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Running coupling constants in Walecka model and renormalization-group equations
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The effective running coupling constants in the Walecka model are investigated by introducing
renormalization-group equations at finite density, where couplings are divided into two parts: density depen-
dence and momentum dependence. The results are applied to one-loop calculations in nuclear matter.
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A model of strongly interacting nucleons and mesons was It is noted that in general the fields andV, arex de-
proposed by Waleckdl] to study the bulk properties of pendent. So that[p,,¢]=—i%hd,¢#0 and [p,,V,]
high-density matter. It is quite successful in the mean-field=—i%4,V,#0 because of the quantum corrections. Thus
theory and in the relativistic Hartree approximati®HA)  the functional operations formally indicated in Ed) can be
[2]. However, the calculated incompressibility of nuclearperformed neither in momentum nor in coordinate spaces. In
matter seems to be too large. Alternatively, a nonlinear scalgsarticular, it is not clear how to manipulate Ed) into the
field is proposed to fit the incompressibility of the nuclearform, S=[d*xL;. Fortunately, an elegant methfts—21]
matter[3-5]. But the self-coupling parameter of the quartic of solving this problem has been developed by expanding
term is negative, which will cause the many-body system t&, in terms of the derivatives of the meson fields,
collapse at high density6,7], while a nonlinear vector field
[8] or derivative scalar coupling terf®] obviously leads the
model to not being able to be renormalized.

In loop expansion, especially, the contributions of two-

Sefr= f d*[—itr In[y,(id*—g,V*) —(M—gsp)]

loop order to energy density give a too large correcfibi, + 3240, b~ 3 Z(P)F , FH— 5 uie?
which cannot satisfy the convergent requirement. It is pos- L
sible for these problems to be attributed to the treatment of + 2 1V, VH, 2

the starting point of solving the Walecka model at one-loop ) ,
order, where the meson fields are replaced by classical eX¢here the trace is only operated with respect to momentum
pectation values of the ground state at a finite density of th@nd internal variables. And the effective action is only ex-
nuclear matter. panded to second-order derivatives including all divergences
In this paper, we try first to consider quantum corrections®?®cause the higher derivative terms are not important at a
of meson fields by the effective action formalism and its/OW-energy caseZs andZ, will be written into two parts of
derivative expansions. Then, the scalar and vector mesgiomentum and density dependence, such as
fields are rescaled and renormalization-group equations are 2 N
derived at th_e finite density. F_inally, re_placing the scalar and ZJ(P)=1+ _zg§|n%: 1+ izgg( |nf — |nM_) ,
vector couplings by the effective running coupling constants 4w M 21 M M
obtained by renormalization-group equations, we investi- 3
gated the bulk properties of the nuclear matter at one-loop ’
order. 1 A3 1 As ~M*
; : z (¢>)=1+—gzln—=1+—gz(ln——ln—)
The properties of symmetric nuclear matter can be de-"" 127227 M*? 677" "M M)’
scribed in terms of a sigmé and a omeg&/,, meson field in 4
the Walecka moddl1]. It is convenient to employ an effec-
tive action formalism in which the quantum corrections mayWhereM* =M —gs¢,As and A, are cutoff parameters for

be directly included in the actidil1—14. Integrating out the ~momentum. Obviously, the second termsZpand Z, are
fermion fields, one finds from the quantum correctiorjd5,16. Now, one may renor-

malize for fields¢ andV, by

Ser=~ 1T In[7,(19%=0,V) = (M= g:¢)] br=ZY%G0)$, Ve,i=ZYA bV, )
+ f d4x< - %FWF“%L %Mﬁvﬂw) and couplinggs andg, by
1 1 Ore=Zs A ¢0)9s, Orv=Z, A $0)0,,  (6)
” f dAx(fa”“d)aﬁ(ﬁ_ §M§¢2> ’ @ at point of the classical expection value of the meson fields at

the finite density of the nuclear matter. Clearly the renormal-
where F*7=g*V¥— 9"V#, the trace is performed with re- ization point¢, may be taken at any point in the physical
spect to space, momentum, and internal variables. region. Thus the coupling constants in any renormalization
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scheme should be regarded as a function of the renormaliza-
tion point. In view of the renormalization group the coupling
constants ard andM* dependent and are called the effec-
tive running coupling constanf21-25.

In order to describe the change of the effective couplings

a anda in terms ofM* andAg or A, the renormalized
factors are regarded as the functionstgfIn(A;/M) and
T=In(M*/M),

@)

It is noted thatA;>M andM* <M should be satisfied in the
physical region. Therefore, the ranges pfand T are

Zi=Zi(9; .4, T)=2Z(gi,7i), i=sv.

t=[0,0] and T=[ —,0], which can be combined to be-

come 7=[ —o0,%] by settingt;=r; and A;=A; for 7;>0
andT=r7 andA;=M* for 7;<0.
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FIG. 1. Scalar couplingg?, decrease with densityg/psin-

creasing for the different masses of scalar mesgr550 MeV

The renormalization-group equations can be derived bysolid ling), 500 MeV (dashed one 458 (dot-dashejj and 400

differentiating both sides of the trival identiB; 'Z;= 1 with
respect tor; and by applying the chain rulg3],

J
(&—ﬁ—ﬁf,ag +n|z=0, ®)
where
J J
Vi:—a—ﬂlnzi(gi \Ti) ZMmmZi(gi ), (9
9i Aj g7
1 3
p a2%s 70,
Bs=M m[gRs(gSst)] o = 1 ,
s'9s:7s —ngS, 7s=0
(10
BU_ a_M[ng(gzﬂTv)] -
v’gv’Tv
1 3
1272% 770
= 1 (11

3
g9 =0

Equations(10) and (11) imply that the 8 functions are

cutoff independent. The physical coupling constants should

satisfy the differential equatiori23,25,

d — _
d_,rigi(givTi):Bi(gi)- (12
For the range of;=[0,], which is corresponding to the

case of zero density in the Dirac sea, EtR) may be solved
by using Eqs(10) and(11). One finds

92,=02/[1— (127%)g2In(Ag/M)],

9%,=0%,/[1-(U6m*)gE,IN(A,/M)], (13

v

where the normalization conditiomjizaﬁi(rso,gi) are

used. One can see that the Walecka model is not ultraviolet

MeV (dot one.

asymptotically free because the running coupling constants
increase with the increases of the cutoff parameters. The con-
clusion is obvious because the Walecka model is not a non-
Abelian field theory, which has been obtained in particle
physics earlier. And the conditions, such g8.<2w?/
In(As/M) andg2,<672/In(A,/M), should be satisfied. In
the following, we will setgrs=0r,=1, which is phenom-
enologically used in the strong interacti®6]. It is noted
that the contributions oA ; andA , to the coupling constants,
and energy densityTable ) are very small. This means that
the effective cutoff momentum is abot~M [see Eqs(3),
(4), and(13)], which is in agreement with the one, such as
A~1 GeV, usually used in the strong interaction.

For the region ofr;=[ —%,0], which is corresponding to
the case of the finite density in the Fermi sea, integrating
over Eq.(12) and using Egs(10) and(11), we find

02.= 03 J[1+ (1272 g3 In(MIM*)],

93,=03,/[1+(167%)g3,In(MIM*)], (14

which mean that the couplings decrease as the baryonic den-
sity increaseqsee Figs. 1 and)2 These are in agreement

TABLE |. Parameters used in calculations for bulk point
ke=1.42 fm™ 1,

m, M Kb A A,

(MeV) (MeV) g2 g2 M*/M (MeV) (GeV) (GeV)
783 550 629 79.8 0.72 470

783 550 59.7 431 0.83 183

783 500 51.4 50.1 0.82 190

783 458 450 575 081 194

783 400 386 757 078 205

783 500 47.4 511 0.82 192 5 5
783 500 450 533 0.81 198 20 20
783 500 450 53.7 0.81 198 20 15
783 500 452 521 0.81 196 15 20
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FIG. 2. Vector couplingg3, decrease with densityg/psin-
creasing for the different masses of scalar mesgr550 MeV

(solid line), 500 MeV (dashed ong 458 (dot-dashef and 400
MeV (dot one.

with the phenomenological analyg$ia7,28 in nuclear phys-

ics. It is noted thayg?,g3,=g? and gZ,g3,=g? are used in
Eq. (14).

After all these steps, the original Walecka action is now

recast into the form,

Se= f d*X L= f d] = itr In{y,[i0%— g, (V&—WH)]
_ 1 ,
_(M_gS¢R)}_ZFRMVFS
1 2 42
&M¢R‘9M¢R_§ms¢R )

(15
where grs=09es9ps:9rv= 9Fs9p, and m§=u§/Zs,mi

1 5 u 1
+§mUVRMVR+§
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FIG. 3. Nuclear matter saturation curve as the function of the
Fermi momentumke (fm~1) for the RHA with bare couplings
(solid line) and mg=550 MeV (dashed oneand 400 MeV (dot-
dashed lingin this work.

nuclear matter can be obtained by minimizing the energy
density e with respect taM*, which yields

p_éﬁi_%_i_ﬂg(M_M*)_ mg (M—M*)2 0”55
2m; oM* 2 297 aM*
k -,
n (23/7)3f Fd3kM*(k2+M*2)’1’2
0

*

M 5
M*SInVJrMZ(M—M*)—EM(M—M*)Z

7],2

11
+€(M—M*)3}:o. (17

It is noted that the contribution of the vector meson to the
effective mass has been entered as shown by, which

=u?/Z,. The effective Lagrangian has the same form as theeems to arrive at the effects that the nonlinear vector fields
Walecka model but with the density and momentum depenhad been introduced in the Walecka mof#l
dence of the masses and coupling constants in the dense In order to produce the saturation property of the symmet-
matter, which is Brown and Rho’s conjecture by means of dic nuclear matter with the binding energyl15.75 MeV at
scale invarianc¢29]. the saturation poink.=1.42 fm~!, several sets of param-
For the purpose of studying the finite baryonic matter, aeters are adjusted for different massesraheson(Table ).
chemical potentialu has been introduced in the effective
Lagrangian(15). u is represented by the four-vectgr,W,
=(—iu,0,0,0. Thus, energy density at one-loop order can be
obtained by{21,30

s
2 2 =
g, S v [k 8
M*,pg)= 5—pg+ —=5(M—M*)+ f d3k
e(M*,pg) 2m12JPB 2—295( ) 2m%), g
£
., Y M* o
X 2+ *2\1/2__ *4
3 * 7 2 12 Mo s 1 15 2 28 8 a5 4
+M*(M—M )_EM (M—M¥*) i (m)

FIG. 4. Effective masM*/M of nucleon in nuclear matter as
the function of the Fermi momentukg (fm 1) for the RHA with
bare couplinggsolid line and mg=550 MeV (dashed ong 500
where the spin-isospin degeneracy of the vacuum=gl in MeV (dot-dashey] 458 MeV (line-dasheyl and 400 MeV(dot one
the nuclear matter. The effective mass of the nucleon in thé this work.

13|\/||v| M*325M M* )4 16
—g(— )—1—2(— ¥, (16
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We see in Table | that the vector coupling constant has anass is also helpful for the description of the giant quadru-
large decrease in comparison with the one in the RHA withpole resonance and level density in the vicinity of the Fermi

bare couplingg30] (first row in Table ), which may be a

surface as stressed by Jaminon and MaH&6% It is noted

required condition to guarantee convergence because an @k studies of finite nuclei that the value of the nucleon effec-
most equal contribution of scalar and vector meson to energijive mass at equilibrium seems to be between Kl.58nd

density is needed in two-loop calculatiof&l] (another pa-
per for two loop analysis is needed

0.65M in order to reproduce spin-orbit splittings in nuclei
[36,37. However, their analysis is only based on the mean-

By using the effective running couplings, the saturationfie|q theory with a nonlinear meson. If one consider vacuum

curve is much softer than the one with bare couplif@@]
(see Fig. 3 which makes the incompressibility of the

nuclear matter have a large decrease from 470 to 200 Me

or so. The results are in agreement with the empirical data
Treineret al, K, 1=210+30 MeV [32]. The effective mass

of the nucleon in the nuclear matter is showed in Fig. 4

where the effective mass at saturation increases fro
0.72M to 0.80—0.8R%1. The result is simlar to the calcula-
tions of the phenomenological Skyrme interactioll*(/
M=0.78,K =217 MeV), including the derivative scalar
coupling term in the Walecka model M(*/M =0.85,
KU_1=225 MeV) [9] and the quark-meson coupling model
(M*/M=0.85, KU_1=200 MeV) [33,34. A larger effective

effects, the value should be increased as shown by the
change from 0.598 to 0.72M in the nuclear matter by fitting

}fm binding energj30,2]. Of course, such an increase should
Pe verified by a concrete calculation.

In this paper, by extending the renormalization-group

'equations at zero density to the case of the finite density, we

ind that some problems in the Walecka model may be
solved in this way. We have also noted that another possible
application in nuclear physics, such as the properties of the
meson and coupling constants at finite density, may possibly
compare with Brown and Rho’s analysis by the way of a
scaling effective Lagrangian in a dense medil28].
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