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Calculation of the properties of thes meson in a generalized Nambu–Jona-Lasinio model
with Lorentz-vector confinement

L. S. Celenza, Xiang-Dong Li, and C. M. Shakin*

Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York, Brooklyn, New York
~Received 4 December 1996!

A recent analysis by To¨rnqvist and Roos suggests that thes meson has a mass of 860 MeV with a width of
880 MeV. In this work we calculate the properties of thes meson using a generalized Nambu–Jona-Lasinio
model that includes a model of confinement. We describe, in some detail, how thes coupling to states in the
two-pion continuum may be calculated, when using a Lorentz-vector confining interaction. As part of our work
we provide a general procedure for calculating various loop diagrams in Minkowski momentum space for
quarks in the presence of the confining interaction. We study the properties of thes meson by considering
t-channel scalar-isoscalar exchange between two quarks. The resulting quark-quarkT matrix tqq(q

2) has
Retqq(q

2)50 for q25(0.823 GeV)2. Thus, we havems50.823 GeV. However, the coupling of thes to the
two-pion states is so large as to makeutqq(q2)u a rather smooth function over a broad range ofq2. Therefore,
we do not attempt to assign a width for the resonance.@S0556-2813~97!01606-3#

PACS number~s!: 24.85.1p, 12.39.Fe, 14.40.Cs
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I. INTRODUCTION

It is well known that the SU~2!-flavor version of the
Nambu–Jona-Lasinio~NJL! model predicts a scalar
isoscalar meson with massms

25(2mq)
21mp

2 , wheremq is
the constituent quark mass@1#. ~We have usually usedmq

5260 MeV in our work, so thatms5540 MeV.! Since there
is no low-masss meson in the data tables, it is of interest
consider what happens to the low-mass state predicted b
NJL model as we introduce confinement and coupling to
two-pion continuum. In a recent work To¨rnqvist and Roos
@2#, who use a unitary quark model, suggest Breit-Wign
parameters for thes of ms5860 MeV andGs5880 MeV.
As we will see, our results are generally consistent with
parameters found in Ref.@2#.

In this work we wish to show how the NJL model may b
generalized to include a model of confinement. We will u
Lorentz-vector confinement, rather than the Lorentz-sc
confinement usually used, since the use of vector confi
ment allows us to maintain the chiral symmetry of the L
grangian@3#. ~That feature is particularly important, if w
wish to study the pseudoscalar octet of Goldstone bosons
example.! We have performed two types of calculations.
Ref. @3# we carried out our calculations in a Euclidean m
mentum space and were able to do a fully covariant calc
tion in which we allowed energy transfer via the confini
interaction. That work was limited to spacelike values of t
momentumq2,0. On the other hand, when we have cons
ered timelike excitations (q2.0), we have neglected energ
transfer by the confining interaction. Our method of calcu
tion for timelike q2 is similar to that used by Gross an
Milana @4,5# who assume that the only important singula
ties to be taken into account when completing integrals o
loop four-momentakm are those associated with the qua
propagators.~A review of our formalism for the case o
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Lorentz-scalar confinement may be found in Ref.@6#.! In the
work reported here, we will be concerned with the timeli
region and will neglect energy transfer by the confining
teraction. That avoids the necessity of considering singul
ties associated with that interaction when performing lo
integrals.

We will begin our discussion by describing the covaria
formalism, which may be used in Euclidean-space calcu
tions. We will then go on to neglect energy transfer. In th
approximation, we will provide results for vertex function
of the confining interaction using the formalism presented
Ref. @6#.

The Lagrangian of our model is

L5q̄~x!~ i ]”2mq
0!q~x!1

GS

2
$@ q̄~x!q~x!#2

1@ q̄~x!ig5tq~x!#2%1Lconf, ~1.1!

wheremq
0 is the current quark mass. Here, we choose

Lconf5
1

4
q̄~x!gmq~x!VC~x2y!q̄~y!gmq~y!. ~1.2!

Note thatVC(r )5krexp@2mr# in the noncovariant formal-
ism, wherex andy are at equal time. Since our calculation
are made in momentum space, we include a small param
m50.030 GeV to soften the singularities of the Fourier tran
form of VC(r ). We include the factor14 in Eq. ~1.2! so that
the value ofk we quote can be directly compared to th
value of k used in the case of Lorentz-scalar confinem
k.0.20 GeV2.

The organization of our work is as follows. In Sec. II w
define a vertex function that serves to sum a ‘‘ladder’’
confining interactions. This vertex, when inserted into t
quark-antiquark~polarization! loop diagrams, removes th
unphysicalqq̄ unitary cut, so that the loop integral is real.
Sec. III we describe the calculation of polarization diagra
and provide a value for the mass of thes in the presence of
confinement. In Sec. IV we study the coupling of thes to
3083 © 1997 The American Physical Society
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states of two pions and in Sec. V we show how we m
calculate the contribution to thes self-energy due to the
coupling to the two-pion continuum.~Again, confinement
plays an important role in removing unphysicalqq̄ cuts in
thes self-energy.! In Sec. V we calculate the imaginary pa
of the self-energy due to coupling to the two-pion states
go on to calculate the real part using a once-subtracted
persion relation.~Note that, while the polarization diagram
are of ordernc , the self-energy diagrams considered in S
V are of order 1 in the standard counting of color factors.! In
Sec. VI, we study the quark-quarkT matrix for scalar-
isoscalart-channel exchange and show that the coupling
the two-pion continuum is so large as to leave only slig
evidence of the presence of thes. Section VII contains fur-
ther discussion and some conclusions.

II. VERTEX FUNCTIONS FOR LORENTZ-VECTOR
CONFINEMENT

We have considered~Lorentz! scalar confinement in ou
earlier work@6–8#. However, we have recently shown that,
one uses Lorentz-vector confinement, one may maintain
chiral symmetry of the Lagrangian, if the current quark ma
mq
0 is 0 @3#. Therefore, we will continue our use of Lorent

vector confinement in this work. In this section we will co
sider a scalar-isoscalar vertex function.„We use the notation
S(p)5@p”2mq1 i e#21 for the quark propagator, withmq
being the constituent quark mass.…

With reference to Fig. 1~a!, we define a vertex that satis

FIG. 1. ~a! The diagram represents the equation for the ver
ḠS(q,k) that sums a series of confining interactions. These inte
tions are shown here as dashed lines.~b! A perturbative expansion
for ḠS(q,k) is shown.~c! The vertexGS

12(q,k) is obtained in our
analysis when the quark is on its mass shell.~Here the cross denote
a quark on its positive mass shell.! ~d! A perturbative expansion fo
GS

12(q,k) is shown. The dashed line introduces a factor2 iVC(k
2k8)gm(1)gm(2)/4when applying the Feynman rules in the eva
ation of the diagrams.
y

d
is-

.

o
t

he
s

fies the~inhomogeneous! equation@6#

ḠS~q,k!511 i E d4k8

~2p!4
gmS~q/21k8!ḠS~q,k8!

3S~2q/21k8!gmV
C~k2k8!/4, ~2.1!

where, in the covariant formalism,

VC~k2k8!528pkH 1

@~k2k8!22m2#2

1
4m2

@~k2k8!22m2#3J . ~2.2!

In the figure, the filled triangular area is the verte
ḠS(q,k). In general, one may write

ḠS~q,k!5a1~q
2,q•k,k2!1k”̂a2~q

2,q•k,k2!

1q”a3~q
2,q•k,k2!12ismnq

mkna4~q,q•k,k
2!.

~2.3!

Here k̂m5km2(k•q)qm/q2. @In some cases, we will insert
bar over quantities that have Dirac matrix indices; for e
ample, we wroteḠS(q,k) in Eqs. ~2.1! and ~2.3!.# We will
not need to consider the general case given in Eq.~2.3!, since
the functions we calculate will not depend upon the varia
q•k. ~That feature has its origin in our neglect of energ
transfer dependence in the confining interaction.!

When we perform loop integrals in Minkowski space w
will first integrate over the timelike componentk08 . In the
complexk08 plane we encounter poles due to the quarks,
antiquarks, going on mass shell.~The contour is usually cho
sen so that we have poles due to the quarks going on t
positivemass shell, while the antiquarks go on theirnegative
mass shell, when we evaluate polarization diagrams.! In
Figs. 1~c! and 1~d! we indicate the nature of the calculatio
in which the quark is on mass shell. In this case, the relev
vertex will be denoted asGS

12(q,k) and, forq50, we will
write GS

12(q0,uku). Other vertex functions that appear in o
analysis will be denoted asGS

21 , GS
11 , andGS

22 . We may
relate these functions toḠS(q,k) by the following procedure.
We first define the standard Dirac projection operators

L~1 !~k!5
k”1mq

2mq
, ~2.4!

with km5@E(k),k#, and

L~2 !~2k!5
k̃1mq

2mq
, ~2.5!

with k̃m5@2E(k),k#. Thus, we now define

L~1 !~k!ḠSL
~1 !~k!5GS

11~q,k!L~1 !~k!L~1 !~k!, ~2.6!

5GS
11~q,k!L~1 !~k!, ~2.7!

L~2 !~2k!ḠSL
~2 !~2k!5GS

22~q,k!L~2 !~2k!, ~2.8!

x
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55 3085CALCULATION OF THE PROPERTIES OF THEs . . .
L~1 !~k!ḠSL
~2 !~2k!5GS

12~q,k!L~1 !~k!L~2 !~2k!,
~2.9!

and

L~2 !~2k!ḠSL
~1 !~k!5GS

21~q,k!L~2 !~2k!L~1 !~k!.
~2.10!

Usually, we will work in the frame whereq50, so that the
various functions we have defined will depend uponq0 and
uku. In Secs. III and IV, we will see how these functions ari
naturally in our Minkowski-space calculations of loop int
grals. As we will see, the set ofG’s will be linearly related to
the functionsa1 , a2 , a3 , anda4 . We may write equations
for either set of functions by using standard projection o
erator and trace techniques, starting with Eq.~2.1!. We first
present the results for the functions defined in Eq.~2.3!. For
vector confinement, we find thata450 and that
-

a1~q,2k!5a1~q,k! ~2.11!

5a1@q
2,~k•q!2,k2#, ~2.12!

a2~q,2k!5a2~q,k! ~2.13!

5a2@q
2,~k•q!2,k2#, ~2.14!

and

a3~q,2k!52a3~q,k! ~2.15!

5~k•q!a3@q
2,~k•q!2,k2#. ~2.16!

Now, if VC(k) is independent ofk0, we also havea350.
We now neglect energy transfer and find the followi

equations are obtained for the two remaining functions.
tegrating overk08 , and writingE(k)5@k21mq

2#1/2, we have
f
.

a1~q,k!5114pE k82dk8

~2p!3
~28k82!V0

C~k,k8!@a1~q,k8!1mqa2~q,k8!#

E~k8!$q0
22@2E~k8!#2%

, ~2.17!

and

a2~q,k!524pE k82dk8

~2p!3
V1
C~k,k8!

k8

k
~4mq!@a1~q,k8!1mqa2~q,k8!#

E~k8!$q0
22@2E~k8!#2%

. ~2.18!

In these equationsk85uk8u andk5uku, and

Vl
C~k,k8!5

1

2 E
21

1

dxPl~x!VC~k21k8222kk8x!/4. ~2.19!

The functionsa1(q,k) and a2(q,k) are related to the functionsGS
12(q,k), GS

21(q,k), etc. We find thatGS
12(q,k)

5GS
21(q,k) andGS

11(q,k)5GS
22(q,k), with

GS
12~q,k!5a1~q,k!1mqa2~q,k! ~2.20!

and

GS
11~q,k!5a1~q,k!2

k2

mq
a2~q,k!. ~2.21!

These last two relations may be obtained by writingḠS(q,k)5a1(q,k)1k”̂a2(q,k) and then using the definitions o
GS

12(q,k), GS
21(q,k), etc., given in Eqs.~2.6!–~2.10!. Using the equations fora1(q,k) anda2(q,k) given above, and Eqs

~2.20! and ~2.21!, we find that, whenq50,

G12~q0,k!5114pE k82dk8

~2p!3
28k82

E~k8!

@V0
C~k,k8!1~mq

2/2kk8!V1
C~k,k8!#

~q0!22@2E~k8!#2
G12~q0,k8!, ~2.22!

and

G11~q0,k!5114pE k82dk8

~2p!3
28k82

E~k8!

@V0
C~k,k8!2~k/2k8!V1

C~k,k8!#

~q0!22@2E~k8!#2
G12~q0,k8!. ~2.23!
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@We recall that GS
12(q,k)5GS

21(q,k) and GS
11(q,k)

5GS
22(q,k), if the k0 dependence ofVC(k) is ignored. Also

note thatGS
11(q,k) may be obtained fromGS

12(q,k) by
using Eq.~2.23!.#

Values calculated forGS
12(q,uku) are given in Fig. 2 for

several values ofq0. Note that whenboth the quark and
antiquark go on their~positive! mass shell, we haveq0

52@kon
2 1mq

2#1/2 and GS
12(q0,ukonu)50. This last relation

may be used to show how our model of confinement
moves unitary cuts that would otherwise arise when
quark and antiquark both go on their positive mass shell@6#.

In Fig. 3 we show values obtained forGS
11(q0,uku). The

functions shown in Figs. 2 and 3 will be needed for t
calculations described in the following sections.

FIG. 2. Values ofGS
12(q0,uku) are shown. Starting from the

uppermost curve and moving downward, the values ofq0 are 0,
0.10, 0.20, 0.30, 0.40, 0.50, 0.55, and 0.60 MeV. For the last tw
these curves,GS

12(q0,ukonu)50. Here kon
2 5(q0/2)

22mq
2, mq

50.260 GeV,m50.030 GeV, andk50.20 GeV2.

FIG. 3. Values ofGS
11(q0,uku) are shown. Starting with the

uppermost curve and moving downward, the values ofq0 are 0, 0.4,
and 0.6 GeV. ~Here mq50.260 GeV, m50.030 GeV, andk
50.20 GeV2.!
-
e

III. POLARIZATION DIAGRAMS
AND THE MASS OF THE s MESON

It is useful to determine the parameters for thes meson
resonance by studying a quark-quarkT matrix evaluated for
t-channel scalar-isoscalar exchange processes.~TheT matrix
we study may be defined even if the quarks are confined! If
we drop reference to Dirac matrices and isospin factors,
polarization diagrams may be summed to yield

tqq~q
2!52

GS

12GSJS~q
2!
, ~3.1!

where

2 iJS~q
2!5~21!ncnf Tr E d4k

~2p!4
iSS q21kD

3 iSS 2
q

2
1kD , ~3.2!

with S(p)5@p”2mq1 i e#21. ~See Fig. 4.! When we include
confinement, we define

tqq~q
2!52

GS

12GSĴS~q
2!
, ~3.3!

where ĴS(q
2) is defined in terms of the confining verte

ḠS(q,k),

of

FIG. 4. ~a! The zero-range quark interaction of the NJL model
shown.~b! The quark-loop integral in the scalar-isoscalar channe
shown.~c! The quark-loop integral including a series of confinin
interactions~dashed line! is shown. The filled triangular region de
notes the vertex function that serves to sum the ladder of confin
interactions.~d! The functionKS(q

2) describes effects of coupling
to the two-pion continuum.~e! The functionK̂S(q

2) includes two
confinement vertex functions and has a cut forq2.4mp

2 .
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2 i ĴS~q
2!5ncnf Tr E d4k

~2p!4
SS q21kD

3ḠS~q,k!SS 2
q

2
1kD . ~3.4!

~See Fig. 5.! As a next step, we use the relation
s
f

e

by

the
S~k!5
mq

E~k! F L~1 !~k!

k02E~k!1 i e
2

L~2 !~2k!

k01E~k!2 i eG ~3.5!

in Eq. ~3.4!. @See Eqs.~2.4! and~2.5!.# Therefore, if we work
in the frame whereq50,
2 i ĴS~q
2!52ncnf Tr E d4k

~2p!4
mq

E~k!
F L~1 !~k!ḠS~q,k!L~2 !~2k!

@q0/21k02E~k!1 i e# @2~q0/2!1k01E~k!2 i e#

1
L~2 !~2k!ḠS~q,k!L~1 !~k!

@q0/21k01E~k!2 i e# @2~q0/2!1k02E~k!1 i e#
G , ~3.6!
me
at
,

-

cal
he

l of

d

the
where we have kept only the nonzero terms. The first term
Eq. ~3.6! introducesGS

12(q,k) and the second introduce
GS

21(q,k). If we evaluate the integral in the lower part o
the complexk0 plane, the first term in Eq.~3.6! leads to the
quark being on its positive mass shellq0/21k05E(k) while
the second term leads to the antiquark being on itsnegative
mass shell2q0/21k05E(k). The singularity that would
otherwise appear in the result whenboth the quark and the
antiquark go on theirpositivemass shell is eliminated by th
fact thatGS

12(q,k)50 at that point@whereq052E(k) and
k050#.

In Fig. 6 we show the results of calculations ofJS(q
2) and

ĴS(q
2) for q2>0 @9#. We note thatJS(q

2) is complex for
q2.4mq

2, while ĴS(q
2) is a real function.

We may determine the mass of thes meson by solving
the equation

GS
212JS~ms

2 !50 ~3.7!

or the equation

GS
212 ĴS~ms

2 !50. ~3.8!

FIG. 5. The quark-quarkT matrix, tqq(q
2), is obtained by sum-

ming the diagrams shown. Thet-channel exchanges are summed
the expression given as Eq.~3.9!. In a limited region of q2

(20.25 GeV2,q2,0), these effects are well represented by
exchange of aneffectives meson withms5540 MeV.
inFor Eq.~3.7!, we useGS57.91 GeV22, mq5260 MeV, and
a cutoff on the magnitude ofk, uku<L3 . The cutoff is cho-
sen so that our Minkowski-space calculation yields the sa
value for JS(0) as a Euclidean space calculation of th
quantity made with a cutoffLE51.0 GeV. In that manner
we choose L350.689 GeV. @Note that JS(0)
50.088 GeV2.# The upper horizontal line in Fig. 6 corre
sponding toGS

215(7.91 GeV22)21 yields a graphical solu-
tion of Eq. ~3.7! with ms5540 MeV. That value is just
above the beginning of the two-quark continuum atq2

5(2mq)
2.

Now, if we solve Eq.~3.8! rather than Eq.~3.7!, we see
that ms takes on a larger value. For example, a graphi
solution of Eq.~3.8! appears in Fig. 6, where we now use t

FIG. 6. The figure showsJS(q
2) and ĴS(q

2) calculated forq2

>0. ~We use a cutoff on the three-momenta in the loop integra
uku<L3 , with L350.689 GeV.! The dotted curve is the result in
the absence of confinement and the solid line showsĴS(q

2) for
Lorentz-vector confinement withk50.20 GeV2. For the dotted
curve ~k50! we haveGS57.91 GeV22 and for the solid curve (k
50.20 GeV2) we haveGS58.516 GeV22. Without confinement
we findms5540 MeV, while, with confinement included, we fin
ms5800 MeV. The horizontal dashed lines representGS

21 for the
two cases. The intersection of the appropriate dashed line with
dotted or solid lines determines the mass of thes. Here JS(0)
50.088 GeV2 and ĴS(0)50.0708 GeV2.
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lower horizontal line corresponding to GS
21

5(8.516 GeV22)21. @The larger value ofGS used at this
point has its origin in our model of confinement@3#. If we
write the quark self-energy asS(p)5A(p2)1p”B(p2) and
calculateA(p2) andB(p2) for the NJL interactionplus the
confining interaction, we find thatA(p2) varies withp2, un-
like the case of the NJL interaction alone, whereA(p2) is a
constant@3#. We also find thatB(p2) is small. We then ad-
justGS so thatA(0) has the same valuemq that it had when
there was no confining interaction. Since the confining int
action behaves as a repulsive interaction, we have to incr
GS to keep A(0)5mq , with the result that GS
57.91 GeV22 is replaced byGS58.516 GeV22 @3#.# Re-
turning to Fig. 6, we see that we havems.800 MeV, which
is an increase of about 260 MeV above the value ofms

5540 MeV found in the absence of confinement.
The quark-quarkT matrix can be extended to include di

grams involvingK̂S(q
2), some of which are shown in Fig. 4

In that case, we have

tqq~q
2!52

GS

12GS@ ĴS~q
2!1K̂S~q

2!#
~3.9!

52
GS

12GS@ ĴS~q
2!1Re K̂S~q

2!#2 iGS Im K̂S~q
2!
.

~3.10!

In the next section we will describe the methods that
used to calculateK̂S(q

2). The presence of ReK̂S(q
2) moves

the s mass upward by a small amount. However, introd
tion of Im K̂S(q

2) has a rather dramatic effect on the prop
ties of thes resonance.

IV. COUPLING TO THE TWO-PION CONTINUUM:
CALCULATION OF THE AMPLITUDE q1q̄˜p1p

IN THE SCALAR-ISOSCALAR CHANNEL

We will first concentrate on the calculation of ImK̂S(q
2).

Once that calculation is completed, we will use a on
subtracted dispersion relation to calculate ReK̂S(q

2). Basic to
the calculation of ImK̂S(q

2) is the evaluation of the diagram
shown in Fig. 7 for the case of on-mass-shell pions. The
we have (q/21k)25(q/22k)25mp

2 , so thatq•k50.
In the general case, we can define an amplitude

FS~q,k!5Tr i E d4k

~2p!4
@S~k2k!g5S~q/21k!ḠS~q,k!

3S~2q/21k!g5#. ~4.1!

~See Fig. 7.! Now, if the pions are on-mass-shell, we m
define

F1~q
2!5FS~q2,q•k50,k25mp

22q2/4!. ~4.2!

~See Fig. 8.! We will also find it useful to introduce

F2~k2!5FS~0,0,k2!. ~4.3!
r-
se

e

-
-

-

e,

~See Fig. 8.! We will need values ofF2(k
2) when we calcu-

late ReK̂S(0). ~The latter quantity will be needed when w
form the once-subtracted dispersion relation.!

We now describe the procedure used to calcul
FS(q,k) in Minkowski space. First, we use Eq.~3.5! to write
each of the three propagators in Eq.~4.1! in terms ofS(1)

andS(2). That yields eight terms. We now note that, in ea
of these terms, ḠS(q,k) is replaced by GS

12(q,k),
GS

21(q,k), GS
11(q,k), or GS

22(q,k), depending upon the
location of the S(1) and S(2) factors. @For example,
S(1)(q/21k)ḠS(q,k)S

(2)(2q/21k) gives rise to a factor of

FIG. 7. The diagram corresponding toFS(q2,q•k,k2) is shown.
Here, the wavy lines are pions.~The only factors ofi introduced in
the definition are those from the propagators.! @See Eq.~4.1!.# The
diagram is evaluated forq2.0 by first completing the integral ove
k0 in the complexk0 plane.~a! These diagrams introduce the fact
GS

12(q,k). ~b! These diagrams introduce the factorGS
21(q,k). ~c!

The first diagram introduces a factor ofGS
11(q,k), while the sec-

ond diagram introduces a factor ofGS
22(q,k).

FIG. 8. ~a! The diagram that corresponds toF1(q
2) is shown.

Here, the pions are on mass shell, so thatF1(q
2)5FS(q2,q•k

50,k25mp
22q2/4), whereFS(q2,q•k,k2) is depicted in Fig. 7.

F1(q
2) is needed in the evaluation of ImK̂S(q

2). ~b! The diagram
that corresponds toF2(k

2) is shown, withF2(k
2)5FS(0,0,k2).
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GS
12(q,k), etc.# As a next step, we complete the integr

over k0 in the complexk0 plane. The terms with threeS(1)

factors, or threeS(2) factors, all have their poles in the sam
half-plane and, therefore, do not contribute to the integ
For the remaining six terms, we choose to complete thek0

integral either in the upper-half or the lower-halfk0 plane,
depending upon where there is only a single pole. The res
ing six terms are depicted in Fig. 7. There, a cross on a
denotes a quark on its positive mass shell, while an o
or
e
th

to

te

e
n
ar
l

l.

lt-
e
n

circle on a line denotes an antiquark on itsnegativemass
shell. For each diagram in Fig. 7~a!, one has a factor of
GS

12(q,k) and for the diagrams of Fig. 7~b!, one has a factor
of GS

21(q,k); however, these two vertex functions are equ
if the interaction does not depend upon energy trans
Similarly, diagrams of Fig. 7~c! give rise to a factor of
GS

11(q,k), which is equal to the functionGS
22(q,k) arising

from the other diagram in Fig. 7~c!. The result of these cal
culations is~for q50!
FS~q,k!54E d3k

~2p!3 H ~2k•k!

2mq
2 F GS

12~q0,k!

@q022E~k!#$q0/22@E~k!1E~k2k!#%
1

G21~q,k!

@q012E~k!#$q0/21@E~k!1E~k2k!#%
G

2
1

4mq
2

@E2~k!1E~k!E~k2k!2k•k#@G11~q0,k!1G22~q0,k!#

@~q0/2!22$E~k!1E~k2k!#2% J , ~4.4!
the
ell.
wherek5uku. From this function, we may obtainF1(q
2) and

F2(k
2) as special cases.

In Fig. 9, we show the values we have found f
F2(k

2). Values fork2<0 are obtained by evaluating th
relevant integral in Euclidean space, where we neglect
effects of confinement. Values fork2>0 are obtained using
the methods described in this section. If we choose a cu
for the loop integrals evaluated fork2>0 to be uku<L3 ,
with L350.816 GeV, we find that the value atk250 for
both calculations is the same.~See Fig. 9.! ~Recall that for
loop diagrams withtwo quark propagators, the appropria
value of L3 was found to be 0.689 GeV.! We note that
confinement effects are small forq2<0, so that forF2(k

2)
5FS(0,0,k2), these effects are relatively unimportant.

FIG. 9. Values ofF2(k
2) are shown. Fork2,0 the calculation

is made in a Euclidean momentum space with a cutoffLE

51.0 GeV. Fork2.0, the calculation is made in Minkowski spac
with a cutoff uku<L350.816 GeV placed upon the integratio
variable. That cutoff is used for loop integrals having three qu
propagators.
e

ff

V. THE s SELF-ENERGY INCLUDING COUPLING
TO THE TWO-PION CONTINUUM

Once we have calculatedF1(q
2), we may calculate

Im K̂S(q
2)5(1/2) discK̂S(q

2), where the discontinuity is
taken across the two-pion cut that starts atq254mp

2 . We
have

disc K̂S~q
2!5gpqq

4 I fnc
2s~21!E d4k

~2p!4
@F1~q

2!#2

3$22p id~1 !@~q/21k!22mp
2 #%

3$22p id~1 !@~q/22k!22mp
2 #%, ~5.1!

whereI f512 is an isospin factor,nc
259 is a color factor and

s52 is a symmetry factor. Also, the superscript~1! on thed
functions denotes the fact that we choose only the part of
d function in which the pions are on their positive mass sh

Now, whenq50,

2~2p!2E d4k

~2p!4
d~1 !F S q21k D 22mp

2 G
3d~1 !F S q22k D 22mp

2 G52
1

8pv~k̄!
k̄, ~5.2!

where k̄5@(q0/2)22mp
2 #1/2, v(k̄)5@ k̄21mp

2 #1/2, and q0

52v(k̄). Thus,

Im K̂S~q
2!5

1

2
gpqq
4 I fnc

2s@F1~q
2!#2S k̄

8pv~k̄! D
3u~q224mp

2 !. ~5.3!

Values of ImK̂S(q
2), calculated using Eq.~5.3!, are given in

Fig. 10 for the casegpqq52.68. That value forgpqq was first
obtained in Ref.@10#. A simple estimate ofgpqq may be
found by working in the chiral limit,mq

050, and evaluating
k
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gsqq
2 ~0!

ms
2 5

GS

12GSĴS~0!
. ~5.4!

Then, one may putgpqq5gsqq . A more accurate value is
found by using the relation

gpqq
22 ~mp

2 !5
]JP~q2!

]q2 U
q25m

p
2
, ~5.5!

whereJP(q
2) is the value of the~polarization! loop integral

in the pseudoscalar channel.
Once we have calculated ImK̂S(q

2), we can obtain
ReK̂S(q

2) by means of a once-subtracted dispersion relat

Re K̂S~q
2!5K̂S~0!2

P

p
q2E

4mp
2
ds

Im K̂S~s!

s~q22s!
. ~5.6!

As a next step, we need to calculateK̂S(0), which may be
obtained in terms ofF2(k

2). We have

K̂S~0!5gpqq
4 I fnc

2siE d4k

~2p!4 S i

k22mp
2 D 2@F2~k2!#2.

~5.7!

This integral may be completed by going over to a E
clidean momentum space. Using the values ofF2(k

2) given
in the last section, and again usinggpqq52.68, we find
K̂S(0)50.0108 GeV2. Using that value in Eq.~5.3!, we find
the values of ReK̂S(q

2) shown in Fig. 11.~The sharp peak in
that function is due to the rapid opening of the two-pi
channel atq254mp

2 .!
Note that, if we write

Im K̂S~q
2!5S 12

4mp
2

q2 D 1/2K0u~q224mp
2 !, ~5.8!

FIG. 10. Values of ImK̂S(q
2) are shown. The calculation i

made using the method outlined in Ref.@5#. Here we usek
50.20 GeV2, gpqq52.58, and Lorentz-vector confinement. W
also havemq5260 MeV and a cutoff on the three-momentauku
<L3 , with L350.816 GeV.~Note that the result is quite insens
tive to the model of confinement used.! To obtain the values for
gpqq52.68, we need to multiply the values in the figure
(2.68/2.58)451.16.
n

-

with K0 a constant, we have an accurate approximation
Im K̂S(q

2). We can then complete the integrals in Eq.~5.6!
with the result, forq2.4mp

2 ,

Re K̂S~q
2!5K̂S~0!1

2K0

p F11
x

2
lnS 12x

11xD G , ~5.9!

where

x[F12
4mp

2

q2 G1/2. ~5.10!

For 0,q2,4mp
2 , we have

Re K̂S~q
2!5K̂S~0!1

2K0

p F12U12
4mp

2

q2
U1/2

3tan21S q2

uq224mp
2 u D 1/2G . ~5.11!

We now have enough information to calculateĴS(q
2)

1ReK̂S(q
2). That quantity is shown in Fig. 12.

VI. CALCULATION OF THE QUARK-QUARK
SCATTERING AMPLITUDE FOR t-CHANNEL

SCALAR-ISOSCALAR EXCHANGE

Since we now have values ofĴS(q
2)1ReK̂S(q

2) and
Im K̂S(q

2), we are able to obtaintqq(q
2) that was defined in

Eqs.~3.9! and~3.10!. In Fig. 13 we show Retqq(q
2) as a solid

line and Imtqq(q
2) as a dotted line. Note that Retqq(q

2) has a
zero atq25ms

2, corresponding to the equation

GS
212@JS~ms

2 !1Re K̂S~ms
2 !#50. ~6.1!

The very large negative value forq2.4mp
2 seen for

Retqq(q
2) has its origin in the opening of the two-pion cha

nel at that energy.

FIG. 11. Values of ReK̂S(q
2) obtained from the once-subtracte

dispersion relation of Eq.~5.6! are shown. Here,gpqq52.68 was
used in the calculation of ImK̂S(q

2). @See Fig. 10, which shows
Im K̂S(q

2) calculated forgpqq52.58.#
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In Fig. 14 we show values ofutqq(q2)u2. Again, the large
peak in that quantity reflects the opening of the two-p
channel atq254mp

2 . It may be seen that there is little ev
dence for the presence of a resonance centered arounq2

5ms
2 due to the strong coupling to the two-pion continuu

To investigate this point further, we showutqq(q2)u2 in Fig.
15 using an expanded scale. One may note a small enha
ment centered aroundq2;0.67 GeV2 that could be inter-
preted as a residual effect due to the presence of thes reso-
nance.

FIG. 12. The dashed line shows ReK̂S(q
2). ~See Fig. 11.! The

dotted line shows the values ofĴS(q
2) calculated in Minkowski

space, withmq5260 MeV and a cutoffL350.689 GeV. The solid
line showsĴS(q

2)1ReK̂S(q
2). The dot-dashed line shows the valu

of GS
215(1/8.516) GeV2. The intersection of the solid line with th

dot-dashed line depicts the solution of the equationGS
21

2@ ĴS(ms
2)1ReK̂S(ms

2)#50. We find ms5823 MeV. ~For these
calculationsk50.20 GeV2 andm50.030 GeV.!

FIG. 13. Values of ĴS(q
2)1ReK̂S(q

2) ~see Fig. 12! and
Im K̂S(q

2) ~see Fig. 10! are used to form Retqq(q
2), shown as a solid

line, and Imtqq(q
2), shown as a dotted line.@The large dip in the

value of Retqq(q
2) corresponds to the opening of the two-pion co

tinuum atq254mp
2 .#
.

ce-

VII. DISCUSSION

In a previous work@9# we have studied the quark-quar
T matrix tqq(q

2) for spacelike values ofq2. In the present
work we have extended our considerations to studytqq(q

2)
in the timelike region. Forq2<0, and for2q2 not too large,
the approximation

tqq~q
2!5

gsqq
2

q22ms
2 ~7.1!

was found to be quite accurate, ifms5540 MeV andgsqq

53.05@9#. In the present work, we may findgsqq
2 by writing

GS

12GS@ ĴS~0!1K̂S~0!#
5
gsqq
2

ms
2 , ~7.2!

FIG. 14. Values ofutqq(q2)u2 are shown.@See Fig. 13 for
Retqq(q

2) and Imtqq(q
2).#

FIG. 15. Values ofutqq(q2)u2 are shown in an expanded sca
relative to that used in Fig. 14. The enhanced values forq2

;0.7 GeV2 correspond to the zero of Retqq(q
2) at q2

50.677 GeV2. ~See Fig. 13.!
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wherems50.540 GeV. For the parameters developed he
ĴS(0)50.0708 GeV2, K̂S(0)50.0108 GeV2, and GS
58.516 GeV22, we find gsqq52.86, if ms50.540 GeV.
Thus, tqq(0)52gsqq

2 /ms
25228.0 GeV22. ~See Fig. 13.!

Equation~7.1! is useful in the spacelike domain if2q2

,0.25 GeV2. For an accurate representation beyond that
gion, one may write

tqq~q
2!5

gsqq
2 ~q2!

q22ms
2 . ~7.3!

@Equation~7.3! may be used to definegsqq(q
2).# Note that,

although Eq.~7.1! represents theT matrix for a limited re-
gion of spacelike values ofq2, there is no low-mass scala
isoscalar state in the timelike region. However, for calcu
tion of theNN force, or for the study of nuclear matter, th
momenta of the exchanged mesons are spacelike. There
we may conclude that, if one restricts oneself to the desc
tion of mesons with spacelike momenta, the introduction o
s ‘‘meson’’ with ms5540 MeV is quite a good approxima
tion. We have also seen that the use of a low-masss for
e

.

. C

an
e,

-

-

re,
p-
a

spacelike q2 is not in contradiction to the fact that such
meson has not been seen. Also, in the present study, we hav
found little direct evidence for a more massive resonance
the timelike region because of the very strong coupling to
two-pion continuum of the scalar-isoscalar state. On
other hand, the 0 of the real part of theT matrix, found using
Eq. ~6.1!, does define a mass that thes would have, if
Im K̂S(q

2) were neglected. We have also seen that there
large peak in utqq(q2)u at q2;4mp

2 . We do not know
whether such an effect could be observed in some exp
ment. However, we again note that theT matrix for spacelike
q2 is not influenced by the peak atq2;4mp

2 . For nuclear
physics problems that are of interest to us, the mesons
changed between nucleons~or between quarks! are space-
like, with Eq. ~7.1! providing an accurate representation
the dynamics.
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