv and given
by

1
Bk:m [Qk—1(W) = Qys1(W)],

dz 1
Pk(Z) TZ’ W= ;, (813)

w

1 (1
Quw) =3 f_l
in terms of Legendre functions of the second kind.

APPENDIX C: OPE CONTRIBUTION OF «N
INTERMEDIATE STATES

The seriegB9) and (B11) can be used straightforwardly
to sum up the contributions to Iy from the intermediate
statesN with the angular momentufj® j ,.,=7/2 by using
the OPE approximation. Another way to find the sum of
contributions to ImA; is to calculate the total OPE contribu-
tion to ImA; in a closed analytical form from all partial
waves and then to subtract the OPE contribution of the
waves with j<j .., which is determined directly by Egs.

In our calculations we take the partial-wave amplitudes(B9). Such a procedure is especially helpful in calculations at
E,. and M,. with the angular momentunj<j,,,=7/2  hight when the serie€B9) may be divergent because of the
(j=<3/2 below 400 MeY from the phenomenological analy- singularity induced by the one-pion exchange. When the
sis [31] of photopion experimental data with the following OPE contribution is eliminated, the convergence of the sub-
except[11]. The My, amplitude of the VPI group was split tracted series is essentially improved.
into the P5345(1232- resonance pamt1 i, specified in Appen- The total OPE contribution to I, is determined as fol-
dix D and a backgroundv ® 14 The resonance photocou- lows. In the c.m. frame, the OPE amplitude of the reaction
plings were taken frorid1]. Then the resonance part df; . yN— 7=N reads
was rescaled down by 2.8% and the resulting amplitude
0.97M . +M?’, was used as a neM, . in dispersion cal- ve-
culations. It has reducdd 1 strength in the vicinity of thé T,=
resonance, which is necessary to be consistent with experi- 877\/—
mental data on Compton scattering and photoproduction; cf.

[11]. where f; and f, are defined in Eqs(B12). Therefore, the

Higher multipoles are assumed to be given by the oneimaginary part of the Compton scattering amplitude in the
pion-exchange diagram. They are OPE approximation is given by the integral

’.Q)

(—ur kf +io-qf,), (CJ)
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2¢'*.q e qdQ - . - .
Im TﬁpE: d ve 4e4® (o-k'f3— 0 Gf ) (0 kfz— 0-Gf ), (€2
877\/— (1-vk’-4)(1-vk-@)
which, in turn, is reduced to the integrals
* Aaia}dﬂq ——=a(v,2) 8+ B(v,2) (kik; K/ K ) + y(v,2) (Kik] +k/K)),
(1-vk’-g)(1—vk-Q) !

L WA o) Rkt Rk -+ (o, 2) R Ry Rk ot R Rt kR R TR R Rk
— (1—v|2'-a)(1—v|2.a)_a(”’z)( iKj kit ki ki k) +b(v,2)(k; i kit ki Kk ki kg ket Kk ke +kik k)
+¢(0,2) (K; S+ K; i+ Kiedij + K 8+ K] Syt Kidiy),

1 dQ IR

— M =A" (0)(K; S+ K; S+ ki) + B (v) ki Ky . (C3)
A 1-vk- q
|
Here the functionsy,,y,a,b,c,A’,B’ depend on the pion 1
velocity v and the photon scattering c.m. angiescossé. ¢2(U):Z 91—, Pa(v)= 32 (¢po(v)—1),
They are given, in terms of the more elementary integrals,
$1(v,2) — ¢2(v)
1 dQ =
. — q — E¢1(U,Z), ¢3(U,Z) (1+Z)UZ ’ (CG)
A7 (1-vk'-g)(1—-vk-q)
and
1 dQ, — 4o(0),
— =¢olv R+(1-2z)v
4 1- k = - 7
aT v $1(v,2) URI gR—(l—Z)v'
ar ) Tookga—okg HANTD R= (1= 22— (127 ©7)
1 GidQ Also
an ) 1o kg —=vda(v)ki,
& v A(W)=3[¢2(v)— da(v)], B(v)=s(v)—A(v).
1 qq]dQ ~ A €8
— T~ - (U)5|J+B(U)k kj- (CH . . . .
A7 1—vk-§ In terms of the integrals introduced, the imaginary part of
the Compton scattering amplitud€?2) is given by the func-
as follows: tions
a(v,2)= ¢1(v,2) —2¢3(v,2), )
B(v,2)=d3(v,2)— a(v,2)—2y(v,2), IMRYP5=qu?| (a+2y)(zf5+ 1) -~ (a+zy—A>f3f4},
L 2
7(0,2)=ﬁ[Z¢1(v,2)+(1—32)¢3(v,2)—¢4(v)], IMRSPE=qu2y —zf%—f§+; fof }
_ 2,2 —A) OPE_ . 2 2 2
C(U,Z)—W, IMRY"E=qu2f4[[za+ (22— 1) y]f;—2[ (22— 1)b
+(2z—1)c]f4],
b(v,z2)=—— 172 y(v z)—c(v,2)|,

IMRYPE= qu2f4[ af;—2¢1,],
1
av.2)=7 Av.2)=2bv,2) ~2¢(v.2), IMROPE= qu2f o — (a+2y)fa+ (22b+30)f ],
1 1 1
A'(v)= " (A(v)— §) , B'(v)= > B(v)—2A'(v).
(CH

IMRE™E= qu?f4[ yf3—(2b+c)f,], (C9

which, by definition, represents the scattering amplitude in
The functions¢, read

three-dimensional notation,
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1 mentaj, andl, together with the parametel§ determine
——=T=€*-eR;+s*-sRy+io-€*XeR; barrier penetration factors. We take all of them fr¢&6],
8mys exceptj,. Since the VPI group parametrizes the radiative

widths by usingj =1 [94], we do so here too.

For the amplitude®\" of the resonance multipoles at the

. . . resonance energies we use recent results of the VPI group
Tilo-k' s -e—a-ke™-5)Rs (C10 [31], as well as their resonance mas¥égand widthsl,.
(heres=k xe, s' =k’ x¢'), and gives the reduced helicity am- ~ Being used in Eqs(B9), the resonance multipolg®1)
plitudes; : determine contributionplm= ™" =™ of single-pion decays
of nucleon resonances to imaginary parts of the Compton
scattering amplitudes. To determine the contributions of the
resonance decays to other channestly 77N), we as-
sume the validity of the Breit-Wigner formula and rescale

+io-s'*s R4+i(a'lzs’* e—o-k' e* -S)Rs

7'12877\/5

0
CO§ E (Rl+ RZ_RB_ R4+ 2R5+ ZRG)

+2R3+2R4}, the 7N contribution with the factor
_ 1-B; Fine(W)
7,=8mVS[R;+ R,— R3— R, — 2Rs— 2Rg], B W (D3)

=8 S[RitRo— Ry~ Rul, where T, (W) is the normalized width of the decays

N* —(7aN,7N,777N,...) and B, is the single-pion
branching ratio of the resonandg* which pins down
[pe(Wp). We takeB . from [31] as well.

74=8mS[Ry— Ry~ Rz + Ry],

0
T5=81/s| Sir? > (Ri—Ry—R3+R;—2R5+2Ry) For the energy dependences of the inelastic W|dtp§
we generally use the ansatz
+2R3_2R4}, . Q 21+4 Qg+xz I+2
Line(W)=T"g Q0 %+ x| (D4)

=87V R;—R,—R3+R,+2R:—2R;z]. (C11])
76 W\/—[ v T > ol (C1D whereQ is the momentum of a compound parti€r) with

The above formulas for IRPTE, together with relations the mass th_ in the channel2m)N, and Qp=Q(W=W).
of R, with 7 andA, , just determine the total OPE contribu- Such an ansatz takes into account the correct energy behav-

tion to the imaginary part of the Compton scattering ampli-ior ~(W—2m,_ —m)? of the phase space near the three-body

tude. threshold and also incorporates a barrier penetration factor
similar to that in Eqs(D2).
APPENDIX D: RESONANCE CONTRIBUTION We make two exceptions from EQR4): ,
OE #=N INTERMEDIATE STATES (i) For the P35(1232 resonance its inelastic branching

ratio 1-B_,=0.6% is related to the radiative decAy-yN.
C0n3|der|ng resonance contributions to Imaglnary partS Ohccord|ng|y, we USd_‘lnel(W) T (W) in this case.

the Compton scattering amplitudes, we start with Walker's (i) For the S,,(1535 resonance its inelastic decay is
parametrization of the amplitudes of resonance photoexmtama,my due to »N mode, and in this case we use

tion [54,88 Tine(W) =T'00,(W)/q,(W,), whereq, is the c.m(.[ mi)men-
_— tum of #. In particular, using the parameters frgB8i], we
ACW) = A" Kodo ~ WovT',I (D1) get the cross section ofypﬂslﬁnpz 12 wb at the reso-

kq W(Z)_WZ_ iWol nance peak which is close to the experimentally known mag-
nitude [95,96 given by 27, /k=13 to 15ub in terms of
the quantity¢ introduced in[96].

To maintain unitarity, we also replace in E@1) Walk-

where A is the resonance part of any of the amplitudes
A+ ,B,+ of the reactionyN— 7N, the widths with bars

. q 121 g2+ X2 er's total width by
rw<W>=Fo(—) ) _ _
G/ 4 [=B,I+(1=B) - (D5)
2§/ 121 x2\ |
F_(W)ZF 5) (kg + X2\ 1v (D2) Thus, our procedure to calculate inelastic contributions of
Y % ko k?+X? N resonances to Imis given by

are energy-dependent pionic and radiative widths, respec- [ImTi](N*Hﬂ'WNm):R{[ImTi](N**}WN)}FHEq_ (os) (D6)
tively, normalized to the total widtly at the peak, and the

total widthI'(W) is taken to be equal tb(W). Alsok and  (for each resonanch*). In Fig. 7 we show the resonance
g are photon and pion momenta in the channdlsand 7N total cross section ofN— N* — 7rN... (dotted ling which

at the energw= \/s, andk, andq, are the same quantities at is easily found from Im through optical theorem, i.e.,
the resonance enerdy/=W,. Photon and pion angular mo- Im(7+ 75)(»,0°)=4mvo ,(v).
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APPENDIX E: OPE CONTRIBUTION

EI +m GZqIS G2
OF wA INTERMEDIATE STATES

S 12aM m2 ' 4w =0.38, E2
The model we use to split the nonresonance part of the )

yN— N cross section into individual multipoles is based WhereM is the mass of th, andE’ andq’ are energy and

on the assumption that all partial waves except the loweshomentum of the final nucleon in the decay-='N.

one are dominated by the mechanism of one-pion exchange We write the OPE amplitude of(k)N(p)— m(q)A(P)

in the reactionyN—mA. Here we give details of how to aS

calculate the related imaginary part of the Compton scatter-

ing amplitude. T
The effective Lagrangian of therNA transition in the

Rarita-Schwinger formalism reads

. eG__ e-q
—i m—ﬂu”(P)u(p)ﬁ. (EJ

We do all the calculations in the c.m. frame and use the
three-dimensional gauge,=0 in which the diagrams
supplementing the OPE diagram to a complete gauge-
invariant set are suppressed or have a dominadiwgave
where T is the transition isospin operator normalized tocomponent which will be adjusted separately in the follow-
Clebsch-Gordan coefficients. The coupli@gdetermines the ing. Using the amplitudéE3) in the unitarity relation, we
decay width of theA: find the imaginary part of the Compton scattering amplitude:

G —
L= T m+He, (ED)

1 T IOPEA 4 e’G? dQqe-qe’-q_ | b ’+m2+ m b p
2 ! ! 2 m i 4 !
—WP'PP ‘P|+M|p-p —?—3—,\/'(p'P+IO ‘P)—WP'PP ‘Pltu(p). (B9

Here the term in curly brackets stems from th@ropagator and the factor of 4/3 appears after summing over ¢ * and
" A° channels.

In three-dimensional notation the RHS of E&4) is recast as

a2 eqe-qf, + 2 (1-2d)(2+2)~y?2Z' || Pyt 2 (2+2) 4 i g (k=K ) X G+ if 10 K/ XK
4n 27 172 y 272 2 '7 ariho
+|P3— % (1+4d)(Z+2')—2y?ZZ' |- (P,—if yo- k' XK) . (E5)
|
Here andw, pg,qo,Pg are the energies of, N, 7, A. The angular
integral in Eq.(E5) is calculated with the use of formulas
. Po(Po—m) ;. _Pom from Appendix C. In terms of the amplitudd® and func-
1 2mM ' 2 2m tions A,a,v,b,c, of the cosine of the scattering angle
z=k-k' and pion velocity specified in the Appendix C, the
w0 M2+ m2—me imaginary part of the Compton scattering amplitude reads
T VAR TT VIR

Z=1-vk-§, Z'=1-vk'-q,

) 3w?
P1=2+d_d +W(1_Z)'
2

3w
P3=1—d—2d2+m(1—z),

P,=d—fy(1-2), P,=1+f,(1-2),

_16m3Mqv2< eG)2 . q

=—, E6
9w? 8mys Qo (E9)

[IMR,]°PEA=C{ (a+zy)(P,P,+ P3P,)

+yA[P;+(1—2d)P,— (1+4d)P,]
+y?(1-2d)[5+(3-2)(A=3)]

2 3
—%(P2+2P4>—y§], €7)

[IMR,]OPE*= C( —v(P1P2+P3P,)

2

y

+E (1—2d)(A—3 ],
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[IMR3]OPE2=C{zPs+ (1—22)P;+ (22— 1)Pg}, A2—m2 M2+m?—A?
Jo—doa=Jot+ 2w dﬂwl

['mR4]OPEA: C{Ps— P},

[IMRs]OPES = C{— Pg+ 2P, — zPg), yo2oa 9 (E13
mM Goa

[IMRg]%PF*=C{~3P7+ Pg}.
(s,z,w,q,pg, Py are not changed Such a subtraction is sim-
Here pler for implementation than a straightforward use of ad-
justed form factors in therNA vertices. AtA=0.5 GeV the

y OPE cross section gfN— A begins to decrease Bt >1.2
Pe=a(fP1—fP3)+yf; A(l—Zd)_g} GeV. OfN— A beg b
5 In Fig. 7 we show the total photoabsorption cross section
y in the OPE approximation witt\=0.5 GeV (dash-dotted
+yfo| A(l+4d)+ = ) : ; ;
Y2 Al ) 3] curve. It is obtained from InR; by using the optical theo-

rem o= (47l w)iIm(R+ Ry) 4o
P,=vycP;+y3(3—d)(A—3),
APPENDIX F: CONTRIBUTION OF p°N
Pg=y(f1P1—f,P3)—vybP;. (E8) INTERMEDIATE STATES

Formulas (E7) specify the contribution of the OPE Considering contributions to 1) from p° photoproduc-
mechanism of the reactiopN— A to the Compton scatter- tion we make the assumption sfchannel helicity conserva-
ing amplitude and we use them with two further modifica-tion [58,55 in the reaction
tions. First, we take into account a finite width of theby

virtue of smearing the contributiofiE7) over theA massM: y+N—p°+N, (FD
[ImR(s, 6)]OPE [ImR,(s, 6,M)]°PE2w(M)dm, SO that
m-+m_,
E9 B
( ) T}\p)\")\y}\w 5)\7}\5)\p)\yex45 t ) y (FZ)
where the integrand is given by formulé&7). The weight
w(M) is wheret,=(p,—p,)” and the slope paramet&=6 GeV *
2 2 MSF(M) determines the angular dependence of the photoproduction
W(M)= ———— sirfSa3(M)= — . > amplitude. Using Eq(F2) in the unitarity relation(B6) and
7' (M) ™ (M?=Mg)?*+Mgl*(M)  integrating over transverse momenta we find that only the

(E10 helicity-non-flip Compton scattering amplitudesand r, get

and is determined by the energy-dependent width ofAhe a contribution fromp™N:

isobar[86]:
o ImL 7] ¢ = 1m[ 7)™

q’(M))3q'2(Mo)+x2
a'(Mg)) g4 (M)+X?"

and byM,=1233 MeV, ;=120 MeV, andX=185 MeV.

With the weight(E10), the integral(E9) exactly reproduces Where g and » are the c.m. momenta g’ and y and
the OPE contribution of the three-body reaction o n_ 0N iS the total cross section of the reacti@l). Typi-
yN—a+(7'N) provided thewN— (7'N) block is taken cally, o,n_ ,on~20-25ub at the energies considered here
on shell and contains only tHe=J=3/2 partial wave. [58,59.

Second, since theNA vertex(E1) entering into Eq(E4) Note that the expressidifr3) has a correct limit not only
includes a derivative and results in an increasing cross seé@t high energies when the diffractive representatied) is
tion ats—oo, we introduce a cutoff in the momentum transfer experimentally justified but also near thdl threshold where
t=(k—q)? in the reactionyN—mA. Namely, we replace the any angular dependence of the amplitudessiran the yp-
product of the propagators t{m2) *(t’—m2)~!  scattering angle has to vanish.

F(M)=Fo( (E1D) =(s— mz)gﬂ/NHpoN(s)eX[{% Bt) , (F3

=(4gk-qk’-q) "t in Eq. (E4) [heret’ = (k' —q)?] by Other mechanisms of low-energyphotoproduction, like
ar or o exchanges, could also be considef@d]. In spite of
1 1 1 a very different spin structure inherent to these exchanges as
(t—m2)(t’' —m2) - (t—m2)(t'—m?2) (t—A?)(t'—A? compared with the above diffraction ansatz, the result for

(E12  Im 7 might be not so different. That is because betando

exchanges flip the helicity of the vector particlessp, at
This leads to a subtraction frofimR,]°"5*, Eq. (E7), a  least in the case of transversal polarizationgpofind thus
similar contribution obtained fro{E7), (E6) through the result in diagonal helicity transitiong—y in the bilinear
substitutions unitarity relation(B6).
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APPENDIX G: s-WAVE CORRECTION
FOR woN INTERMEDIATE STATES

Considering the saturation of imaginary parts of the
Compton scattering amplitudes, we have to discuss the rest
of the total photoabsorption cross section, which is not cov-

ered by resonance excitation or peripheral mechanisms:

Ao= [O'yp—>hadrons_ U-yp—wn—N]
OPE
_[O-YPA‘N**’WWN_%O-)/D—WTA—’_UyN—»pON]' (Gl)

This quantity is shown in Fig. {short-dashed line
We can assume that the cross secthanis dominated, at

least at moderate energies, by electric dipole transitions.
Moreover, an essential part of this cross section has to be

related to the contact interaction in th&N— A transition

(analogous to the Kroll-Ruderman term in single-pion pho-
toproduction and hence to occur in states with angular mo
mentumj =3/2. Under such assumptions it is easy to restor
the corresponding contributions to all six Compton ampli-
tudes because tH&1, j =3/2) absorption has the same effect

as the pion photoproduction through the multipgle . Us-

A. 1. L'VOV, V. A. PETRUNKIN, AND M. SCHUMACHER

8mq\S|Ar—|>—§X,
87Tq \/§|82—|2_>%X1

BWq\/g[AZ,BE,]—)—%X, X:(s_ mz)AO'El’j=3/2
(G2

(and other multipole amplitudes are replaced by gero
When some part of the cross sectiber is caused bye1l
absorption aj =1/2, that has the same effect on #fras the
Ey. multipole of single-pion photoproduction, and knare
found through the substitution
8mas|Ag. |2— (s—m?)AgEH =172, (G3
In the case of théM 1, j=1/2) multipolarity which ap-
pears, for example, when both pions in the reaction
yN— 77N are produced in as wave, the substitution rule
éeads

8 s|A;_|2—(s—mA)AgMLi=112 (G4)

Normally we assume that the whole cross secfions of

ing formulas(B8) from Appendix B and the optical theorem (E1, j=3/2) type, but with the above formulas we can also

IM(7,+ 75) g—o=(S— M%) 0oy, We may find Imr, through the
following substitutions in Eqs(B9):

check what the effect is if a small amount®# is related to
(E1, j=1/2) or (M1, j=1/2) quantum numbers.
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