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Equation of state of stellar nuclear matter in the temperature-dependent extended
Thomas-Fermi formalism

M. Onsi,* H. Przysiezniak, and J. M. Pearson
Laboratoire de Physique Nucle´aire, Département de Physique, Universite´ de Montréal, Montréal, Québec, Canada H3C 3J7

~Received 27 September 1996!

Using the full temperature-dependent extended Thomas-Fermi formalism, we calculate the equation of state
of inhomogeneous nuclear matter for a force that has been fitted to essentially all nuclear masses, and has the
correct properties of neutron matter. Both droplet and bubble phases are considered, under the conditions
appropriate to a collapsing star. We examine the relevance of the choice of effective mass to the temperature.
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PACS number~s!: 21.65.1f, 21.30.Fe, 21.60.2n, 26.60.1c
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I. INTRODUCTION

We are involved in a program to develop a microsco
theory of nuclear systems applicable to the wide variety
phenomena encountered at subnuclear and nuclear den
during and after stellar collapse, and in particular to desc
all these phenomena, as far as possible, in terms of a sin
universal, effective interaction. The main achievement so
has been the development for the first time of a mass form
based entirely on microscopic forces, the ETFSI-1 mass
mula @1–5#. The astrophysical interest of such a mass f
mula lies in the fact that ther process of nucleosynthes
depends crucially on the binding energies of nuclei that
so neutron-rich that there is no hope of being able to mea
them in the laboratory. It is thus of the greatest importanc
be able to make reliable extrapolations of masses away f
the known region, relatively close to the stability line, o
towards the neutron-drip line.

The ETFSI method is essentially a high-speed approxi
tion to the Hartree-Fock~HF! method, with a macroscopi
part given by the extended Thomas-Fermi~ETF! method
@6,7#, and shell corrections calculated by the so-cal
Strutinsky-integral~SI! method@1,5#. Pairing is handled in
the BCS approximation with ad-function force. Although
this is really a microscopic-macroscopic mass formula, th
is a much greater coherence between the two parts than i
case with mass formulas based on the drop~let! model, since
the same Skyrme force underlies both parts. In fact, it
been shown@1,2# that the ETFSI method is equivalent to th
HF method in the sense that when the two methods fit
sameformof Skyrme force to the mass data they give ess
tially the same extrapolation. This presumably accounts
the fact that with just eight parameters the underlying fo
of the ETFSI-1 mass formula SkSC4 fits the 1492 mass d
for A > 36 with an rms error of only 0.736 MeV@4#.

However, the force SkSC4 fails to reproduce the ener
density curve of neutron matter, as calculated by reali
nucleon-nucleon forces@8#. This has serious implications fo
stellar collapse, and to respond to this problem we rece
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@9# devised a new force, SkSC6, which gives a much i
proved fit to neutron matter, without a significant deterio
tion in the quality of the fit to the mass data, the rms er
increasing to 0.794 MeV~see also Ref.@3#!. This force is
thus very well suited to the determination of the equation
state~EOS! of stellar nuclear matter, and the present pape
devoted essentially to this calculation.

Let us recall, therefore, some of the relevant aspects
stellar collapse. Once the iron core of a massive s
(M>8M() starts to collapse~see, for example, the review
of Bethe@10#!, nuclei that are stable under normal terrestr
conditions will begin to capture electrons, forming there
nuclei that are highly neutron-rich and yet neverthele
stable under the conditions of rising density. At the sa
time, neutrons will leak out as the temperature rises, form
effectively a vapor in which the nuclei are suspended, l
water droplets in a fog. Eventually, as the nuclei come clo
and closer together, bridges will form between them, and
entire core of the star will resemble a foam, or Swiss chee
the holes being filled with a neutron vapor. Finally, this s
called bubble phase goes over into the homogeneous p
of nuclear matter when the density reaches about 60%
density of ordinary nuclei, which is aroundr.0.16
fm2352.631014 g cm23.

The lowest density that we consider is aboutr50.01
fm23, at which point nuclear matter is still in the drople
phase. However, neutrino trapping will already be well e
tablished at this density~it sets in at aroundr 5 1024 fm
23), and no further electron capture occurs, with the res
that the electron concentration per nucleonYe will thereafter
be constant; we assumeYe 5 0.33, while for the constan
neutrino fraction we takeYn 5 0.07 per nucleon. Unde
these conditions the collapse will be essentially adiaba
and thus isentropic, insofar as thermodynamic equilibrium
maintained; for the constant value of the entropy per nucl
during this stage of the collapse we shall take the fairly ty
cal value ofs 5 1.0 ~with temperature measured in energ
units, entropy is dimensionless!.

Of crucial importance for the collapse is the adiaba
index, defined by

G5S ] lnP

] lnr D
S,Ye

, ~1.1!re
3139 © 1997 The American Physical Society
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with the derivative evaluated under the conditions of co
stant entropy and leptonic fractions that we assume to h
The stability of a star depends on the value ofG in the core
being larger than43, a value that corresponds to ultrarelati
istic leptons. Because of nuclear attractions the adiabatic
dex can fall below this critical value, and when this happe
collapse will begin. However, as nuclear densities are
proached in the coreG will rise above43 again, with the result
that the collapse will come rapidly to a halt, and be rever
into a bounce that may lead to a supernova explosion.

Since the EOS of the homogeneous phase of nuclear
ter, which prevails at densities greater than about 0
fm23, has already been calculated for force SkSC6@9#, we
concentrate in this paper on the inhomogeneous ph
found at lower densities, describing these phases by
model of the Wigner-Seitz cell. For the calculation of t
nuclear-energy density corresponding to this force it wo
be inappropriate to use the usual temperature-depen
Thomas-Fermi method~see, for example, Ref.@11#!. Rather,
since the mass fit that determined this force involved
fourth-order extended Thomas-Fermi method, we calcu
the energy density in stellar nuclear matter by using
temperature-dependent extended Thomas-Fermi~TETF! for-
malism of Bartel, Brack, and Durand~BBD! @12#. We will,
of course, miss the shell corrections that are given by
ETFSI method, but these are known@13,14# to be washed
out completely for temperatures above 3 or 4 MeV, and
thus negligible for the temperatures that we deal with in t
paper.

Now despite its excellent fit to nuclear masses and
neutron gas, there remains a difficulty with this new for
SkSC6. As with all the Skyrme-type forces that we ha
developed for the ETFSI method, the effective nucleon m
M* has been set equal to the real nucleon massM . For the
calculation of the masses of all but light nuclei, and fiss
barriers, this is indeed a good approximation, since it lead
the observed density of single-particle~s.p.! states in the vi-
cinity of the Fermi surface being well reproduced in ordina
mean-field calculations~HF or ETFSI! @15#. However, all
nuclear-matter calculations with realistic forces~see, for ex-
ample, Refs.@8,16#! indicate that at the equilibrium densit
r0 the value ofM* /M lies between 0.6 and 0.8. This
confirmed experimentally, both by the deepest s.p. state
light nuclei @17#, and by giant multipole resonances@18,19#.
Actually, there is no contradiction, since it has been sho
that one can obtain reasonable s.p. level densities in the
cinity of the Fermi surface of finite nuclei with realistic va
ues ofM* , i.e.,M* /M. 0.6 – 0.8, provided one takes int
account the coupling between particle modes and surf
vibration modes@20#. Such calculations are, however, com
plicated, and if one setsM*.M one may regard this as
semiempirical value ofM* that permits considerable phe
nomenological success with straightforward mean-field c
culations.

Thus the force SkSC6 is surely adequate for treating
isolated nuclei that prevail in a star right up to the mom
where collapse begins. On the other hand, it is clear tha
the final stage, where the nuclear matter is homogeneous
effective massM*5M of force SkSC6 will be inappropri-
ate. A much better force from this standpoint is the one
Rayet, Arnould, Tondeur, and Paulus~RATP! @21#, for
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whichM* /M50.67 in nuclear matter at the densityr0, even
though its symmetry coefficientJ and incompressibilityKv
are very similar to those of force SkSC6~see Table II of Ref.
@9#!. However, because of its effective mass the force RA
is not very suitable for the masses of finite nuclei, since th
will be significant errors for open-shell nuclei, despite t
good fit to doubly magic nuclei.

We showed in Ref.@9# that the difference inM* between
the two forces has a significant impact on the equation
state~EOS! of homogeneous nuclear matter, since the low
the value ofM* the higher will be the temperature for
given entropy and density~see also Ref.@22#!. Thus in the
present paper all the calculations that we perform with fo
SkSC6 are repeated with force RATP, in order to exam
the extent to which the problem of the effective mass
relevant to the EOS during the inhomogeneous stage
lower density that precede the transition to the homogene
phase. Exactly the same calculational procedure is ado
for the two forces, and in particular RATP is calculated w
the TETF method, even though the HF method was used
the fit to the masses of the doubly magic nuclei; the result
error is unlikely to be significant.

We describe our calculatational methods, including
model of the Wigner-Seitz cell in Sec. II, while in Sec. III w
present and discuss our results. In the Appendix we sum
rize for convenience the main results of the TETF formalis
we show in particular how we deal with certain limitations
the present form of this formalism@12#.

II. MODEL AND CALCULATION

The matter comprising the core of a collapsing star c
sists of a mixture of neutrons, protons, electrons, and neu
nos~other particles may put in an appearance at supernuc
densities, but this is of no concern here!. This mixture is
rigorously neutral on the macroscopic scale, so that the f
tion of nucleons that are protons will be exactly equal to
numberYe of electrons per nucleon.

Whatever the densityr and temperatureT of this system
it is always possible, using the formalism of Ref.@9#, for
example, to calculate the energy per nucleone and the en-
tropy per nucleons on the assumption that the system
homogeneous. However, equilibrium for given values ofr
andT corresponds to the Helmholtz free energy per nucle
f5e2Ts being minimized. Now for densities close tor0, or
larger, thermal equilibrium will indeed be characterized
the homogeneous configuration, while it is equally clear t
for terrestrial temperatures and pressures the equilibr
configuration will be quite different, consisting of56Fe at-
oms bound in a solid with an appropriate lattice configu
tion ~of course, the time required for this equilibrium to b
reached under terrestrial conditions is much greater than
age of the universe!.

However, since we are interested only in densities lar
thanr 5 0.01 fm23, i.e., 1.631013 g cm23, we can assume
that the electrons, like the trapped neutrinos, form a hom
geneous gas@see, for example, Eq.~2! of Ref. @23##. Then,
following Sec. 3 of Ref.@9#, we have for the kinetic-energy
density of the electrons
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Ee5
1

4p2

m0e
4

~\c!3S 11
2

3

p2T2

m0e
2 D , ~2.1!

where we have introduced the electron Fermi energy

m0e5\c~3p2Yer!1/3. ~2.2!

This approximation, which assumes the electrons to be c
pletely relativistic, i.e., neglects their mass entirely, but
cludes the lowest-order departure from total degeneracy
adequate over the density and temperature range consid
here. To this same order the electron entropy density is

Se5
1

3

m0e
2

~\c!3
T. ~2.3!

The corresponding expressions for the neutrinos are

En5
1

8p2

m0n
4

~\c!3S 11
2

3

p2T2

m0n
2 D , ~2.4!

where

m0n5\c~6p2Ynr!1/3 ~2.5!

and

Sn5
1

6

m0n
2

~\c!3
T. ~2.6!

Model of the Wigner-Seitz Cell.For the nucleons we
adopt the model of the spherical Wigner-Seitz cell, accord
to which all the nucleons are grouped into identical sph
cally symmetrical clusters of radiusRc . ~Relaxing the con-
straint of spherical symmetry shows that the droplet-bub
transition becomes smeared out over a finite density inte
@23#, but the overall effect on the EOS does not seem to
very great; moreover, the transition between the bubble
homogeneous phases remains intact.! The average neutron
and proton densities over such a cell must thus each be e
to the corresponding macroscopic densitiesr̄ n and r̄ p ,
given by

r̄ n5 r̄ ~12Ye! ~2.7a!

and

r̄ p5 r̄Ye , ~2.7b!

where r̄ is the total macroscopic density~written simply as
r in the foregoing!. The neutron and proton density distrib
tion functions within the cellrn(r ) andrp(r ) are then con-
strained by

3

Rc
3E

0

Rc
rq~r !r 2dr5 r̄ q , ~2.8!

whereq denotesn or p, as the case may be. The total num
ber of nucleons of each type in the cell is

Nq5
4p

3
Rc
3 r̄ q . ~2.9!
-
-
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For the neutron and proton density distribution functions
follow Ref. @11#, adopting the form

rq~r !5rBq1
r0q

11exp@~r2Cq!/aq#
, ~2.10!

in which rBq is a constant background term on which
superimposed a Fermi-function radial variation. Positive v
ues of the constantr0q in this latter term imply that the
density decreases from the center of the cell to its surfa
and thus correspond to the droplet phase found at the lo
end of the density range; likewise negative values co
spond to the bubble phase.

The two constantsrBq are not independent of the othe
parameters, but rather are fixed by

rBq5 r̄ q2
3

Rc
3 I qr0q , ~2.11!

where

I q5E
0

Rc 1

11exp@~r2Cq!/aq#
r 2dr. ~2.12!

The Wigner-Seitz cell is thus characterized by seven par
eters,r0q , Cq , aq (q5n,p), andRc . However, these pa
rameters are not completely independent but must satisfy
constraint that the densitiesrq(r ) be positive at all points in
the cell; we return to this problem below. The presence
Rc as a free parameter means that the number of nucle
Nq of each type in the cell is likewise not fixed.

A slight difficulty with the parametrization of Eq.~2.10!
is that the density gradients will not vanish identically on t
cell surface, which means that the smooth background
vailing between droplets or bubbles is not represented
actly. Moreover, the vanishing of these gradients is forma
necessary for the validity of some of the fourth-order ter
in the TETF formalism of the Appendix. But these gradien
are in practice very small, and no problem is expected. M
serious is the argument@24# that the Fermi-like parametriza
tion may not allow a self-consistent calculation to be a
proximated with an accuracy that is sufficient in all cas
However, it is probably appropriate in the case of for
SkSC6, since precisely this parametrization was adopted
finite nuclei in the mass fit that determined this force. As
force RATP, since our interest in it is confined to a compa
son with force SkSC6~in the context of the effective-mas
problem!, it seems altogether reasonable to use the same
rametrization for the two forces.

For a given set of the distribution parameters appearin
Eq. ~2.10! the specifically nuclear free-energy and entro
densitiesFnuc andSnuc5Sn1Sp , respectively, can be deter
mined in the TETF formalism by using the results of t
Appendix; see in particular Eqs.~A24! and ~A26!. The total
free-energy density in the cell is then

F5Fnuc1Ee1En2T~Se1Sn!1Ec , ~2.13!

in which the last term is the total Coulomb energy dens
direct plus exchange, given by
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Ec52pe2~rp2re!H E
0

r

rp~r 8!S r 82r 2r 8Ddr81re
r 2

6 J
2
3e2

4 S 3p D 1/3~rp
4/31re

4/3!, ~2.14!

wherere5 r̄ p is the electron density. The total entropy de
sity ~we need this separately and independently of the
energy, in order to be able to calculate adiabats! is likewise

S5Snuc1Se1Sn . ~2.15!

Because the average proton density over the cell is e
to the macroscopic proton densityr̄ p , which in turn is equal
to the density of the homogeneous electron gasre , it follows
that the cells will be electrically neutral. Since furthermo
the cells are assumed to be spherically symmetrical there
be no interaction between them, and it will be sufficient
consider just one cell. That is, the average free energy
entropy per nucleon in the entire system will be given by
corresponding quantities averaged over just one cell:

f54pE
0

Rc
F~r !r 2dr/~Nn1Np! ~2.16a!

and

s54pE
0

Rc
S~r !r 2dr/~Nn1Np!. ~2.16b!

Calculational Details.Using the model described in th
foregoing, and withYe50.33 andYn50.07, we calculate
inhomogeneous nuclear matter for each of the two for
SkSC6 and RATP at temperatures ofT 5 2.7, 4.0, 6.0, and
7.0 MeV, and for densities over the range 0.0075~0.0025!
0.095 fm23. At each of these points the free energyf per
nucleon is minimized with respect to the seven Wigner-S
parametersr0q , Cq , aq (q5n,p), andRc , subject to the
constraint that each of the two densitiesrq remains non-
negative everywhere in the cell.~Above 0.085 fm23 we also
have to calculate the homogeneous configuration, using
methods of Ref.@9#, in order to establish the position of th
transition between the bubble and the homogeneous pha!

It is easy to show that this constraint of non-negative d
sities is equivalent to requiring thatr0q be bounded by

r0q
1 .r0q.r0q

2 , ~2.17!

where

r0q
6 5

r̄ q

~3/Rc
3!I q2gq

6 , ~2.18!

in which

gq
15

1

11exp@~Rc2Cq!/aq#
~2.19a!

and
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gq
25

1

11exp~2Cq /aq!
. ~2.19b!

It suffices then to define a new variableuq by

r0q5
1

2
$r0q

1 ~11tanhuq!1r0q
2 ~12tanhuq!%, ~2.20!

and take this rather thanr0q in the set of variational param
eters; for all real values ofuq the densitiesrq(r ) will be
non-negative throughout the cell.

Once f has been minimized at a given point the entro
per nucleons is calculated at the corresponding equilibriu
configuration: this is required for the subsequent construc
of adiabats. With all the points for a given temperature c
culated, the corresponding pressures are obtained by num
cal differentiation, according to

P5r2S ] f

]r D
T,Ye ,Yn

. ~2.21!

For this and the subsequent numerical differentiations we
polynomial smoothing~subroutineSAVGOL of Ref. @25#!.

At this point we have at our disposal the pressureP and
the entropy per nucleons as a function of the density for th
four temperatures. Using then cubic interpolation~subroutine
POLINT @25#! we can determine for each density first the te
peratureT and then the pressure corresponding tos51.0.
One further numerical differentiation then gives us the ad
batic indexG according to Eq.~1.1!; particular attention has
to be paid in this last differentiation to an adequate smoo
ing of the pressures, especially in the region of phase tra
tions.

III. RESULTS AND DISCUSSION

Considering both forces SkSC6 and RATP, we constr
adiabats corresponding tos51.0 for our inhomogeneous
nuclear matter, as described above. In Figs. 1, 2, and 3
spectively, we show as functions of density the temperat
T, the pressureP, and the adiabatic indexG. The droplet-
bubble and bubble-homogeneous phase transitions
clearly seen in all three of these figures, especially the l
they occur at very nearly the same densities for the t
forces.

As far asP andG are concerned it is clear that only in th
homogeneous phase is there any significant difference
tween the two forces. Thus it would be sufficient for the
two quantities to use SkSC6 right through from the beg
ning of the collapse in the subdrip region of isolated nuc
up to the bubble-homogeneous transition, after which RA
with its more appropriate effective mass, would be better.
the other hand, we see from Fig. 1 that even in the inhom
geneous phases the temperature is considerably highe
RATP than for SkSC6. Thus, while one could certainly u
SkSC6 (M* /M 5 1.0! in the subdrip region of isolated nu
clei, and RATP (M* /M 5 0.67! in the homogeneous region
neither force would be appropriate in the intermediate reg
if one is interested in the temperature runs.

A quite similar conclusion can be found in the work
Barrancoet al. @26#, who used the forces SkM* @27# and T6
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FIG. 1. Adiabatic temperature as a function
density (s51.0).
ur
if

ca

of

s

und
@28#, for whichM* /M 5 0.79 and 1.0, respectively.~Their
results for these two forces are qualitatively similar to o
for RATP and SkSC6, respectively, although the slightly d
ferent values that we have taken forYe and Yn prevent a
quantitative comparison.! However, the evaluation of the
role of the effective mass is somewhat obscured in their
s
-

l-

culations by virtue of the fact that the incompressibilities
their two forces are rather different~217 MeV for SkM* , as
compared to 236 MeV for T6!, whereas in our calculation
they are very similar~235.4 MeV for SkSC6, 239.6 MeV for
RATP!. Likewise, it is not altogether clear in Ref.@26#
whether the differences between the temperature runs fo
of
FIG. 2. Adiabatic pressure as a function
density (s51.0).
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FIG. 3. Adiabatic indexG as a function of
density (s51.0).
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for the two forces reflects the difference between the eff
tive masses or between the incompressibilities. We beli
that our calculations show beyond any doubt that the ef
tive mass is quite irrelevant to the pressure and adiab
index in the inhomogeneous phases, but of considerable
portance for the temperature runs.

In any case, we have achieved the main goal of this pa
which was to make a TETF calculation of the EOS of t
inhomogeneous phases of stellar nuclear matter using a f
~SkSC6! that has been fitted to essentially all the mass d
and has the correct neutron-matter properties. Even tho
the results are not notably different from what has alrea
been obtained with less precisely fitted forces having
same symmetry coefficientJ and effective massM* @26#,
this is an essential step in our overall project of calculat
with a single force all the nuclear phenomena occurring
nuclear and subnuclear densities during stellar collapse.
fortunately, it is clear that with our force SkSC6 we ha
succeeded only partially in realizing this project, since
densities greater than 0.01 fm23 there emerge the ambigu
ities associated with the effective mass that we have repo
here. Actually, for densities greater than 0.1 fm23, i.e., for
homogeneous nuclear matter, one knows that force RAT
better than force SkSC6, so there is nopractical problem,
even though it would have been more satisfying if we co
have found a single universal force.~RATP cannot serve a
such a force, on account of its poor fit to the masses
open-shell nuclei.! But over the density range of 0.01 – 0
fm23 there is a serious practical problem: how does o
interpolate between the SkSC6 and RATP estimates of
temperature, given that there is no clear indication as to
best value ofM* in this density range?

We need some mechanism that will permit a continuo
variation ofM* /M between the realistic value of around 0
c-
e
c-
tic
-

r,

ce
a,
gh
y
e

g
t
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r

ed

is

d
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e
e
e

s

in homogeneous nuclear matter at the densityr0 to exactly 1
at zero density, in such a way that the average value over
volume of an isolated finite nucleus is close to 1, the se
empirical value. This cannot be realized with any of the co
ventional forms of Skyrme force, as in Eq.~A1!, since in
such forces the variation ofM* with r is strictly linear; see,
for example Eq.~A3!. However, if at4 term is introduced,
i.e., a term depending simultaneously onr andp, then this
variation can become nonmonotonic@30#, and it is possible
to construct a force that hasM* /M close to 0.7 for homo-
geneous nuclear matter at the densityr0, while the value
averaged over the nuclear volume is around 1, with the re
that there is an excellent fit to the s.p. levels of finite nuc
close to the Fermi surface. But promising as this force mi
appear as a candidate for a universal effective interactio
has to be dismissed, since calculations with realistic nucle
nucleon forces on homogeneous nuclear matter@8# show that
M* varies monotonically with density.

Thus it appears that to obtain the required behavior
M* within the Skyrme framework one would have to intr
duce an explicit dependence on the density gradient@31#,
which means going beyond the limits of a pure force a
invoking rather an energy-density formalism. However, ev
with this device it seems to be impossible to obtain the
quired behavior ofM* simultaneously with the correct sur
face properties@32#.

In principle, of course, one could resolve this proble
quite unambiguously by taking a force with a realis
M* /M of around 0.7, and performing all calculations wi
the coupling between particle and surface-vibration mo
explicitly included, as in Ref.@20#. But since the basic mass
formula fit itself would have to be undertaken in this wa
such a project can scarcely be envisaged at the present
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Thus if accurate temperatures are required in the den
range 0.01 – 0.1 fm23 the most practical solution would
probably be to interpolate graphically in some way betwe
the common value ofT found for the two forces at 0.01
fm23 and the RATP value found at the bubble-homogene
transition.
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APPENDIX: THE TEMPERATURE-DEPENDENT ETF
METHOD

The specifically nuclear terms in Eq.~2.13! for the Helm-
holtz free-energy density and in Eq.~2.15! for the entropy
density, but only these terms, depend on the paramete
the Skyrme-type force being considered, SkSC6 or RATP
our case. These forces have the general form

v i j5t0~11x0Ps!d~r i j !1t1~11x1Ps!
1

2\2 $pi j
2 d~r i j !1H.c.%

1t2~11x2Ps!
1

\2pi j •d~r i j !pi j1
1

6
t3~11x3Ps!

3$a~rqi1rqj !
a1bra%d~r i j !1

i

\2W0~si1s j !.pi j

3d~r i j !pi j , ~A1!

with the parameters for SkSC6 being given in Ref.@9#, and
those for RATP in Ref.@21#. The parametersa andb appear-
ing in the density-dependent term are usually taken as 0
1, respectively, and this is indeed the choice made for RA
However, for the SkSC forces used in the ETFSI project
choice a51, b50 was made. The latter choice is mo
physically reasonable, since it implies that the density dep
dence of the effective interaction between two protons,
example, depends only on the proton density~see Ref.@1# for
a fuller discussion!. Note that we have no need for the pa
ing forces that usually accompany these Skyrme forces, s
we neglect pairing correlations.

We have now for the nuclear-energy density at any po

Enuc5(
q

\2

2Mq*
tq1*01*w1*JJ , ~A2!

where the effective massMq* is given by

\2

2Mq*
5

\2

2Mq
1
1

4H t1S 11
1

2
x1D1t2S 11

1

2
x2D J r

1
1

4H t2S 121x2D2t1S 121x1D J rq , ~A3!
ity

n

s

i-
-

f

of
in

nd
.
e

n-
r

ce

t

and the different potential-energy terms are

*05
1

2
t0H S 11

1

2
x0D r22S 121x0D(

q
rq
2J

1
1

16H 3t1S 11
1

2
x1D2t2S 11

1

2
x2D J ~¹r!2

2
1

16H 3t1S 121x1D1t2S 121x2D J (
q

~¹rq!
2

1
1

6
at3H S 11

1

2
x3D rarnrp

1
1

16
~12x3!(

q
~2rq!

a12J
1

1

12
bt3H S 11

1

2
x3D r22S 121x3D(

q
rq
2J ra,

~A4a!

*w5
1

2
W0H Jn•“rp1Jp•“rn12(

q
Jq•“rqJ ,

~A4b!

and

*JJ52
1

16
~ t1x11t2x2!J

21
1

16
~ t12t2!(

q
Jq
2 . ~A4c!

The term JJ is usually neglected, but it is retained in th
definition of the RATP and SkSC forces, so we must
likewise. However, in doing so we shall make some appro
mations, and in particular we shall neglect its contribution
the spin-orbit field, which we thus write as

Wq5
1

2
W0“~r1rq!. ~A5!

It then follows that

*w5(
q

Wq–Jq , ~A6!

which allows us to rewrite Eq.~A2! as

Enuc5(
q

S \2

2Mq
f qtq1Wq–JqD1*01*JJ , ~A7!

where

f q5
Mq

Mq*
. ~A8!

Concentrating on the first term of Eq.~A7!, we make use of
the various ETF expansions oftq andJq to obtain

\2

2Mq
f qtq1Wq–Jq5

\2

2Mq
$L0q~T!1Lwq~T!%, ~A9!

with
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L0q~T!5L0q
TF~T!1L0q

~2!~T!1L0q
~4a!~T!1L0q

~4b!~T!.
~A10!

For T50 we have

L0q
TF~0!5

3

5
~3p2!2/3f qrq

5/3, ~A11a!

L0q
~2!~0!5

1

3
f q“

2rq1
1

36
f q

~“rq!
2

rq
1
1

6
“f q•“rq

2
1

12
rq

~“f q!
2

f q
1
1

6
rq“

2f q , ~A11b!

L0q
~4a!~0!5

1

~3p2!2/3
f qrq

1/3H 1

270S“
2rq
rq

D 2
2

1

240

“

2rq
rq

S“rq
rq

D 21 1

810S“rq
rq

D 4J ,
~A11c!

and

L0q
~4b!~0!5

1

~3p2!2/3
rq
1/3H 2

1

240

~“2f q!
2

f q

1
1

120

~“2f q!~“f q!
2

f q
2 2

1

240

~“f q!
4

f q
3

1
1

360
~“2f q!

“f q–“rq
f qrq

2
1

360
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~“f q!
2

f qrq

2
7

2160
~“2f q!S“rq

rq
D 21 1

540S“rq
rq

D 2 ~“f q!
2

f q

1
7

2160

~“rq–“ f q!
2

f qrq
2 2

11

3240S“rq
rq

D 2“rq–“ f q
rq

1
7

1080
~“2rq!

~“rq–“ f q!

rq
2 1

1

180
~“2f q!

“

2rq
rq

J
~A11d!

@the separation of the fourth-order terms here intoL0q
(4a)(0)

andL0q
(4b)(0) is such that the latter vanishes forf q51#. Also

at T50 we have

Lwq~0!5Lwq
~2!~0!1Lwq

~4!~0!, ~A12!

in which

Lwq
~2!522

rq
f q
Sq
2 ~A13a!

and

Lwq
~4!~0!5

1

~3p2!2/3
rq
1/3

f q
H 12 ~“•Sq!

21
1

24
Sq
2“

2rq
rq

1
1

12
~“•Sq!SSq–“rq

rq
D2

1

36
Sq
2S“rq

rq
D 21 Sq

4

f q
2

2
3

4
~“•Sq!SSq–“ f q

f q
D

1
1

8
Sq
2“

2f q
f q

1
1

4SSq–“ f q
f q

D 2J , ~A13b!

where

Sq5
Mq

\2Wq . ~A14!

The second-order terms here come from Eqs.~3.20! and
~3.21! of Brack, Guet, and Ha˚kansson~BGH! @27#, while the
fourth-order terms come from Eqs.~A4! and ~A5! of the
same paper. The BGH results are based in turn on the ex
sions oftq andJq , given by Eqs.~3.20! and ~3.21! of Ref.
@7#, respectively. ~Actually, it should be noted that the
fourth-order expressions are valid only on integrating o
the whole of space, or more generally, over a region on
surface of which the density gradients vanish.!

We turn now to the case ofT.0, basing all the following
expressions on BGH@27# and BBD@12#. Up to second order
we have

L0q
TF~T!5

1

2p2

1

f q
3/2S 2MqT

\2 D 5/2I 3/2 ~hq!, ~A15a!

L0q
~2!~T!5 f qgq

~“rq!
2

rq
1S 94 gq2

7

48D rq
~“f q!

2

f q

1
1

6
~rq“

2f q2 f q“
2rq!

1S 3gq2
5

12D“rq–“ f q, ~A15b!

and

Lwq
~2!~T!5Lwq

~2!~0!, ~A15c!

where we have introduced the Fermi integral

I s~h!5E
0

` xs

11exp~x2h!
dx, ~A16!

computed as in Ref.@29#, andhq is given by

rq~r!5
1

2p2S 2MqT

\2f q
D 3/2I 1/2~hq!. ~A17!

Also

gq5zq2nq , ~A18!

in which

zq52
I 1/2~hq!I2~3/2!~hq!

12I2~1/2!
2 ~hq!

~A19a!

and
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nq52
3

2
zq136zq

22
3

8

I 1/2
2 ~hq!I2~5/2!~hq!

I2~1/2!
3 ~hq!

. ~A19b!

The fourth-order terms forT.0 are given by BBD only for
f q51 andWq50:

L0q
~4!~T, f q51,Wq50!5

\2

2Mq

1

TH ~u11x1!
~“2rq!

2

rq

1~u21x2!
“

2rq~“rq!
2

rq
2 1~u31x3!

~“rq!
4

rq
3 J ,
~A20!

where the functionsu i andx i are as in Appendix B of BBD.
Since

lim
T→0

L0q
~4!~T, f q51,Wq50!5

L0q
~4a!~0!

f q
, ~A21!

we approximate the total fourth-order term forT.0 by

L0q
~4!~T!.L0q

~4!~T, f q51,Wq50!1
f q21

f q
L0q

~4a!~0!

1L0q
~4b!~0! ~A22a!

and

Lwq
~4!~T!.Lwq

~4!~0!. ~A22b!

With the last two terms in Eq.~A22a! and the right-hand side
of Eq. ~A22b! vanishing if f q51 andWq50, we see that
these two equations are exact for allT if f q51 and
Wq50, and atT50 for arbitraryf q andWq . This is the best
that one can do in the present state of the theory. Altoget
then, in Eq.~A9! we write

L0q~T!.L0q
~TF!~T!1L0q

~2!~T!1L0q
~4!~T, f q51,Wq50!

1
f q21

f q
L0q

~4a!~0!1L0q
~4b!~0! ~A23a!

and

Lwq~T!5Lwq
~2!~0!1Lwq

~4!~0!. ~A23b!

Likewise for the total nuclear entropy density we have

Snuc5(
q

$sq
~TF!1sq
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where
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“
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2
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1x3

~“rq!
4

rq
3 J ; ~A25c!

the fourth-order term is valid only forf q51 andWq50.
For the nuclear Helmholtz free-energy dens

Fnuc5Enuc2TSnuc we can now write, to within the approxi
mations of the foregoing,

Fnuc5(
q

S \2

2Mq
H G0q

~TF!1G0q
~2!1G0q

~4!~ f q51,Wq50!

1
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where
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~A27b!

and

G0q
~4!~ f q51,Wq50!5

\2

2Mq

1

TH u1
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2

rq
1u2

“

2rq~“rq!
2

rq
2

1u3
~“rq!

4

rq
3 J . ~A27c!

Finally, for theJJ term, given by Eq.~A4c!, since it is small
we truncate the semiclassical expansion ofJq at the second
order,

Jq52
2Mq

\2

1

f q
rqWq . ~A28!
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