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A recent analysis by Troqvist and Roos suggests that thheneson has a mass of 860 MeV with a width of
880 MeV. In this work we calculate the properties of theneson using a generalized Nambu—Jona-Lasinio
model that includes a model of confinement. We describe, in some detail, hawadbepling to states in the
two-pion continuum may be calculated, when using a Lorentz-vector confining interaction. As part of our work
we provide a general procedure for calculating various loop diagrams in Minkowski momentum space for
quarks in the presence of the confining interaction. We study the properties of treson by considering
t-channel scalar-isoscalar exchange between two quarks. The resulting quarkFqueaiix tqq(qz) has
Rety(q”)=0 for g*=(0.823 GeV¥. Thus, we haven,=0.823 GeV. However, the coupling of theto the
two-pion states is so large as to mérk(g](qz)| a rather smooth function over a broad rangejaf Therefore,
we do not attempt to assign a width for the resonah$6556-28137)01606-3

PACS numbeps): 24.85+p, 12.39.Fe, 14.40.Cs

I. INTRODUCTION Lorentz-scalar confinement may be found in Ré}.) In the
work reported here, we will be concerned with the timelike
It is well known that the S(P)-flavor version of the region and will neglect energy transfer by the confining in-

Nambu—Jona-Lasinio(NJL) model predicts a scalar- teraction. That avoids the necessity of considering singulari-
isoscalar meson with mamZZ(gmq)2+ m?2 wherem, is ties associated with that interaction when performing loop
ag o

the constituent quark magg]. (We have usually useth, integrals. , , _ L _
— 260 MeV in our work, so thamn, =540 MeV.) Since there We will begin our discussion by describing the covariant

is no low-massr meson in the data tables, it is of interest to formalism, which may be used in Euclidean-space calcula-

consider what happens to the low-mass state predicted by tfions- Wwe W'Il then go on to_neglect energy transfer. In that
NJL model as we introduce confinement and coupling to theapproxmapo_n, we will prowdg results for vertex funct|on§
of the confining interaction using the formalism presented in

two-pion continuum. In a recent work Tagvist and Roos Ref. [6]
[2], who use a unitary quark model, suggest Breit-Wigner . "

The Lagrangian of our model is
parameters for ther of m,=860 MeV andI’ ,=880 MeV.

As we will see, our results are generally consistent with the . 0 Gs ,
parameters found in Ref2]. L=90)(i6=mg)a(x)+ —= {[a()a(x)]

In this work we wish to show how the NJL model may be _
generalized to include a model of confinement. We will use +[a(X)i ys79(X) 1%} + Leont, (11
Lorentz-vector confinement, rather than the Lorentz-scalay 0
confinement usually used, since the use of vector confin"(:)av—vheremq is the current quark mass. Here, we choose
ment allows us to maintain the chiral symmetry of the La- 1 .
grangian[3]. (That feature is particularly important, if we Leon=7 a(x) ¥*a()Ve(x=y)a(y) v.ay). (1.2

wish to study the pseudoscalar octet of Goldstone bosons, for
example) We have performed two types of calculations. In Note thatV(r)= krexg —ur] in the noncovariant formal-
Ref. [3] we carried out our calculations in a Euclidean mo-ism, wherex andy are at equal time. Since our calculations
mentum space and were able to do a fully covariant calculaare made in momentum space, we include a small parameter
tion in which we allowed energy transfer via the confining 4,=0.030 GeV to soften the singularities of the Fourier trans-
interaction. That work was limited to spacelike values of theform of V¢(r). We include the factog in Eq. (1.2) so that
momentumg?< 0. On the other hand, when we have consid-the value ofx we quote can be directly compared to the
ered timelike excitationsg?>0), we have neglected energy value of « used in the case of Lorentz-scalar confinement
transfer by the confining interaction. Our method of calcula-x=0.20 Ge\~.
tion for timelike g® is similar to that used by Gross and  The organization of our work is as follows. In Sec. Il we
Milana [4,5] who assume that the only important singulari- define a vertex function that serves to sum a “ladder” of
ties to be taken into account when completing integrals ovetonfining interactions. This vertex, when inserted into the
loop four-momentsk” are those associated with the quark quark-antiquark(polarization loop diagrams, removes the
propagators(A review of our formalism for the case of unphysicalqq unitary cut, so that the loop integral is real. In
Sec. lll we describe the calculation of polarization diagrams
and provide a value for the mass of thén the presence of
*Electronic address: casbc@cunyvm.cuny.edu confinement. In Sec. IV we study the coupling of threo
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q+k fies the(inhomogeneoysequation[6]
2
: — . d*k’ = )
q-- - <+ - ive Fs(q,k)=1+|J G VS KOSk
gk (a) X S(—al2+k')y,V(k—k')/4, 2.0

where, in the covariant formalism,

=...<+...<<+ ii 4 e 1
' VC(k—k’)=—8m<(

(b) [(k—k")?=u?]?
%+k ) 4,U~2 ] 22
otk ' In the figure, the filled triangular area is the vertex
% (c) I's(g,k). In general, one may write

I's(a,k)=a3(62,q-k,k?) +Kay(62,q-k,k)
+daz(a?,9-k,k?) +2io,,a"k"a,(q,q- k,k?).
(2.3

]
+
+
+

__FIG. 1. (a) The diagram represents the equation for the verteﬁ_|er

KHE— i (. ~l2 il i
I's(g,k) that sums a series of confining interactions. These interacb ek*=k (tl'(t'q)qthlci .h[ln sgr_ne Casets., "Yed‘(v'” |psfert a
tions are shown here as dashed lings.A perturbative expansion ar over quantiies that have Dirac matrix indices, for ex-

for T's(q,k) is shown.(c) The vertexI'$ ~(q,k) is obtained in our ample, we wrotd's(q.k) in Egs.(2.1) and (2-_3)-] We will
analysis when the quark is on its mass shélere the cross denotes NOt need to consider the general case given in(£@), since

a quark on its positive mass shelid) A perturbative expansion for  the functions we calculate will not depend upon the variable
I'$7(q.k) is shown. The dashed line introduces a factavS(k ~ d-K. (That feature has its origin in our neglect of energy-

—k")¥*(1)7,(2)/4 when applying the Feynman rules in the evalu- transfer dependence in the confining interaction.
ation of the diagrams. When we perform loop integrals in Minkowski space we

will first integrate over the timelike componekf. In the
states of two pions and in Sec. V we show how we maycomplexk; plane we encounter poles due to the quarks, or
calculate the contribution to the self-energy due to the antiquarks, going on mass shélThe contour is usually cho-
coupling to the two-pion continuumAgain, confinement sen so that we have poles due to the quarks going on their
plays an important role in removing unphysiacgl cuts in  positivemass shell, while the antiquarks go on thegative
the o self-energy. In Sec. V we calculate the imaginary part mass shell, when we evaluate polarization diagrants.
of the self-energy due to coupling to the two-pion states andFigs. 1c) and Xd) we indicate the nature of the calculation
go on to calculate the real part using a once-subtracted diga which the quark is on mass shell. In this case, the relevant
persion relation(Note that, while the polarization diagrams vertex will be denoted aE¢ ~(q,k) and, forqg=0, we will
are of ordem,, the self-energy diagrams considered in Secwrite I'g ~(q° |k|). Other vertex functions that appear in our
V are of order 1 in the standard counting of color factohs.  analysis will be denoted & ", Ti", andl'g ™. We may

Sec. VI, we study the quark-quark matrix for scalar- rg|ate these functions ©(q,k) by the following procedure.

isoscalart-channel exchange and show that the coupling tque first define the standard Dirac projection operators
the two-pion continuum is so large as to leave only slight

evidence of the presence of the Section VIl contains fur- k+m
ther discussion and some conclusions. A (k)= om 3 (2.9
q
Il. VERTEX FUNCTIONS FOR LORENTZ-VECTOR with k#=[E(k),k], and
CONFINEMENT -
) ] ) B k+mj
We have considereflLorent scalar confinement in our AT (=k)= o (2.5
q

earlier work[6—8]. However, we have recently shown that, if
one uses Lorentz-vector confinement, one may maintain the

chiral symmetry of the Lagrangian, if the current quark massw'th kf=[~E(k),k]. Thus, we now define

mg is 0[3]. Therefore, we will continue our use of Lorentz- , (4 (+) ++ (+) (+)
q =
vector confinement in this work. In this section we will con- AT ITA T () =Ts 7 (a,k) A () AT k), (26
sider a scalar-isoscalar vertex functigiWe use the notation
S(p)=[|b—mq+ie]‘1 for the quark propagator, withmn,
being the constituent quark mass. B — o -
With reference to Fig. (&), we define a vertex that satis- AT (=KTA T (=k)=Tg (q,k)A 7 (~=k), (2.8

=T¢*(q,kA T (k), 2.7
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ADKITA (=K =T (q,KAP (KA (—k), ai(q,—k)=ai(q,k) (2.1
(2.9
:al[qzi(k'q)zrkz]! (212
and
ax(q, —k)=ax(q,k) (213

A (=K TAM (k) =T5*(q,k) A (—k)AH (k).
(2.10 =a,[q? (k-q)%,k?], (2.14

Usually, we will work in the frame wherg=0, so that the 4
various functions we have defined will depend upgdnand

[k|. In Secs. Il and 1V, we will see how these functions arise az(q,—k)=—az(q,k) (2.15
naturally in our Minkowski-space calculations of loop inte-
grals. As we will see, the set &s will be linearly related to =(k-q)as[q? (k-q)%k?]. (2.16

the functionsa,, a,, a;, anda,. We may write equations
for either set of functions by using standard projection op-Now, if VE(k) is independent ok, we also havea;=0.

erator and trace techniques, starting with Ej1). We first We now neglect energy transfer and find the following
present the results for the functions defined in &3). For  equations are obtained for the two remaining functions. In-
vector confinement, we find that,=0 and that tegrating overk;, and writing E(k) =[k?+m;]"% we have

k'2dk’ (—8k'*)Vg(k,k')[as(a,k')+mgay(q,k’)]

P(A=LTAT | gy E(K) {03~ [2E(K) ) | @4
and
k!
k/de/ c , ?(4mq)[a1(qvk’)+mqaZ(qik,)]
i) =4 | T V0K *— g o (219
In these equationk’ =|k’| andk=|k|, and
1 (1
vlc(k,k')zzf dxP(X)Ve(k?+k'2—2kk'x)/4. (2.19
-1

The functionsa;(q,k) and a,(q,k) are related to the functionk$ (q,k), I's "(q,k), etc. We find thatl'$ ~(q,k)
=T's"(q.k) andI'$ " (q,k)=T's " (q.k), with

I's(g,k)=a4(q,k) + myax(q,k) (2.20

and

k2
I's*(a.k)=ay(a,k)— —ax(q,k). (2.21)
q

These last two relations may be obtained by Writiﬁ_gq,k)=a1(q,k)+lA€a2(q,k) and then using the definitions of
I's 7 (a,k), I's"(q,k), etc., given in Egs(2.6—(2.10. Using the equations faa,(q,k) anda,(q,k) given above, and Egs.
(2.20 and (2.21), we find that, whermq=0,

k'2dk’ —8k'2 [Vg(k,k")+(m2/2kk' )VE(kk')]

Fr@lo=1+47 | 50T Ei (@©7—[2E(K)T?

I (a°% k"), (2.22

and

k'2dk’ —8k’2 [VS(k,k")— (ki2k")VS(k,k')]

PHR=1447 | 5T E)y (@ [2EK) T2

' (q°%k"). (2.23
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FIG. 2. Values ofl'$ ~(q°|k|) are shown. Starting from the (d)
uppermost curve and moving downward, the valuegibfare 0,
0.10, 0.20, 0.30, 0.40, 0.50, 0.55, and 0.60 MeV. For the last two of
these curves,I'g (g% ko) =0. Here k3,=(0o/2)*—m;, m, LK ) =
=0.260 GeV,u=0.030 GeV, and=0.20 Ge\A. S

[We recall that ' (q,k)=Ts*(q,k) and T'$"(q,k) _ _ _
—T'5(q,k), if the KO dependence df’c(k) is ignored. Also FIG. 4. (a) The zero-range quark interaction qf the NJL model is
i . Y shown.(b) The quark-loop integral in the scalar-isoscalar channel is
note thatl's "(q,k) may be obtained froml's ~(q,k) by shown.(c) The quark-loop integral including a series of confining
using Eq.(2.23.] interactions(dashed lingis shown. The filled triangular region de-
Values calculated foFg_(q,|k|) are given in Fig. 2 for notes the vertex function that serves to sum the ladder of confining
several values oﬁo, Note that whenboth the quark and interactions(d) The functionK 5(g?) describgs effects of coupling
antiquark go on their(positive mass shell, we haveg®  to the two-pion continuum(e) The functionK (g% includes two
=2[k3,+ mg]l/Z and I'{ (q°|ko)=0. This last relation ~confinement vertex functions and has a cutdér 4m2.
may be used to show how our model of confinement re-
moves unitary cuts that would otherwise arise when the
quark and antiquark both go on their positive mass dléll

lll. POLARIZATION DIAGRAMS
AND THE MASS OF THE o MESON

In Fig. 3 we show values obtained f6& *(q°,|k|). The It is useful to determine the parameters for theneson
functions shown in Figs. 2 and 3 will be needed for theresonance by studying a quark-qudrknatrix evaluated for
calculations described in the following sections. t-channel scalar-isoscalar exchange proces$ee. T matrix

we study may be defined even if the quarks are confiiéd.
we drop reference to Dirac matrices and isospin factors, the
polarization diagrams may be summed to yield

10 F
tgq(9D) = — — e, 3.1
R e TN @9
where
[ 05 -
o iJs(gd)=(—1 Tf—d4k is| 24k
= 13s(q%) =(—=1)ncng Tr 2 iS|2
+L| q
0.0 / XiS _§+k , (3.2
I T T T with S(p)=[|b—mq+ie]‘1. (See Fig. 4. When we include
0.0 0.4 0.8 1.2 16 20 confinement, we define
Kl (Gev) 2 Ge
tqq(q )== N (3.9
FIG. 3. Values ofl'{ "(q°|k|) are shown. Starting with the 1-GsIs(q9)

uppermost curve and moving downward, the valueg’adre 0, 0.4, P ) ) o
and 0.6 GeV.(Here m,=0.260 GeV, u=0.030 GeV, andx where J5(q©) is defined in terms of the confining vertex
=0.20 Ge\.) I's(a.k),
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q
5tk

o d*k
—iJg(g%) =n¢n;¢ TrJ WS

xr_s(q,k)s(—g+k

. (3.9

(See Fig. 5. As a next step, we use the relation

Comg [ ATk A(=k)
S(k)_E(k) KO—E(k)+ie K°+E(K)—ie @5

in Eq.(3.4). [See Eqgs(2.4) and(2.5).] Therefore, if we work
in the frame where=0,

AD(K)Tg(q,k) A (—k)

~ d4k m
—i34(g%)=—ncn; Tr f (2m)* E(E) [

[q72+K'—E(K)+iel[— (q72) + KO+ E(K) —i €]

AC(=K)Ts(q,k) A (k)

T QU724 K0T E(K) —ie][— (q072) T KO—E(K) +i€] |’

(3.6

where we have kept only the nonzero terms. The first term ifFor Eq.(3.7), we useGg=7.91 GeV 2, m,=260 MeV, and
Eq. (3.6 introducesI's ~(g,k) and the second introduces a cutoff on the magnitude df, |k|<A 5. The cutoff is cho-
I's “(g,k). If we evaluate the integral in the lower part of sen so that our Minkowski-space calculation yields the same

the complexk® plane, the first term in Eq(3.6) leads to the
quark being on its positive mass shgl2+ k°=E (k) while
the second term leads to the antiquark being omégative
mass shell—q%2+k°=E(k). The singularity that would
otherwise appear in the result wheoth the quark and the
antiquark go on theipositivemass shell is eliminated by the
f%ct that'$ ~(q,k) =0 at that poinfwhereq®=2E(k) and
k°=0].
_ InFig. 6 we show the results of calculationsJef{q?) and
Js(g?) for =0 [9]. We note thatls(g®) is complex for
q%>4mZ, while J5(q?) is a real function.

We may determine the mass of themeson by solving
the equation

Gg'—Ig(m3)=0 3.7
or the equation

Ggl-Jg(m2)=0. (3.9

-itaq(@®) = >< + >(:><
+ >(>(>< +oeee
K
+ K)m + e

FIG. 5. The quark-quark matrix,tqq(qz), is obtained by sum-

value for Jg(0) as a Euclidean space calculation of that
quantity made with a cutofAg=1.0 GeV. In that manner,
we choose A3;=0.689 GeV. [Note that Jg(0)
=0.088 Ge\.] The upper horizontal line in Fig. 6 corre-
sponding toGg'=(7.91 GeV?) ! yields a graphical solu-
tion of Eq. (3.7 with m,=540 MeV. That value is just
above the beginning of the two-quark continuum gt
=(2mg)2.

Now, if we solve Eq.(3.9) rather than Eq(3.7), we see
that m, takes on a larger value. For example, a graphical
solution of Eq.(3.8) appears in Fig. 6, where we now use the

0.14

(GeV?)

— 0.12

) and Js(q

Js(q?

0.08

| | [ 1 |

0 0.2 0.4 0.6
9?(GeV?)

FIG. 6. The figure showdg(q?) andJg(g?) calculated forg?
=0. (We use a cutoff on the three-momenta in the loop integral of
|k|<Aj, with A;=0.689 GeV) The dotted curve is the result in
the absence of confinement and the solid line shdws?) for
Lorentz-vector confinement withkk=0.20 Ge\f. For the dotted
curve (k=0) we haveGg=7.91 GeV 2 and for the solid curve &
=0.20 GeV) we have Gg=8.516 GeV2 Without confinement
we find m,=540 MeV, while, with confinement included, we find

ming the diagrams shown. Thechannel exchanges are summed by m,=800 MeV. The horizontal dashed lines represegt" for the

the expression given as E@3.9. In a limited region of g?

two cases. The intersection of the appropriate dashed line with the

(—0.25 Ge\f<g?<0), these effects are well represented by thedotted or solid lines determines the mass of theHere J¢(0)

exchange of aeffectivee meson withm,=540 MeV.

=0.088 GeV? andJg(0)=0.0708 GeV.
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lower  horizontal line  corresponding to Ggl
=(8.516 GeV'?) 1. [The larger value ofGg used at this

+k g+K

(e
]!

+

point has its origin in our model of confinemdr]. If we
write the quark self-energy as(p)=A(p?) + pB(p?) and q- k= (\X:Ki ¥ (iZj
calculateA(p?) andB(p?) for the NJL interactiorplus the D (@)
confining interaction, we find thak(p?) varies withp?, un- il 3
like the case of the NJL interaction alone, whé@?) is a @; ‘\/;Zj
constan{3]. We also find thaB(p?) is small. We then ad-
just Gg so thatA(0) has the same valug, that it had when
there was no confining interaction. Since the confining inter-
action behaves as a repulsive interaction, we have to increase
Gs to keep A(0)=mgy, with the result that Gg £ ﬁw
=7.91 GeV? is replaced byGs=8.516 GeV? [3].] Re-
turning to Fig. 6, we see that we hane, =800 MeV, which
is an increase of about 260 MeV above the valuemf . _ 2 2
=540 MeV found in the absence of confinement. FIG. 7. The diagram corresponding.®(q”,q- «,x°) is shown.
. - . Here, the wavy lines are pion&The only factors of introduced in
The quark-quark matrix can be extended to include dia- .
. B 2 ; T the definition are those from the propagatpfSee Eq(4.1).] The
grams involvingKs(q“), some of which are shown in Fig. 4. giagram is evaluated far?>0 by first completing the integral over

In that case, we have k? in the complex® plane.(a) These diagrams introduce the factor
I'$7(g,k). (b) These diagrams introduce the factag *(g,k). (c)
L (qD) Gs 39 The first diagram introduces a factor BE *(q,k), while the sec-
q = — . . . —
aq 1- G4 I«(0?) +Kg(9?)] ond diagram introduces a factor B§ ~(q,k).

(See Fig. 8.We will need values oF ,(«?) when we calcu-
__ Gs late ReKq0). (The latter quantity will be needed when we
1-G4Js(g®)+ReKg(g?)]—iGs Im Kg(g?) form the once-subtracted dispersion relation.
(3.10 We now describe the procedure used to calculate
Fs(4g,«) in Minkowski space. First, we use E@.5) to write
In the next section we will describe the methods that areeach of the three propagators in H4.1) in terms of S(*)
used to calculatd;(s(qz). The presence of Hés(qz) moves andS(7). That yields eight terms. We now note that, in each
the ¢ mass upward by a small amount. However, introduc-of these terms,I's(q,k) is replaced by I'{™(q,k),
tion of ImKgg? has a rather dramatic effect on the proper-I's *(q,k), T'$"(q,k), or I's “(q,k), depending upon the
ties of theo resonance. location of the S™*) and S) factors. [For example,
S (gl2+k)T's(q,k) S (—q/2+ k) gives rise to a factor of

IV. COUPLING TO THE TWO-PION CONTINUUM:
CALCULATION OF THE AMPLITUDE q+q—m+m

IN THE SCALAR-ISOSCALAR CHANNEL c2_1+k gq+K
~ 2
We will first concentrate on the calculation of IKy(q?). 2
Once that calculation is completed, we will use a once- F1 @9 a-
subtracted dispersion relation to calculatekR?). Basic to K
the calculation of InKg(g?) is the evaluation of the diagram -g+k %
shown in Fig. 7 for the case of on-mass-shell pions. There, 2
we have /2+ k)?=(q/2— k)?=m2, so thatq- k=0. (a)
In the general case, we can define an amplitude
k
d*k — K
Fs(d,x)=Tr if ——a [S(k—«)ysS(a/2+k)T's(q,k)
(27) 2
F, (k?) k-k
X S(—q/2+Kk) ys]. 4.1
k -K
(See Fig. 7. Now, if the pions are on-mass-shell, we may
define (b)

2y 2 w22 2
F1(0%)=75(0%q- k=0k"=m; —q/4). (4.2 FIG. 8. (a) The diagram that corresponds Fq(q?) is shown.

. ) o . Here, the pions are on mass shell, so tRafq?)=F5(q%q- «
(See Fig. 8. We will also find it useful to introduce =0,k%=m?2—q?/4), where F5(q?,q- «,«?) is depicted in Fig. 7.
F1(g?) is needed in the evaluation of If(*g(qz). (b) The diagram
Fo(k?)=Fs(0,0,k2). 4.3 that corresponds tB,(«?) is shown, withF,(«?) = F5(0,0,«?).



55 CALCULATION OF THE PROPERTIES OF THE . . . 3089

I' (g,k), etc] As a next step, we complete the integral circle on a line denotes an antiquark on fitsgativemass
overk® in the complexk® plane. The terms with thres(*) shell. For each diagram in Fig.(&, one has a factor of
factors, or thres(™) factors, all have their poles in the same I's ~(d,k) and for the diagrams of Fig(B), one has a factor
half-plane and, therefore, do not contribute to the integralof I's *(q,k); however, these two vertex functions are equal,
For the remaining six terms, we choose to completekthe if the interaction does not depend upon energy transfer.
integral either in the upper-half or the lower-héft plane,  Similarly, diagrams of Fig. (&) give rise to a factor of
depending upon where there is only a single pole. The resulf$ *(q,k), which is equal to the functiofis ~(q,k) arising

ing six terms are depicted in Fig. 7. There, a cross on a linérom the other diagram in Fig.(@. The result of these cal-
denotes a quark on its positive mass shell, while an openulations is(for q=0)

d’k  [(—k-x) I's (q°k) ' "(q,k)
Fs(a,x)=4 3 2 0 05— - T 0 0 _
(27) 2mg  [[°—2E(k){a/2—[E(k) +E(k—w)]}  [q"+2E(k) {a"/2+[E(k)+E(k—x)]}
1 [E*(K)+E(K)E(k—#)—k-&][T*"(q°k)+T~(q%K)] 4.4
" am; (@727~ (E(K) +Ek— 1] | @4
|

wherek=|k|. From this function, we may obtaif, (q%) and V. THE o SELF-ENERGY INCLUDING COUPLING
F.(x?) as special cases. TO THE TWO-PION CONTINUUM

In Fig. 9, we show the values we have found for
F,(x?). Values for k><0 are obtained by evaluating the
relevant integral in Euclidean space, where we neglect th
effects of confinement. Values fa?=0 are obtained using
the methods described in this section. If we choose a cutot}?ave
for the loop integrals evaluated for?=0 to be |k|<Aj,

Once we have galculateﬁl(qz), we may calculate
Im Kg(g?)=(1/2) discKg(g?), where the discontinuity is
faken across the two-pion cut that startsgét4m?2. We

4

with A;=0.816 GeV, we find that the value af=0 for disc ks(qz):g4 |fn2s(_1)f d_K4 [F1(g?)]?
both calculations is the saméSee Fig. 9. (Recall that for maae (27)

loop diagrams withtwo quark propagators, the appropriate X{— 21 6 (q/2+ K)Z—mz]}

value of A; was found to be 0.689 GeVWe note that i
confinement effects are small fogf<0, so that forF,(«?) x{—2mi 8 (gl2— k)2—m3]}, (5.0

= F4(0,0,«?), these effects are relatively unimportant.

wherel (=12 is an isospin facton2=9 is a color factor and

s=2 is a symmetry factor. Also, the superscript) on theés

functions denotes the fact that we choose only the part of the

6 function in which the pions are on their positive mass shell.
Now, whenq=0,

0.010 - -

. d*x q 2
_ 2 -2 —-m?
> (2) 2m° & (2+K) mZ
g L
0.005 - 7] 2
~ q 1 _
< I D2 ] —m2 = ——
\% ><5< 2 K) mﬂ} 87Ta)(K) k, (5.2
[T
ol where «k=[(q°/2)*~m2]"% w(x)=[x*+m:]" and q°
I =2w(k). Thus,
[ N TR NN N M | | I 1 —
4 3 2 4 0 1 2 3 TP L 2 22 X
K (GeV?) Im Ks(a%) =3 Grad! Sl I 20

X 0(q?—4m?2). (5.3
FIG. 9. Values ofF ,(«?) are shown. Fok?<0 the calculation

is made in a Euclidean momentum space with a cutbff 5, ) . )

—1.0 GeV. Forx?>0, the calculation is made in Minkowski space Values of ImK¢(q°), calculated using Eq5.3), are given in
with a cutoff [k|<A;=0.816 GeV placed upon the integration Fig. 10 for the casg,qq=2.68. That value fogqq Was first
variable. That cutoff is used for loop integrals having three quarkobtained in Ref[10]. A simple estimate 0fy,qq may be
propagators. found by working in the chiral Iimitm8=0, and evaluating
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FIG. 10. Values of |n125(q2) are shown. The calculation is
made using the method outlined in R¢b]. Here we usex FIG. 11. Values of R&q?) obtained from the once-subtracted
=0.20 GeV, g,qq=2.58, and Lorentz-vector confinement. We dispersion relation of Eq(5.6) are shown. Hereg . qq=2.68 was

also havem,=260 MeV and a cutoff on the three-momerjid  sed in the calculation of IK(cP). [See Fig. 10, which shows
<Aj, with A3=0.816 GeV.(Note that the result is quite insensi- |, ks(qz) calculated forg,qq=2.58]
mqq— 490

tive to the model of confinement us¢d.o obtain the values for
Onqq=2.68, we need to multiply the values in the figure by

(2.68/2.58]—1.16 with K, a constant, we have an accurate approximation for

Im K(@?). We can then complete the integrals in E§.6)
with the result, forg?>4m2,

2
7qq(0) G
Ioad D) _ SR (5.4)
m;  1-GsJg(0) S 2Ko[  x [1-
ReKg(q ):KS(0)+T 1+E In Tix/ I (5.9
Then, one may pul.qq=J,qq- A More accurate value is
found by using the relation where
3dp(9?) 27172
-2 02y 7P 4m;,
Orae M) = gz |, (69 x=|1-— } (5.10
' q
whereJp(g?) is the value of thepolarization loop integral ~ For 0<q?<4m?2, we have
in the pseudoscalar channel. A
Once we have calculated IKyg?), we can obtain S 2K, 4mz2| 12
% 2 H H : ReKs(q ):Ks(0)+_ 1_ 1_ 2
ReK4q) by means of a once-subtracted dispersion relation T q
ReK«(g?)=Kg0) P 2f ds Ko (5.6 X tan L i )1/2 (5.11)
e = - = S———. . an | —>———— . .
slq S T q 4mi s(qz—s) |q2_4mi|
As a next step, we need to calcula:(g(O), which may be We now have enough information to calculaig(qz)
obtained in terms oF ,(«?). We have +ReKgg?. That quantity is shown in Fig. 12.
4 H 2
Ks(0)=g* |fnﬁsif d_"4 (2_'Z> [Fa(x2)]2. VI. CALCULATION OF THE QUARK-QUARK
aa (2m)" | k -mg SCATTERING AMPLITUDE FOR t-CHANNEL

(5.7 SCALAR-ISOSCALAR EXCHANGE

This integral may be completed by going over to a Eu- Since we now have values o}s(q2)+Rek5(q2) and
clidean momentum space. Using the value§ gfix®) given  1m g(q?), we are able to obtaity,,(g?) that was defined in
in the last section, and again usimg,q,q=2.68, we find  E£gg (3.9) and(3.10. In Fig. 13 we show Ré,(¢?) as a solid
K(0)=0.0108 GeV. Using that value in Eq(5.3), we find  jine and Imt,(0®) as a dotted line. Note that Rg(q?) has a
the values of R&g(g?) shown in Fig. 11(The sharp peak in zero atq2=m0, corresponding to the equation
that function is due to the rapid opening of the two-pion
channel ag?=4m?.) Ggl—[Jg(m?)+ReKg(m?)]=0. (6.1)

Note that, if we write
The very large negative value foq2:4me seen for
Retqq(qz) has its origin in the opening of the two-pion chan-
nel at that energy.

2

1/2
Im RS(QZ):( _q_;) KoB(q’—4m2), (5.8
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FIG. 12. The dashed line shows Iig(qz). (See Fig. 11.The
dotted line shows the values d&(qg?) calculated in Minkowski
space, withm,=260 MeV and a cutoff\;=0.689 GeV. The solid
line showslg(q?) + ReK«q?). The dot-dashed line shows the value
of Gglz (1/8.516) GeV¥. The intersection of the solid line with the
dot-dashed line depicts the solution of the equatiay *
—[Jg(m?)+ReKgm?)]=0. We find m,=823 MeV. (For these
calculationsk=0.20 GeV and 4=0.030 GeV)

In Fig. 14 we show values df,(q?)|%. Again, the large

peak in that quantity reflects the opening of the two-pion

channel alq2=4mf,. It may be seen that there is little evi-
dence for the presence of a resonance centered amtnd
=m? due to the strong coupling to the two-pion continuum.
To investigate this point further, we shdtyq(q?)|? in Fig.

ment centered around®~0.67 Ge\f that could be inter-

preted as a residual effect due to the presence oftreso-
nance.

IS
)

&
<3

Ret,(a) and Imt () (GeV?)

-120

9 (GeV?)

FIG. 13. Values of Js(q?) + ReK(g® (see Fig. 12 and
Im Kg(g?) (see Fig. 1Dare used to form R%q(qz), shown as a solid
line, and Imtqq(qz), shown as a dotted ling¢The large dip in the

CALCULATION OF THE PROPERTIES OF THE . . .
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FIG. 14. Values oflty,(g?)|? are shown.[See Fig. 13 for
Rety(q?) and Imt,(c?).]

VII. DISCUSSION

In a previous wor 9] we have studied the quark-quark
T matrix tqq(qz) for spacelike values ofi. In the present
work we have extended our considerations to stlhq{/qz)
in the timelike region. Fog?<0, and for— g2 not too large,
the approximation

2
goqq
g?—m

tqq(qz): 2 (71)

o

; was found to be quite accurate,rif,=540 MeV andg,,
15 using an expanded scale. One may note a small enhance- d Joag

3.05[9]. In the present work, we may firgﬁqq by writing

Gs
1-G4¢[Js(0)+Kg(0)]

2
_ Yoqq
m2 ’

o

(7.2
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FIG. 15. Values oﬂtqq(q2)|2 are shown in an expanded scale

relative to that used in Fig. 14. The enhanced values gor

value of Retqq(qz) corresponds to the opening of the two-pion con- ~0.7 GeV? correspond to the zero of Ft@](qz) at ¢?

tinuum atq?=4m?.]

=0.677 GeV. (See Fig. 13.
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wherem,=0.540 GeV. For the parameters developed herespacelike d is not in contradiction to the fact that such a
J5(0)=0.0708 GeV, Kg(0)=0.0108 Ge¥, and Gg Mmeson has not been seéso, in the present study, we have
=8.516 GeV?2, we find Uoqq=2.86, if m,=0.540 GeV. found little direct evidence for a more massive resonance in
Thus, t4o(0)= _gfrqq/m:é‘r: —28.0 GeV'2 (See Fig. 13. the timelike region because of the very strong coupling to the
Equation(7.1) is useful in the spacelike domain #g?  two-pion continuum of the scalar-isoscalar state. On the

<0.25 Ge\,. For an accurate representation beyond that reother hand, the 0 of the real part of thematrix, found using
gion, one may write Eq. (6.1, does define a mass that tlhe would have, if

Im K«(g?) were neglected. We have also seen that there is a
large peak in|tyq(g?)| at g>~4mZ. We do not know
whether such an effect could be observed in some experi-
ment. However, we again note that fhenatrix for spacelike
[Equation(7.3) may be used to defing,q4(q?).] Note that, g2 is not influenced by the peak af~4m?. For nuclear
although Eq.(7.1) represents th@ matrix for a limited re-  physics problems that are of interest to us, the mesons ex-
gion of spacelike values af?, there is no low-mass scalar- changed between nucleosr between quarkisare space-
isoscalar state in the timelike region. However, for calculadike, with Eqg. (7.1) providing an accurate representation of
tion of theNN force, or for the study of nuclear matter, the the dynamics.

momenta of the exchanged mesons are spacelike. Therefore,

we may conclude that, if one restricts oneself to the descrip- ACKNOWLEDGMENT
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95qq(d%)
—qij 7 (7.3

(o8

tqq(qz):
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