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Chiral symmetry and the nucleon’s vector strangeness form factors
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The nucleon’s strange-quark vector current form factors are studied from the perspective of chiral symmetry.
It is argued that chiral perturbation theory cannot yield a prediction for the strangeness radius and magnetic
moment. Arrival at definite predictions requires the introduction of additional, model-dependent assumptions
which go beyond the framework of chiral perturbation theory. A variety of such model predictions is surveyed,
and the credibility of each is evaluated.@S0556-2813~97!00206-9#
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I. INTRODUCTION

There has been considerable interest recently in
strange quark ‘‘content’’ of the nucleon@1–15#. The reasons
for this interest are both theoretical and phenomenologi
In the latter case, early analyses of the pion-nucleon sig
term @16# and later results for the nucleon’s inclusive, sp
dependent deep-inelastic structure functions@17–21# sug-
gested that a nontrivial fraction of the nucleon’s mass a
spin are carried by thess̄ component of the sea. Subseque
analyses of the sigma term have reduced the value

^pus̄sup&/^puūu1d̄dup&, and therefore the strange-qua
contribution tomN , by a factor of 2@22#, while studies of
SU~3! breaking in the axial vector octet imply a theoretic
uncertainty in the value ofDs, the strange quark contributio
to the nucleon’s spin extracted from deep-inelastic scatte
~DIS! measurements, sufficiently large to make the bou
on Ds consistent with zero@23–26#. Nevertheless, the earl
analyses of the sigma term and polarized DIS results h
motivated proposals to measure another strange-quark
servable,^pus̄gmsup&. Indeed, several low- and medium
energy parity-violating electron scattering experiments
either underway or planned at MIT-Bates@2,3#, TJNAF
@4–6#, and Mainz@7# with the goal of measuring the tw
form factors which parametrize the nucleon’s strange-qu
vector current,GE

(s) andGM
(s) .

Theoretically, strange quarks are interesting because
do not appear explicitly in most quark model descriptions
the nucleon. Although the quark model provides a use
intuitive picture of the nucleon’s substructure and has s
considerable success in accounting for a wide range of p
erties of the low-lying hadrons@27#, one knows that there is
more to the nucleon than the three constituent quarks
particular, processes such as DIS and Drell-Yan have
vided considerable insight regarding the important r
played by theqq̄ and gluon sea when the nucleon interacts
high energies@8#. Almost no information exists, howeve
regarding the low-energy manifestations of the sea. Beca
strange quarks constitute purely sea degrees of freedom,

*On leave from the Department of Physics, University of Co
necticut, Storrs, CT 06269.
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and intermediate-energy determinations of strange-quark
trix elements offer a new window on the ‘‘low-energy
structure of the nucleon which goes beyond the descrip
provided by the quark model. In particular, the weak neu
current scattering experiments mentioned above should
bounds on the spatial polarization of thess̄ sea @4,6#, its
contributions to the nucleon magnetic moment@2–4# and
spin @9#, and its role in the nuclear response at moder
momentum transfer@5#.

One has seen considerable progress over the past
years in clarifying the interpretation of neutral current o
servables in terms of strangeness matrix elements@1,10–13#.
The situation regarding theoretical predictions for these m
trix elements is less advanced. Ideally, one would hope
draw inferences from the deep-inelastic data ons and s̄ dis-
tributions@28# for elastic vector and axial vector strangene
matrix elements. However, the high-energy data prov
light-cone momentum distribution functions, and one do
not know at present how to translate this information into
spin and spatial nucleon wave functions as needed to c
pute charge radii, magnetic moments, etc.@29#. Similarly,
one might hope for first-principles microscopic predictio
using lattice QCD. To date, lattice results for the strangen
axial charge@14# and strangeness magnetic moment@15#
have been obtained in the quenched approximation, and
anticipates a refinement of these results as lattice meth
continue to advance. In the absence of definitive latt
calculations—and with an eye toward understanding
mechanisms which govern the scale of nucle
strangeness—a variety of model calculations have been
formed. The latter have yielded a wide array of predictio
for strangeness matrix elements which vary in both mag
tude and sign@30–42#. While one might arguead nauseum
about the relative merits of different models, there is no co
pelling reason to take any particular model calculation
definitive.

In an effort to add some clarity to this situation, we di
cuss in this paper the implications for nucleon strangen
vector current matrix elements of one of the underlying, a
proximate symmetries of QCD: chiral symmetry. The use
chiral symmetry, in the guise of chiral perturbation theo
~CHPT!, has proven highly effective in predicting and inte
preting a wide variety of low-energy observables@43,44#.
The essential strategy of CHPT is to exploit the approxim
-
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55 3067CHIRAL SYMMETRY AND THE NUCLEON’S VECTOR . . .
SU~3!L3 SU~3!R chiral symmetry of QCD for the three
lightest flavors to relate one set of observables to ano
~accounting for loop effects!, or to draw on one set of mea
sured quantities to predict another. This approach has
cently been employed to analyze of baryon octet and
cuplet magnetic moments@45–47# and the nucleon’s
isovector charge radius@48#. As we illustrate below, this
strategy breaks down in the flavor-singlet channel, rende
CHPT unpredictive for the nucleon’s strangeness matrix
ements. The reason is that the coefficients of the relev
flavor-singlet operators in the chiral Lagrangian, which co
tain information on short-distance hadronic effects, can
be determined from existing measurements by using ch
symmetry. Although the leading, nonanalytic long-distan
~loop! contributions are calculable@O(Ams) for the strange-
ness magnetic moment andO(lnms) for the strangeness ra
dius#, one has no reason to assume that they are numeri
more important than the unknown analytic terms arising
the same or lower order from the chiral Lagrangian. The o
rigorous way to determine these unknown analytic contri
tions is to measure the very quantity one would like to p
dict: the nucleon’s flavor-singlet current matrix element.

Consequently, if one wishes to make any predictions
all, one must invoke additional—and therefore mod
dependent—assumptions. We illustrate this next line of
fense in three forms:~a! a ‘‘resonance saturation’’ model in
which the unknown constants arising in chiral perturbat
theory are determined by thet-channel exchange of vecto
mesons;~b! a class of models in which the nucleon’s ‘‘kao
cloud’’ is assumed to dominate the strangeness form fact
and ~c! constituent chiral quark models in which nucleon
strangeness matrix elements arise from the strangeness
tent of the constituentU andD quarks. For each of thes
approaches, we present new calculations and compare
with calculations discussed elsewhere in the literature.
corresponding results are unabashedly model dependent
therefore, not strong. We give them mainly to illustrate t
outer limits to which one might go in employing chiral sym
metry to computeGE

(s) andGM
(s) . Although there exist addi-

tional chiral model approaches not considered in detail h
we believe that the three which we discuss are sufficie
representative so as to illustrate the breadth of predict
permitted by chiral symmetry.

In the end, we argue that each chiral model is plagued
potentially significant uncertainties and fails to include ph
ics which could contribute appreciably to the strangen
form factors. In short, chiral symmetry is only one of seve
considerations one must factor into an analysis ofGE

(s) and
GM
(s) , and of these considerations, it is not necessarily e

the most important. On the other hand, identifying the sh
comings of various chiral models does allow one to see m
clearly the elements which should be included in a m
credible treatment of the strangeness form factors using
fective hadronic methods. An approach incorporating th
elements is discussed elsewhere@49#.

We organize our discussion of these points as follows
Sec. II we review the effective low-energy chir
Lagrangians which describe the interaction of pseudosc
mesons with baryons or quarks. In Sec. III we employ t
formalism to compute the nucleon’s strange-quark vec
er
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current form factors, introducing model assumptions as n
essary. Section IV gives the results of these calculations
a discussion of their credibility. Section V summarizes o
conclusions.

II. CHIRAL LAGRANGIANS

In the low-energy world of three-flavor QCD, the QC
Lagrangian manifests an approximate SU~3)L3SU~3)R chi-
ral symmetry. This symmetry is explicitly broken by th
small current quark masses. In addition, spontane
symmetry-breaking SU~3)L3SU~3)R→SU~3)V implies the
existence of eight massless~assumingmq50) Goldstone
modes and an axial vector condensate. One identifies
latter with the pion decay constantf p'93 MeV and the
former with the lowest-lying octet of pseudoscalar meso
The Goldstone bosons are conveniently described by a
S, given by

S5 exp@2i P̃/ f #, ~1!

where f[ f p and

P̃5
1

2 (
a51

8

lafa, ~2!

with the la being the eight Gell-Mann matrices and thefa
being the pseudoscalar meson fields@50,51#. The Lagrangian
which describes the pseudoscalar kinetic energies and
interactions is given by

L5
f 2

4
Tr~]mS†]mS!1

f 2

2
@Tr~SmM !1H.c.#, ~3!

whereM5 diag@mu ,md ,ms# is just the QCD current quark
mass matrix which explicitly breaks the residual SU~3)V
symmetry andm is a parameter which relates the qua
masses to quadratic forms in the pseudscalar masses~hence,
mp,K is of orderAmq). The Lagrangian in Eq.~3! actually
constitutes the leading term in an expansion in powers
p/Lx and mM /Lx , wherep denotes the momentum of
low-energy pseudoscalar meson andLx'4p f'1 GeV is
the scale of chiral symmetry breaking. For purposes of
present study, retention of higher-order terms in the ch
expansion of the purely mesonic sector is not necessary

Interactions between the Goldstone bosons and ma
fields are conveniently described by first introducing vec
and axial vector currents

Vm[
1

2
~j†]mj1j]mj†!, ~4!

Am[
i

2
~j†]mj2j]mj†!, ~5!

whereS5j2. One may now proceed to construct a chir
Lagrangian for fermions. The simplest case involves the
fective, constituent quarks of the quark model. Letting
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c5S UD
S
D ~6!

denote the triplet of light-quark fields, one has for the lead
term in the chiral expansion

LQ5c̄~ iD” 2m!c1gAc̄A” g5c, ~7!

where

Dm[]m1Vm ~8!

is a chiral covariant derivative andgA is a constant which
governs the strength of the interaction between quarks
odd numbers of pseudoscalar mesons@the last term in Eq.
~7!#. The term involvingm gives the constituent quar
masses1 in the limit of good SU~3)V symmetry. Higher-order
terms in the chiral expansion include those which break
degeneracy between the constituent quarks. In the ch
quark model calculation we discuss below, we allow
mass splittings among the constituent quarks, although
will not show the SU~3)V symmetry-breaking terms explic
itly. The higher order terms in the chiral expansion relev
to strangeness vector current matrix elements will be in
duced below.

In the case of meson-baryon interactions, we restrict
attention to the lowest-lying octet of baryons, for which o
has the matrix representation

B[
1

A2(a51

8

laca, ~9!

where theca are the octet baryon fields. We adopt here
heavy baryon formalism of@23#, which avoids problematic
terms in the exansion of the baryon chiral Lagrangian invo
ing powers ofmB /Lx , wheremB is the baryon mass. In thi
formalism, one employs baryon states of good veloc
vm5pm /mB . The corresponding fields are given by

Bv~x![ exp~ imBv” v•x!B~x!. ~10!

With this definition, the leading-order heavy baryon chi
Lagrangian is

Lv5 i Tr~B̄vv•DBv!12D Tr~B̄vSv
m$Am ,Bv%!

12F Tr~B̄vSv
m@Am ,Bv# !, ~11!

whereSv
l is a spin operator whose properties are discusse

Ref. @23#, where the action of the chiral covariant derivati
on the heavy baryon fields is given by

DmB5]mB1@Vm,B#, ~12!

and whereD andF are the usual SU~3! reduced matrix ele-
ments. The first corrections toLv involve one or more pow-
ers of quantities which are small in comparison toLx . For

1Not to be confused with the current quark mass matrixM .
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future reference, we also give the ‘‘traditional’’ nonlinea
meson-baryon chiral Lagrangian, which we draw upon
Sec. III B:

LB5 Tr@B̄~ iD” 2mB!B#1D Tr~B̄gmg5$A
m,B%!

1F Tr~B̄gmg5@A
m,B# !. ~13!

In what follows, we compute strange-quark vector cu
rents of nonstrange chiral quarks and nonstrange bary
arising from kaon loops. To that end, it is useful to wo
with the baryon number currentJm

B and to introduce a vecto
current sourceZm which couples toJm

B via the minimal sub-

stitution ]m→]m1 iQ̂BZ
m, whereQ̂B is the baryon number

operator.2 Taking the first functional derivative with respe
to Zm of the generating functional yieldsn-point functions
with a singleJm

B insertion. The strange-quark current is r
lated in a straightforward manner toJm

B and the isoscalar EM
current@see Eqs.~18!–~22! below#. In practice, it is simpler
to compute the strangeness charge of each particle appe
in a Feynman diagram, insert the appropriate Lorentz str
ture for a vector current, and evaluate the resulting contri
tion to the strangeness matrix element. From a formal sta
point, however, the use of the baryon number current and
the sourceZm provides an efficient means for keeping tra
of the flavor content and chiral order associated with hig
moments~mean square radius, magnetic moment, etc.! of
various currents.

III. STRANGE-QUARK MATRIX ELEMENTS

With the formalism of Sec. II in hand, it is straightforwar
to compute nucleon matrix elements of the strange-qu
vector current,̂ p8us̄gmsup&. This matrix element can be pa
rametrized in terms of two form factors,F1

(s) andF2
(s) :

^p8us̄gmsup&5ū~p8!FF1
~s!gm1 i

F2
~s!

2mN
smnQ

nGu~p!,

~14!

whereu(p) denotes a nucleon spinor andQ5p82p is the
momentum transfer to the nucleon. When working in t
heavy baryon formalism, the corresponding Lorentz str
tures are obtained from Eq.~14! by the use of the relations in
Ref. @23#. For on-shell nucleons, the form factors are fun
tions ofQ25q0

22uqW u2, whereQm5(q0 ,qW ). In what follows,
we work with the so-called Sachs electric and magnetic fo
factors@52#, defined as

GE
~s!5F1

~s!2tF2
~s! , ~15!

GM
~s!5F1

~s!1F2
~s! , ~16!

wheret[2Q2/4mN
2 . At Q250, the Sachs electric form fac

tor gives the net strangeness of the nucleon, which is zero
small momentum transfer, the scale of this form factor

2The full chiral structure of the charge operator is given in R
@45#. For the present purpose, the inclusion of the full structure
not necessary.
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55 3069CHIRAL SYMMETRY AND THE NUCLEON’S VECTOR . . .
governed by the first derivative with respect toQ2, which
defines the mean square ‘‘strangeness radius.’’ We w
with a dimensionless version of this quantity,rS

s , defined as

rS
s5

dGE
~s!

dt
U

t50

52
2

3
mN
2 ^r s

2&S, ~17!

where^r s
2&S is the dimensionful Sachs strangeness radius

where the superscript ‘‘S’’ denotes the Sachs, as distin
from the Dirac, radius. There exists no symmetry princi
which constrains the strangeness magnetic mom
GM
(s)(0)5ms. Note that sinceGE

(s)(0)50 one hasms5ks. In
discussing the implications of chiral symmetry f
^p8us̄gmsup&, we will be concerned primarily with these tw
parameters,rs andms.

A. Heavy baryon chiral perturbation theory

In terms of chiral counting, the strangeness magnetic m
ment and radius, like the corresponding electromagn
quantities, appear, respectively, as order 1/Lx and 1/Lx

2 cor-
rections to the leading-order heavy baryon Lagrangian gi
in Eq. ~11!. In discussing these corrections, it is convenie
to rewrite the strangeness vector current in terms of the e
tromagnetic and baryon number currents:

Jm
EM~T51!5Vm

~3! , ~18!

Jm
EM~T50!5~1/A3!Vm

~8! , ~19!

Jm
B5Vm

~0!, ~20!

where theT51 andT50 designations indicate the isovect
and isoscalar elecromagnetic currents, where ‘‘B’’ denotes
the baryon number current, and where

Vm
~a!5q̄

la

2
gmq, q5S ud

s
D . ~21!

Here, thela,a51, . . . ,8 are theusual Gell-Mann matrices

l05 2
3 I , andq gives the triplet of QCD quark fields. In term

of the currents in Eqs.~18!–~20! one has

s̄gms5Jm
B22Jm

EM~T50!. ~22!

With these definitions one may write down the higher-ord
heavy baryon Lagrangians corresponding to the EM
baryon number magnetic moments and charge radii:

DLEMT515
e

Lx
emnabv

a$b1Tr~B̄vSv
b$l3,Bv%!

1b2Tr~B̄vSv
b@l3,Bv# !%Fmn

2
e

Lx
2 $c1Tr~B̄v$l

3,Bv%!

1c2Tr~B̄v@l3,Bv# !%vm]lF
ml, ~23!
rk

d

t,

o-
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n
t
c-

r
d

DLEMT505
e

Lx

1

A3
emnabv

a$b1Tr~B̄vSv
b$l8,Bv%!

1b2Tr~B̄vSv
b@l8,Bv# !%Fmn

2
e

Lx
2

1

A3
$c1Tr~B̄v$l

8,Bv%!

1c2Tr~B̄v@l8,Bv# !%vm]lF
ml, ~24!

DLB5
b0
Lx

emnabv
aTr~B̄vSv

bBv!Z
mn

2
c0
Lx
2 Tr~B̄vBv!vm]lZ

ml, ~25!

where Fmn is just the ordinary EM field strength tenso
Zmn is the analogous quantity involving the sourceZm cou-
pling to baryon number, ande is the proton’s EM charge. In
eachDL, the terms of order 1/Lx contribute to the anoma-
lous magnetic moment and those of order 1/Lx

2 enter the
charge radius@53#. For a given baryon, the magnetic mome
and mean square radius will contain a contribution fro
DL and a contribution from loops~nonanalytic inmq), as in
Fig. 1:

ka5k loop
a 1S 2mB

Lx
Dba, ~26!

rD
a 5r loop

a 2S 2mB

Lx
D 2ca, ~27!

where ka5F2
(a)(0) is the anomalous magnetic momen

‘‘ a’ ’ denotes the corresponding flavor channel@T50,1, s,
SU~3! singlet#, and the subscript ‘‘D ’’ indicates the slope of
the Dirac form factor (F1) at t50. In the case of the EM
moments, the quantitiesba andca contain appropriate linear
combinations ofb6 and c6 as determined from the trace
appearing in Eqs.~23!–~24!. Using the heavy baryon formal-

FIG. 1. One kaon loop contributions to strangeness vector c
rent form factors of a nonstrange fermionf ~nucleon or constituent
quark!. Here,3 denotes insertion of the currents̄gms and f 8 de-
notes a strangeness11 fermion ~e.g.,L or consituentS quark!.
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3070 55M. J. RAMSEY-MUSOLF AND HIROSHI ITO
ism outlined above, we computek loop
a and r loop

a employing
dimensional regularization. For the strangeness moments
find

k loop
s 5~2p!F S 3F1D

A6 D 21 3

2
~D2F !2GmN

Lx

mK

Lx
, ~28!

r loop
s 5SmN

Lx
D 2H 11

5

3F S 3F1D

A6 D 21 3

2
~D2F !2G J

3FC`2 ln
mK
2

m2 G , ~29!

whereC`51/«2g1 ln4p with «5(42d)/2 andd being the
number of dimensions. One finds analogous expressions
the isovector (l3) and isoscalar (l8/A3) components of the
EM moments@45,54#. The constantcs appearing in Eq.~27!
contains the appropriate dependence onC` to cancel the pole
term in r loop

s . The scalem denotes the scale at which th
subtraction of the pole term is carried out. The remain
finite parts of (k loop

s ,r loop
s ) and of (bs,cs) determine the

value of the anomalous magnetic moment and mean sq
Dirac radius. Using Eqs.~22!–~25!, one can express th
‘‘low-energy’’ constants (bs,cs) in terms of the correspond
ing quantities for the baryon and EM currents:3

bs5b022@b22~b1/3!# , ~30!

cs5c022@c22~c1/3!#. ~31!

In the case of the EM moments, the (b6 ,c6) are fit to
known EM moments in the baryon octet. One may then e
ploy Eqs.~23!–~27! and the loop contributions to predict th
moments of other baryons within the octet. This approa
reflects the basic strategy of chiral perturbation theory: r
on chiral symmetry to relate one set of quantities~known
EM moments! to another ~those one wishes to predict!,
modulo loop corrections~a consequence of spontaneous c
ral symmetry breaking!. A simple fit to the nucleon EM mo-
ments alone givesb1'1.4, b2'0.9, c1'21.9, c2'0.9
@55#.

As one would expect on general grounds, these const
are of order unity. In the case of the nucleon EM anomal
magnetic moments, the contributions from theb6 and the
loops have comparable magnitudes. In the case of the ch
radii, the loops give the dominant contribution to the isove
tor EM charge radius while thec6 give the dominant con-
tribution to the isoscalar EM charge radius. It is evide
then, that one cannot rely on either the loop or the ‘‘cou
terterm’’ contributions alone to account for the nucleon
EM moments.

In the case of the strangeness magnetic moment and
dius, one would ideally follow a similar strategy. Howeve
the coefficientsbs and cs are unknown. The reason is th
these constants depend onb0 andc0 as well as theb6 and
c6 . Since the baryon number magnetic moment and cha

3Henceforth, the cancellation of theC` will be understood and
(ba,ca) will denote the finite remainders of the counterterms.
we
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radius for the octet baryons have not been measured,b0 and
c0 are undetermined. In fact, by virtue of Eq.~22!, measure-
ments of the strangeness radius and magnetic moment o
nucleon would provide a determination of the correspond
quantities for the baryon number current and, through E
~30! and ~31!, would fix b0 and c0. Moreover, given the
situation in the EM case, one would not be safe in assum
that bs and cs differ significantly in magnitude from unity.
Indeed, one has no reason to expect, based on any symm
principle, that either the loops or chiral counterterms sho
give the dominant contributions to the strangeness radius
magnetic moment. Thus, chiral perturbation theory, in
purest form, cannot make a prediction for the strangen
vector current matrix elements.

In arriving at this conclusion, we did not include decup
baryons in the loops nor the subleading nonanalytic lo
contributions (Amslnms in the case of the strangeness ma
netic moment! as was done in Ref.@45#. In that work, it was
found that the dominant loop contribution to the magne
moments isO(Ams) and that the inclusion of the decuple
states does not have the same kind of effect as it does in
axial vector matrix elements, where non-negligible oct
decuplet cancellations occur for the loop contributions. Sim
larly, we did not use the one-loop corrected axial mes
nucleon couplings. Although from a formal standpoint t
difference between tree-level and one-loop corrected c
plings is of higher order than we are considering here,
authors of Ref.@45# obtained a better fit to the baryon ma
netic moments with the corrected couplings. The use of
latter effectively reduces the size of the large kaon loop c
tributions. As we note below, the physics which modifi
one-loop results largerly amounts to kaon rescattering~see,
e.g., Ref. @56#!. Employing one-loop corrected axial cou
plings in the one-loop magnetic moment calculation incorp
rates some, but not all, rescattering contributions. It is
entirely clear that the impact of two-loop contributions to t
magnetic moment is numerically less significant than the
placement of tree-level with one-loop corrected axial co
plings in the one-loop magnetic moment calculation. In t
present instance, we avoid this issue altogether and res
our attention to one-loop effects.

B. Chiral models

The conclusion of the foregoing analysis implies that
order to make predictions for the nucleon’s strangeness
ments, one must go beyond the framework of CHPT a
invoke additional, model dependent assumptions. To
end, a number of possibilities present themselves. We c
sider three such model approaches:~a! resonance saturation
~b! kaon cloud dominance, and~c! constituent chiral quarks
These approaches range from one remaining close to
framework of CHPT by estimating the chiral counterterm
@model ~a!# to an attempt to apply chiral symmetry on th
microscopic level@model ~c!#.

Resonance saturation. One might attempt to estimate th
chiral countertermsbs andcs, for example, by assuming tha
the corresponding terms inDL arise fromt-channel vector
meson exchanges. The rationale for such an approach de
primarily from one’s experience in the purely mesonic sec
where, atO(p4) in the chiral expansion, one encounters t
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scale-dependent counterterms,Li
r(m) @57,58#. Five of these

counterterms (i51,2,3,9,10) agree quite well with the pre
dictions of vector meson exchange when the renormaliza
scale is chosen to bem'mr . Of particular interest is the
pion EM charge radius, which receives a contribution fro
L9
r (m). This counterterm contribution dominates^rp

2 &, with
the one-loop contribution giving roughly 7% of the total~for
m5mr). Were this situation to carry over into the arena
the nucleon’s vector current form factors, one would th
expect the countertermsba and ca to be given by vector
meson resonances, as shown in Fig. 2.

To explore this possibility further, one requires the co
plings of JPC5122 vector mesonsV to spin-1/2 baryons
and to electroweak vector bosons. Although it is conv
tional to describe the vector mesons by a vector fieldVm , we
choose instead to follow Refs.@57,58# and work with a for-
mulation in terms of a two-index antisymmetric tenso
Vmn . This formulation offers the advantages that~a! it is
straightforward to write down a gauge-invariant Lagrang
for the interaction of the vector meson with electroweak v
tor bosons, and~b! the contributions from the diagram in Fig
2 do not affect the normalization of the Dirac form factor
Q250. In addition, one finds, as shown in Ref.@57#, that the
vector field formulation does not generate a vector me
contribution to the pion EM charge radius—a situation o
must remedy by the introduction of an additional term
O(p4) in the chiral Lagrangian. No such term is necess
with the tensor formulation. The primary cost involved
using the antisymmetric tensor formulation is the presenc
a four-index vector meson propagator. For the calculation
tree-level process such as given in Fig. 2, this cost is
exhorbitant. Since the details of this formulation and its
lation to the vector field framework are discussed in Re
@57,58#, we refer the reader to those papers and simply g
the form of the couplings and results for the nucleon fo
factors.

The vector meson contributions to the nucleon magn
moment and charge radius are generated by the follow
VNN effective Lagrangian:

LVNN52GTe
mnabvaB̄vSb

vBvVmn1
GV

Lx
B̄vBvvmDnV

mn,

~32!

while the gauge-invariant coupling vector meson-pho
coupling is given by

FIG. 2. Resonance contribution to nucleon vector current fo
factors. HereV denotes a vector meson and3 denotes a vector
current~EM, strangeness, baryon number, etc.!.
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LVg5
eFVLx

A2
VmnF

mn. ~33!

A similar expression applies to the coupling ofV andZ ~the
source of the baryon number current!. We have omitted
SU~3! indices for simplicity. In the formalism of Refs
@57,58#, the fieldVmn has dimension 1. The factors ofLx

have been introduced to maintain the correct dimensiona
while employing dimensionless couplings. In this respe
our definition ofFV differs from that of Refs.@57,58#, where
the corresponding coupling has mass dimensions. The va
for theFV can be extracted from the ratesG(V→e1e2). In
the case of the lightest isovector vector meson, for exam
one hasFr50.132. ~The relation between the constan
GV , GT , andFV and those used in the vector field formul
tion @59–63# is obtained in a straightforward manner.!

From these couplings and the amplitude associated w
the diagram of Fig. 2, we find the following contributions
the Dirac and Pauli form factors from a single vector mes

F1~Q
2!5A2GVFV

Q2

mV
22Q2 , ~34!

F2~Q
2!54A2GTFV

mNLx

mV
2

mV
2

mV
22Q2 , ~35!

where mV is the vector meson mass. Note th
F1(Q

250)50, so that the vector meson resonances do
affect the nucleon charge.

From Eqs.~34!–~35!, one can extract the vector meso
contributions to the nucleon magnetic moment and cha
radius and, thus, the corresponding contributions to the ch
coefficientsb andc:

b52A2GTFVS Lx

mV
D 2, ~36!

c5A2GVFVS Lx

mV
D 2, ~37!

where the flavor index ‘‘a’’ has been omitted for simplicity.
In the case of the nucleon’s EM form factors, the expressi
in Eqs. ~36! and ~37!, together with the decay rates fo
V→e1e2, can be used to determine the couplingsGV ,
GT , andFV @61–63#. Were one also to possess knowled
of the FV associated with the strangeness matrix eleme
^0us̄gmsuV&, one could then use the expressions in Eqs.~36!
and~37! to derive the counterterms for the nucleon’s stran
ness form factors. However, one does not at present pos
such knowledge. As a fallback strategy, one may invo
one’s knowledge of the flavor content of the vector mes
wave functions, where such knowledge exists. In doing so
is useful to follow the spirit of Refs.@30,61,62# and write
down dispersion relations for the nucleon form factors:

F1
~a!~Q2!2F1

~a!~0!5Q2(
V

aV
~a!

mV
22Q2 1Q2 f̃ 1

~a!~Q2!,

~38!



l
r
on
n

ne
th
th

n
t

a
in

th
e
e
to

o
h
ta

s
n
ac

la
f

w
n

One
d at

e is

an

n-
efs.
ing
nce
and
e-

t

re

f

e
he

the

t
e
m
ac

ly

rk
on-
noma-
the

l
e

e-

3072 55M. J. RAMSEY-MUSOLF AND HIROSHI ITO
F2
~a!~Q2!5(

V

mV
2bV

~a!

mV
22Q2 1 f̃ 2

~a!~Q2!, ~39!

where the superscript (a) denotes the flavor channe
(T50,1 or strangeness!, where the poles arise from vecto
meson exchange as in Fig. 2, and where the functi
f i(Q

2) represent contributions from the multimeso
continuum.4 In the works of Refs.@30,61,62#, the continuum
contributions were neglected in the isoscalar and strange
channels. In the spirit of resonance saturation, we retain
leading, nonanalytic loop contributions as an estimate of
continuum terms and assume that the countertermsba and
ca are dominated by the vector meson pole contributio
From Eqs.~34!–~39!, these counterterms are easily related
the pole residues:

ba5S Lx

2mN
D(

V
bV

~a! , ~40!

ca5(
V

aV
~a!S Lx

mV
D 2. ~41!

Thus, for purposes of determining the chiral coefficientsba

andca, it is just as effective to work with the residues in
pole analysis of the form factors as it is to try and determ
the hadronic couplingsGV GT , andFV .

A determination of the residues was carried out by
authors of Refs.@61,62#, who employed a three-pole fit to th
isoscalar EM form factors. The poles were identified, resp
tively, with thev, f, and one higher mass isoscalar vec
mesonV8 ~for an update, see Ref.@64#!. The inclusion of at
least two poles was needed in order to reproduce the
served dipole behavior of the isoscalar form factors. T
authors found that a third pole was needed in order to ob
an acceptablex2 for the fit. Subsequently, Jaffe@30# ob-
served that since the physicalv and f are nearly pure
uū1dd̄ and ss̄ states, respectively, one can relate the re
dues appearing in the strangeness form factor dispersio
lations to those associated with the isoscalar EM form f
tors:

av
s

av
T50 52A6F sine

sin~e1u0!
G ,

af
s

af
T50 52A6F cose

cos~e1u0!
G , ~42!

wheree is the mixing angle between the pureuū1dd̄ and
pure ss̄ states andu0 is the ‘‘magic’’ octet-singlet mixing
angle giving rise to these pure states. Analogous formu
apply for the residues appearing in the expressions
F2
(s) . From Eqs.~40!–~42!, one may now determine thev

andf contributions to the constantsbs andcs.
A determination of the remaining residuesaV8

s andbV8
s is

more problematic. One does not possess sufficient kno
edge of theV8 flavor content to derive a simple relatio

4Note that the continuum contribution need not enter additive
one may also include it as a multiplicative factor@63,64#. We write
it additively for simplicity of illustration.
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between the strangeness and isoscalar EM residues.
must therefore employ alternative strategies. Jaffe arrive
values for theaV8

s and bV8
s by imposing conditions on the

asymptotic behavior of the form factors (Q2→`). Using a
three-pole fit, with all masses and two residues fixed, on
only able to require thatF1

(s) vanish as 1/Q2 and F2
(s) as

(1/Q2)2. These asymptotic conditions are more gentle th
one would expect based on the most naı¨ve quark counting
rules. As discussed in Refs.@40,41#, consistency with the
latter would require the inclusion of more poles with u
known masses and residues than used in the fits of R
@30,61,62,64#. Since the adequacy of these quark count
rules for strangeness form factors is itself not clear, and si
one’s predictions for the nucleon’s strangeness radius
magnetic moment within this framework are nontrivially d
pendent on one’s assumptions about asymptopia@40,41#, this
approach to treating theV8 contribution is ambiguous a
best.

Another alternative is to note that in the fits of Ref.@62#,
the V8 contributes very little to the isoscalar mean squa
radius and anomalous magnetic moment~less than 10% in
the fits with the bestx2). Indeed, the primary benefit o
including theV8 was to obtain acceptablex2 over the full
range ofQ2 used in the fit; its impact on the value of th
form factors and their slopes at the origin is minimal. T
latter result is not surprising, since~a! it is necessary to in-
clude only the two lightest poles in order to reproduce
observed dipole behavior of the isoscalar form factor, and~b!
the V8 contribution to the low-uQ2u behavior of the form
factors is suppressed by powers of (mv,f /mV8)

2 relative to
the v andf contributions. Using analogous logic, it migh
seem reasonable to neglect theV8 when seeking to determin
the leading, nontrivialQ2 behavior of the strangeness for
factors. In Table I, we quote results for the nucleon’s Dir

;

TABLE I. Theoretical predictions for nucleon strange qua
vector current form factors. Columns two and three give dimensi
less mean square Dirac strangeness radius and strangeness a
lous magnetic moment, respectively. The fourth column gives
Sachs strangeness radius:rS

s5rD
s 2ms. To convert tô r s

2&, multiply
rs by 20.066 fm2. The first three lines give predictions of chira
models discussed in this work:~a! heavy baryon CHPT/resonanc
saturation employingv and f residues of fit. 8.2 of Ref.@62#;
numbers in parentheses give leading, nonanalytic~in ms) loop con-
tributions form5mv ; ~b! nonlinears model with hadronic form
factors using cutoff massL51.2 GeV;~c! chiral quark model with
cutoff massL51.0 GeV, oscillator parameterg51.93 fm 21, and
mU5mD50.33 GeV. Last four lines give previously reported pr
dictions: ~d! three pole model of Ref.@30#; ~e! linear s model of
Ref. @31#; ~f! hybrid pole/loop model of Ref.@34#; ~g! cloudy bag
model of Ref.@32#.

Model rD
s ms rS

s

Resonance sat.~a! 23.62(1.52) 1.85~2.2! 25.47(20.68)
NLSM/FF~b! 0.11 20.25 0.36
Chiral quarks~c! 0.53 20.09 0.62
Poles~d! 22.4361.0 20.3160.009 22.1261.0
LSM/FF~e! 0.1 2(0.3120.40) 0.4120.49
Hybrid~f! 0.37 2(0.2420.32) 0.6120.68
CBM~g! 0.15 20.09 0.24
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55 3073CHIRAL SYMMETRY AND THE NUCLEON’S VECTOR . . .
strangeness radius and magnetic moment assuming thv
andf residues saturate the constantsbs andcs. We obtain
these constants using the Jaffe relations in Eq.~42!, the re-
sults from fit 8.2 of Ref.@62# ~which gives the bestx2)5, and
Eqs.~40! and ~41!.

We expect this approach to yield a rough upper bound
the resonance saturation predictions forubsu anducsu. Indeed,
if the asymptotic behavior of the strangeness form fact
follows that of the isoscalar EM form factors, then the tw
lightest poles ought to give the dominant resonance con
butions to the leading moments, as in the isoscalar case
however, the strangeness form factors fall off more rapi
than (1/Q2)2 at large momentum transfer, the presence
higher mass poles might be required to cancel the lead
high-Q2 behavior arising from thev andf pole contribu-
tions. In this case, contributions from theV8 ~or beyond! to
the leading strangeness moments would reduce the comb
v andf contribution@40,41#, thereby modifying the values
quoted in Table I. One should also note that the presenc
higher-mass poles is not absolutely essential for modify
theQ2 dependence of the form factors. A strong, nonre
nant, multimeson continuum contribution could offset t
leading large-Q2 behavior generated by the lightest pole
Given these ambiguities, then, we take the two-pole re
nance saturation predictions as crude estimates of the m
nitudes whichbs andcs might attain in this approach.

Kaon cloud dominance. A second possibility is to relax
the requirement that one undertake a consistent chiral ex
sion and use kaon loops alone to make a prediction.
rationale for this approach has a twofold basis. The first
lows from a geometric interpretation of the nucleon cha
radius, wherein it characterizes a spatial asymmetry in
charge distribution. In this picture, a spatial polarization
the strange sea arises from fluctuations of the nucleon in
kaon and strange baryon. The kaon, having about half
mass of the lightest strange baryons lives on average fur
from the nucleon center of mass than the strange bar
One would expect, then, to obtain a negative value for^r s

2&
~positive value forrs), since the kaon carries thes̄. Implicit
in this picture is an assumption thatss̄ pair creation by the
neutral gauge boson probe, which also contributes to
Dirac or electric form factors and which appears partially
the guise of resonance contributions, is negligible compa
to the mechanism ofss̄ spatial polarization. The kaon clou
dominance approach also assumes that the multipion co
bution is negligible when compared to that of the kaon clo
ostensibly because the pion contains no valences or s̄
quarks.

The second motivation draws on the result of a pion lo
calculation of the nucleon’s EM form factors carried out
Bethe and DeHoffman@65#. This calculation was performe
using the equivalent of the linears model. At the time they
were reported, the results were in surprising agreement
the experimental values for the nucleon’s charge radii

5The results using the other two fits of Ref.@62# give smaller
magnitudes forrD

s andms. Using the updated fit of Ref.@64# ~see
also Ref.@42#!, and a somewhat largerv-f mixing angle than used
in Ref. @30# one obtains a larger Dirac strangeness radius t
quoted in Table I.
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magnetic moments, despite the large value of thepN cou-
pling which enters this perturbative calculation. The lo
which developed in the aftermath of this calculation is th
the pion cloud dominates the nucleon’s isovector EM m
ments and that a one-loop calculation sufficiently incorp
rates the physics of the pion cloud. Were this situation
persist in the strangeness sector, one would expect tha
kaon cloud gives the dominant contribution to thers and
ms and that a one-loop calculation would suffice to give th
correct magnitude and sign.

A variety of one-loop calculations have been perform
assuming that the kaon cloud dominates the strange f
factors. For example, the authors of Ref.@31# computedrs
and ms within the context of the SU~3! linear s model.
Within this framework, the leading strangeness moments
UV finite. Nevertheless, the calculation was performed
including hadronic form factors at theKNL vertices, draw-
ing on results of fits to baryon-baryon scattering in the o
meson exchange approximation which find better agreem
with data if hadronic form factors are included. The autho
of Refs.@33,34# extended this approach to compute both t
leading moments as well as the nonleadingQ2 dependence
of the strangeness form factors using a hybrid kaon-loo
vector-meson pole model. Although the hybrid model go
beyond a simple one-loop approximation, it nevertheless r
resents a type of kaon cloud model inasmuch as nonreso
multipion contributions are omitted. Another variation of th
general approach is a study performed using the cloudy
model ~CBM! and the ‘‘cloudy’’ constituent quark mode
~CCQM! @32#. The CBM represents a kind of marriage of th
MIT bag model with spontaneously broken chiral symmet
The strength of the meson-baryon vertices is determined
the meson-quark coupling and the quark’s bag model w
function. The CCQM is similar in spirit, though in this cas
the nonrelativistic constituent quarks are confined with a h
monic oscillator potential. In effect, the CBM and CCQ
calculations represent kaon loop calculations in which
NLK andNSK form factors are determined by the dynam
ics of the particular models. More recently, Geiger and Is
have extended the kaon cloud idea to include one loop c
tributions from all known strange mesons and baryons us
the nonrelativistic quark model to obtain a nucleon–stran
hadron vertex function@39#.

In all cases, these models include contributions which
both nonanalytic and analytic in thes-quark mass, effec-
tively modeling contributions from the relevant highe
dimension operators appearing in an effective Lagrang
Moreover, in each instance the loop integration was cutof
some momentum scale by including form factors at the h
ronic vertices. In both respects, a consistent chiral expan
is lost. In principle, higher-order Lagrangians and loo
could yield terms of the same chiral order as some of
analytic terms retained from the one-loop amplitudes. Si
larly, the use of hadronic form factors with a cutoff param
eter breaks the consistency of the expansion because a
scale is introduced~e.g., the 1/ hadron size) and/or becau
the form factor itself contributes like an infinite tower o
higher-dimension operators.

One might argue that sincemK /Lx is not small, the chiral
expansion is not all that useful in the case of strange qua
and that models inconsistent with this expansion may ye
n
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3074 55M. J. RAMSEY-MUSOLF AND HIROSHI ITO
credible@66,67#. We wish to illustrate, nonetheless, that t
approach of kaon cloud dominance still presents a hos
uncertainties. To do so, we compute the one-loop contr
tions tors andms using the nonlinear SU~3! s model. Since,
in this instance, we are no longer concerned to obtain a c
vergent chiral expansion, we retain an explicit depende
on the baryon mass and employ the ‘‘traditional’’ Lagran
ian of Eq.~13!. The relevant diagrams are shown in Fig.
The calculation is similar to that of Ref.@31#, which was
carried out using the linear SU~3! s model. In the presen
case, the strangeness radius is UV divergent, unless on
cludes form factors at the hadronic vertices. A simple cho
and one which renders the loop calculation most tractable
the monopole form

F~k2!5
mK
22L2

k22L2 , ~43!

where k is the momentum of the kaon appearing at t
KNL vertex andL is a momentum cutoff. The monopol
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form above was employed in the Bonn potential fits
baryon-baryon scattering, and value of the cut-
L;1.221.4 GeV was obtained@60#. Various kaon cloud
models differ, in part, through the choice of form fo
F(k2) and the value of the cutoff parameter.

The inclusion of a hadronic form factor necessitates
introduction of additional, ‘‘seagull’’ graphs in order t
maintain the gauge invariance of the calculation@Figs. 1~c!
and~d!#. Without these new graphs, the loop calculation w
hadronic form factors does not satisfy the vector curr
Ward-Takahashi identity. It was shown in Refs.@31,33# that
use of the minimal subsitutionkm→km1 iQ̂Zm in F(k2) gen-
erates a set of seagull vertices whose loop graphs res
agreement of the calculation with the WT identity. It
straightforward to show that for a meson-nucleon vertex
the form

7 iF ~k2!klP̃ūglg5u ~44!

the corresponding seagull vertex is
S 6 iZm~Qm62km!
$F@~Q6k!2#2F~k2!%

@~Q6k!22k2#
kl@Q̂,P̃#1 iZlF@~Q6k!2#@Q̂,P̃# D ūglg5u, ~45!
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whereP̃ is the pseudoscalar octet matrix defined in Sec.
Qm is the momentum of the sourceZ ~for EM or baryon

number current!, Q̂ is the corresponding charge, and whe
the upper~lower! sign corresponds to in incoming~outgoing!
meson.

In Sec. IV and Table I we give the results of the kaon lo
calculation using the nonlinear SU~3! s model and hadronic
form factors@as in Eq.~43!# as a function of the cutoffL.
We compare these results with those of other kaon cl
models in order to estimate the range in predictions wh
arises under the rubric of kaon cloud dominance. Indeed,
existence of such a range reflects the ambiguities assoc
with this general approach. We discuss these ambiguities
ther in Sec. IV.

Constituent quarks. The final model approach we consid
entails treating the nucleon’s strangeness matrix elemen
arising from the strangeness ‘‘content’’ of constituentU and
D quarks. The motivation for this approach derives from
picture of the constituent quark as a current quark of Q
surrounded by a sea of gluons andqq̄ pairs. It follows that
the nucleon’s strangeness radius and magnetic moment
from the corresponding quantities for the consituentU and
D quarks @68#.6 The procedure one follows within thi
framework is essentially the quark model analog of the o
body approximation made in computing nuclear current m
trix elements@38#. Specifically, one derives an operator a
sociated with the individual constituents~quarks, nucleons!
and computes a matrix element of that operator using

6The CCQM calculations of Ref.@32# omit contributions from the
strangeness content of the constituent quarks. Only the kaon c
around the entire bag of quarks is considered.
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appropriate bound state~hadron, nucleus! wave function.
Chiral symmetry is invoked in deriving the constituent qua
strangeness current operators. Such a calculation ofrS

s was
performed by the authors of Ref.@33#, using the Nambu–
Jona-Lasinio~NJL! model @69# to compute the constituen
quark strangeness radii.

An alternative is to adopt a chiral quark model fram
work, wherein the constituent quark strangeness curre
arise from fluctuations of the constituentU andD quarks
into a kaon plus a constituentS quark. The contributions
from the individualU andD quarks are added to give th
total nucleon strangeness matrix element using a qu
model spin-space-flavor wave function, as illustrated sc
matically in Fig. 3. The strength of the kaon-constitue
quark interaction is governed by the parametergA appearing
in the chiral Lagrangian of Eq.~7!. This parameter can be
determined by using the constituent chiral quark model
compute the nucleon’s axial vector current. SincegA enters

ud

FIG. 3. Chiral quark model for nucleon strangeness. Sha
circle represents strange-quark vector current matrix element
constituentU or D quark, generated by the processes shown
Fig. 1.
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55 3075CHIRAL SYMMETRY AND THE NUCLEON’S VECTOR . . .
the strangeness matrix element of the nucleon at one-
order, one need only determine it at tree level~see below!.

It is worth noting that the chiral quark model does n
suffer from the same lack of convergence which plagues
traditional baryon chiral Lagrangian@Eq. ~13!# due to the
size ofmB . Since the constituent quark mass is considera
smaller thanLx , one has reason to believe that higher-ord
corrections to the leading-order Lagrangian in Eq.~7!, as
well as higher-order loop effects, will be suppressed. On
other hand, the ambiguity associated with the coefficie
bs andcs remains. In the case of chiral quarks, one may s
write down corrections toLQ associated with the magnet
moment and Dirac charge radius of a constituent quark
are, respectively, of lower order and the same order
1/Lx as the corresponding contributions from loops:

DL5
bq
a

2Lx
c̄smnQ̂cFmn2

cq
a

Lx
2 c̄gmQ̂c]nF

mn, ~46!

whereQ̂ is the appropriate charge~EM or baryon number!,
Fmn is the field strength associated with the correspond
source, and the ‘‘a’’ superscript denotes the flavor chann
@70#.

As in the case of the baryon chiral Lagrangian, the co
ficients bq

0 and cq
0 in the SU~3!-singlet channel cannot b

determined from known moments. Consequently, one m
invoke additional model assumptions in order to make ch
quark model predictions for the nucleon’s strangeness ma
elements. In the present study, we adopt the following st
egy. First, we simply omit the contributions from thebq

a and
cq
a and take the constituent-quark–kaon one-loop contri
tion as an indication of the scale of the constituent qu
strangeness radius and magnetic moment. Although this
sumption, which represents our model ansatz, may appe
be a drastic approximation, it is no more questionable t
would be any attempts to make model predictions for
singlet coefficientsbq

0 andcq
0 .

Second, we cut the loops off atLx , effectively restricting
the virtual Goldstone bosons to have momenta less than
scale of chiral symmetry breaking. An alternative would
to use dimensional regularization and subtract terms pro
tional toC` ~equivalent toMS renormalization!. Since we are
interested only in obtaining the scale of the constituentU-
andD-quark strangeness current and not in making airti
predictions, either approach would suffice. In order to cut
loops off in a gauge-invariant manner, we employ form fa
tors at the quark-kaon vertices introducing the appropr
seagull graphs as necessary to preserve the WT ident
For simplicity, we use the monople form of Eq.~43!, taking
the cutoff parameterL;Lx . In effect, we repeat the non
linear s-model calculation discussed above for constitu
quarks rather than nucleons.7

The results of the loop calculation generate effective, c
stituent quark strangeness current operators

7By choosing the form factor cutoff parameter to beLx , we in-
troduce no new scale into the problem.
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^Qus̄gmsuQ&u loop→ Ĵm
strange5c̄

ˆ FF1Q
~s!gm1

iF 2Q
~2!

2mQ
smnQ

nG ĉ,
~47!

whereQ denotes a constituent quark andĉ is a constituent
quark field operator. Nucleon matrix elements ofĴm

strangemay
be computed using quark model wave functions. We cho
to employ wave functions in the light-front formalism, sinc
this framework allows one to use the on-shell constitu
quark current@the form in Eq.~47!# and allows one to per-
form boosts along the direction of momentum transfer
needed to properly account for the nucleon’s center-of-m
motion.8 Although we are concerned only with the leadin
nontrivialQ2 dependence of the strangeness form factors
is worth noting that the light-front quark model has succe
fully reproduced the the nucleon’s EM form factors over
significant range in momentum-transfer@73–75#. We also
follow the authors of Ref.@75#, who take a tree-level value
for the meson-quark couplinggA51.0 and an oscillator pa
rameterg51.93 fm 21 and reproduce the nucleon’s isove
tor axial charge to within 5%. The results are displayed
Table I.

IV. RESULTS AND DISCUSSION

In this section, we give predictions for the nucleon
strangeness radius and magnetic moment using the three
ral model approaches discussed above. These results
summarized in Table I, where we also include predictio
from four previously reported approaches sharing some
ments in common with those discussed here. For illustra
purposes, we also display in Fig. 4 the dependence ofrs and
ms on the hadronic form factor cutoff parameter and pseu
scalar meson mass entering the nonlinears-model calcula-
tion.

When viewed from the most ‘‘impressionistic’’ perspe
tive, the results in Table I illustrate the wide spread in p
dictions one encounters among approaches relying on c
symmetry. Indeed, the strangeness radius and magnetic
ment can vary by an order of magnitude and by sign. O
ought to conclude that chiral symmetry by itself is not
terribly restrictive input principle when it comes to predic
ing nucleon strangeness. The reason is essentially tha
quantity one wishes to predict is the very quantity one ne
in order to make a prediction using CHPT: the SU~3!-singlet
vector current. In the absence of experimental information
the latter, the range in one’s predictions can be as wide as
breadth of one’s space of chiral models. From the standp
of hadron structure theory, this situation is not very satis
ing, since one would like to possess a reliable effecti
theory framework for interpreting the up-coming measu
ments of the low-energy properties of thess̄ sea.

Nevertheless, a discussion of the physics input used
each model, along with the attendant model ambiguit
may clarify the elements needed in a more realistic tre

8We omit here a discussion of the ambiguities associated with
light-front formalism, such as dynamical effects associated with
transformation from the equal-time framework. These ambigui
are discussed elsewhere in the literature@71,72#.
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ment. To that end, we summarize the logic behind each
these models and point out the primary model uncertaint

~1! Resonance saturation. Of the models considered h
resonance saturation remains closest in spirit to CHPT w
affording, perhaps, the clearest identification of the phys
elements included as well as those omitted from the analy
In the case of the Dirac strangeness radius, these elem
may be summarized as follows.

~a! Detailed dispersion theoretic analyses of the isovec
charge radius imply that it is dominated by the lowest co
tinuum state~two pions! and the lightest isovector 122 reso-
nance. Formally, the large two-pion continuum contributi
results from a left-going branch cut just in thepN scattering
amplitude below the two pion threshold@64#. In CHPT, this
effect appears in the guise of the leading nonanalytic te
(lnmp

2/m2). Contributions frompp continuum terms analytic
in the light quark masses and from ther resonance are ac
counted for by the chiral counterterms,c6 , which may be fit
to data. In the resonance saturation approach, one re
only the lnmp

2/m2 term from the loop as an indication of th
continuum contribution and models the isovector coun
terms using ther resonance. Although this model overpr
dicts the isovector charge radius by a factor of 2@54#, the
sign and order of magnitude are given correctly. The ov
prediction appears to result from the omission of nonre
nant pion rescattering corrections@56#.

~b! One might expect an analogous situation to arise in
isoscalar and strangeness channels, where the lightest

FIG. 4. Nucleon strangeness vector current moments in the
linear s model with hadronic form factors. Dimensionless Dir
strangeness radius~a! and strangeness magnetic moment~b! are
shown as functions of the form factor cutoff parameter. To set
scale, note that the nucleon’s dimensionless isovector EM D
radius isrD

T51524.68.
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tinuum states are the 3p, 5p, 7p, and 2K states and the
lightest isoscalar 122 vector mesons are thev andf. Some
thought about chiral counting suggests that the multip
contributions ought to be suppressed relative to the 2K con-
tribution. To the extent that~i! this suppression holds an
that ~ii ! the total, nonresonant 2K contribution to the isosca
lar charge radius is no larger than the leading, nonanal
kaon loop contribution, the isoscalar charge radius wo
then be dominated by the lightest isoscalar vector mes
rendering the fit of Ref.@62# quite valid. The results of this
fit indicate that thev andf residues dominate the isoscal
Dirac radius; the contribution from higher mass vector m
sons is negligible. Thus, the isoscalar constantcT50 should
be given quite reliably by thev andf contributions.

~c! Knowledge of thev andf flavor content allows one
to translate thev andf contributions tocT50 into the cor-
responding contributions to the strangeness constant,cs. If
the nonresonant multipion contributions to the strangen
radius are suppressed with respect to the 2K contribution, if
the nonanalytic kaon loop contribution@Eq. ~29!# accurately
reflects the scale of the two-kaon continuum, and if there
no important vector meson effects beyond those of thev and
f, thenrD

s ought to be given accurately by resonance sa
ration model.

One should note that this line of argument avoids
problematic use of assumptions about the strangeness
factors’ largeQ2 behavior while incorporating the consis
tency of the heavy baryon chiral expansion. The logic, n
ertheless, may be criticized on several grounds.

First, the resonance saturation model is only partially s
cessful in the case of the nucleon’s EM moments, in cont
to the situation with the pion form factor. In the case of t
isovector radius noted above, the nonanalytic loop contri
tion is signficantly larger than the experimental valu
r loop
T51/rexpt

T51'1.5 ~taking m'mr).
9 One therefore requires

contribution fromcT51 which cancels about 40% of the loo
contribution. Ther meson contribution tocT51, computed
using the values ofFV taken frome

1e2 data andGV deter-
mined from fits toNN scattering amplitudes@60# does not
give such a cancellation. In fact, a careful analysis of
isovector spectral function for the Dirac form factor, whic
contains information about both the complete set ofpp con-
tinuum andr resonance contributions, can be used to extr
a value forGV consistent with the value used inNN scatter-
ing studies@63#. Inclusion of the fullpp continuum, and not
simply the leading nonanalytic term, appears to be crucia
this case.

Second, a more refined dispersion analysis of the isosc
spectral functions could reveal important nonresonant m
tipion and kaon continuum contributions. While the leadin
nonanalytic kaon loop contribution to the isoscalar Dirac
dius is small~about 15% of the experimental value!, one

9In the work of Ref.@76#, only p loops were considered and th
result forr loop

T51 is closer to the experimental value. Our result al
includes theK-loop contribution. Although the calculation of Re
@76# was carried out without using the heavy baryon formalism,
result agrees with the chiral log of the heavy baryon calculati
The results for the magnetic moment differ, however.
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does not know at present whether this result gives a rea
able estimate for the scale of the full continuum. Inde
sincemK /Lx is not small, it would not be surprising to fin
important kaon rescattering corrections which could sign
cantly alter the leading-order nonanalytic result. Should
continuum be significantly larger, the pole analyses of R
@61,62,64# would require modification, presumably resultin
in signficantly different values for the residues. In this ca
the v and f contributions to the strangeness counterte
cs, obtained via Eq.~42!, would be altered. Moreover, th
presence of large nonresonant continuum effects in the i
calar channel would suggest similar effects in the strange
channel.

Third, higher mass poles could play a more important r
in the strangeness form factors than in the isoscalar f
factors, as discussed in Refs.@40,41#. Indeed, something be
yond the simplev andf pole approximation would be re
quired to generate aQ2 dependence forF1

(s) consistent with
various scenarios for its asymptotic behavior. At present,
has no knowledge of the couplingsGV , GT , andFV associ-
ated with higher mass poles, nor does one know their fla
content. Consequently, the associated residuesaV8

s can only
be fixed by assuming a particular large-Q2 behavior for
F1
(s) .
In general terms, these criticisms apply as well to

model prediction forms. In addition, one must note an in
consistency between the resonance saturation model fobs

and the way in which the constantbT50 has been extracte
from the isoscalar data. In the analysis of Refs.@61,62#, no
continuum contributions were included in the fit to the iso
calar form factors. Such an approximation may be valid
the case of the isoscalar Dirac radius, for which the n
analytic loop contributions represent a reasonably small f
tion of the total. TheO(Ams) kaon loop contribution to the
isoscalar anomalous magnetic moment, however, is la
k loop
T50/kexpt

T50'20. Chiral perturbation theory therefore r
quires a large constantbT50 to cancel most of this loop
contribution. However, the most reliable information one h
on the resonance contributions to the isoscalar magn
form factor is derived from the fits of Ref.@62#, which in-
cluded no continuum. The residuesbv,f

T50 obtained from these
fits are small~on the order ofkexpt

T50) and, therefore, canno
cancel the large kaon loop contribution. In order to remo
this inconsistency, one would need a reanalysis ofF2

T50

which includes a realistic treatment of the continuum.
While these observations raise questions about the c

ibility of the resonance saturation model, they also highlig
several of the elements needed in a more realistic anal
~a! better knowledge of the nonresonant continuum contri
tions to the isoscalar spectral functions, which includes
formation beyond the leading, nonanalytic terms;~b! a re-
analysis of the isoscalar pole contributions in light of~a!; ~c!
a means for including the analytic, nonresonant multip
and kaon continuum contributions to the strangeness f
factors;~d! an estimate of the higher-mass~beyond thev and
f) vector meson pole contributions tors andms; and ~e! a
clear understanding of the relationship between
asymptotic behavior of the strangeness form factors and~c!
and ~d!.

~2! Kaon cloud dominance. Kaon cloud dominance mo
n-
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els rely on the ansatz that~i! OZI-allowed processes give th
most important contribution to the strangeness form facto
~ii ! of the OZI-allowed contributions, the most significant a
those involving intermediate states with valences and s̄
quarks; and~iii ! the largest effects result from the lighte
YK states—especially in the case ofrs, which naively re-
flects the mean square spatial polarization ofs ands̄ quarks.
When implementing this ansatz, kaon cloud dominance m
els typically ~i! rely on chiral symmetry to determine th
NYK couplings for pointlike hadrons;~ii ! regulate UV diver-
gences in loops by employing form factors at theNYK ver-
tices; and~iii ! restrict themselves to one-loop order under t
assumption that the one-loop result fairly reflects the scal
full kaon cloud contribution.

While kaon cloud dominance models give a satisfyin
albeit simple, intuitive physical picture behind nucleo
strangeness, each of the assumptions on which they rely
be challenged.

~a! It is not at all clear that OZI-allowed processes dom
nate the strangeness form factors. Indeed, the pole ana
discussed above and in Refs.@30,64,40,41#, if correct, imply
large contributions from thef(1020), whose coupling to the
nucleon ostensibly involves an OZI-violating mechanism.

~b! It is similarly not clear that only intermediate state
containing valences and s̄ quarks give important contribu
tions to the form factors. For example, a 3p intermediate has
the correct quantum numbers to contribute to the strange
vector current matrix element, even though it has no vale
s or s̄ quarks. Moreover, three pions can resonate to
f(1020), which has a 15% branch to a three pion final st
~primarily through arp channel!, and thereby generate
nontrivial contribution. In fact, a simple estimate of the 3p
contribution, based on this mechanism, suggests that its
tribution need not be smaller than that ofYK intermediate
states@77#.

~c! The recent work of Ref.@39# points out the possibility
that higher massY*K* states may signficantly cancel con
tributions from the lightestYK states~kaon cloud!. In that
calculation, carried out at one-loop order and using the n
relativistic quark model~NRQM!, the authors find that one
must includeY*K* states at rather high excitation befo
obtaining a stable result forrs and ms. Similarly, calcula-
tions carried out using hadronic effective approaches fi
important contributions fromYK* loops@78#. While one has
reason to question the reliability of one-loop results@49#,
these results nevertheless raise questions about validit
assuming kaon cloud dominance.

~d! The use of chiral symmetry in kaon cloud models
not self-consistent. As noted earlier, these models aband
well-defined chiral expansion by employing form factors
the hadronic vertices and by retaining both analytic a
nonanalytic terms from the one-loop calculation. Terms
the former class are indistinguishable from contributio
generated by higher-dimension operators in the chiral
grangian. Moreover, higher-order loop graphs may yield a
lytic terms of the same chiral order as some of the anal
terms retained from the one-loop graphs. A consistent ch
approach would require the inclusion of all analytic cont
butions of a given order in 1/Lx . In the absence of such a
expansion, one has no principle to justify the omission
rescattering corrections associated with higher-order loo
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In fact, any calculation which retains both analytic a
nonanalytic contributions must also include higher-order r
cattering effects in order to be consistent with the requ
ments of unitarity@49#.

~e! The choice of hadronic form factor is not unique.
the CBM, for example, the form of the effectiveF(k2) is
approximately Gaussian rather than monopole as used h
Moreover, the scale of the momentum cutoff is set by
inverse bag radius, which is on the order of a few hund
MeV @32#. The CBM constitutes a chiral model with a di
ferent underlying physical picture than the nonlinears
model, and its parameters can be tuned to produce agree
with at least some of the nucleon’s EM form factors.
short, one has no strong phenomenological reason to ch
one model—corresponding to one form forF(k2)—over an-
other; only a model preference.

~f! The prescription for maintaining gauge invariance
also not unique. The one shown above in Eq.~45! is amini-
mal procedure. One may include additional seagull contri
tions which are purely transverse and, therefore, do not af
the WT identity. The presence of these additional terms m
nevertheless, affect one’s results for the form factors.

It is instructive to try and quantify the uncertainty asso
ated with these ambiguities. This effort has been acco
plished in Ref.@49#, where the numerical impact of resca
tering corrections and/or higher-order loops has b
estimated using unitarity bounds. In the case of form fac
ambiguities@point ~e! above#, one may attempt to quantify
the uncertainty by considering theL dependence of the lin
ear and nonlinears-model predictions and by comparin
these predictions with those of the CBM and CCQM calc
lations. Turning first to the issue of the cutoff dependen
one may argue about which value ofL to use. The results
quoted in Table I and Ref.@31# for the linears model were
obtained using the Bonn value,L;LBonn;1.2 GeV. Ac-
cording to the fits of Ref.@60#, takingL;LBonn optimizes
agreement with baryon-baryon scattering data in the one
son exchange approximation. For this choice ofL, however,
the corresponding pion loop contributions to the EM m
ments are in serious disagreement with the experimental
ues. In fact, there exists no value ofL which produces agree
ment between experiment and the linears-model values for
the EM moments. The best choice occurs forL'5 GeV. In
this case, experiment and the linears model agree for
kT51 while the prediction forrT51 is 60% of the experimen
tal value. ChangingL from LBonn to L'5 GeV doubles the
prediction forms and reduces the prediction forrD

s by 25%.
The choice ofL in the case of the nonlinears model is

equally debatable, as a study of the pion-loop contribution
the isovector magnetic moment illustrates.10 We find no
value of the cutoff which reproduces the experimen
value. Choosing L;Lx;LBonn yields, for example,
k loop
T51/kexpt

T51'25% ~the corresponding ratio for the isovect

10One would not expect the pion loop graphs to produce ag
ment with the isoscalar moments. As the heavy baryon calcula
illustrates, the leading contribution arises from the diagrams wh
the current is inserted in the meson line. In the case of the p
loops, these diagrams only contribute to the isovector moment
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Dirac radius isr loop
T51/rexpt

T51'27%). Taking the limitL→`
givesk loop

T51/kexpt
T51'54% ~the isovector Dirac radius diverge

in this limit!. One might argue, then, that choosing any va
of the cutoff in the rangeLx<L<` would be equally
justified—at least for the magnetic moments which are U
finite. As the cutoff is varied over this range,ms varies from
the value quoted in Table I toms521.31. This situation
appears to persist in the case of the CBM and CCQM mod
as well. The authors of Ref.@32# originally found values for
the cutoff which optimized agreement with all the nucleon
EM moments. However, a subsequent inclusion of covari
tizing seagull graphs changed the magnetic moment pre
tions by 50% so that an optimum cutoff no longer exis
Consequently, the corresponding predictions for the stran
ness moments contains an uncertainty associated with
value of the cutoff.

A comparison between different kaon cloud models
veals a similar degree of ambiguity. We consider first t
linear and nonlinears models. When one of the baryons
off shell, as is the case in a loop calculation, the structure
the meson-baryon vertices differ in the two models, ev
though the same monopole form factor was used in b
calculations. When one takesL;Lx;LBonn, the two mod-
els give nearly identical predictions forrD

s . One might not
be surprised by this result, since in both cases the ra
contains a chiral log. At least in the chiral limit, this infrare
singularity dominates over contributions analytic inmK , and
it is essentially terms of the latter type which would be r
sponsible for any differences in the two predictions. F
L→`, on the other hand,rD

s diverges in the nonlinears
model but only doubles in value in the linears model. In the
case of the strangeness magnetic moments, which conta
infrared or ultraviolate singularities, the model prediction11

differ by a factor of about 1.5 forL;Lx but come into
closer agreement forL→`. Comparing the CBM ands
model (L5LBonn) predictions, one finds CBM gives a 50%
larger Dirac radius but a value forms that is a factor of three
or four smaller than the linears-model prediction.

These comparisons are not definitive. Nevertheless, t
suggest a scale for uncertainty in the kaon cloud domina
predictions that amounts to about a factor of 5 or more tim
the smallest values forurD

s u and umsu. Moreover, as in the
case of the resonance saturation model, a study of the w
nesses of the kaon cloud models highlights important e
ments which a more realistic calculation should include~i! a
method for including higher-order rescattering correctio
~ii ! a procedure which avoids the ambiguities associated w
hadronic off-shell effects, that is, hadronic form factors a
the attendant gauge invariance issues;~iii ! an analysis of
contributions from as full a set of allowed hadronic interm
diate states, including those~such as the 3p state! which
contain no valences or s̄ quarks.

~3! Chiral quarks. The insights embodied in the chir
quark model approach are the success of the constit
quark model in describing hadron properties, the picture o
constituent quark as a QCD quark dressed by a cloude-
n
re
n 11The lower value forumsu in the case of the linears model
corresponds toL51.2 GeV.



k
re
a
a
th
od
a
ue
tiv

di
ef
eu
u
a
t

wh
e
is
so

i

he
h
-

t-
a
n

he

e
en
s
es
ee
a-
s
ou
Th
yo
o
di-

he

f a
fa
ion
d
n
r t

ed.
ive
s a
rk

ral

er.
the
tor
cal-
be
two.
ng
ge
on-

r
, a
time
l

ld

pro-

om-
e I.
pole
n
ny
e in

u-
ns
ver,
p-
he
-
elf-
p-

on
ic
for
t
ac-
me
ud

ness
a-
h a
u-
ea-
-
p
ng-

a-
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qq̄ pairs and gluons, and idea that the spontaneous brea
of chiral symmetry in the QCD Lagrangian ought to be
flected by interactions between the Goldstone modes
constituent quarks. In the case of strangeness, the prim
assumptions underlying the chiral quark approach are
nucleon’s strangeness moments arises from a quark-m
average of the constituent quark strangeness radii and m
netic moments and that the latter are generated constit
quark-Goldstone boson interactions. Despite the attrac
features of this approach, however, it can be questioned
both conceptual and technical grounds.

From the conceptual standpoint, perhaps the primary
ficulty involves an issue of double counting. As noted in R
@51#, the chiral quark effective theory contains both the ps
doscalarQQ̄ bound states as well as the octet of light pse
doscalar Goldstone bosons. To the extent that the latter
alsoQQ̄ bound states, the theory contains the same se
states in two different guises. The authors of Ref.@51# argue,
based on a simple Goldstone boson-QQ̄ mixing diagram,
that the mass of the bound state must be either some
greater thanLx , in which case it lies outside the realm of th
low-energy effective theory, or infinity, in which case it
unphysical. One would conclude that the Goldstone bo
octet is distinct from the lightestQQ̄ states of the theory. A
study of meson spectroscopy, however, suggests otherw
Indeed, the pattern of mass splittings in theBB* , DD* ,
KK* , and pr systems is remarkably consistent with t
mass splittings in conventional quarkonia between the lig
est 3S1 and

1S0 QQ̄ states@79#. This pattern strongly sug
gests that the Goldstone bosons are the lightestQQ̄ bounds
states of the effective theory@80#, in conflict with the con-
clusions of Ref.@51#. There do exist methods for construc
ing a chiral quark effective theory which includes mesons
specific degrees of freedom while avoiding the double cou
ing problem ~see, e.g., Ref.@81#!. However, performing a
calculation at this level of sophistication lies beyond t
scope of the present study.

A second issue is equally as problematic. As in the cas
baryon effective theories, the calculation of the constitu
quark strangeness matrix elements employs loops. A con
tent chiral expansion requires that one retain from th
loops only those terms which cannot be mimicked by tr
level contributions from higher-order terms in the chiral L
grangian @e.g., Eq. ~46!#. Such higher-order Lagrangian
come with coefficients which cannot be determined with
knowing the strangeness matrix elements themselves.
dilemma is the same one which hampers heavy bar
CHPT as a predictive tool. One is hard pressed to go bey
the leading nonanalytic contributions without invoking ad
tional model assumptions.

As a fall back, one can employ form factors to cut off t
loop integrals at a scaleLx as we did in arriving at the
numbers in Table I, but price one pays is the presence o
the ambiguities encountered when using hadronic form
tors in hadronic loops. Presumably, the spread in predict
for the constituent quark strangeness currents is as broa
are the kaon cloud dominance predictions for the nucleo
strangeness moments. When one considers models othe
ing
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the chiral quark model, the situation is even less controll
For example, the NJL model, which provides an alternat
model for the constituent quark strangeness radius, give
value forrS

s that has the opposite sign from the chiral qua
prediction and about 40% of the magnitude@33#.

Finally, when one compares the predictions for chi
quark model and nonlinears-model predictions forrD

s , one
finds that the former is a factor of five larger than the latt
In both cases, the form for the meson-fermion vertex is
same, including the approximate value of the form fac
cutoff. One faces the question as to whether these two
culations give independent contributions which should
added, or whether there is some overlap between the
One might argue in favor of the second possibility by noti
that at the quark level, a loop involving a kaon and stran
baryon intermediate state contains diagrams in which a c
stituent quark fluctuates into a freely propagatingS quark
and kaon~i.e., the chiral quark model contribution! plus oth-
ers in which the S-quark interacts with the othe
intermediate-state constituent quarks. More generally
simple dimensional arguments suggest that the mean life
of a virtual ss̄ pair is not so short compared with typica
hadronic lifetimes that one may neglect collective~i.e., had-
ronic! effects involving the nucleon’s strange sea. It wou
appear that a simple quark model average of theU- and
D-quark strangeness moments omits such hadronic
cesses.

~4! Other model approaches. For completeness, we c
ment briefly on the other model approaches listed in Tabl
Pure vector meson dominance models, such as the three
model of Ref.@30#, omit all nonresonant Goldstone boso
continuum contributions. This practice is not justified by a
deep theoretical arguments, but rather by one’s experienc
the isoscalar channel where an acceptablex2 is obtained
with a three-pole only fit. The one-loop heavy baryon calc
lation implies, however, that the continuum contributio
need not be negligible in the strangeness sector. Moreo
the prediction of Ref.@30# relies on questionable assum
tions about the asymptotic behavior of the form factors. T
hybrid model of Refs.@33,34# attempts to model both reso
nant and nonresonant kaon cloud contributions in a s
consistent manner while avoiding the problematic assum
tions regarding asymptopia. In treating the two-ka
continuum, however, the hybrid model still invokes hadron
meson-baryon form factors to cutoff the loop integrals
momenta aboveLx . Moreover, other potentially importan
multimeson continuum contributions are not taken into
count. Consequently, the hybrid model suffers from the sa
ambiguities discussed in relation to the other kaon clo
dominance models.

Experimental Implications. In light of the variety of
physical processes which may contribute to the strange
form factors, as well as the ambiguities and oversimplific
tions which each model entails, is there any insight whic
study of chiral models might yield when compared with f
ture experimental results? At the most general level, m
surements ofms and rs will determine the chiral counter
terms, bs and cs . Insofar as the nonanalytic loo
contributions and counterterms reflect the presence of ‘‘lo
distance’’ and ‘‘short-distance’’ physics~as is the standard
lore in CHPT!, such a determination would indicate the rel
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tive importance of these two types of physics in shaping
low-energy structure of thess̄ sea.

It would be desirable, however, to make more spec
statements about the hadronic mechanisms contributin
the strangeness matrix elements. In this respect, our ana
of the chiral model shortcomings may shed some light.
that end, some observations about the magnitudes and
of their predictions is in order. In the case ofms, all of the
models, except for the resonance saturation model,
ms;2mT50. The large positive value forms in the reso-
nance saturation model results from a large lo
contribution—enhanced by a factor ofp(mK /Lx)—and the
questionable absence of correspondingly large vector me
terms. As for the strangeness radius, all of the calculati
containing kaon loops~except resonance saturation! give the
same sign forrs and magnitudes which vary by a factor of
The sign corresponds to the naı¨ve expectation derived from
the kaon cloud picture in which the kaon, containing thes̄
quark, lives farther, on average, from the nucleon’s cente
mass than does theL, where thes quark resides. The pole
and resonance saturation models, however, give strange
radii having much larger magnitudes and the opposite s
The latter results follow from the fits of Refs.@61,62# which
yield a largefNN coupling. Note that in the case of th
resonance saturation model, the largef-pole contribution to
rD
s is cancelled to some extent by the continuum te

~loops!, whereas in the pure pole model, thef contribution
is cancelled to an even greater degree by the question
V8 residue. An experimental result consistent with resona
saturation valuerD

s would suggest that resonantt-channel
kaon and multipion rescattering~poles! is the most important
physics behind the strangeneness radius. A significa
smaller result, or one having the opposite sign, would im
the presence of large continuum contributions going bey
one-loop order and/or important higher-mass resona
terms.

How might the various parity-violating electron scatteri
experiments do in terms of sorting out among these s
narios? The SAMPLE experiment at MIT-Bates@2,3# and
‘‘G0’’ experiment planned for TJNAF@4# anticipate a deter-
mination ofms with an error bar of60.2. At this level of
precision, these experiments could confirm the presence
large strangeness magnetic moment~on the order of the reso
nance saturation prediction! or rule out the remaining predic
tions. It would be difficult for the SAMPLE andG0 measure-
ments to confirm any of these remaining predictions with
significantly better precision. As far as the strangeness ra
is concerned, one anticipates a determination ofrS

s with an
error of '61.0 from the Hall A and C experiments a
TJNAF @4,6#. These experiments could see a strangenes
dius at the level of the pole and resonance saturation pre
tions and, at best could rule out~but not confirm! the remain-
ing entries in Table I. It appears that a ‘‘second generatio
of parity-violation experiments, designed to reduce the e
in the strangeness moments, would be useful in pointing
the mechanisms responsible for their magnitudes as sign

Parenthetically, we note that forward angle pari
violating electron scattering experiments with a proton tar
@4,6,7# are sensitive to the linear combinationrS

s1mpms

wheremp'2.79 is the proton’s magnetic moment@1,10#. It
e
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has been suggested that a determination of this linear c
bination is useful as a ‘‘first pass’’ probe of the nucleon
strangeness vector current. Naı¨vely, a one might conclude
that a small result for this quantity would indicate sm
magnitudes forGE

(s) andGM
(s) . In the case of the resonanc

saturation model, for example, prediction forrS
s1mpms is an

order of magnitude smaller than the predicted values of
therrS

s or ms alone, owing to a cancellation between the tw
terms. Similarly serious cancellations occur in the case
several of the other model predictions. One ought to be c
tious, therefore, about drawing strong conclusions from
forward angle measurement alone. A pair of forward a
backward angle measurements, allowing for separate de
minations ofms andrs, would be more relevant to the com
parison of model predictions.

V. SUMMARY

In this study, we sought to delineate the extent to wh
chiral symmetry can be used to arrive at credible predicti
for the nucleon’s strangeness vector current form facto
Since CHPT has proven quite useful in other contexts, i
timely to analyze its usefulness in the case of nucle
strangeness. Moreover, since the role of thess̄ sea in the
nucleon’s low-energy properties is of considerable interes
the hadron structure community, and since significant exp
mental effort is being devoted to measuring the nucleo
strange quark form factors, one would like to possess
effective theory framework in which to understand the stro
interaction dynamics behind the numbers to be extrac
Ideally, CHPT would have provided such a framework. W
hope to have convinced the reader that nucleon strange
@or, equivalently, the SU~3!-singlet channel# presents barriers
to the applicability of chiral symmetry not present in oth
cases where symmetry has proven more useful. To reite
the reason for this difficulty is that the quantity one wishes
predict—the strangeness@or SU~3!-singlet# vector current
matrix element—is the same quantity one needs to know
order to make a prediction.

Consequently, we turned our attention to chiral mode
We explored three such model approaches as a represen
sampling: a resonance saturation model for the unkno
low-energy constants arising in CHPT; kaon cloud dom
nance models; and models in which chiral symmetry is u
to obtain the strangeness currents of constituentU and D
quarks. These different approaches yield a wide range
predictions for the nucleon’s strangeness radius and m
netic moment. This situation is not surprising, since none
the approaches relies solely on the underlying symmetrie
low-energy QCD, but invokes, in addition, various mod
assumptions. We have argued that the set of physical
cesses which may influence the strangeness form facto
too broad to be encompassed by any one of these model
a result, models which emphasize different subsets of th
processes can lead to rather different predictions. A m
realistic and comprehensive analysis should incorporate
complete range of physically significant effects, includi
the full set of mesonic continuum contributions and not si
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ply the lowest-lyingYK states, rescattering corrections to t
leading nonanalytic terms, resonances, both OZI-violating
well as OZI-allowed processes, the requirements of pertu
tive QCD regarding the largeQ2 behavior, and so on. In
addition, such an analysis should avoid some of the unc
trolled approximations and ambiguities which plague ch
models, such as a truncation at the lowest loop order, in
duction of hadronic form factors, double counting of qua
and hadronic degrees of freedom, etc. In this regard, the
of dispersion relations appears to be a promising appro
@49#. Such an analysis, carried out in tandem with prec
measurements ofGE

(s) and GM
(s) , could elucidate the low-

energy structure of thess̄ sea.
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