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Dispersion theory of proton Compton scattering in the first and second resonance regions
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Dispersion theory of proton Compton scattering is extended to energies up to;1 GeV where excitations of
higher resonances and nonresonance double-pion photoproduction become important photoabsorption mecha-
nisms. To saturates-channel dispersion relations, the VPI partial-wave analysis of single-pion photoproduction
and resonance photocouplings is used. Models for double-pion photoproduction and dispersion asymptotic
contributions are constructed. The latter are mainly given byp0 ands~600! exchanges. Being used in disper-
sion calculations, they result in a reasonable agreement with all available data on both differential cross
sections and polarization observables in Compton scattering. Some unsolved problems are outlined.
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I. INTRODUCTION

Probing nucleons with photons through elastic Comp
scattering opens many interesting possibilities to learn ab
the structure of hadrons@1–3#. During the last years a lot o
work has been done along this line and many experime
data@4–12# were obtained.

The experiments@4–7# were carried out at energies belo
the pion photoproduction threshold. They were aimed a
more reliable determination of the electric and magnetic
larizabilities of the nucleon,āN and b̄N , as compared with
pioneering works@13–15#. Certain progress has been mad
but room for further efforts still remains. For example, t
present experimental uncertainties in the magnetic pola
ability even prevent one from determining for sure the s
of b̄p .

Even larger are uncertainties in the neutron polarizabi
ān as constrained via quasifreegn scattering@4#. The most
precise value for the neutron electric polarizability was
ported from measurements of the neutron transmission c
section of 208Pb @16#. However, the high accuracy of th
announced result has been questioned@17#, so that a further
study of quasifreegn scattering would be a promising wa
to determine independentlyān and b̄n .

It is very interesting that the experimental values fou
for the polarizabilities of the nucleon are in severe disagr
ment with predictions of the naive quark model@18,19# and
indicate large effects of the pion cloud@18,20#, thus reviving
old models of the nucleon structure@21,22#. However, quan-
titative estimates of the pion contribution found in the fram
works of dispersion calculations@23–25#, the chiral bag
model @18#, the chiral perturbation theory@26,27#, and soli-
ton models@20,28,29# are very different and even contradi
tory. Until now an explanation of the nucleon~more gener-
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ally, hadron! polarizabilities remains to be a challenge f
models of hadrons@30#.

In the last years, measurements of the differential cr
section ds/dV(gp→gp) @8–11# and the asymmetry
S(gW p→gp) @9# were performed in the energy region of th
D resonance. This has led to a very accurate determinatio
theM1 photocoupling of theD @11#, which is about 3% less
than adopted in the contemporary analysis of the resona
photocouplings@31#. Such measurements have also a pot
tial to constraint the ratio of the electric quadrupole and m
netic dipole amplitudes ofD photoexcitation@32# ~for recent
theoretical work see@33# and references therein!, which
mainly was investigated through pion photoproduction w
unpolarized and linearly polarized photons@34#.

At energies above theD region, up to 1 GeV, the Ereva
group @12# recently reported on first measurements of t
beam asymmetryS(gW p→gp) with linearly polarized pho-
tons and concluded that none of the existing theoretical
proaches describes the asymmetry at all energies. In p
ciple, available @12,35–41# and expected experimenta
differential cross sections and polarization observables ingN
scattering at energies above theD~1232!-resonance region
render it possible to carry out a multipole analysis of the d
and to study mechanisms ofgN scattering at intermediate
energies. Such data provide additional information on
radiative widths of higher nucleon resonances@37,39# and
can be used to find those parameters oft-channel exchange
in Compton scattering which are unknown presently. T
latter are mainly coupling constants or, in the regime of h
energies, residues of Regge poles@23#.

To briefly characterize the status of available theories
elastic photon scattering on the nucleon, we may note
predictions ofs-channel dispersion relations~@42,43# and an
improved version described in the present paper! agree with
all of the most exact data at energies up to 0.4 GeV~see
recent discussions in@2,7,8# and, for gn scattering, in
@4,44#!. There are also other successful schemes of us
dispersion relations for explaining proton Compton scatt
ing in the first resonance region@45–48#. They use a differ-
359 © 1997 The American Physical Society
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ent technique to treatt-channel exchanges~through a sub-
traction at fixedu!.

In all these applications the dispersion relations use p
toproduction amplitudes taken from other experiments
thus do not directly refer to fundamental parameters of h
ron physics~like LQCD! or hadron models~like the quark-
core radius in the chiral bag model! @49#. Nevertheless, even
in this role the dispersion theory turns out to be someth
more than a numerical instrument for giving precise num
cal predictions. Because of its ability to find separate con
butions of different intermediate states, the dispersion the
clearly reveals mechanisms~or degrees of freedom! which
dominate photon scattering. In the first resonance region
latter were found to be nucleon andD exchanges in thes and
u channels, a rather visible contribution of nonresonant
citation of the nucleon to thes-wavepN state, andt-channel
exchanges withp0 and effectives ~two pion! mesons. Fol-
lowing these findings, successful phenomenological mod
incorporating these degrees of freedom can be easily
structed. Examples of such models are described in R
@50–53#.

Much less is reliably known about mechanisms of Com
ton scattering at higher energies, and accurate dispersion
culations would be of great help. The only reported calcu
tion in the second resonance region@36# which is based on
dispersion relations with a subtraction atu5m2 ~m is the
nucleon mass! works rather well at c.m. anglesu&90°. It
fails ~as was claimed in@37#! at backward angles. The detai
of the calculation of Ref.@36# are not completely specified
especially those concerning the adjustment of contributi
from the unphysical region, and it is not clear why this c
culation gave so unrealistic results at lower energies, e
cially for the asymmetryS and the proton polarizationP.

Less precise alternative approaches were also tried.
of those is a phenomenological resonance model@37,39#. It
represents the scattering amplitude as a sum of Breit-Wig
nucleon resonances and an adjusted real background w
is assumed to be a modified Born term. We will expose
results in the following discussion.

A more ambitious and deep approach to the descriptio
Compton scattering in the resonance region uses the
stituent quark model which includes all appropriate re
nance states and no continuum@3#. Its great advantage is tha
it contains only a few parameters. The predictions of t
model are very instructive, but unfortunately are too qual
tive to be directly compared with experimental data on d
ferential cross sections.

In the present paper the dispersion approach of@23,42#,
which is based on relativistics-channel dispersion relation
at finite energies for six independent invariant amplitudes
photon scattering, is extended to energies up toEg;1 GeV.
In calculating the imaginary part of the Compton scatter
amplitude, we include all known mechanisms leading
large photoabsorption cross sections at these energies
use the experimentally available photopion amplitudes of
reactiongN→pN and inelastic contributions of well-know
pN resonances. We construct a model to include the
well-known nonresonance contributions to photoabsorpt
We also construct a simple model to includet-channel ex-
changes which formally appear through the so-called asy
totic contributions. We believe that we have identified all t
o-
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essential degrees of freedom, since with essentially one
parameter~the s-meson ‘‘mass’’! we are able to satisfacto
rily describe all the data on proton Compton scattering
Eg&1 GeV, including the data on the beam asymmetryS
and proton polarizationP.

In the following parts of this paper we describe the fo
malism we use and confront its results with experimen
data. Lengthy technical details are described in appendix

II. DISPERSION RELATIONS AND THEIR SATURATION

Assuming Lorentz, gauge, andP, T invariance, the gen-
eral amplitude Tf i of elastic scattering g(k)N(p)
→g(k8)N(p8) at arbitrary spin projections is characterize
by six cross-even invariant amplitudesAi which depend on
the laboratory energyEg and c.m. scattering angleu, or on
the invariant variablesn and t, where

n5
s2u

4m
5Eg1

t

4m
, t5~k2k8!2, s5~k1p!2,

u5~k2p8!2, ~1!

ands1u1t52m2. These amplitudes can be constructed
have no kinematic singularities and constraints and to o
the usual dispersion relations. The differential cross sect

ds

dV
5

1

64p2s (
spins

uTf i u2 ~2!

and other observables~asymmetryS and proton polarization
P! in terms of the amplitudesAi are specified in Appendix
A.

We formulate fixed-t dispersion relations forAi(n,t) by
using a Cauchy loop of finite size~a closed semicircle of
radiusnmax!, so that@23,42#

ReAi~n,t !5Ai
pole~n,t !1Ai

int~n,t !1Ai
as~n,t !, ~3!

with

Ai
pole~n,t !5

ai~ t !

n22t2/16m2 ,

Ai
int~n,t !5

2

p
PE

n thr~ t !

nmax~ t !
ImAi~n8,t !

n8dn8

n822n2
. ~4!

The first term in Eq.~3! represents a singular contributio
due to the nucleon in the intermediate state. It is comple
determined by the electric charge and magnetic momen
the nucleon~see Appendix A!.

We label the second term in Eq.~3! as the integral con-
tribution. This is the usual dispersion integral taken, ho
ever, in between the pion photoproduction thresho
nthr(t)5Ethr1t/4m with Ethr.150 MeV, to the maximum en-
ergynmax, below which the imaginary part can be evaluat
from unitarity and known amplitudes of meson photoprodu
tion. In our calculations we will use Emax
5nmax(t)2t/4m51.5 GeV.
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55 361DISPERSION THEORY OF PROTON COMPTON . . .
The contribution of higher energies is represented by
last term, the so-called asymptotic contributionAi

as(n,t). We
discussAi

int andAi
as in the following two subsections.

A. Integral contributions

The integral contributionsAi
int are determined by the

imaginary part of the Compton scattering amplitude which
given by the unitarity relation of the generic form

2 ImTf i5(
n

~2p!4d4~Pn2Pi !Tnf* Tni . ~5!

In Appendix B details are specified as for taking into acco
the intermediate statesn5pN. In those formulas we inser
the pion photoproduction multipolesEl6 ,Ml6 from a recent
analysis of the VPI group@31#, viz., variant SM95, up to and
including the angular momentumjmax57/2, and take higher
partial waves in the one-pion-exchange~OPE! approxima-
tion. We introduce a small 2.8% reduction of the resona
strength ofD photoexcitation~see Appendix B! as compared
with that read out from the VPI-SM95 solution. This mo
correct resonance strength ofD was recently established b
the Mainz experiments on Compton scattering in theD re-
gion @11#, and is already incorporated in the very recent v
sion of the VPI multipoles~the solution SP96K of April
1996, the codeSAID @31#!.

Instead of summing up the partial-wave series( j5 jmax11
`

with the OPE amplitudesTni , we have evaluated analyticall
the total contribution( j51/2

` of the OPE diagram to ImTf i
~see Appendix C! and then subtracted the contributio
( j51/2
jmax of the lowest OPE partial waves by using Eq.~B11!.

Such a procedure makes the partial-wave series better
vergent at hight.

In fact, the OPE amplitude is a part of the total Bo
amplitude of the reactiongN→p6N which includess-, u-,
and t-channel exchanges@54#. Taken alone, thet-channel
contribution~C1! is not gauge invariant. Therefore, it wou
be meaningful to use the Born amplitude rather than its O
part ~C1!. This, however, makes no difference because
consider via the OPE approximation only multipoles w
high j . In the gaugeemp

m50 we use, wherepm is the mo-
mentum of the initial nucleon, the Born amplitude
gp→p1n differs from the OPE amplitude by thes-channel
contribution which contains onlys and p waves with total
angular momentumj51/2 @54#. In the case of other reaction
gn→p2p or gN→p0N, the Born amplitude does diffe
from the OPE approximation in all partial waves, but th
difference is very small at all energies considered whenj is
as large as 7/2. In general, the OPE approximation is v
appropriate to treat partial waves with high angular mom
tum.

The contributions with high angular momenta, wh
evaluated analytically, do not result in a pathological beh
ior of ImAi(n8,t) in the unphysical region of very sma
~near-threshold! n8 and very high2t which corresponds to
an unphysical cosine of the photon scattering angle2z8@1
~such kinematics arises in the integrand when we cons
photon scattering at high energies and backward ang!.
This, however, may not be the case when partial waves w
high j are taken approximately from experimental fits a
e
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then multiplied by appropriate polynomials of high power
z8. To partly resolve this problem, we used as an experim
tal input to the integrand at low energies 150–400 MeV o
the j<3/2 waves, and used the theoretical OPE values
higher multipoles. This is quite sufficient for high-qualit
representation of the photoproduction amplitudes at ener
up to 400 MeV. At higher energies all the waves up toj57/2
were taken, as they are, from the VPI analysis. Such a p
cedure enabled us to stabilize numerical predictions of
dispersion calculations up to backward angles and ener
Eg&1 GeV. At higher energies the contribution ofd waves
from small n8 introduces uncertainties in the very far e
trapolation to large unphysical cosinesz8 and destroys sta
bility of the predictions. We checked that the cutoff of thed
waves at energies below;400 MeV was not necessary fo
our purposes because it did not change to any essentia
tent the calculated amplitudes at energies;1 GeV. Physi-
cally, it is very improbable that small amplitudes in the ne
threshold excitation of the nucleon play any role wh
scattering at;1 GeV is considered, and their cutoff does n
seem unreasonable. Nevertheless, in general, divergenc
the partial-wave expansions at lown8 make it difficult to get
reliable predictions of the fixed-t dispersion relations a
2t*1 GeV2, and other approaches~like perturbative QCD!
might work there better.

In the energy range considered here, photoproduction
pion pairs becomes very essential for a correct evaluatio
ImAi and, therefore of the integral contributionsAi

int . We
used the following procedure consisting of four steps.

~1! Rescaling of the resonance contributions ofpN to
Im Ai to include inelastic decays of thepN resonances. The
resonance couplings were taken from the VPI analysis SM
@31#. We also introduced a correction for a different pha
space of two-pion decays of the resonances~see Appendix
D!.

The other steps~2!, ~3!, and~4! are necessary to take int
account the nonresonant mechanisms of photoproductio

~2! Calculation of the imaginary parts due to intermedia
pD states by using the amplitudes of the quasi-two-bo
reaction@55#

gN→pD ~6!

in the one-pion-exchange approximation. This approxim
tion accurately takes into account pionic states with ‘‘high
angular momentaL>Lmin , provided the second pion corre
lates with the nucleon to form theD. In practice, however,
we took as they are all the contributions of the OPE diagr
of Eq. ~6! @56,57# starting from Lmin51. We calculated
again, in an analytical form, an exact contribution of t
whole diagram to ImAi and kept theL50 part to be changed
afterwards@in the step~4!#. Then a cutoffL50.5 GeV in the
momentum transfer was applied to the whole OPE contri
tion to emphasize its peripheral part and to ensure a decr
of the OPE cross section of Eq.~6! at energiesEg.1 GeV, in
accordance with experimental data. Detailed are given in
pendix E.

~3! Another mechanism which might lead to high angu
momenta is the diffraction one. We assume that photop
duction of r0 mesons atEg.1 GeV @55# is of diffractive
origin and obeyss-channel helicity conservation@58#. This
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362 55A. I. L’VOV, V. A. PETRUN’KIN, AND M. SCHUMACHER
assumption enables us to disentangle contributions of
reactiongN→r0N to the different helicity amplitudes ImTf i
and to find all ImAi ~see Appendix F!.

~4! After isolation, during the previous steps, of th
mechanisms which are able to produce peripheral states
‘‘high’’ angular momentum, we assume that all the restDs
of the photoabsorption cross section includes only sh
range states which are mainly excited throughE1 transitions
at the energies considered. The cross sectionDs is found as
a difference of the smoothed experimental total photoabs
tion cross section@59,60# and the cross sections found durin
the steps~1!–~3!. We attribute to those rest states the angu
momentumj53/2 ~rather thenj51/2! both because of sta
tistical weight and since there is a prominent contact Kro
Ruderman-like diagram in the reaction~6! generatingpD
mainly in thes wave, at least when theD is not relativistic.
Then individual contributions to ImAi can be determined
~for details see Appendix G!. We can partly change the quan
tum numbers of these states@e.g., by assuming that 30% o
Ds is caused by theE1( j51/2)# and see the changes in th
results of the computations. Generally, they are not too la
but do favor theE1( j53/2) ansatz.

Schematically, we may write steps~1!–~4! as an equation

s tot5spN1sN*→ppN,hN,...1spD-nonres1sr0N

1DsE1~ j53/2! , ~7!

used to calculate thes-channel absorptive parts of the amp
tudesAi at energies up to 1.5 GeV.

B. Asymptotic contributions

To evaluate the asymptotic contributions in Eq.~3!, we
have to consider high-energy behavior of the amplitudesAi .
Using ~i! the standard assumption of a power behav
;na(t) of the helicity amplitudesTl

18l
28 ,l1l2

at fixed t and

n→` with the Regge pole trajectorya(t)&1 in the physical
region and ~ii ! relations of the helicity amplitude
Tl

18l
28 ,l1l2

with the amplitudesAi ~see in Appendix B!, we

find the amplitudesAi to be

A1,2;na~ t !, A3,5,6;na~ t !22,

and A4;na~ t !23 at n→`. ~8!

Thus, the amplitudesA3,4,5,6 vanish whenn→` and hence
satisfy unsubtracted dispersion relations. Therefore, the
ymptotic contributions for these amplitudes are given by
dispersion integrals taken over the energiesn.nmax:

Ai
as~n,t !5

2

p E
nmax~ t !

`

ImAi~n8,t !
n8dn8

n822n2
~ i53,4,5,6!.

~9!

In contrast, the two other amplitudesA1 andA2 do not vanish
at high n and the corresponding asymptotic contributio
cannot be determined through ImAi , i.e., in terms of photo-
production. Their estimates should be based on differ
physical input, for example, on the Regge pole model wh
can describe the amplitudes in the complex energy plan
e

ith

t-

p-

r

-

e,

r

s-
e

nt
h
at

high n. Using a Cauchy loop of finite size, we can recast
asymptotic contributionsA1,2

as to an integral over the uppe
semicircle:

Ai
as~n,t !5

1

p
Im E

n85nmax~ t !e
if, 0,f,p

Ai~n8,t !
n8dn8

n822n2
.

~10!

In fact, this form is valid for any of the amplitudesAi . Being
equivalent to Eq.~9! for i53,4,5,6, it is obligatory only for
A1,2. Both Eq.~9! and Eq.~10! imply that the energy depen
dence of the asymptotic contributionsAi

as(n,t) can be ne-
glected providedn2!nmax

2 . Accordingly, in the following we
will consider the asymptotic contributions as functions ot
only.

We expect that the asymptotic contributionsA3,4,5,6
as are

small, i.e., that the convergent dispersion integrals~3! and
~9! for the amplitudesA3,4,5,6, are saturated by low energie
n8!nmax. One can get an exact estimate in the particular c
of forward Compton scattering by using the optical theor
which reads in terms of the amplitudesAi like

s tot~n!522n Im@A3~n,0!1A6~n,0!#

[22n ImA316~n,0!. ~11!

Using the data@59,60# for the total photoabsorption cros
sectionstot , we find that the asymptotic part ofA316 with
nmax51.5 GeV contributes only 6% to the sum of the elect
and magnetic polarizabilities of the nucleon as given by
Baldin-Lapidus sum rule:

āN1b̄N5
1

2p2 E
n thr

`

s tot~n!
dn

n2
52

1

2p
A316
non-Born~0,0!

52
1

2p
@A316

int ~0,0!1A316
as ~0,0!#

.1431024 fm3 for the proton. ~12!

Among the small asymptotic piecesA3,4,5,6
as (t) the largest

one is expected to beA6
as(t). This expectation is motivated

by the approximate helicity independence of Compton sc
tering @61# or related photoproduction of vector mesons
high energies@58#: Only the amplitude ImA6(n8,t) gets a
contribution of the leading orderO(n8a(t)22) from the larg-
est~helicity-non-flip! amplitudesT61 1/2,61 1/2(n8,t) ~see Ap-
pendix B!. Nowadays the helicity independence of hig
energy Compton scattering is questioned because of a vis
violation of the Gerasimov-Drell-Hearn sum rule~see
@62,63# and references therein!. If so, the amplitude
Im A4(n8,t) in Eq. ~9! may also be not quite negligible a
energiesn8*1.5 GeV and contribute throughA4

as to the dif-
ferential cross section of Compton scattering at low energ
only few times less than the amplitudeA6 does. However,
this is still marginal for our present calculations since t
asymptotic contributionA6

as itself is rather small. For these
reasons we keep onlyA6

as and notA4
as or A3,5

as .
The optical theorem unambiguously determines the

ymptotic contributionA6
as.A316

as at zero angle. As for thet
dependence ofA6

as(t), we suppose that it is given by exp~Bt/
2! with B.6 GeV22, i.e., that it follows thet dependence of
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55 363DISPERSION THEORY OF PROTON COMPTON . . .
the differential cross section of proton Compton scattering
the few-GeV energy region@64#. Again, the exact form of
this t dependence is marginal for our consideration.

Much more important are asymptotic contributions to t
amplitudesA1,2 which do not satisfyunsubtracteddispersion
relations. Both amplitudesA1,2 are related to photon helicity
flip transitions without and with nucleon helicity flip, respe
tively. They are coefficients of the Lorentz-invariant stru
tures FmnF* 8mnū8u and i emnabF

mnF* 8abū8g5u in the
scattering amplitude~here Fmn5kmen2knem , Fmn8 5km8en8
2kn8em8 are the electromagnetic fields of initial and final ph
tons, andu,u8 are the nucleon bispinors! and get contribu-
tions from scalar and pseudoscalart-channel exchanges wit
JPC5011 and 021, respectively. At high energies such am
plitudes are not well known from experiment or theory,
though some constraints can be obtained~see in@23,42#!. To
practically treat this situation, in the present work we pre
to try and confront with experimental data a simple satu
tion by t-channel resonances of the asymptotic contributi
to A1,2.

Note that the integral contributionsAi
int in Eq. ~3! cannot

have pole singularities int because ImAi(n8,t) do not have
them. For example, with a finite number of partial waves
photoproduction amplitudes used to evaluate these imagi
parts, the latter become polynomials in cosine of the sca
ing angle and, hence, int. Therefore, whenever the ampl
tudesA1,2 have a pole int related to at-channel exchange b
a stable particle, such a pole can enter to the right-hand
~RHS! of Eq. ~3! only through the asymptotic contribution
Referring for a more refined discussion to Refs.@23,42#,
where thenmax dependence is also considered, we can g
here a simplified explanation which is directly relevant to t
p0 exchange. In the physical region of negativet the Regge
trajectory of the pion isap(t),0 andap~0!.20.02. There-
fore, the exchange byp0 and its numerous partners lying
the same Regge trajectory gives the contribution to the cr
even amplitudeA2,

A2~n8,t !}n8ap~ t !1~2n8!ap~ t !

5$11exp@2 ipap~ t !#%n8ap~ t !, ~13!

which vanishes at infinity and does not prevent us from us
the unsubtracted dispersion relation forA2. Therefore, one
can certainly represent the asymptoticp0 contribution to the
amplitudeA2 in the form ~9!. However, according to Eq
~13!, the imaginary part ofA2(n8,t) considered as a functio
of n8 has a tail ImA2(n8,t)5C(t)n8ap(t) which is very long
wheneverap(t) is a small negative number. If the couplin
C(t) does not vanish, the corresponding integral of this t

E
nmax

`

n8ap~ t !
dn8

n8
52

1

ap~ t !
nmax

ap~ t ! , ~14!

develops ap0-exchange pole when extrapolated to the po
t5mp

2 in which ap(t)50. At negativet the pole is absent
but the integrand still retains the long tail which is not tak
into account through the integral~4! taken over low energies
n8<nmax. We may state that the asymptotic contributions
Eq. ~3! are related to the nearestt-channel pole exchange
n
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~more generally,t-channel singularities!, and the latter pro-
vide a convenient way to handle the tails in the imagina
parts.

Accordingly, we assume here that the asymptotic con
butionsA1,2

as are nothing but the contributions oft-channel
exchanges with the lightest scalar and pseudoscalar parti
They ares andp0 mesons, wheres, as usual, is an effective
particle representing a correlated pion pair~note, however,
that there is growing evidence that thes can be more than an
effective particle@65–67#!. Our assumption is in line with
the experimental fact@58,61# that the dominating Regge-pol
exchange with the highesta(t) entering into Eq.~8! ~i.e.,
Pomeron! has very small couplings in helicity-flip vertice
and, therefore, may be less important at low energies
n&1.5 GeV than the exchanges with lowera(t), such asp0

ands.
Thus, we use the Low amplitude of thep0 exchange as

the substitute for the asymptotic contribution toA2:

A2
as~ t !.A2

p0
~ t !5

gpNNFp0gg

t2mp0
2 t3Fp~ t !, ~15!

where the isospin factor ist3561 for the proton and neu
tron, respectively, and the product of thepNN and p0gg
couplings is

gpNNFp0gg5216p AgpNN
2

4p

Gp0→2g

mp0
3

5~20.33160.012! GeV21, ~16!

provided g pNN
2 /4p513.7560.15 @68# and Gp0→2g57.74

60.55 eV @69#. The minus sign in Eq.~16! is chosen in
accordance with the sign of the axial anomaly contribut
~see@70#!. In the chiral limit thep0gg coupling follows from
the Wess-Zumino-Witten effective chiral Lagrangian@71#
and thus

gpNNFp0gg5gA
m

f p
S 2

e2Nc

12p2f p
D520.321 GeV21

~17!

~with gA51.257360.0028, fp592.460.3 MeV @69#, and
Nc53!, in remarkable agreement with the experimental nu
ber ~16!. We insert in Eq.~15! an off-shell form factor
Fp(t), which stems frompNN andp0gg vertices, and take
it in the monopole form,Fp(t)5(L p

22mp
2 )/(L p

22t) with
the cutoff parameterLp50.7 GeV estimated from the axia
radius of the nucleon and the size of the pion@72#. Its spe-
cific choice is less important than a choice of thes-meson
‘‘mass’’ below, and, for example, withLp51 GeV the nu-
merical results for the differential cross section of Compt
scattering are very similar to those obtained with t
s-meson ‘‘mass’’ increased by;20 MeV.

In case of thes exchange we use a simpler form

A1
as~ t !.A1

s~ t !5
gsNNFsgg

t2ms
2 . ~18!

We do not include here any form factor because at mode
t its influence cannot be distinguished from the form~18!
with a smallerms . As we will see, phenomenologicall
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ms.600 MeV works rather successfully. To pin down th
coupling constants in Eq.~18!, we use the relation of the
amplitudeA1 with the polarizabilities@76#

A1
non-Born~0,0!5A1

int~0,0!1A1
as~0,0!522p~āN2b̄N!,

~19!

where

āp2b̄p.~1062!31024 fm3 ~20!

is a world average@7# over recent proton experiments. In th
way the polarizabilities constrain the asymptotic contribut
A1
as at t50, whereas the parameterms

2 determines the slope
of A1

as(t) and, what is most important, the scale ofA1
as(t) at

high 2t. We may mention that the exponential form
A1
as;exp~Bt/2! with B.6 GeV22 used in @42# in applica-

tions to lower energies results in a too strong suppressio
A1 at hight and, correspondingly, in a too low cross secti
at backward angles in the dip region between the first
second resonances.

One should not consider Eq.~18! as an assumption of a
existence of a stable particles giving the t-channel contri-
bution of a pole form. Equation~18! rather is a monopole
parametrization of the functionA1

as(t) at negativet,2t&1
GeV2. Moreover, since any mechanism oft-channel ex-
change involves vertex form factors, the effective parame
ms in Eq. ~18! provides a lower bound for the mass of a re
particle ~if any!, resulting in the effective exchange amp
tude ~18!.

Although thes exchange used here is considered as
effective one, it is interesting that the coupling constants
thes, which are needed to get the magnitude of the phen
enologically introduced contribution~18! and evaluated from
the proton data~20! and the previously calculatedA1

int~0,0!,
i.e.,

2
1

2p
@A1

as~0!#p[~āp2b̄p!
as5

gsNNFsgg

2pms
2

.~1263!31024 fm3, ~21!

are not unrealistic@73#. In fact, they perfectly correspond t
the couplings of thes particle in the pion-nucleon linears
model. In the chiral limit~i.e.,mp

2!m2,ms
2! thes exchange

in this model gives the contribution

~ āN2b̄N!~s!5
e2m

96p3mp
2 f p

2 513.431024 fm3, ~22!

where the parameterfp592.4 MeV determines bothsgg ~to
one loop! andsNN couplings~cf. @74,75#!. We cannot, how-
ever, claim that thes modelexplainsthe asymptotic contri-
butionA1

asbecause, in the framework of this model, the te
of orderO(mp

22) in the amplitudeA1 vanishes atn→` and
A1
as is finite in the chiral limit; cf.@24#. A realistic estimate of

the asymptotic contribution might be carried out by usi
data on the asymmetryS at high energies, similar to@23,76#,
or on the base of dispersion relations at backward an
@25,77#.

Presently, the origin of the large contribution~21! to
āN2b̄N is not understood. Recent calculations@25# based on
of

d

er
l

n
f
-

es

available information about thet-channel reactionsgg→pp
andpp→NN̄, though giving a correct sign of the contribu
tion, reveal problems in reproducing its huge magnitude
similar situation is seen in refined calculations in the fram
work of chiral perturbation theory@78#, although it is masked
there by rather uncertain counterterms. This is, probably
very interesting point for further investigations. On the e
perimental side, studies of the distribution of the ‘‘hidden
polarizability ~21! over the nucleon would be very helpfu
and desirable. It can be achieved by measuring thet depen-
dence of the Compton scattering cross sections in appro
ate kinematics~see below!, and by using polarized photon
since the beam asymmetryS is very sensitive to the ampli
tudeA1, especially at high energies@23#. Also, the use of
virtual photons@79# has a great potential in discovering th
space structure of the ‘‘hidden’’ polarizability~21!.

III. RESULTS AND DISCUSSION

Now we compare the predictions of the described disp
sion approach to the data@8–12,35–41,80–85# on proton
Compton scattering in the first and second resonance reg
We pay most attention to high energies, beyond theD region,
where dispersion predictions were not available~except a
restricted consideration in@36#!. The situation at lower ener
gies was considered rather completely elsewhere@1,2,7,8#,
and the present improvements introduce no essential cha
there and keep the overall good agreement between
theory and experiments.

Our predictions depend on quite a number of physi
quantities and a few additional parameters, such as radia
widths of nucleon resonances, thes-meson ‘‘mass,’’ the cut-
off L in the OPE contribution of the reactiongN→pD, etc.
We did not try to fit all these quantities~partly because many
data from different experiments contradict each other!. In-
stead, we found that a reasonable agreement with the
can be achieved when thegN→pN multipoles and the reso
nance parameters of the VPI group@31# were used, provided
thes-meson ‘‘mass’’ was chosen to be about 600 MeV. Th
is demonstrated by the solid lines in Figs. 1–6, showing
energy and angular dependence of the differential cross
tion, the asymmetryS, and the proton polarizationP. For the
‘‘mass’’ of s much higher than 600 MeV the asymptot
contributionA1

as(t) becomes a less steep function oft and
contributes more at backward angles, thus leading to a
high differential cross section in the energy range betw
the first and the second resonances~see dashed lines in Fig
1!. Choosing a larger cutoff parameterL in the OPE contri-
bution of the reaction~6!, one could diminish the differentia
cross section and hence reduce the contradiction betwee
data and theoretical variants with highms . However, when
L.0.5 GeV, the cross section of the reactiongN→pD turns
out to be unreasonably large. At smallerms the differential
cross section in between the resonances becomes too s
With the presently available experimental data one can
cludems less than.400 MeV and more than.700 MeV.

To describe the Erevan data for the asymmetryS, it is
also better to choosems&600 MeV @see Fig. 3~b!#. This
indication is rather important because the theoretical pre
tions forS are not sensitive toL. There is a general agree
ment of the present calculations with the Erevan data,
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FIG. 1. Energy dependences of the c.m. differential cross section ofgp scattering at several angles. Solid lines: the main variant~see in
the text!. Dashed lines:ms is increased from 600 to 800 MeV. Short-dashed lines: the cutoff parameterL of the OPE-D contribution is
increased from 0.5 to 1 GeV. Dotted lines: prediction of the present approach based on the old photo pion amplitudes@86#. Predictions of
the isobar model are taken from its version@37#. Data are from@8,36–41,80–85#.
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though the predicted asymmetry is not high enough at an
u,120° and energies in theD13 region ~700–800 MeV!.
Available data on the proton polarizationP @35,38# are in
agreement with the theory as well~see Fig. 4!. However,
they are not precise enough to put any strict constraints to
parameters involved.

We could change our ansatz for the ‘‘s-wave’’ partDs of
double-pion photoproduction as being of purely~E1, j53/2!
type. If we attribute 30% of the cross sectionDs to the~E1,
j51/2! strength~see Appendix G!, the differential cross sec
tion gets a maximal change of about29% atEg.550 MeV
and backward angles which could be compensated by
;80 MeV increase inms . However, with such parameter
the asymmetryS gets a negative shift of'20.1 at energies
* 800 MeV and central angles, which is not favored by t
Erevan data which are described best by the~E1, j53/2!
ansatz.
es

he

he

e

In Figs. 1–4 we also show results calculated from t
older and now obsolete photopion multipoles and resona
photocouplings of@86#, simply to check whether recent im
provements in knowing the resonance couplings are cru
for getting an agreement with the Compton scattering data
difference is seen mostly at energies.700–800 MeV and is
more distinct in the asymmetryS than in the differential
cross section. In general, the results of dispersion calc
tions are sensitive to the strengths of the nucleon resona
P33~1232!, D15~1520!, D33~1670!, P15~1680!, F15~1680!, and
some others, as is illustrated in Fig. 5 where different cur
are obtained by a small~10%! variation of the resonance
strengthsAr of the Breit-Wigner term, Eq.~D1!, contributing
to one- and two-pion photoproduction amplitudes. This w
demonstrated before in frames of the Tokyo resona
model @37,39# where these strengths were fitted and e
tracted from proton Compton scattering data.
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366 55A. I. L’VOV, V. A. PETRUN’KIN, AND M. SCHUMACHER
In the case of theP33~1232! resonance, its excitation am
plitude becomes very well constrained by the dispers
theory and recent data on Compton scattering in theL region
@9–11#. Splitting the physical photopion amplitude
M11,E11 into theD-resonance partsM 11

r ,E 11
r and a back-

ground ~see Appendix D for the explicit form and energ
dependence of the resonance parts used!, we can rescale the
resonance parts, keeping the background fixed, and thus
the physical amplitudesM11,E11 modified in the vicinity of
the resonance. In this way we calculateM11,E11 and the
corresponding ImAi and ReAi at differentM1 andE2 pho-
tocouplings of theD resonance. We are aware of the fact th

FIG. 2. Angular dependences of the c.m. differential cross s
tion. Unitarity bounds~i.e. contributions to the cross section fro
Im Tf i only! are shown by short-dashed lines. The other notatio
as in Fig. 1. Data at 320 MeV include those of@9–11#. Dash-dotted
lines in cases ofE5750 and 900 MeV: the isobar model in th
version of@39#, i.e., with adjusted relative phases of different res
nances and background.
n

nd

t

the ansatz of a fixed background does not respect the Wa
theorem and therefore is not completely satisfactory, es
cially for E11 having a relatively large background par
Nevertheless, we expect that this inconsistency is not v
important for fine-tuning the resonance parameters.

The best fit of the Mainz data@10,11# at the fixed ratio of
theD-resonance photocouplings,

EMR5E11
r /M11

r 521.6%, ~23!

as inferred from@31#, gives the resonance strength for th
M1 excitation of theD slightly smaller, by22.8 6 0.9%
~including both statistical and systematic errors!, than that
found in the SM95 solution by the VPI group@31# ~see Fig.
6!. Systematic uncertainties of these data are not show
the figure and, therefore, the agreement between the th
and the data at 90° is better than the figure suggests.

c-

is

-

FIG. 3. Beam asymmetry in the reactiongW p→gp with linearly
polarized photons. Notation of curves is as in Fig. 1. Data are fr
@9,12,83#.
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55 367DISPERSION THEORY OF PROTON COMPTON . . .
The M1 strength found from Compton scattering is
very good agreement with the data on the total photoabs
tion cross section near theD peak @60#. Note that precise
knowledge ofM1 excitation of theD is certainly needed to
reliably study smaller photoproduction multipoles in t
resonance region. With more data at forward and backw
angles information on theE2 strength ofD photoexcitation
can be inferred too. For illustration we give in Figs. 2~a! and
3~a! predictions obtained with the quadrupole amplitu
E 11

r rescaled to EMR525%.
Although the presented results of the dispersion calc

tions seem to be very similar to those found in the Tok
resonance model@37,39#, the nonresonant parts of the Com
ton scattering amplitude are very different in the two a
proaches. They are real and have the form of the Born t
times a form factor@87# in Ref. @37# and are complex in the
present approach, getting a sizable imaginary contribu
from the nonresonant part of the total photoabsorption cr
section ~see in Fig. 7!. At forward angles and energie

FIG. 4. Proton polarization. Notation of curves is as in Fig.
Data are from@35,38#.
p-

rd

a-

-
m

n
ss

Eg.600 MeV the differential cross section found in th
present work through unitarity and dispersion relations
essentially higher than that in the resonance model@37,39#
@see Figs. 2~b! and 2~c!#, and so we believe that the latte
model is inapplicable there. Estimating the success of
isobar model, one should remember that the parameters
in @37# and in@39# for the description of different kinematic
regions were different too@cf. Fig. 1~e!#.

We did not observe a strong sensitivity of the different
cross section, of the asymmetryS, or the polarizationP to
theP11~1470! ~Roper! andS11~1535! resonances, in contras
to findings of @37,88#. Probably, in part this difference i
related to the large amount of nonresonance contribution
the scattering amplitude we have in our approach. In
calculations we take the total photoabsorption cross sec
as a fixed experimental input. Therefore, at forward ang
our results are not very sensitive to model-dependent de
and parameters, and only atu>90° the predictions get a
model dependence. Correspondingly, this is the most in
esting region for comparison with experiments.

In conclusion, we presented a dispersion calculation
the gp-scattering amplitude at energies over the first a
second resonance regions which was based on experim
information about single-pion photoproduction and reas
able hypotheses concerning the dynamics of double-p
photoproduction and high-energy behavior of the helici
flip amplitudesA1,2. Comparing with the older attempt@36#,
we achieved a much better agreement with available d
including polarization observables. One may expect that

.

FIG. 5. Differential cross sections versus energy. The main v
ant~solid line! is compared with variants where the radiative widt
of the D13~1520! ~dashed line! and F15~1680! ~dotted line! reso-
nances are increased by 20%.
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368 55A. I. L’VOV, V. A. PETRUN’KIN, AND M. SCHUMACHER
approach developed here can be used to get quantitativ
formation on the resonance photocouplings, the partial-w
structure of inclusive double-pion photoproduction, and
asymptotic behavior of spin-dependent Compton amplitud
provided more precise experimental data are available.
latter subject is the most intriguing one because it canno
investigated in photoproduction experiments, except for

FIG. 6. Differential cross section in theD region. The main
variant~see text! is represented by solid lines, the same but witho
a 2.8% reduction of theM1 strength of theD-resonance photoex
citation by the dash-dotted lines. The experimental data are f
@9–11#. The exact value of the EMR ratio is of minor influence o
the differential cross section at these scattering angles and has
assumed to be21.6%, just as in@31#.

FIG. 7. Total photoabsorption cross section on the proton an
components. Dashed line:pN channel. Dotted line: inelastic reso
nance contribution. Dash-dotted line: OPE contribution
gN→pD. Short-dashed line:s-wave correction. Data are from
@59,60#.
in-
e
e
s,
he
e
e

special case of forward scattering. New accurate meas
ments of the differential cross sectionds/dV and asymme-
try ( at energies above 1 GeV which are feasible at CEB
could shed more light on the role of thet-channel exchange
in the amplitudesAi(n,t). The dip region between theD and
D13 peaks is another promising place to study theA1 ampli-
tude and the relateds exchange. Accurate data on the diffe
ential cross sectionds/dV and asymmetryS are highly de-
sirable there. They could help to reveal the nature of
‘‘hidden’’ polarizability of the nucleon~21!. New data in the
dip region are expected from the LARA experiment carri
out in Mainz @89#.

Our results suggest a dominance ofp ands exchanges in
the t channel and an equally important role of both reson
and nonresonant~like pD! contributions in thes andu chan-
nels in the region of the second resonance. This qualita
guidance may be valuable for improving dynamical mod
@50–53# of nucleon Compton scattering, which successfu
work in theD region, and extending them to higher energi
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APPENDIX A: INVARIANT AMPLITUDES

To describe the Compton scattering amplitude
g(k)N(p)→g8(k8)N(p8),

^ f uS21u i &5 i ~2p!4d4~k1p2k82p8!Tf i , ~A1!

we use the orthogonal basis suggested by Prange@90#:

Tf i5ū8~p8!e8* mF2
Pm8Pn8

P82
~T11g•KT2!

2
NmNn

N2 ~T31g•KT4!1 i
Pm8Nn2Pn8Nm

P82K2 g5T5

1 i
Pm8Nn1Pn8Nm

P82K2 g5g•KT6Genu~p!. ~A2!

Heree ande8 are photon polarization vectors, andu andu8
are bispinors of the nucleon normalized likeūu52m, m
being the nucleon mass. The vectorsP8, K, andN together
with the vectorQ are defined as to give four orthogon
vectors:

Pm8 5Pm2Km

P•K

K2 , P5 1
2 ~p1p8!, K5 1

2 ~k81k!,

Nm5emabgP8aQbKg, Q5 1
2 ~p2p8!5 1

2 ~k82k!,
~A3!
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55 369DISPERSION THEORY OF PROTON COMPTON . . .
where emabg is an antisymmetric tensor ande012351; also
g55~1

0
0
1!.

The six amplitudesTi introduced are analytical function
of energy and scattering angle with the only singularit
related to one-particle exchanges and inelastic threshold
the s, u, and t channels@91,92#. As a result of crossing
symmetry, the amplitudesT2(n,t) andT4(n,t) are odd func-
tions of n; the other four amplitudes are even functions.

It is convenient to introduce linear combinations of t
amplitudesTi which are free from kinematic constrain
@93#. Such constraints arise because the denominators in
kinematic structures in Eq.~A2! vanish at forward and back
ward angles like

K252
t

4
5

1

8s
~s2m2!2~12cosu!,

P82K25
1

4
~su2m4!52

1

8s
~s2m2!2~11cosu!,

N25P82~K2!2;sin2u. ~A4!

These linear combinations are@42#

A15
1

t
@T11T31n~T21T4!#52

1

2
A1
BT ,

A25
1

t
@2T51n~T21T4!#5

m

2
A2
BT ,

A35
m2

m42su FT12T32
t

4n
~T22T4!G

52
m2

4
A5
BT2

m2

4n
A6
BT ,

A45
m2

m42su F2mT62
t

4n
~T22T4!G52

m2

4n
A6
BT ,

A55
1

4n
@T21T4#5

m

2n
A3
BT ,

A65
1

4n
@T22T4#52

m

2
A4
BT1

4m22t

16n
A6
BT , ~A5!

where we also give their relations with similar invariant a
plitudesAi

BT introduced by Bardeen and Tung@93#. The am-
plitudesAi(n,t) are even functions ofn and have no kine-
matic singularities or kinematic constraints.

In terms of the amplitudesTi the differential cross section
in the c.m. frame is given by

ds

dV
5

1

64p2s
$ 1
2 ~4m22t !~ uT1u21uT3u2!

2 1
2 ~s2m2!~u2m2!~ uT2u21uT4u2!

1m~s2u!Re~T1T2*1T3T4* !

2tuT5u21~m42su!uT6u2%. ~A6!

The beam asymmetry with linearly polarized photons is
s
in

he

-

( 5
ds'2ds i

ds'1ds i
5S 64p2s

ds

dV D 21

3$ 1
2 ~4m22t !~ uT3u22uT1u2!

2 1
2 ~s2m2!~u2m2!~ uT4u22uT2u2!

1m~s2u!Re~T3T4*2T1T2* !%, ~A7!

and polarization of recoil protons is

P5
dsy2ds2y

dsy1ds2y
5S 64p2s

ds

dV D 21 ~s2m2!2

2As

3sinu Im~T1*T21T3*T4!. ~A8!

The amplitudesAi have poles at zero energy because
contributions of the nucleon in the intermediate sta
These poles are contained in two Born diagrams with
pole propagator ~g•p2m!21 and on-shell vertices
Gm(p1k,p)5gm1[g•k,gm]k/4m, where k51.793q
21.913(12q) is the nucleon anomalous magnetic mome
We introduced here the electric charge of the nucle
q5~11t3!/251 or 0. The Born contributions to the ampl
tudesAi have a pure pole form

Ai
Born~n,t !5Ai

pole~n,t !5
me2r i~ t !

~s2m2!~u2m2!
, ~A9!

wheree is the elementary electric charge~e2/4p.1/137! and

r 1522q1~k212qk!
t

4m2 ,

r 252qk12q1~k212qk!
t

4m2 ,

r 35r 55k212qk, r 45k2, r 652k222qk22q.
~A10!

APPENDIX B: CONTRIBUTION OF pN
INTERMEDIATE STATES

Our procedure used to explicitly find the imaginary pa
of the amplitudesAi in thes channel is based on the forma
ism of helicity amplitudes. First we introduce six indepe
dent helicity amplitudes for Compton scatterin
Tl

18l
28 ,l1l2

(s,u,f), and define the reduced helicity ampl

tudes ti which are free from the kinematic factors of th
form @cos~u/2!#ul1l8u@sin~u/2!#ul2l8ueif(l2l8), l5l12l2,
l85l182l28 :
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T1~1/2!,1~1/2!5cos
u

2
t1 , T21~1/2!,21~1/2!5cos3

u

2
t2 ,

T12~1/2!,1~1/2!5cos2
u

2
sin

u

2
t3 ,

T1 ~1/2!,21~1/2!5cos
u

2
sin2

u

2
t4 ,

T212~1/2!,1~1/2!5sin
u

2
t5 , T12~1/2!,21~1/2!5sin3

u

2
t6 .

~B1!

Hereu is the c.m. scattering angle, and the scattering plan
chosen to be the azimuthal plane~f50!. Other helicity am-
plitudes Tl

18l
28 ,l1l2

(s,u,f) can be found throughP or T

inversion:

T2l
182l

28 ,2l12l2
5Tl1l2 ,l18l

28
5~2 !l22l28Tl

18l
28 ,l1l2

at f50. ~B2!

In terms of the helicity amplitudes the invariant amplitud
Ai(s,t) read

A15
1

~s2m2!2
F2

s

m S 12s
s1m2

2s D t42
As
2

~t51st6!G ,
A25

1

~s2m2!3
F2

s

m
~s1m2!S 12s

s2m2

2s D t4

2
As
2

~s2m2!t512sAsS 12s
s2m2

4s D t6G ,
A35

1

~s2m2!2~s2m21t/2! Fm3@t11~12s!t2#

22m2AsS 12s
s1m2

2s D t3G ,
A45

1

~s2m2!2~s2m21t/2! Fm3t12m3S 11s
m2

s D t2

1
2m4

As
st3G ,

A55
1

~s2m2!2~s2m21t/2!
@m~s1m2!st4

2m2As~t51st6!#,

A65
1

~s2m2!2~s2m21t/2! F2
m

2
~s1m2!@t11~12s!t2#

12m2As~12s!t3G . ~B3!

Here
is

s5sin2
u

2
52

st

~s2m2!2
. ~B4!

The helicity amplitudes have a standard partial-wave
composition in terms ofd functions:

Tl
18l

28 ,l1l2
~s,u,f!58pAs(

j
~2 j11!Tl

18l
28 ,l1l2

j
~s!

3dll8
j

~u!eif~l2l8!. ~B5!

In the case of two-body intermediate statesn like pN, the
imaginary parts of the partial waves are given by the par
waves of the reactiongN→n as follows:

Im@Tl
18l

28 ,l1l2

j
~s!#~n!5(

n
q@Tn,l

18l
28

j
~s!#*Tn,l1l2

j ~s!,

~B6!

whereq is the c.m. momentum of the intermediate partic
and the sum is taken over helicities and other quantum n
bers of these particles. Of course, different intermedi
states contribute additively to the imaginary parts.

Normally partial waves for single-pion photoproductio
are given in terms of multipole amplitudes with definite pa
ity and orbital momentuml , El6 andMl6 , or those with
definite l and helicity,Al6 andBl6 . They are related with
the helicity partial waves in the form

T0~1/2!,1~1/2!
j5k11/2 52T02~1/2!,212~1/2!

j5k11/2 5
i

&
~2Ak12A~k11!2!,

T02~1/2!,1~1/2!
j5k1~1/2! 52T0 ~1/2!,212~1/2!

j5k1~1/2! 5
i

&
~2Ak11A~k11!2!,

T0 ~1/2!,12~1/2!
j5k1~1/2! 52T02~1/2!,21~1/2!

j5k1~1/2!

5 iAk~k12!

8
~Bk11B~k11!2!,

T02~1/2!,12~1/2!
j5k1~1/2! 52T0 ~1/2!,21~1/2!

j5k1~1/2!

5 iAk~k12!

8
~Bk12B~k11!2!. ~B7!

Also

Ak15
1

2
@~k12!Ek11kMk1#, Bk15Ek12Mk1 ,

A~k11!25
1

2
@2kE~k11!21~k12!M ~k11!2#,

B~k11!25E~k11!21M ~k11!2 . ~B8!

Using these relations and explicit representations of thd
functions, we may write the imaginary parts of the reduc
helicity amplitudesti in the form
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Im@t1#
~1p!58pqAs(

k>0
~2k12!~ uAk1u21uA~k11!2u2!

3F~2k,k12,1,s!,

Im@t5#
~1p!58pqAs(

k>0
2~k11!2~ uAk1u22uA~k11!2u2!

3F~2k,k12,2,s!,

Im@t2#
~1p!58pqAs(

k>1

k~k11!~k12!

2

3~ uBk1u21uB~k11!2u2!F~2k11,k13,1,s!,

Im@t6#
~1p!58pqAs(

k>1

k2~k11!2~k12!2

12

3~2uBk1u21uB~k11!2u2!F~2k11,k13,4,s!,

Im@t3#
~1p!58pqAs(

k>1
k~k11!~k12!

3~2Ak1Bk1* 2A~k11!2B~k11!2
* !

3F~2k11,k13,2,s!,

Im@t4#
~1p!58pqAs(

k>1

k~k11!2~k12!

2

3~Ak1Bk1* 2A~k11!2B~k11!2
* !

3F~2k11,k13,3,s!, ~B9!

whereq is the pion momentum and the sum over differe
isotopic channels is implied.F is a hypergeometric polyno
mial of thes5sin2~u/2!:

F~a,b,c,x!511
ab

c

x

1!
1
a~a11!b~b11!

c~c11!

x2

2!
1••• .

~B10!

In our calculations we take the partial-wave amplitud
El6 and Ml6 with the angular momentumj< jmax57/2
~j<3/2 below 400 MeV! from the phenomenological analy
sis @31# of photopion experimental data with the followin
except@11#. TheM11 amplitude of the VPI group was spl
into theP33~1232!-resonance partM 11

r specified in Appen-
dix D and a backgroundM 11

b . The resonance photocou
plings were taken from@31#. Then the resonance part ofM11

was rescaled down by 2.8% and the resulting amplitu
0.972M 11

r 1M 11
b was used as a newM11 in dispersion cal-

culations. It has reducedM1 strength in the vicinity of theD
resonance, which is necessary to be consistent with exp
mental data on Compton scattering and photoproduction
@11#.

Higher multipoles are assumed to be given by the o
pion-exchange diagram. They are
t

s

e

ri-
f.

-

Ak152
k

2
f 3bk1

k12

2
f 4bk11 , Bk152 f 3bk1 f 4bk11 ,

A~k11!25
k

2
f 4bk2

k12

2
f 3bk11 ,

B~k11!252 f 4bk1 f 3bk11 , ~B11!

where

f 357
egpNN

4pA2s
AEN81m

EN1m
,

f 457
egpNN

4pA2s
vAEN1m

EN81m
, ~B12!

with EN andEN8 being the c.m. energies of the initial an
final nucleons, respectively, andv being the c.m. velocity of
the pion. The quantitygpNN.0 is thepNN coupling con-
stant,g pNN

2 /4p.13.75, and the sign7 has to be taken for
p6 photoproduction. Also,bk are functions ofv and given
by

bk5
1

2k11
@Qk21~w!2Qk11~w!#,

Qk~w!5
1

2 E
21

1

Pk~z!
dz

w2z
, w5

1

v
, ~B13!

in terms of Legendre functions of the second kind.

APPENDIX C: OPE CONTRIBUTION OF pN
INTERMEDIATE STATES

The series~B9! and ~B11! can be used straightforwardl
to sum up the contributions to ImAi from the intermediate
statespN with the angular momentumj. jmax57/2 by using
the OPE approximation. Another way to find the sum
contributions to ImAi is to calculate the total OPE contribu
tion to ImAi in a closed analytical form from all partia
waves and then to subtract the OPE contribution of
waves with j< jmax which is determined directly by Eqs
~B9!. Such a procedure is especially helpful in calculations
high t when the series~B9! may be divergent because of th
singularity induced by the one-pion exchange. When
OPE contribution is eliminated, the convergence of the s
tracted series is essentially improved.

The total OPE contribution to ImAi is determined as fol-
lows. In the c.m. frame, the OPE amplitude of the react
gN→p6N reads

1

8pAs
Tg5

ve•q̂

12v k̂•q̂
~2 is• k̂ f 31 is•q̂f 4!, ~C1!

where f 3 and f 4 are defined in Eqs.~B12!. Therefore, the
imaginary part of the Compton scattering amplitude in t
OPE approximation is given by the integral



372 55A. I. L’VOV, V. A. PETRUN’KIN, AND M. SCHUMACHER
1

8pAs
Im Tf i

OPE5
q

4p
E v2e8* •q̂ e•q̂dVq

~12v k̂8•q̂!~12v k̂•q̂!
~s• k̂8 f 32s•q̂f 4!~s• k̂ f 32s•q̂f 4!, ~C2!

which, in turn, is reduced to the integrals

1

4p
E q̂i q̂jdVq

~12v k̂8•q̂!~12v k̂•q̂!
[a~v,z!d i j1b~v,z!~ k̂ i k̂ j1 k̂ i8k̂ j8!1g~v,z!~ k̂ i k̂ j81 k̂ i8k̂ j !,

1

4p
E q̂i q̂j q̂kdVq

~12v k̂8•q̂!~12v k̂•q̂!
[a~v,z!~ k̂ i k̂ j k̂k1 k̂ i8k̂ j8k̂k8!1b~v,z!~ k̂ i k̂ j k̂k81 k̂ i k̂ j8k̂k1 k̂ i8k̂ j k̂k1 k̂ i8k̂ j8k̂k1 k̂ i8k̂ j k̂k81 k̂ i k̂ j8k̂k8!

1c~v,z!~ k̂ id jk1 k̂ jd ik1 k̂kd i j1 k̂ i8d jk1 k̂ j8d ik1 k̂k8d i j !,

1

4p
E q̂i q̂j q̂kdVq

12v k̂•q̂
[A8~v !~ k̂ id jk1 k̂ jd ik1 k̂kd i j !1B8~v !k̂ i k̂ j k̂k . ~C3!
ls,

of

in
Here the functionsa,b,g,a,b,c,A8,B8 depend on the pion
velocity v and the photon scattering c.m. angle,z5cosu.
They are given, in terms of the more elementary integra

1

4p
E dVq

~12v k̂8•q̂!~12v k̂•q̂!
[f1~v,z!,

1

4p
E dVq

12v k̂•q̂
[f2~v !,

1

4p
E q̂idVq

~12v k̂8•q̂!~12v k̂•q̂!
[vf3~v,z!~ k̂ i1 k̂ i8!,

1

4p
E q̂idVq

12v k̂•q̂
[vf4~v !k̂ i ,

1

4p
E q̂i q̂jdVq

12v k̂•q̂
[A~v !d i j1B~v !k̂ i k̂ j , ~C4!

as follows:

a~v,z!5f1~v,z!22f3~v,z!,

b~v,z!5f3~v,z!2a~v,z!2zg~v,z!,

g~v,z!5
1

12z2
@zf1~v,z!1~123z!f3~v,z!2f4~v !#,

c~v,z!5
a~v,z!2A~v !

~11z!v
,

b~v,z!5
1

11z F1v g~v,z!2c~v,z!G ,
a~v,z!5

1

v
b~v,z!2zb~v,z!22c~v,z!,

A8~v !5
1

v SA~v !2
1

3D , B8~v !5
1

v
B~v !22A8~v !.

~C5!

The functionsfi read
f2~v !5
1

2v
log

11v
12v

, f4~v !5
1

v2
~f2~v !21!,

f3~v,z!5
f1~v,z!2f2~v !

~11z!v2
, ~C6!

and

f1~v,z!5
1

vR
log

R1~12z!v
R2~12z!v

,

R5A~12z!@22~11z!v2#. ~C7!

Also

A~v !5 1
2 @f2~v !2f4~v !#, B~v !5f4~v !2A~v !.

~C8!

In terms of the integrals introduced, the imaginary part
the Compton scattering amplitude~C2! is given by the func-
tions

ImR1
OPE5qv2F ~a1zg!~z f3

21 f 4
2!2

2

v
~a1zg2A! f 3f 4G ,

ImR2
OPE5qv2gF2z f3

22 f 4
21

2

v
f 3f 4G ,

ImR3
OPE5qv2f 3@@za1~z221!g# f 322@~z221!b

1~2z21!c# f 4#,

ImR4
OPE5qv2f 3@a f 322c f4#,

ImR5
OPE5qv2f 3@2~a1zg! f 31~2zb13c! f 4#,

ImR6
OPE5qv2f 3@g f 32~2b1c! f 4#, ~C9!

which, by definition, represents the scattering amplitude
three-dimensional notation,
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1

8pAs
Tf i5e8* •e R11s8* •s R21 is•e8*3e R3

1 is•s8* s R41 i ~s• k̂ s8* •e2s• k̂8 e8* •s!R5

1 i ~s• k̂8 s8* •e2s• k̂ e8* •s!R6 ~C10!

~heres5k̂3e, s85k̂83e8!, and gives the reduced helicity am
plitudesti :

t158pAsFcos2 u

2
~R11R22R32R412R512R6!

12R312R4G ,
t258pAs@R11R22R32R422R522R6#,

t358pAs@R11R22R32R4#,

t458pAs@R12R22R31R4#,

t558pAsFsin2 u

2
~R12R22R31R422R512R6!

12R322R4G ,
t658pAs@R12R22R31R412R522R6#. ~C11!

The above formulas for ImRi
OPE, together with relations

of Ri with ti andAi , just determine the total OPE contribu
tion to the imaginary part of the Compton scattering amp
tude.

APPENDIX D: RESONANCE CONTRIBUTION
OF ppN INTERMEDIATE STATES

Considering resonance contributions to imaginary part
the Compton scattering amplitudes, we start with Walke
parametrization of the amplitudes of resonance photoexc
tion @54,86#:

Ares~W!5ArAk0q0
kq

W0AḠgḠp

W0
22W22 iW0G

, ~D1!

whereAres is the resonance part of any of the amplitud
Al6 ,Bl6 of the reactiongN→pN, the widths with bars

Ḡp~W!5G0S qq0D
2l11S q021X2

q21X2D l ,
Ḡg~W!5G0S kk0D

2 j gS k021X2

k21X2D j g ~D2!

are energy-dependent pionic and radiative widths, resp
tively, normalized to the total widthG0 at the peak, and the
total widthG(W) is taken to be equal toḠp(W). Also k and
q are photon and pion momenta in the channelsgN andpN
at the energyW5As, andk0 andq0 are the same quantities a
the resonance energyW5W0 . Photon and pion angular mo
-

f
s
a-

s

c-

menta j g and l , together with the parametersX, determine
barrier penetration factors. We take all of them from@86#,
except j g . Since the VPI group parametrizes the radiati
widths by usingj g51 @94#, we do so here too.

For the amplitudesAr of the resonance multipoles at th
resonance energies we use recent results of the VPI g
@31#, as well as their resonance massesW0 and widthsG0.

Being used in Eqs.~B9!, the resonance multipoles~D1!

determine contributions@ Imti#
(N*→pN) of single-pion decays

of nucleon resonances to imaginary parts of the Comp
scattering amplitudes. To determine the contributions of
resonance decays to other channels~mostly ppN!, we as-
sume the validity of the Breit-Wigner formula and resca
thepN contribution with the factor

R5
12Bp

Bp

Ḡinel~W!

Ḡp~W!
, ~D3!

where Ḡinel(W) is the normalized width of the decay
N*→(ppN,hN,pppN,...) and Bp is the single-pion
branching ratio of the resonanceN* which pins down
Ginel~W0!. We takeBp from @31# as well.

For the energy dependences of the inelastic widthsḠinel
we generally use the ansatz

Ḡinel~W!5G0S QQ0
D 2l14SQ0

21X2

Q21X2D l12

, ~D4!

whereQ is the momentum of a compound particle~2p! with
the mass 2mp in the channel~2p!N, andQ05Q(W5W0).
Such an ansatz takes into account the correct energy be
ior ;(W22mp2m)2 of the phase space near the three-bo
threshold and also incorporates a barrier penetration fa
similar to that in Eqs.~D2!.

We make two exceptions from Eq.~D4!:
~i! For the P33~1232! resonance its inelastic branchin

ratio 12Bp.0.6% is related to the radiative decayD→gN.
Accordingly, we useḠinel(W)5Ḡg(W) in this case.

~ii ! For the S11~1535! resonance its inelastic decay
mainly due to hN mode, and in this case we us
Ḡinel(W)5G0qh(W)/qh(W0), whereqh is the c.m. momen-
tum of h. In particular, using the parameters from@31#, we
get the cross section ofsgp→S11→hp.12 mb at the reso-
nance peak which is close to the experimentally known m
nitude @95,96# given by 2j2qh /k.13 to 15mb in terms of
the quantityj introduced in@96#.

To maintain unitarity, we also replace in Eq.~D1! Walk-
er’s total width by

G5BpḠp1~12Bp!Ḡinel . ~D5!

Thus, our procedure to calculate inelastic contributions
pN resonances to Imti is given by

@ Imt i #
~N*→ppN...!5R$@ Imt i #

~N*→pN!%G→Eq. ~D5! ~D6!

~for each resonanceN* !. In Fig. 7 we show the resonanc
total cross section ofgN→N*→ppN... ~dotted line! which
is easily found from Imti through optical theorem, i.e.
Im~t11t5!~n,0°!54mns tot~n!.
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APPENDIX E: OPE CONTRIBUTION
OF pD INTERMEDIATE STATES

The model we use to split the nonresonance part of
gN→ppN cross section into individual multipoles is bas
on the assumption that all partial waves except the low
one are dominated by the mechanism of one-pion excha
in the reactiongN→pD. Here we give details of how to
calculate the related imaginary part of the Compton scat
ing amplitude.

The effective Lagrangian of thepND transition in the
Rarita-Schwinger formalism reads

L5
G

mp
c̄mTc]mp1H.c., ~E1!

where T is the transition isospin operator normalized
Clebsch-Gordan coefficients. The couplingG determines the
decay width of theD:
e

st
ge

r-

G5
E81m

12pM

G2q83

mp
2 ,

G2

4p
50.38, ~E2!

whereM is the mass of theD, andE8 andq8 are energy and
momentum of the final nucleon in the decayD→p8N.

We write the OPE amplitude ofg(k)N(p)→p(q)D(P)
as

T52 i
eG

mp
ūm~P!u~p!

e•q

k•q
. ~E3!

We do all the calculations in the c.m. frame and use
three-dimensional gaugee050 in which the diagrams
supplementing the OPE diagram to a complete gau
invariant set are suppressed or have a dominatings-wave
component which will be adjusted separately in the follo
ing. Using the amplitude~E3! in the unitarity relation, we
find the imaginary part of the Compton scattering amplitu
1

8pAs
@ ImT#OPE-D52

4

3
q

e2G2

64p2smp
2 E dVq

4p

e•qe8•q

k•qk8•q
ū8~p8!H g•PFp•p81

m2

3
1

m

3M
~p•P1p8•P!

2
2

3M2 p•Pp8•PG1M Fp•p82
m2

3
2

m

3M
~p•P1p8•P!2

4

3M2 p•Pp8•PG J u~p!. ~E4!

Here the term in curly brackets stems from theD propagator and the factor of 4/3 appears after summing over thep2D11 and
p1D0 channels.

In three-dimensional notation the RHS of Eq.~E4! is recast as

CE dVq

4p

e•q̂ e8•q̂

ZZ8 H FP11
y

2
~122d!~Z1Z8!2y2ZZ8GFP21

y

2
~Z1Z8!1

vy
2

is•~ k̂2 k̂8!3q̂1 i f 1s• k̂83 k̂G
1FP32

y

2
~114d!~Z1Z8!22y2ZZ8G•~P42 i f 2s• k̂83 k̂!J . ~E5!
s

le

s

Here

f 15
P0~p02m!

2mM
, f 25

p02m

2m
,

y5
vq0
mM

, d5
M21m22mp

2

2mM
,

Z512v k̂•q̂, Z8512v k̂8•q̂,

P1521d2d21
3v2

2m2 ~12z!,

P3512d22d21
3v2

2m2 ~12z!,

P25d2 f 1~12z!, P4511 f 2~12z!,

C52
16m3Mqv2

9v2 S eG

8pAsD
2

, v5
q

q0
, ~E6!
andv, p0 ,q0 ,P0 are the energies ofg, N, p, D. The angular
integral in Eq.~E5! is calculated with the use of formula
from Appendix C. In terms of the amplitudesRi and func-
tions A,a,g,b,c, of the cosine of the scattering ang
z5k̂•k̂8 and pion velocityv specified in the Appendix C, the
imaginary part of the Compton scattering amplitude read

@ ImR1#
OPE-D5CH ~a1zg!~P1P21P3P4!

1yA@P11~122d!P22~114d!P4#

1y2~122d!@ 1
31~ 1

22z!~A2 1
3 !#

2
y2

3
~P212P4!2

y3

3 J , ~E7!

@ ImR2#
OPE-D5CH 2g~P1P21P3P4!

1
y2

2
~122d!~A2 1

3 !J ,
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@ ImR3#
OPE-D5C$zP61~122z!P71~z221!P8%,

@ ImR4#
OPE-D5C$P62P7%,

@ ImR5#
OPE-D5C$2P61

3
2P72zP8%,

@ ImR6#
OPE-D5C$2 1

2P71P8%.

Here

P65a~ f 1P12 f 2P3!1y f1FA~122d!2
y

3G
1y f2FA~114d!1

2y

3 G ,
P75vycP11y2~ 1

22d!~A2 1
3 !,

P85g~ f 1P12 f 2P3!2vybP1 . ~E8!

Formulas ~E7! specify the contribution of the OPE
mechanism of the reactiongN→pD to the Compton scatter
ing amplitude and we use them with two further modific
tions. First, we take into account a finite width of theD by
virtue of smearing the contribution~E7! over theD massM :

@ ImRi~s,u!#OPE-D→E
m1mp

`

@ ImRi~s,u,M !#OPE-Dw~M !dM,

~E9!

where the integrand is given by formulas~E7!. The weight
w(M ) is

w~M !5
2

pG~M !
sin2d33~M !.

2

p

M0
2G~M !

~M22M0
2!21M0

2G2~M !
~E10!

and is determined by the energy-dependent width of thD
isobar@86#:

G~M !5G0S q8~M !

q8~M0!
D 3 q82~M0!1X2

q82~M !1X2 , ~E11!

and byM051233 MeV,G05120 MeV, andX5185 MeV.
With the weight~E10!, the integral~E9! exactly reproduces
the OPE contribution of the three-body reacti
gN→p1(p8N) provided thepN→(p8N) block is taken
on shell and contains only theI5J53/2 partial wave.

Second, since thepND vertex~E1! entering into Eq.~E4!
includes a derivative and results in an increasing cross
tion ats→`, we introduce a cutoff in the momentum transf
t5(k2q)2 in the reactiongN→pD. Namely, we replace the
product of the propagators (t2mp

2 )21(t82mp
2 )21

5(4qk•qk8•q)21 in Eq. ~E4! @heret85(k82q)2# by

1

~ t2mp
2 !~ t82mp

2 !
→

1

~ t2mp
2 !~ t82mp

2 !
2

1

~ t2L2!~ t82L2!
.

~E12!

This leads to a subtraction from@ImRi#
OPE-D, Eq. ~E7!, a

similar contribution obtained from~E7!, ~E6! through the
substitutions
-

c-

q0→q0L5q01
L22mp

2

2v
, d→

M21m22L2

2mM
,

y→
vq0L

mM
, v→

q

q0L
~E13!

~s,z,v,q,p0 ,P0 are not changed!. Such a subtraction is sim
pler for implementation than a straightforward use of a
justed form factors in thepND vertices. AtL50.5 GeV the
OPE cross section ofgN→pD begins to decrease atEg.1.2
GeV.

In Fig. 7 we show the total photoabsorption cross sect
in the OPE approximation withL50.5 GeV ~dash-dotted
curve!. It is obtained from ImRi by using the optical theo-
remstot5~4p/v!Im(R11R2)u50.

APPENDIX F: CONTRIBUTION OF r0N
INTERMEDIATE STATES

Considering contributions to ImAi from r0 photoproduc-
tion we make the assumption ofs-channel helicity conserva
tion @58,55# in the reaction

g1N→r01N, ~F1!

so that

Tlrl8,lgl;dl8ldlrlg
expSB2 trD , ~F2!

where tr5(pg2pr)
2 and the slope parameterB.6 GeV22

determines the angular dependence of the photoproduc
amplitude. Using Eq.~F2! in the unitarity relation~B6! and
integrating over transverse momenta we find that only
helicity-non-flip Compton scattering amplitudest1 andt2 get
a contribution fromr0N:

Im@t1#
~r0N!5Im@t2#

~r0N!

5~s2m2!sgN→r0N~s!expS q

2v
BtD , ~F3!

where q and v are the c.m. momenta ofr0 and g and
sgN→r0N is the total cross section of the reaction~F1!. Typi-
cally, sgN→r0N;20–25mb at the energies considered he
@58,55#.

Note that the expression~F3! has a correct limit not only
at high energies when the diffractive representation~F2! is
experimentally justified but also near therN threshold where
any angular dependence of the amplitudes Imti on thegp-
scattering angle has to vanish.

Other mechanisms of low-energyr photoproduction, like
p or s exchanges, could also be considered@97#. In spite of
a very different spin structure inherent to these exchange
compared with the above diffraction ansatz, the result
Im ti might be not so different. That is because bothp ands
exchanges flip the helicity of the vector particlesg→r, at
least in the case of transversal polarizations ofr, and thus
result in diagonal helicity transitionsg→g in the bilinear
unitarity relation~B6!.
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APPENDIX G: s-WAVE CORRECTION
FOR ppN INTERMEDIATE STATES

Considering the saturation of imaginary parts of t
Compton scattering amplitudes, we have to discuss the
of the total photoabsorption cross section, which is not c
ered by resonance excitation or peripheral mechanisms:

Ds5@sgp→hadrons2sgp→pN#

2@sgp→N*→ppN1sgp→pD
OPE 1sgN→r0N#. ~G1!

This quantity is shown in Fig. 7~short-dashed line!.
We can assume that the cross sectionDs is dominated, at

least at moderate energies, by electric dipole transitio
Moreover, an essential part of this cross section has to
related to the contact interaction in thegN→pD transition
~analogous to the Kroll-Ruderman term in single-pion ph
toproduction! and hence to occur in states with angular m
mentumj53/2. Under such assumptions it is easy to rest
the corresponding contributions to all six Compton amp
tudes because the~E1, j53/2! absorption has the same effe
as the pion photoproduction through the multipoleE22. Us-
ing formulas~B8! from Appendix B and the optical theorem
Im~t11t2!u505~s2m2!stot , we may find Imti through the
following substitutions in Eqs.~B9!:
as

nd
st
-

s.
be

-
-
e
-

8pqAsuA22u2→ 1
8x,

8pqAsuB22u2→ 1
2x,

8pqAs@A22B22* #→2 1
4x, x5~s2m2!DsE1,j53/2

~G2!

~and other multipole amplitudes are replaced by zero!.
When some part of the cross sectionDs is caused byE1

absorption atj51/2, that has the same effect on Imti as the
E01 multipole of single-pion photoproduction, and Imti are
found through the substitution

8pqAsuA01u2→~s2m2!DsE1,j51/2. ~G3!

In the case of the~M1, j51/2! multipolarity which ap-
pears, for example, when both pions in the react
gN→ppN are produced in ans wave, the substitution rule
reads

8pqAsuA12u2→~s2m2!DsM1,j51/2. ~G4!

Normally we assume that the whole cross sectionDs is of
~E1, j53/2! type, but with the above formulas we can al
check what the effect is if a small amount ofDs is related to
~E1, j51/2! or ~M1, j51/2! quantum numbers.
ys.
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