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Equation of state of stellar nuclear matter in the temperature-dependent extended
Thomas-Fermi formalism
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Using the full temperature-dependent extended Thomas-Fermi formalism, we calculate the equation of state
of inhomogeneous nuclear matter for a force that has been fitted to essentially all nuclear masses, and has the
correct properties of neutron matter. Both droplet and bubble phases are considered, under the conditions
appropriate to a collapsing star. We examine the relevance of the choice of effective mass to the temperature.
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PACS numbgs): 21.65:+f, 21.30.Fe, 21.66:n, 26.60:+c

I. INTRODUCTION [9] devised a new force, SKSC6, which gives a much im-
proved fit to neutron matter, without a significant deteriora-
We are involved in a program to develop a microscopiction in the quality of the fit to the mass data, the rms error

theory of nuclear systems applicable to the wide variety ofncreasing to 0.794 Me\(see also Ref[3]). This force is
phenomena encountered at subnuclear and nuclear densitigsis very well suited to the determination of the equation of
during and after stellar collapse, and in particular to describ&tate(EOS of stellar nuclear matter, and the present paper is
all these phenomena, as far as possible, in terms of a singldeévoted essentially to this calculation.

universal, effective interaction. The main achievement so far L€t us recall, therefore, some of the relevant aspects of
has been the development for the first time of a mass formul§t€!lar_collapse. Once the iron core of a massive star

based entirely on microscopic forces, the ETFSI-1 mass forlM1=8Mo) starts to collapsésee, for example, the review
mula [1-5]. The astrophysical interest of such a mass for.0f Bethe[10]), nuclei that are stable under normal terrestrial

mula lies in the fact that the process of nucleosynthesis condlftlons will begln to capture e_Iectrons, forming thereby
nuclei that are highly neutron-rich and yet nevertheless

i ich that there i h f bei ble t Stable under the conditions of rising density. At the same
S0 neutron-rich that there 1S no hope ot being able 1o measurtﬁne, neutrons will leak out as the temperature rises, forming

them in the Iaboratqry. It is thus of t_he greatest importance t%ffectively a vapor in which the nuclei are suspended, like
be able to make reliable extrapolations of masses away frofyater droplets in a fog. Eventually, as the nuclei come closer
the known region, relatively close to the stability line, out 5nq closer together, bridges will form between them, and the
towards the neutron-drip line. _ ~entire core of the star will resemble a foam, or Swiss cheese,
The ETFSI method is essentially a high-speed approximaghe holes being filled with a neutron vapor. Finally, this so-
tion to the Hartree-FockHF) method, with a macroscopic called bubble phase goes over into the homogeneous phase
part given by the extended Thomas-Fer(®TF) method of nuclear matter when the density reaches about 60% the
[6,7], and shell corrections calculated by the so-calleddensity of ordinary nuclei, which is aroung=0.16
Strutinsky-integral(Sl) method[1,5]. Pairing is handled in  fm ~3=2.6x10" gcm™2.
the BCS approximation with @-function force. Although The lowest density that we consider is abqut0.01
this is really a microscopic-macroscopic mass formula, thergm =2 at which point nuclear matter is still in the droplet
is a much greater coherence between the two parts than is tlpﬁase_ However, neutrino trapping will a|ready be well es-
case with mass formulas based on the detpmodel, since  taplished at this densitgit sets in at aroungp = 10~* fm
the same Skyrme force underlies both parts. In fact, it has-3) and no further electron capture occurs, with the result

been showr1,2] that the ETFSI method is equivalent to the that the electron concentration per nucleqnwill thereafter

sameform of Skyrme force to the mass data they give essenneytrino fraction we taker, = 0.07 per nucleon. Under
tially the same extrapolation. This presumably accounts foghese conditions the collapse will be essentially adiabatic,
the fact that with just eight parameters the underlying forceang thus isentropic, insofar as thermodynamic equilibrium is
of the ETFSI-1 mass formula SkSC4 fits the 1492 mass datgaintained; for the constant value of the entropy per nucleon
for A = 36 with an rms error of only 0.736 Me4]. during this stage of the collapse we shall take the fairly typi-

However, the force SkSC4 fails to reproduce the energycy| value ofs = 1.0 (with temperature measured in energy
density curve of neutron matter, as calculated by realistignjts, entropy is dimensionless

nucleon-nucleon force$]. This has serious implications for  of crucial importance for the collapse is the adiabatic
stellar collapse, and to respond to this problem we recentlyhdex, defined by
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with the derivative evaluated under the conditions of conwhichM*/M =0.67 in nuclear matter at the densijty, even

stant entropy and leptonic fractions that we assume to holdhough its symmetry coefficient and incompressibilityK,,

The stability of a star depends on the valudoin the core  are very similar to those of force SkSCfee Table Il of Ref.

being larger thar§, a value that corresponds to ultrarelativ- [9]). However, because of its effective mass the force RATP

istic leptons. Because of nuclear attractions the adiabatic ins not very suitable for the masses of finite nuclei, since there

dex can fall below this critical value, and when this happenwill be significant errors for open-shell nuclei, despite the

collapse will begin. However, as nuclear densities are apgood fit to doubly magic nuclei.

proached in the corE will rise above? again, with the result We showed in Refl9] that the difference iM* between

that the collapse will come rapidly to a halt, and be reversedhe two forces has a significant impact on the equation of

into a bounce that may lead to a supernova explosion. state(EQOS of homogeneous nuclear matter, since the lower
Since the EOS of the homogeneous phase of nuclear mahe value ofM* the higher will be the temperature for a

ter, which prevails at densities greater than about 0.1@iven entropy and densitfsee also Ref[22]). Thus in the

fm 2, has already been calculated for force Sk§86we  present paper all the calculations that we perform with force

concentrate in this paper on the inhomogeneous phasefsce are repeated with force RATP, in order to examine

found at lower densities, describing these phases by thge extent to which the problem of the effective mass is

model of the W|gne(—Se|tz cell. qu the callculat|on. of the .ajevant to the EOS during the inhomogeneous stages of

nucl.ear-energ'y density corresponding to this force it woul ower density that precede the transition to the homogeneous

_?_Eo'nqggﬂgm?ﬁe:ﬁoéseee TOE; eL;(Saun?theerg';g%;”ggtiz?ndeﬂﬁase. Exactly the same calculational procedure is adopted

' ! : ' ., for the two forces, and in particular RATP is calculated with

since the mass fit that determined this force involved th
fourth-order extended Thomas-Fermi method, we calculat he TETF method, even though the HF. methoq was used' for
e fit to the masses of the doubly magic nuclei; the resulting

the energy density in stellar nuclear matter by using th . - S
temperature-dependent extended Thomas-FEFETF) for- €701 is unlikely to be significant. _ _
malism of Bartel, Brack, and Duran@BD) [12]. We will, We descrlbe_z our ca!culatat_lonal methoc_js,_ including the
of course, miss the shell corrections that are given by th&nodel of the Wigner-Seitz cell in Sec. II, while in Sec. 11l we
ETFSI method, but these are knoWb3,14 to be washed Present and discuss our results. In the Appendix we summa-
out completely for temperatures above 3 or 4 MeV, and aréize for convenience the main results of the TETF formalism;
thus negligible for the temperatures that we deal with in thigve show in particular how we deal with certain limitations of
paper. the present form of this formalisfiZ2].

Now despite its excellent fit to nuclear masses and the
neutron gas, there remains a difficulty with this new force

SkSC6. As with all the Skyrme-type forces that we have Il. MODEL AND CALCULATION
developed for the ETFSI method, the effective nucleon mass o )
M* has been set equal to the real nucleon nMsgor the The matter comprising the core of a collapsing star con-

calculation of the masses of all but light nuclei, and fissionsists of a mixture of neutrons, protons, electrons, and neutri-
barriers, this is indeed a good approximation, since it leads tgos(other particles may put in an appearance at supernuclear
the observed density of single-parti¢kep) states in the vi- densities, but this is of no concern her&his mixture is
cinity of the Fermi surface being well reproduced in ordinaryrigorously neutral on the macroscopic scale, so that the frac-
mean-field calculationgHF or ETFS) [15]. However, all  tion of nucleons that are protons will be exactly equal to the
nuclear-matter calculations with realistic foraqege, for ex- numberY, of electrons per nucleon.
ample, Refs[8,16]) indicate that at the equilibrium density ~ Whatever the density and temperatur@ of this system
po the value ofM*/M lies between 0.6 and 0.8. This is it is always possible, using the formalism of Re®], for
confirmed experimentally, both by the deepest s.p. states @xample, to calculate the energy per nucleoand the en-
light nuclei[17], and by giant multipole resonancgk3,19.  tropy per nucleors on the assumption that the system is
Actually, there is no contradiction, since it has been showrhomogeneous. However, equilibrium for given valuespof
that one can obtain reasonable s.p. level densities in the vandT corresponds to the Helmholtz free energy per nucleon
cinity of the Fermi surface of finite nuclei with realistic val- f=e—Tsbeing minimized. Now for densities close gg, or
ues ofM*, i.e., M*/M= 0.6 — 0.8, provided one takes into larger, thermal equilibrium will indeed be characterized by
account the coupling between particle modes and surfacéhe homogeneous configuration, while it is equally clear that
vibration modeq20]. Such calculations are, however, com- for terrestrial temperatures and pressures the equilibrium
plicated, and if one setf* =M one may regard this as a configuration will be quite different, consisting 6fFe at-
semiempirical value oM* that permits considerable phe- oms bound in a solid with an appropriate lattice configura-
nomenological success with straightforward mean-field caltion (of course, the time required for this equilibrium to be
culations. reached under terrestrial conditions is much greater than the
Thus the force SkSC6 is surely adequate for treating thage of the universe
isolated nuclei that prevail in a star right up to the moment However, since we are interested only in densities larger
where collapse begins. On the other hand, it is clear that ithanp = 0.01 fm~3, i.e., 1.6x10* g cm™3, we can assume
the final stage, where the nuclear matter is homogeneous, thieat the electrons, like the trapped neutrinos, form a homo-
effective masM* =M of force SkSC6 will be inappropri- geneous gaksee, for example, Eq2) of Ref. [23]]. Then,
ate. A much better force from this standpoint is the one offollowing Sec. 3 of Ref[9], we have for the kinetic-energy
Rayet, Arnould, Tondeur, and Pauld®RATP) [21], for  density of the electrons
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1 uge 2 272 For the neutron and proton density distribution functions we
€e=m (ﬁc)3\1+§ prak (2.)  follow Ref.[11], adopting the form

Pogq

where we have introduced the electron Fermi energy (r)= n
Pq PBq 1+exd (r—Cgqlagl’

(2.10
toe=1C(37Yep) ™, (2.2
in which pgq is a constant background term on which is
. msuperimposed a Fermi-function radial variation. Positive val-

pletely relativistic, i.e., neglects their mass entirely, but iN-es of the constanpgq in this latter term imply that the

cludes the lowest-order departure from total degeneracy, i nsity decreases from the center of the cell to its surface
adequate over the density and temperature range qon_sidergﬁd thus correspond to the droplet phase found at the Iowe,r
here. To this same order the electron entropy density is end of the density range; likewise negative values corre-
1 mz)e spond to the bubble phase. _
5e=§ (ﬁ_C)‘Q’T' (2.3 The two constantg, are not independent of the other
parameters, but rather are fixed by

The corresponding expressions for the neutrinos are

— 3
1 Mg / 2 ’772T2 PBq:Pq_EIqPOqi (21])
£~g=2 1+ ——], (2.4 ¢
™ (fLC) \ 3 Moy
where
where
2 1/3 Re 1 2
Hop,=hc(677Y ,p) (2.5 Iq—fo 1+exp[(r—Cq)/aq]r dr. (2.12
and

The Wigner-Seitz cell is thus characterized by seven param-
1 ,ug,, eters,poq, Cq, a4 (d=n,p), andR;. However, these pa-
6 (hc)3 (2.6 rameters are not completely independent but must satisfy the
constraint that the densitigg,(r) be positive at all points in
Model of the Wigner-Seitz CelFor the nucleons we the cell; we return to this problem below. The presence of
adopt the model of the spherical Wigner-Seitz cell, accordindR, as a free parameter means that the number of nucleons
to which all the nucleons are grouped into identical spheriiN, of each type in the cell is likewise not fixed.
cally symmetrical clusters of radilg.. (Relaxing the con- A slight difficulty with the parametrization of Eq2.10
straint of spherical symmetry shows that the droplet-bubblés that the density gradients will not vanish identically on the
transition becomes smeared out over a finite density intervadell surface, which means that the smooth background pre-
[23], but the overall effect on the EOS does not seem to b&ailing between droplets or bubbles is not represented ex-
very great; moreover, the transition between the bubble andctly. Moreover, the vanishing of these gradients is formally
homogeneous phases remains injathe average neutron necessary for the validity of some of the fourth-order terms
and proton densities over such a cell must thus each be equalthe TETF formalism of the Appendix. But these gradients
to the corresponding macroscopic densities and p,, are in practice very small, and no problem is expected. More
given by serious is the argumefi24] that the Fermi-like parametriza-
tion may not allow a self-consistent calculation to be ap-
pn=p(1-Ye) (2.73  proximated with an accuracy that is sufficient in all cases.
However, it is probably appropriate in the case of force
and SkSCS6, since precisely this parametrization was adopted for
o finite nuclei in the mass fit that determined this force. As for
pPp=pYe, (2.7b  force RATP, since our interest in it is confined to a compari-
L son with force SkSC&in the context of the effective-mass
where p is the total macroscopic densitwritten simply as  problen), it seems altogether reasonable to use the same pa-
p in the foregoing. The neutron and proton density distribu- rametrization for the two forces.
tion functions within the celp,(r) andpp(r) are then con- For a given set of the distribution parameters appearing in
strained by Eqg. (2.10 the specifically nuclear free-energy and entropy
densitiesF,c and S,,,= S, + S, respectively, can be deter-
if c r)rzdr—_ 2.9 mined in the TETF formalism by using the results of the
R3Jo P ~Pa : Appendix; see in particular Eq&A24) and (A26). The total
free-energy density in the cell is then
whereq denotes or p, as the case may be. The total num-

S,

ber of nucleons of each type in the cell is F=Fruct &+ E,—T(SetS,)+ &, (2.13
AT in which the last term is the total Coulomb energy density,
Ng=—=R:pg. (2.9 . )
@ 3 cra direct plus exchange, given by
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r 12 r2 1
— 2 _ ’ I ’ _ -
Ec=2me(py Pe)[ fopp(r )( r r'jdr’+pe 6] 9q 1+exp(—Cq/aq)' (2.199
3e?(3\13 It suffices then to define a new variatfig by
- T(;) (Pg/3+ pe3), (2.14 e

1 _
_ . p0q=§{p§q(l+tanh9q)+p0q(1—tanh9q)}, (2.20
wherep.= p, is the electron density. The total entropy den-
sity (we need this separately and independently of the fre

%nd take this rather th in the set of variational param-
energy, in order to be able to calculate adiapatdikewise ¥ b

eters; for all real values ob, the densitiespy(r) will be
non-negative throughout the cell.
Oncef has been minimized at a given point the entropy
. . Rer nucleors is calculated at the corresponding equilibrium
Because the average proton density over the cell is equ . ST X :
i — . . configuration: this is required for the subsequent construction
to the macroscopic proton densy, , which in turn is equal ot adiabats. With all the points for a given temperature cal-

to the density of the homogeneous electrongasit follows  ¢jated, the corresponding pressures are obtained by numeri-
that the cells will be electrically neutral. Since furthermore 4| gifferentiation, according to

the cells are assumed to be spherically symmetrical there will

be no interaction between them, and it will be sufficient to of
consider just one cell. That is, the average free energy and Pzpz(a—) .
entropy per nucleon in the entire system will be given by the Plry.y,
corresponding quantities averaged over just one cell:

S=8 1yt St S, . (2.15

(2.2

For this and the subsequent numerical differentiations we use
Re polynomial smoothingsubroutinesavcoL of Ref.[25]).
f=4’n’f F(r)r2dr/(N,+ Np) (2.163 At this point we have at our disposal the pressBrand
0 the entropy per nucleosas a function of the density for the
four temperatures. Using then cubic interpolatisabroutine
POLINT [25]) we can determine for each density first the tem-
R peratureT and then the pressure correspondingstel.0.
s=47rJ cS(r)err/(NnJr Nop). (2.16h Ong f_urther numenc_al differentiation th_en gives us the adia-
0 batic indexI" according to Eq(1.1); particular attention has
to be paid in this last differentiation to an adequate smooth-
Calculational Details.Using the model described in the ing of the pressures, especially in the region of phase transi-
foregoing, and withY,=0.33 andY,=0.07, we calculate tions.
inhomogeneous nuclear matter for each of the two forces

and

SkSC6 and RATP at temperaturesTot= 2.7, 4.0, 6.0, and IIl. RESULTS AND DISCUSSION
7.0 MeV, and for densities over the range 0.0G03025 o
0.095 fm 3. At each of these points the free enerfyyper Considering both forces SkKSC6 and RATP, we construct

nucleon is minimized with respect to the seven Wigner-Seit2diabats corresponding ts=1.0 for our inhomogeneous
parameterpg,, Cq, aq (4=n,p), andR., subject to the nuclegr matter, as descrlbed.above. In F!gs. 1, 2, and 3, re-
constraint that each of the two densitips remains non-  SPectively, we show as functions of density the temperature
negative everywhere in the cefAbove 0.085 fnii 3 we also |- the pressuré®, and the adiabatic indek. The droplet-
have to calculate the homogeneous configuration, using thiubble - and _ bubble—homogeneogs phase transitions are
methods of Ref[9], in order to establish the position of the clearly seen in all three of these figures, especially the last;
transition between the bubble and the homogeneous phaseﬁ?ey occur at very nearly the same densities for the two
It is easy to show that this constraint of non-negative denforces.

sities is equivalent to requiring tha, be bounded by As far asP andI are concerned it is clear that only in the
homogeneous phase is there any significant difference be-

(2.17  tween the two forces. Thus it would be sufficient for these

two quantities to use SkSC6 right through from the begin-
where ning of the collapse in the subdrip region of isolated nuclei
up to the bubble-homogeneous transition, after which RATP,

ry with its more appropriate effective mass, would be better. On
q

. _
Pog~ Pog= Pog »

=, 21 the other hand, we see from Fig. 1 that even in the inhomo-
Poq (3IR)1q—9q (218 geneous phases the temperature is considerably higher for
. ) RATP than for SKSC6. Thus, while one could certainly use
in which SkSC6 M*/M = 1.0) in the subdrip region of isolated nu-
clei, and RATP M*/M = 0.67) in the homogeneous region,
9 = 1 (2.193 neither force would be appropriate in the intermediate region
9 1+exd(R.—Cgy)/ayl

if one is interested in the temperature runs.
A quite similar conclusion can be found in the work of
and Barrancoet al.[26], who used the forces SkiM[27] and T6
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FIG. 1. Adiabatic temperature as a function of
density 6=1.0).

Adiabatic Temperature T

o (fm™)

[28], for whichM*/M = 0.79 and 1.0, respectivelyTheir  culations by virtue of the fact that the incompressibilities of
results for these two forces are qualitatively similar to ourstheir two forces are rather differe217 MeV for SkM*, as

for RATP and SkSCB6, respectively, although the slightly dif-compared to 236 MeV for T whereas in our calculations
ferent values that we have taken fgg and Y, prevent a they are very similaf235.4 MeV for SkSC6, 239.6 MeV for
quantitative comparison.However, the evaluation of the RATP). Likewise, it is not altogether clear in Ref26]

role of the effective mass is somewhat obscured in their calwhether the differences between the temperature runs found

FIG. 2. Adiabatic pressure as a function of
density 6=1.0).

Adiabatic Pressure P
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Adiabatic Index I

FIG. 3. Adiabatic indexI" as a function of
density 6=1.0).

p (fm™)

for the two forces reflects the difference between the effecin homogeneous nuclear matter at the densjtyo exactly 1

tive masses or between the incompressibilities. We believat zero density, in such a way that the average value over the
that our calculations show beyond any doubt that the effecyolume of an isolated finite nucleus is close to 1, the semi-
tive mass is quite irrelevant to the pressure and adiabatiempirical value. This cannot be realized with any of the con-
index in the inhomogeneous phases, but of considerable ifyentional forms of Skyrme force, as in E(A1), since in
portance for the temperature runs. such forces the variation ofl * with p is strictly linear; see,

In any case, we have achieved the main goal of this papefe; example Eq(A3). However, if at, term is introduced,

yvhich was to make a TETF calculation of the EOS of thei.e., a term depending simultaneously prand p, then this

Sfariation can become nonmonotoni®0], and it is possible
construct a force that had*/M close to 0.7 for homo-
eneous nuclear matter at the dengity while the value

(SkSC6 that has been fitted to essentially all the mass dat
and has the correct neutron-matter properties. Even thou
the results are not notably different from what has alread . .
been obtained with less precisely fitted forces having théaveraged over the nuclear_volume is around 1, W'.th. the resqlt
same symmetry coefficiert and effective mas* [26], that there is an e>.<cellent fit to the s.p. levels o_f finite nugle|
this is an essential step in our overall project of calculatingClose to the Fermi surface. But promising as this force might
with a single force all the nuclear phenomena occurring afPPear as a candidate for a universal effective interaction, it
nuclear and subnuclear densities during stellar collapse. umias to be dismissed, since calculations with realistic nucleon-
fortunately, it is clear that with our force SkSC6 we havehucleon forces on homogeneous nuclear ma@show that
succeeded only partially in realizing this project, since forM™ varies monotonically with density.
densities greater than 0.01 fm there emerge the ambigu- ~ Thus it appears that to obtain the required behavior of
ities associated with the effective mass that we have reported * within the Skyrme framework one would have to intro-
here. Actually, for densities greater than 0.1 T i.e., for ~ duce an explicit dependence on the density gradiait,
homogeneous nuclear matter, one knows that force RATP iwhich means going beyond the limits of a pure force and
better than force SkSC6, so there is piactical problem, invoking rather an energy-density formalism. However, even
even though it would have been more satisfying if we couldwith this device it seems to be impossible to obtain the re-
have found a single universal ford®RATP cannot serve as quired behavior oM* simultaneously with the correct sur-
such a force, on account of its poor fit to the masses oface propertie$32].
open-shell nuclei.But over the density range of 0.01 — 0.1  In principle, of course, one could resolve this problem
fm 3 there is a serious practical problem: how does onejuite unambiguously by taking a force with a realistic
interpolate between the SkSC6 and RATP estimates of th®*/M of around 0.7, and performing all calculations with
temperature, given that there is no clear indication as to théhe coupling between particle and surface-vibration modes
best value oM* in this density range? explicitly included, as in Ref.20]. But since the basic mass-
We need some mechanism that will permit a continuougormula fit itself would have to be undertaken in this way,
variation ofM*/M between the realistic value of around 0.7 such a project can scarcely be envisaged at the present time.
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Thus if accurate temperatures are required in the densitgnd the different potential-energy terms are
range 0.01 — 0.1 fm® the most practical solution would

probably be to interpolate graphically in some way between _ 1 » (1 2
the common value off found for the two forces at 0.01 Yo=3to 1+§X°)p ~lg T % pq}
fm ~2 and the RATP value found at the bubble-homogeneous L L .
transition. + 1—6| 3| 1+ 5%, —to| 1+ Ex2>](vp)2
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APPENDIX: THE TEMPERATURE-DEPENDENT ETF +]__2bt3 1+§X3 P §+X3 % Pg( P

METHOD
(Ada)
The specifically nuclear terms in E.13 for the Helm-

holtz free-energy density and in E(R.15 for the entropy 1
density, but only these terms, depend on the parameters of UWZEWO[ Jn‘VPpJFJp'VPnJFZEq: Jq'VPq+=
the Skyrme-type force being considered, SKSC6 or RATP in (A4b)
our case. These forces have the general form
and

1
vij = to(1+X0Py) 8(rij) +t1(1+X1Pg) 57 {pfj (rij) + H.c} 1 o1 ,
Uj33=— — 1_6(tlxl+t2X2)J + 1_6(t1_t2)% Jq . (A4C)

1 1
+i,(1+ —pi - 8(ri))pi; + =ta(1+ : o N
Ll +%P )7z Py - o1y )Py + a1 +X3P) The term,; is usually neglected, but it is retained in the

i definition of the RATP and SkSC forces, so we must do
@ @ likewise. However, in doing so we shall make some approxi-

X{a(pq +pq)*+bp}a(ri)) + 2 Wo(0i+0)).p; , SVEn ; > APl
{8(pg+pq )"+ bp"}o(ry) 72 Wol@ita)).py mations, and in particular we shall neglect its contribution to

X 8(1)Py (A1) the spin-orbit field, which we thus write as

with the parameters for SkSC6 being given in Réifl, and Wq:%WOV(p—I—pq)_ (A5)
those for RATP in Ref[21]. The parametera andb appear-

ing in the density-dependent term are usually taken as 0 a

1, respectively, and this is indeed the choice made for RATIQI.E1 then follows that

However, for the SkSC forces used in the ETFSI project the

choicea=1, b=0 was made. The latter choice is more uw= > WqJg, (AB)
physically reasonable, since it implies that the density depen- d

dence of the effective interaction between two protons, fo

Which all t ite EqA2
example, depends only on the proton den@ge Ref[1] for ich allows us to rewrite EqA2) as

a fuller discussion Note that we have no need for the pair- £2
ing forces that usually accompany these Skyrme forces, since Enue= E oM. fqrqtWq-Jdq| T U0+ Uy5, (A7)
we neglect pairing correlations. a q

We have now for the nuclear-energy density at any point, are

h? M
5nuc:% 2N|_*Tq+UO+UW+UJJv (A2) fq= E . (A8)
g Mg
where the effective masd g is given by Concentrating on the first term of EGA7), we make use of
5 5 the various ETF expansions ef andJ, to obtain
i h + ! t 1—1—1 +i, 1+ !
— =+ =X =X/ (p 2 2
2M*  2M, 4 M\ T 27t TRt 27 h h
q q Z_Wquq+WQ'Jq: Z—Mq{Aoq(T)JrAWq(T)}, (A9)
1 1
+Z t2 E+X2 _tl E'f‘xl pq, (A3) with
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Aog(M=ALM+AZ(T)+AGD(T)+ AL (T).

(A10)
For T=0 we have
Oq( )_g( ) aPq ( a
1 1 (Vpy)? 1
2 _ q
AR(0)= 3faV?pa+ 351 5Vfa Voq
1 (Vip? 1
- 1—2qu—q“ +5PaVfq, (A11b)
1 VZp
4 1/3 q
A( a)(o) (—2)2,31‘(1pq [270( )
o) rad e )
240 pq | pq P
(All0)
and
1 1 (V)2
(4b) 3] a
Aog (0)= 37272800 ( 240 T,
1 (V2 )(VE)? 1 (Vip*
190 £2 20 3
120 fg 240 f]
1 Vi,V 1 Vig)?
+_(V2fq) q pQ__ 2pq)( q)
360 fqpq 360 fqpq

7 Vp Vpq\2(Vig)?
2 q ) > "9
~ 21600V | q)( ) +54o( ) T,

q
7 (VpgVig)? 11/ﬁ) Vpq Viq

2160 fqp2 3240 pq Pq
7 (Vpgy- Vi ) 1 Vzp
2 q q 2 q
T0s0 VP z TagY
(Alld)

[the separation of the fourth-order terms here in{§(0)
andA {3 (0) is such that the latter vanishes fop=1]. Also
atT= O we have

Awg(0)=AG(0)+Ays(0), (A12)
in which
A= —2’;—: S (A133)
and
1/3 2

S
+ —=
fo

Sq-qu B 182 % 2
36

1
+—=(V-S ==
12( q)( Pq Pq

M. ONSI, H. PRZYSIEZNIAK, AND J. M. PEARSON 55
Sy-Viq
1,V 1/SVig)\2
- 9, = q
8% T, +7 T )] (A13b)
where
Mq
S4=72Wa (A14)

The second-order terms here come from E@20 and
(3.2 of Brack, Guet, and HanssonBGH) [27], while the
fourth-order terms come from Eq$A4) and (A5) of the
same paper. The BGH results are based in turn on the expan-
sions of 7y andJg, given by Eqs(3.20 and(3.21) of Ref.
[7], respectively.(Actually, it should be noted that the
fourth-order expressions are valid only on integrating over
the whole of space, or more generally, over a region on the
surface of which the density gradients vanish.

We turn now to the case @0, basing all the following
expressions on BGIR7] and BBD[12]. Up to second order
we have

ATET) = 1 1(2MT

5/2
2.2 73R h—g) l32(7mg), (Al5a)
q

(qu)2
f

AR(T)=fq74

(Vo)® (9 7
47 28/P

q

E V2f,—f,V?
+6(Pq q g Pq)

(Al15b)

5
+|3yq— 1—2) Vpq- Vi,

and
A<2>(T) A<2>(0) (A150¢)

where we have introduced the Fermi integral

I (7)= fo md& (Al6)
computed as in Ref29], and 7 is given by
1 3/2
Pq(r) ﬁzf ) Il/2(77q)' (A17)
Also
Yo=La— Vg, (A18)
in which
L 7! - 32 1)
{q=— (A199
d 12 2—(1/2)( 7q)
and
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P 77q) I (52(7g)
- (1/2)( 77q)

gq 3602 . (A19b)

The fourth-order terms fof >0 are given by BBD only for
fq=1 andW,=0:

ﬁ2 ( 2p )2
AGH(T 1, 1,wq=0):m$ (01+ x1)——
VZpq(Vpg) (Vpg)*
+(0+ X))+ (03+ x3)—3—
pq q

where the function®; andy; are as in Appendix B of BBD.

Since

A(4a)(0)

fq '

; 4
lim AGg) (T f
T—0

=1W,=0)= (A21)

we approximate the total fourth-order term fbr0 by

3147

e B [2MgT|%?
oy :WW I3 7q) = mqpq,  (A258)
h? fqvg[(Vpg)? 9 (VE\? 3
2_ _ 9°q q R — .
%M, T | pg AP, TEVPa Vi)
(A25b)
and
(,u)_( h? )21{)( (Vzpq>2+x V2 pq<qu>
- 2 1
a9 l2My) T Pq P2
v 4
+X3( paq) ]; (A250)
Pq

the fourth-order term is valid only fof,=1 andW,=0.

For the nuclear Helmholtz free-energy density
Foue= Enue— TShue We can now write, to within the approxi-
mations of the foregoing,

Frue= Z( [r<TF>+r<2>+r<4>(fq=1,wq=0)
q q

fo—1
i + 2= AGB(0)+ AL (0)+ Ayg(0) | | +ug+uy,,
(4) (4) q (4a) f
Aog (T)=Agg (T, fq=1Wy=0)+ ——Agq"(0) q
fq =0 (A26)
(4b)
Aoq (0) (A223) where
and
6 1 1(2MgT\%2 |v| ol
@ @ Log ' =—3272 52| lsdna)* 72— 7apa.
Ag(T)=Ay4(0). (A22b) q (A278)
With the last two terms in EA22a) and the right-hand side (Vp)2 (9 7 (Vf,)2
of Eq. (A22b) vanishing iff,=1 andW,=0, we see that ={4fq YPa (— o= —)Pq k!
these two equations are exact for dl if f;=1 and 4 48 fq
Wy=0, and aff =0 for arbitraryf, andW, . This is the best 1 5
that one can do in the present state of the theory. Altogether, g(pquf Vzpq)-I— 3¢q— 1—2) Vpq-Vig,
then, in Eq.(A9) we write
(A27b)
Aog(M=AG(T)+AG(T)+ AL (T, fg=1W,=0) and
-1
+ ALY (0)+ AL (0) (A233) T (fq=1W,=0) " 1r0 (Vepa)® , , Voro(Veg)”
q , = = —_ +
a 2M, T| ! pq 2 P
" +0 (Vog) ] (A270)
373
Awg(T)=AZ(0)+ A4 (0). (A23b) Py

Likewise for the total nuclear entropy density we have
Shuc= }q} {oP+o@+ oM (f,=1W,=0)}, (A24)

where

Finally, for the; term, given by Eq(A4c), since it is small
we truncate the semiclassical expansionpft the second
order,

2M, 1

q_ - ?— quWq . (A28)
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