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Running coupling constants in Walecka model and renormalization-group equations
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The effective running coupling constants in the Walecka model are investigated by introducing
renormalization-group equations at finite density, where couplings are divided into two parts: density depen-
dence and momentum dependence. The results are applied to one-loop calculations in nuclear matter.
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A model of strongly interacting nucleons and mesons w
proposed by Walecka@1# to study the bulk properties o
high-density matter. It is quite successful in the mean-fi
theory and in the relativistic Hartree approximation~RHA!
@2#. However, the calculated incompressibility of nucle
matter seems to be too large. Alternatively, a nonlinear sc
field is proposed to fit the incompressibility of the nucle
matter@3–5#. But the self-coupling parameter of the quar
term is negative, which will cause the many-body system
collapse at high density@6,7#, while a nonlinear vector field
@8# or derivative scalar coupling term@9# obviously leads the
model to not being able to be renormalized.

In loop expansion, especially, the contributions of tw
loop order to energy density give a too large correction@10#,
which cannot satisfy the convergent requirement. It is p
sible for these problems to be attributed to the treatmen
the starting point of solving the Walecka model at one-lo
order, where the meson fields are replaced by classical
pectation values of the ground state at a finite density of
nuclear matter.

In this paper, we try first to consider quantum correctio
of meson fields by the effective action formalism and
derivative expansions. Then, the scalar and vector me
fields are rescaled and renormalization-group equations
derived at the finite density. Finally, replacing the scalar a
vector couplings by the effective running coupling consta
obtained by renormalization-group equations, we inve
gated the bulk properties of the nuclear matter at one-l
order.

The properties of symmetric nuclear matter can be
scribed in terms of a sigmaf and a omegaVm meson field in
the Walecka model@1#. It is convenient to employ an effec
tive action formalism in which the quantum corrections m
be directly included in the action@11–14#. Integrating out the
fermion fields, one finds

Seff52 iTr ln@gm~ i ]m2gyV
m!2~M2gsf!#

1E d4xS 2
1

4
FmnF

mn1
1

2
my
2VmV

mD
1E d4xS 12 ]mf]mf2

1

2
ms
2f2D , ~1!

where Fmn5]mVn2]nVm, the trace is performed with re
spect to space, momentum, and internal variables.
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It is noted that in general the fieldsf andVm arex de-
pendent. So that@pm ,f#52 i\]mfÞ0 and @pm ,Vn#
52 i\]mVnÞ0 because of the quantum corrections. Th
the functional operations formally indicated in Eq.~1! can be
performed neither in momentum nor in coordinate spaces
particular, it is not clear how to manipulate Eq.~1! into the
form, S5*d4xLeff . Fortunately, an elegant method@15–21#
of solving this problem has been developed by expand
Seff in terms of the derivatives of the meson fields,

Seff5E d4x[2 i tr ln@gm~ i ]m2gyV
m!2~M2gsf!#

1 1
2 Zs~f!]mf]mf2 1

4 Zy~f!FmnF
mn2 1

2 ms
2f2

1 1
2 my

2VmV
m], ~2!

where the trace is only operated with respect to momen
and internal variables. And the effective action is only e
panded to second-order derivatives including all divergen
because the higher derivative terms are not important
low-energy case.Zs andZy will be written into two parts of
momentum and density dependence, such as

Zs~f!511
1

4p2gs
2ln

Ls
2

M* 2
511

1

2p2gs
2S lnLs

M
2 ln

M*

M D ,
~3!

Zy~f!511
1

12p2gy
2ln

Ly
2

M* 2
511

1

6p2gy
2S lnLs

M
2 ln

M*

M D ,
~4!

whereM*5M2gsf,Ls andLy are cutoff parameters fo
momentum. Obviously, the second terms inZs and Zy are
from the quantum corrections@15,16#. Now, one may renor-
malize for fieldsf andVm by

fR5Zs
1/2~f0!f, VRm5Zy

1/2~f0!Vm , ~5!

and couplingsgs andgy by

gRs5Zs
21/2~f0!gs , gRy5Zy

21/2~f0!gy , ~6!

at point of the classical expection value of the meson field
the finite density of the nuclear matter. Clearly the renorm
ization pointf0 may be taken at any point in the physic
region. Thus the coupling constants in any renormalizat
3159 © 1997 The American Physical Society
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3160 55BRIEF REPORTS
scheme should be regarded as a function of the renorma
tion point. In view of the renormalization group the couplin
constants areL andM* dependent and are called the effe
tive running coupling constants@21–25#.

In order to describe the change of the effective couplin
ḡ s and ḡ y in terms ofM* andLs or Ly , the renormalized
factors are regarded as the functions oft i5 ln(L i /M ) and
T5 ln(M* /M ),

Zi5Zi~gi ,t i ,T!5Zi~gi ,t i !, i5s,y. ~7!

It is noted thatL i.M andM*<M should be satisfied in the
physical region. Therefore, the ranges oft i and T are
t5@0,̀ # and T5@2`,0#, which can be combined to be
come t5@2`,`# by setting t i5t i and L̄ i5L i for t i.0
andT5t i and L̄ i5M* for t i<0.

The renormalization-group equations can be derived
differentiating both sides of the trival identityZi

21Zi51 with
respect tot i and by applying the chain rule@23#,

S ]

]t i
2bt i

]

]gi
1g i DZi50, ~8!

where

g i52
]

]t i
lnZi~gi ,t i !U

gi

5M
]

]M
lnZi~gi ,t i !U

L̄ i ,gi ,t i

, ~9!

bs5M
]

]M
@gRs~gs ,ts!#U

L̄s ,gs ,ts

5H 1

4p2gRs
3 , ts.0,

2
1

4p2gRs
3 , ts<0.

~10!

by5M
]

]M
@gRy~gy ,ty!#U

L̄y ,gy ,ty

5H 1

12p2gRy
3 , ty.0,

2
1

12p2gRy
3 , ty<0.

~11!

Equations~10! and ~11! imply that theb functions are
cutoff independent. The physical coupling constants sho
satisfy the differential equations@23,25#,

d

dt i
ḡ i~gi ,t i !5b i~gi !. ~12!

For the range oft i5@0,̀ #, which is corresponding to the
case of zero density in the Dirac sea, Eq.~12! may be solved
by using Eqs.~10! and ~11!. One finds

ḡ Fs
2 5gFs

2 /@12~1/2p2!gFs
2 ln~Ls /M !# ,

ḡ Fy
2 5gFy

2 /@12~1/6p2!gFy
2 ln~Ly /M !# , ~13!

where the normalization conditionsgFi
2 5 ḡ Fi

2 (t i50,gi) are
used. One can see that the Walecka model is not ultrav
a-

s

y

ld

let

asymptotically free because the running coupling consta
increase with the increases of the cutoff parameters. The
clusion is obvious because the Walecka model is not a n
Abelian field theory, which has been obtained in partic
physics earlier. And the conditions, such asgFs

2 ,2p2/
ln(Ls /M ) andgFy

2 ,6p2/ln(Ly /M ), should be satisfied. In
the following, we will setgFs5gFy.1, which is phenom-
enologically used in the strong interaction@26#. It is noted
that the contributions ofLs andLy to the coupling constants
and energy density~Table I! are very small. This means tha
the effective cutoff momentum is aboutL;M @see Eqs.~3!,
~4!, and ~13!#, which is in agreement with the one, such
L;1 GeV, usually used in the strong interaction.

For the region oft i5@2`,0#, which is corresponding to
the case of the finite density in the Fermi sea, integrat
over Eq.~12! and using Eqs.~10! and ~11!, we find

ḡDs
2 5gDs

2 /@11~1/2p2!gDs
2 ln~M /M* !# ,

ḡDy
2 5gDy

2 /@11~1/6p2!gDy
2 ln~M /M* !# , ~14!

which mean that the couplings decrease as the baryonic
sity increases~see Figs. 1 and 2!. These are in agreemen

TABLE I. Parameters used in calculations for bulk poi
kF51.42 fm21.

my

~MeV!
ms

~MeV! gs
2 gy

2 M* /M
Ky

21

~MeV!
Ls

~GeV!
Ly

~GeV!

783 550 62.9 79.8 0.72 470
783 550 59.7 43.1 0.83 183
783 500 51.4 50.1 0.82 190
783 458 45.0 57.5 0.81 194
783 400 38.6 75.7 0.78 205
783 500 47.4 51.1 0.82 192 5 5
783 500 45.0 53.3 0.81 198 20 20
783 500 45.0 53.7 0.81 198 20 15
783 500 45.2 52.1 0.81 196 15 20

FIG. 1. Scalar couplingḡDs
2 decrease with densityrB/rB

sat in-
creasing for the different masses of scalar mesonms5550 MeV
~solid line!, 500 MeV ~dashed one!, 458 ~dot-dashed!, and 400
MeV ~dot one!.
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with the phenomenological analysis@27,28# in nuclear phys-
ics. It is noted thatgFi

2 gDi
2 5gi

2 and ḡ Fi
2 ḡDi

2 5 ḡ i
2 are used in

Eq. ~14!.
After all these steps, the original Walecka action is n

recast into the form,

Seff5E d4xLeff5E d4x$2 i tr ln$gm@ i ]m2 ḡ y~VR
m2Wm!#

2~M2 ḡ sfR!%2
1

4
FRmnFR

mn

1
1

2
my
2VRmVR

m1
1

2
]mfR]mfR2

1

2
ms
2fR

2 J ,
~15!

where ḡRs5 ḡ FsḡDs , ḡRy5 ḡ Fy ḡDy and ms
25ms

2/Zs ,my
2

5my
2/Zy . The effective Lagrangian has the same form as

Walecka model but with the density and momentum dep
dence of the masses and coupling constants in the d
matter, which is Brown and Rho’s conjecture by means o
scale invariance@29#.

For the purpose of studying the finite baryonic matter
chemical potentialm has been introduced in the effectiv
Lagrangian~15!. m is represented by the four-vectorḡ yWm
5~2im,0,0,0!. Thus, energy density at one-loop order can
obtained by@21,30#

e~M* ,rB!5
ḡ y
2

2my
2 rB

21
ms
2

2 ḡ s
2 ~M2M* !21

g

~2p!3
E
0

kF
d3k

3~kW21M* 2!1/22
g

16p2FM* 4ln
M*

M

1M3~M2M* !2
7

2
M2~M2M* !2

2
13

3
M ~M2M* !32

25

12
~M2M* !4G , ~16!

where the spin-isospin degeneracy of the vacuum isg54 in
the nuclear matter. The effective mass of the nucleon in

FIG. 2. Vector couplingḡDy
2 decrease with densityrB/rB

sat in-
creasing for the different masses of scalar mesonms5550 MeV
~solid line!, 500 MeV ~dashed one!, 458 ~dot-dashed!, and 400
MeV ~dot one!.
e
-
se
a

a

e

e

nuclear matter can be obtained by minimizing the ene
densitye with respect toM* , which yields

rB
2

2my
2

] ḡ y
2

]M*
1
ms
2

ḡ s
2 ~M2M* !2

ms
2

2 ḡ s
4 ~M2M* !2

] ḡ s
2

]M*

1
g

~2p!3
E
0

kF
d3kM* ~kW21M* 2!21/2

2
1

p2FM* 3ln
M*

M
1M2~M2M* !2

5

2
M ~M2M* !2

1
11

6
~M2M* !3G50. ~17!

It is noted that the contribution of the vector meson to t
effective mass has been entered as shown by Eq.~17!, which
seems to arrive at the effects that the nonlinear vector fie
had been introduced in the Walecka model@8#.

In order to produce the saturation property of the symm
ric nuclear matter with the binding energy215.75 MeV at
the saturation pointkF51.42 fm21, several sets of param
eters are adjusted for different masses ofs meson~Table I!.

FIG. 3. Nuclear matter saturation curve as the function of
Fermi momentumkF ~fm21) for the RHA with bare couplings
~solid line! andms5550 MeV ~dashed one! and 400 MeV~dot-
dashed line! in this work.

FIG. 4. Effective massM* /M of nucleon in nuclear matter a
the function of the Fermi momentumkF ~fm21) for the RHA with
bare couplings~solid line! andms5550 MeV ~dashed one!, 500
MeV ~dot-dashed!, 458 MeV~line-dashed!, and 400 MeV~dot one!
in this work.
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We see in Table I that the vector coupling constant ha
large decrease in comparison with the one in the RHA w
bare couplings@30# ~first row in Table I!, which may be a
required condition to guarantee convergence because a
most equal contribution of scalar and vector meson to ene
density is needed in two-loop calculations@31# ~another pa-
per for two loop analysis is needed!.

By using the effective running couplings, the saturati
curve is much softer than the one with bare couplings@30#
~see Fig. 3!, which makes the incompressibility of th
nuclear matter have a large decrease from 470 to 200 M
or so. The results are in agreement with the empirical dat
Treineret al., K`

215210630 MeV @32#. The effective mass
of the nucleon in the nuclear matter is showed in Fig.
where the effective mass at saturation increases f
0.72M to 0.80–0.83M . The result is simlar to the calcula
tions of the phenomenological Skyrme interaction (M* /
M50.78, Kv

215217 MeV!, including the derivative scala
coupling term in the Walecka model (M* /M50.85,
Kv

215225 MeV! @9# and the quark-meson coupling mod
(M* /M50.85,Kv

215200 MeV! @33,34#. A larger effective
a
h

al-
y

V
of

,
m

mass is also helpful for the description of the giant quad
pole resonance and level density in the vicinity of the Fer
surface as stressed by Jaminon and Mahaux@35#. It is noted
in studies of finite nuclei that the value of the nucleon effe
tive mass at equilibrium seems to be between 0.58M and
0.65M in order to reproduce spin-orbit splittings in nucl
@36,37#. However, their analysis is only based on the me
field theory with a nonlinear meson. If one consider vacu
effects, the value should be increased as shown by
change from 0.56M to 0.72M in the nuclear matter by fitting
the binding energy@30,2#. Of course, such an increase shou
be verified by a concrete calculation.

In this paper, by extending the renormalization-gro
equations at zero density to the case of the finite density,
find that some problems in the Walecka model may
solved in this way. We have also noted that another poss
application in nuclear physics, such as the properties of
meson and coupling constants at finite density, may poss
compare with Brown and Rho’s analysis by the way of
scaling effective Lagrangian in a dense medium@29#.
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