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Chiral symmetry and the nucleon’s vector strangeness form factors
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The nucleon’s strange-quark vector current form factors are studied from the perspective of chiral symmetry.
It is argued that chiral perturbation theory cannot yield a prediction for the strangeness radius and magnetic
moment. Arrival at definite predictions requires the introduction of additional, model-dependent assumptions
which go beyond the framework of chiral perturbation theory. A variety of such model predictions is surveyed,
and the credibility of each is evaluatd®0556-28187)00206-9

PACS numbse(s): 14.20.Dh, 11.30.Rd, 12.40y

[. INTRODUCTION and intermediate-energy determinations of strange-quark ma-
trix elements offer a new window on the “low-energy”
There has been considerable interest recently in thetructure of the nucleon which goes beyond the description
strange quark “content” of the nucledi—15]. The reasons provided by the quark model. In particular, the weak neutral
for this interest are both theoretical and phenomenologicakurrent scattering experiments mentioned above should set
In the latter case, early analyses of the pion-nucleon sigmbhounds on the spatial polarization of tiss sea[4,6], its
term[16] and later results for the nucleon’s inclusive, spin-contributions to the nucleon magnetic mom¢at-4] and
dependent deep-inelastic structure functi¢ag—21 sug-  SPin [9], and its role in the nuclear response at moderate
gested that a nontrivial fraction of the nucleon’s mass andnomentum transfef5]. _
spin are carried by thes component of the sea. Subsequent One has seen considerable progress over the past few
analyses of the sigma term have reduced the value oféars in c!anfymg the interpretation of_ neutral current ob-
(p[ss|p)/{p|uu+dd|p), and therefore the strange-quark _srirval_ales In terms gf straﬁgene_sslmatrtljx ?Ieﬂinmﬁla'
contribution tomy, by a factor of 2[22], while studies of ne situation regarding theoretical predictions for these ma-
. . . . trix elements is less advanced. Ideally, one would hope to
SU(3) b.reak'lng in the axial vector octet imply a the'orepcal draw inferences from the deep-inelastic datasands dis-
uncertainty in Ehe value afs, the strange quark contribution iy, yions[28] for elastic vector and axial vector strangeness
to the nucleon’s spin extra_ct_ed from deep-inelastic scattering,4irix elements. However, the high-energy data provide
(DIS) measurements, sufficiently large to make the bound§ght-cone momentum distribution functions, and one does
on As consistent with zer$p23—26. Nevertheless, the early not know at present how to translate this information into the
analyses of the sigma term and polarized DIS results havepin and spatial nucleon wave functions as needed to com-
motivated proposals to measure another strange-quark oBute charge radii, magnetic moments, d®9]. Similarly,
servable,(p[sy,s|p). Indeed, several low- and medium- one might hope for first-principles microscopic predictions
energy parity-violating electron scattering experiments argising lattice QCD. To date, lattice results for the strangeness
either underway or planned at MIT-Bat¢g,3], TINAF  axial charge[14] and strangeness magnetic moméhb]
[4-6], and Mainz[7] with the goal of measuring the two have been obtained in the quenched approximation, and one
form factors which parametrize the nucleon’s strange-quarlgnticipates a refinement of these results as lattice methods
vector currentGY and Gy . continue to advance. In the absence of definitive lattice
Theoretically, strange quarks are interesting because thesalculations—and with an eye toward understanding the
do not appear explicitly in most quark model descriptions ofmechanisms which govern the scale of nucleon
the nucleon. Although the quark model provides a usefuktrangeness—a variety of model calculations have been per-
intuitive picture of the nucleon’s substructure and has seeformed. The latter have yielded a wide array of predictions
considerable success in accounting for a wide range of proffer strangeness matrix elements which vary in both magni-
erties of the low-lying hadron227], one knows that there is tude and sigri30—42. While one might argu@d nauseum
more to the nucleon than the three constituent quarks. labout the relative merits of different models, there is no com-
particular, processes such as DIS and Drell-Yan have prgpelling reason to take any particular model calculation as
vided considerable insight regarding the important roledefinitive.
played by thegqg and gluon sea when the nucleon interacts at In an effort to add some clarity to this situation, we dis-
high energieq8]. AlImost no information exists, however, cuss in this paper the implications for nucleon strangeness
regarding the low-energy manifestations of the sea. Becausgctor current matrix elements of one of the underlying, ap-
strange quarks constitute purely sea degrees of freedom, loyroximate symmetries of QCD: chiral symmetry. The use of
chiral symmetry, in the guise of chiral perturbation theory
(CHPT), has proven highly effective in predicting and inter-
*On leave from the Department of Physics, University of Con-preting a wide variety of low-energy observablet3,44].
necticut, Storrs, CT 06269. The essential strategy of CHPT is to exploit the approximate
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SU(3), X SU3)k chiral symmetry of QCD for the three current form factors, introducing model assumptions as nec-
lightest flavors to relate one set of observables to anothegssary. Section IV gives the results of these calculations and
(accounting for loop effecisor to draw on one set of mea- @ discugsion of their credibility. Section V summarizes our
sured quantities to predict another. This approach has ré&onclusions.

cently been employed to analyze of baryon octet and de-

cuplet magnetic moment§45—-47] and the nucleon’s Il. CHIRAL LAGRANGIANS

isovector charge radiup48]. As we illustrate below, this
strategy breaks down in the flavor-singlet channel, renderin%a

CHPT unpredictive for the nucleon’s strangeness matrix el- grangian manifests an approximate (8}Jx SU@3)r chi-

ements. The reason is that the coefficients of the reIevarﬁaI symmetry. This symmetry is explicitly broken by the

flavor-singlet operators in the chiral Lagrangian, which con-s'maII current quark masses. In addition, spontaneous
9 P grangian, Eg:‘/mmetry-breaking S3), X SU(3)g— SU(3)y implies the

In the low-energy world of three-flavor QCD, the QCD

tain information on short-distance hadronic effects, cannof ... .o eight masslegassumingm,=0) Goldstone

be determined from existing measurements by using chir odes and an axial vector condensate. One identifies the

symmetry. Although the leading, nonanalytic long-distanceyar with the pion decay constafit~93 MeV and the

(loop) contributions are calculable(/my) for the strange-  former with the lowest-lying octet of pseudoscalar mesons.

ness magnetic moment ai@Inmy) for the strangeness ra- The Goldstone bosons are conveniently described by a field

dius], one has no reason to assume that they are numerically given by

more important than the unknown analytic terms arising at

the same or lower order from the chiral Lagrangian. The only S = exg2i ﬁ/f] 1)

rigorous way to determine these unknown analytic contribu- '

tions is to measure the very quantity one would like to Pre&<\vheref=f and

dict: the nucleon’s flavor-singlet current matrix element. g
Consequently, if one wishes to make any predictions at

all, one must invoke additional—and therefore model-

dependent—assumptions. We illustrate this next line of de-

fense in three formsa) a “resonance saturation” model in

which the unknown constants arising in chiral perturbation, the A, being the eight Gell-Mann matrices and tig
theory are determined by thechannel exchange of vector being the pseudoscalar meson figl8,51. The Lagrangian

mesons{b) a class of models in which the nucleon’s “kaon \hich describes the pseudoscalar kinetic energies and self-
cloud” is assumed to dominate the strangeness form factor§,iaractions is given by

and (c) constituent chiral quark models in which nucleon’s
strangeness matrix elements arise from the strangeness con- £2 £2
tent of the constituent) and D quarks. For each of these L= ZTf(ﬂ”ETﬁMEH ?[TV(E,U«M)"' Hcl], (3
approaches, we present new calculations and compare them
with calculations discussed elsewhere in the literature. The
corresponding results are unabashedly model dependent avdhereM = diad m,,my,mg] is just the QCD current quark
therefore, not strong. We give them mainly to illustrate themass matrix which explicitly breaks the residual (S)y
outer limits to which one might go in employing chiral sym- symmetry andu is a parameter which relates the quark
metry to computes® andG(y) . Although there exist addi- masses to quadratic forms in the pseudscalar mdbsese,
tional chiral model approaches not considered in detail hergn, k is of Order\/m_q). The Lagrangian in Eq(3) actually
we believe that the three which we discuss are sufficientigonstitutes the leading term in an expansion in powers of
representative so as to illustrate the breadth of predictions/A, and uM/A, , wherep denotes the momentum of a
permitted by chiral symmetry. low-energy pseudoscalar meson afg~4nf~1 GeV is
In the end, we argue that each chiral model is plagued byhe scale of chiral symmetry breaking. For purposes of the
potentially significant uncertainties and fails to include phys-present study, retention of higher-order terms in the chiral
ics which could contribute appreciably to the strangenessxpansion of the purely mesonic sector is not necessary.
form factors. In short, chiral symmetry is only one of several Interactions between the Goldstone bosons and matter
considerations one must factor into an analysi@{aj’ and fields are conveniently described by first introducing vector
G, and of these considerations, it is not necessarily eve@nd axial vector currents
the most important. On the other hand, identifying the short-
comings of various chiral models does allow one to see more
clearly the elements which should be included in a more Vi
credible treatment of the strangeness form factors using ef-
fective hadronic methods. An approach incorporating these
elements is discussed elsewhf48). A
We organize our discussion of these points as follows. In .
Sec. Il we review the effective low-energy chiral
Lagrangians which describe the interaction of pseudoscalavhere 3, = ¢2. One may now proceed to construct a chiral
mesons with baryons or quarks. In Sec. Il we employ thisLagrangian for fermions. The simplest case involves the ef-
formalism to compute the nucleon’s strange-quark vectofective, constituent quarks of the quark model. Letting

8
a; Nadba, )

N[ =

=

(£'9,6+¢&0,Eh, (4)

Il
N| =

[
5(£10,6-£0,€"), (5
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u future reference, we also give the “traditional” nonlinear
b meson-baryon chiral Lagrangian, which we draw upon in
= ®  sec. 1l B:
S

Lg= Tr[B(iD —mg)B]+D Tr(By, ys{A*B})
denote the triplet of light-quark fields, one has for the leading

term in the chiral expansion +F Tr(By,ys[A*,B]). (13
£Q=ﬁiD—m):,//+ QAIA%!/I, 7) In what follows, we compute strange-quark vector cur-
rents of nonstrange chiral quarks and nonstrange baryons
where arising from kaon loops. To that end, it is useful to work
with the baryon number curredﬁ and to introduce a vector
Dy=d,*+V, (8) current sourc&* which couples to]fj via the minimal sub-

stitution 9*— 9*+iQgZ*, whereQg is the baryon number

is a chiral covariant derivative a is a constant which . y ; o .
o r]gperatoﬁ Taking the first functional derivative with respect

governs the strength of the interaction between quarks al 4k of the aenerating functional vields-point functions
odd numbers of pseudoscalar mesfthe last term in Eq. s _ gB ) 9 y P X
(7)]. The term involvingm gives the constituent quark with a_ smgleq# insertion. The strange-quark_ current is re-
massekin the limit of good SW3), symmetry. Higher-order lated in a straightforward manner]@ and t.he |§o§ca]ar EM
terms in the chiral expansion include those which break théurrent[see Eqs(18)—(22) below]. In practice, it is simpler
degeneracy between the constituent quarks. In the chirdp compute the strangeness charge of each particle appearing
quark model calculation we discuss below, we allow forin & Feynman diagram, insert the appropriate Lorentz struc-
will not show the SW3),, symmetry-breaking terms explic- tion to the strangeness matrix element. From a formal stand-
itly. The higher order terms in the chiral expansion relevantint, however, the use of the baryon number current and of
to strangeness vector current matrix elements will be introthe sourceZ provides an efficient means for keeping track
duced below. of the flavor content and chiral order associated with higher

In the case of meson-baryon interactions, we restrict ouffoments(mean square radius, magnetic moment,)et€.
attention to the lowest-lying octet of baryons, for which oneVarious currents.
has the matrix representation

Ill. STRANGE-QUARK MATRIX ELEMENTS

8
B= iE (9) With the formalism of Sec. Il in hand, it is straightforward

\/Ea 1 haba to compute nucleon matrix elements of the strange-quark
vector current{p’|s_yﬂs| p). This matrix element can be pa-
where they, are the octet baryon fields. We adopt here therametrized in terms of two form factorg!® and |:(25> :
heavy baryon formalism df23], which avoids problematic

terms in the exansion of the baryon chiral Lagrangian involv- o _ : CFY
ing powers ofmg /A ,, wherem is the baryon mass. In this (p'[sy,slpy=u(p’)|Fy,+i ome Tw Q7| U(p),
formalism, one employs baryon states of good velocity, N (14)

v,=p,/mg. The corresponding fields are given by
) whereu(p) denotes a nucleon spinor a@@=p’ —p is the
B,(X)= exp(imgdv - X)B(X). (10 momentum transfer to the nucleon. When working in the

. . I _ . heavy baryon formalism, the corresponding Lorentz struc-
With this definition, the leading-order heavy baryon chiralyres'are obtained from E¢L4) by the use of the relations in
Lagrangian is Ref. [23]. For on-shell nucleons, the form factors are func-

P e tions of Q2=q2—|q|2, whereQ*=(q,q). In what follows,
= . + 7z 0 0
Lo=1TrBv _DB”) 2D Tr(B,S,1Au Bu}) we work with the so-called Sachs electric and magnetic form
+2F Tr(B,S“[A,,B,]), (11) factors[52], defined as
() —p(s)_ (s
whereS’U‘ is a spin operator whose properties are discussed in Gp'=Fy —7Fy, (15
Ref.[23], where the action of the chiral covariant derivative PN
on the heavy baryon fields is given by Gu =F1 +F57, (16)
D*B=¢"B+[V*,B], (12)  wherer=—Q?%4mZ . At Q?=0, the Sachs electric form fac-

tor gives the net strangeness of the nucleon, which is zero. At
and whereD andF are the usual S(3) reduced matrix ele- small momentum transfer, the scale of this form factor is
ments. The first corrections 0, involve one or more pow-
ers of quantities which are small in comparisonAtg. For
2The full chiral structure of the charge operator is given in Ref.
[45]. For the present purpose, the inclusion of the full structure is
INot to be confused with the current quark mass maltfix not necessary.
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governed by the first derivative with respect @, which >§<

defines the mean square “strangeness radius.” We wor K -2~ g %/ ~ /\\5

with a dimensionless version of this quantipg, defined as / 5 . . 1 N L ,
\\\///

f f

dGY® 2
Pi=gr| =T 3mArds (17) ®) ®) (c) (@
7=0

where(r2)Sis the dimensionful Sachs strangeness radius an >§<

where the superscript S’ denotes the Sachs, as distinct T
from the Dirac, radius. There exists no symmetry principle . oo
which constrains the strangeness magnetic momen - é
G{(0)= . Note that sinc&s¥(0)=0 one hagu®=«®. In

discussing the implications of chiral symmetry for (e) (f)

(p'[sy,s|p), we will be concerned primarily with these two

parametersp® and u°. FIG. 1. One kaon loop contributions to strangeness vector cur-
rent form factors of a nonstrange fermibrinucleon or constituent
quark. Here, X denotes insertion of the currea_tyﬂs andf’ de-

_ _ ) notes a strangenessl fermion(e.g.,A or consituentS quark.
In terms of chiral counting, the strangeness magnetic mo-

ment and radius, like the corresponding electromagnetic

A. Heavy baryon chiral perturbation theory

quaptities, appear, respectively, as ordey,1and 1A)2(_cor- . Aggaozi ifﬁm,gv “{b+Tr(B_US€{)\8,BU})
rections to the leading-order heavy baryon Lagrangian given Ay 3
in Eg. (11). In discussing these corrections, it is convenient B 8 v
to rewrite the strangeness vector current in terms of the elec- +b_Tr(B,S;TA"B,D}IF
tromagnetic and baryon number currents: e 1

EM/ 4+ _ 2y _\/(3) ———{C TI’(B {7\8,8 })

J,(T=1)=V,", (19 A)Z( V3 * v v
IEM(T=0)= (LB, (19) +c_Tr(B,[\8,B,])}v . d\FH, (24)
B_ /(0 b —
=V (20) AEBIA—Oeﬁyaﬁv“Tr(BUS{ij)Z“”
X

where theT=1 andT=0 designations indicate the isovector c L
and isoscalar elecromagnetic currents, wheB' ‘denotes — —OzTr(BUBv)sz?XZ’”‘, (25)
the baryon number current, and where Ay

u where F#” is just the ordinary EM field strength tensor,
(a)__l\a _|q Z*” is the analogous quantity involving the souiZ€ cou-
Vi —q?yﬂq, a= ' (22) pling to baryon number, anelis the proton’s EM charge. In
S eachA L, the terms of order IV, contribute to the anoma-
lous magnetic moment and those of ordeAﬂ/enter the
Here, then®,a=1, . ..,8 are thaisual Gell-Mann matrices, charge radiu§53]. For a given baryon, the magnetic moment
\°= 2|, andq gives the triplet of QCD quark fields. In terms and mean square radius will contain a contribution from
of the currents in Eqg18)—(20) one has AL and a contribution from loop&onanalytic inmg), as in
Fig. 1:
57,5=35-23EM(T=0). (22) ,
_,a Mg
With these definitions one may write down the higher-order K= Kioop™ (A_X) b, (26)

heavy baryon Lagrangians corresponding to the EM and

baryon number magnetic moments and charge radii: 2

c?, 27

2mg
A

X

a_ a
PD = Ploop™

ALL = e b, Tr(B,SPN3 B, )
EM A p.vaﬁv + v 1 Pu ] ]
X where Ka=F(2"")(0) is the anomalous magnetic moment,
+b_Tr(B_USrf[)\3,B,,])}F“” " @ denotes the corresponding flavor chanf&l=0,1, s,
SU(3) singlet], and the subscript D" indicates the slope of
e — the Dirac form factor E;) at 7=0. In the case of the EM
— —{c,.Tr(B,{\%B,}) o : S
A2 vl 1P moments, the quantitigs® andc? contain appropriate linear
o combinations ofb.. andc. as determined from the traces
+c,Tr(Bv[)\3,Bv])}v#(9)\F““, (23 appearing in Eq923)—(24). Using the heavy baryon formal-
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ism outlined above, we comput«q"}mp and Pﬁ)op employing  radius for the octet baryons have not been meastwgend

dimensional regularization. For the strangeness moments, wie are undetermined. In fact, by virtue of E@2), measure-
find ments of the strangeness radius and magnetic moment of the

nucleon would provide a determination of the corresponding

3F+D\? 3 L |my mg quantities for the bary_on number current and, through Egs.
=] T3 =P (28)  (30) and (31), would fix by and c,. Moreover, given the

V6 XX situation in the EM case, one would not be safe in assuming

Kioop= (277)

that b® and c® differ significantly in magnitude from unity.

2
s [mn)? S| [3F+D N 3 D_F)2 Indeed, one has no reason to expect, based on any symmetry
Ploop™ | A 3 \/g 2( ) principle, that either the loops or chiral counterterms should
X . . . . .
give the dominant contributions to the strangeness radius and
2 magnetic moment. Thus, chiral perturbation theory, in its
K g ert
X C“’_ln_f,u : (29 purest form, cannot make a prediction for the strangeness

vector current matrix elements.

whereC..= 1/e — y+ In4dx with £ = (4—d)/2 andd being the In arriving at this conclusion, we did not include decuplet
number of dimensions. One finds analogous expressions f&aryons in the loops nor the subleading nonanalytic loop
the isovector §3) and isoscalarX®/\/3) components of the contributions (/mgJnmy in the case of the strangeness mag-
EM momenti45,54]_ The constant® appearing in Eq(27) netic momemas was done in Re[45] In that Work, it was
contains the appropriate dependenc@gmo cancel the po|e found that the dominant IOOp contribution to the magnetic
term in pj,,. The scaleu denotes the scale at which the moments isO(Jmy) and that the inclusion of the decuplet
subtraction of the pole term is carried out. The remainingStates does not have the same kind of effect as it does in the
finite parts of Qﬁsoop'msoop) and of (©S,c%) determine the axial vector mairix elements, where non—ne_gllg!ble octet-
value of the anomalous magnetic moment and mean Squap@cuplet cancellations occur for the loop contributions. Simi-

Dirac radius. Using Egs(22—(25), one can express the larly, we did not use the one-loop corrected axial meson-
“low-energy” constants b%,c) in terms of the correspond- nucleon couplings. Although from a formal standpoint the
ing quantities for the baryon and EM currefts: difference between tree-level and one-loop corrected cou-

plings is of higher order than we are considering here, the

bS=by—2[b_—(b./3)], (30  authors of Ref[45] obtained a better fit to the baryon mag-
netic moments with the corrected couplings. The use of the
cS=co—2[c_—(c./3)]. (31 latter effectively reduces the size of the large kaon loop con-

tributions. As we note below, the physics which modifies

In the case of the EM moments, thb.(,c.) are fit to  one-loop results largerly amounts to kaon rescattefseg,
known EM moments in the baryon octet. One may then eme.g., Ref.[56]). Employing one-loop corrected axial cou-
ploy Egs.(23)—(27) and the loop contributions to predict the plings in the one-loop magnetic moment calculation incorpo-
moments of other baryons within the octet. This approachiates some, but not all, rescattering contributions. It is not
reflects the basic strategy of chiral perturbation theory: relyentirely clear that the impact of two-loop contributions to the
on chiral symmetry to relate one set of quantitiggown  magnetic moment is numerically less significant than the re-
EM moment$ to another(those one wishes to predict placement of tree-level with one-loop corrected axial cou-
modulo loop correctionga consequence of spontaneous chi-plings in the one-loop magnetic moment calculation. In the
ral symmetry breaking A simple fit to the nucleon EM mo- present instance, we avoid this issue altogether and restrict
ments alone gived, ~1.4,b_~0.9,c,~—1.9, ¢c_~0.9 our attention to one-loop effects.

[55].

As one would expect on general grounds, these constants
are of order unity. In the case of the nucleon EM anomalous
magnetic moments, the contributions from the and the The conclusion of the foregoing analysis implies that in
loops have comparable magnitudes. In the case of the chargeder to make predictions for the nucleon’s strangeness mo-
radii, the loops give the dominant contribution to the isovec-ments, one must go beyond the framework of CHPT and
tor EM charge radius while the. give the dominant con- invoke additional, model dependent assumptions. To this
tribution to the isoscalar EM charge radius. It is evident,end, a number of possibilities present themselves. We con-
then, that one cannot rely on either the loop or the “coun-sider three such model approaché&s:resonance saturation,
terterm” contributions alone to account for the nucleon’s (b) kaon cloud dominance, and) constituent chiral quarks.
EM moments. These approaches range from one remaining close to the

In the case of the strangeness magnetic moment and réramework of CHPT by estimating the chiral counterterms
dius, one would ideally follow a similar strategy. However, [model (a)] to an attempt to apply chiral symmetry on the
the coefficientsh® and c® are unknown. The reason is that microscopic leve[model(c)].
these constants depend by andc, as well as théh.. and Resonance saturatiotdne might attempt to estimate the
c- . Since the baryon number magnetic moment and chargehiral counterterm®® andc®, for example, by assuming that

the corresponding terms AL arise fromt-channel vector
meson exchanges. The rationale for such an approach derives
SHenceforth, the cancellation of th@&, will be understood and primarily from one’s experience in the purely mesonic sector
(b?,c?) will denote the finite remainders of the counterterms. where, atO(p?) in the chiral expansion, one encounters ten

B. Chiral models
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eFyA
Ly,y=——=XV, FHY. (33)

V2

V A similar expression applies to the coupling\fandZ (the
source of the baryon number currenWe have omitted
SU(3) indices for simplicity. In the formalism of Refs.
[57,58, the fieldV,, has dimension 1. The factors of,
have been introduced to maintain the correct dimensionality
N while employing dimensionless couplings. In this respect,
our definition ofF,, differs from that of Refs[57,58, where
the corresponding coupling has mass dimensions. The values
FIG. 2. Resonance contribution to nucleon vector current formfor the Fy, can be extracted from the ratE¢vV—e*e™). In
factors. HereV denotes a vector meson and denotes a vector the case of the lightest isovector vector meson, for example,
current(EM, strangeness, baryon number, etc. one hasF,=0.132. (The relation between the constants
. Gy, Gt, andF, and those used in the vector field formula-
scale-dependent counterternis( ) [57,58. Five of these (o [59-67 is obtained in a straightforward manner.
countertermsi(=1,2,3,9,10) agree quite well with the pre-  prom these couplings and the amplitude associated with
dictions of vector meson exchange when the renormalizatioge diagram of Fig. 2, we find the following contributions to

scale is chosen to bg~m,. Of particular interest is the the Dirac and Pauli form factors from a single vector meson:
pion EM charge radius, which receives a contribution from

L5(w). This counterterm contribution dominatés’), with Q?
the one-loop contribution giving roughly 7% of the tot&dr F1(Q)=\2GFy——, (34)
- e : m;—Q
u=m,). Were this situation to carry over into the arena of
the nucleon’s vector current form factors, one would then A 2
expect the countertermis® and c? to be given by vector o MNA Y,
meson resonances, as shown in Fig. 2. Fa(Q%) = 412Gy mg my—Q?’ 39
To explore this possibility further, one requires the cou-
plings of JP°°=17" vector mesons/ to spin-1/2 baryons where m, is the vector meson mass. Note that
and to electroweak vector bosons. Although it is conven+,(Q?=0)=0, so that the vector meson resonances do not
tional to describe the vector mesons by a vector figjJd we  affect the nucleon charge.
choose instead to follow Reff57,58 and work with a for- From Egs.(34)—(35), one can extract the vector meson
mulation in terms of a two-index antisymmetric tensor, contributions to the nucleon magnetic moment and charge
V... This formulation offers the advantages thal it is  radius and, thus, the corresponding contributions to the chiral
straightforward to write down a gauge-invariant Lagrangiancoefficientsb andc:
for the interaction of the vector meson with electroweak vec-
tor bosons, antb) the contributions from the diagram in Fig. A2
2 do not affect the normalization of the Dirac form factor at b=2\/§GTFV<m—X) : (36)
Q?=0. In addition, one finds, as shown in RES7], that the v
vector field formulation does not generate a vector meson )
contribution to the pion EM charge radius—a situation one c=\2GF (ﬂ) (37)
must remedy by the introduction of an additional term at Vivimy)
O(p* in the chiral Lagrangian. No such term is necessary
with the tensor formulation. The primary cost involved in where the flavor index 4" has been omitted for simplicity.
using the antisymmetric tensor formulation is the presence adh the case of the nucleon’s EM form factors, the expressions
a four-index vector meson propagator. For the calculation oin Egs. (36) and (37), together with the decay rates for
tree-level process such as given in Fig. 2, this cost is no¥—e*e™, can be used to determine the couplin@s,
exhorbitant. Since the details of this formulation and its re-G;, andF, [61-63. Were one also to possess knowledge
lation to the vector field framework are discussed in Refsof the F\, associated with the strangeness matrix elements
[57,58, we refer the reader to those papers and simply giVQO|S_y#S|V>, one could then use the expressions in Eg6)
the form of the couplings and results for the nucleon formand(37) to derive the counterterms for the nucleon’s strange-
factors. ness form factors. However, one does not at present possess
The vector meson contributions to the nucleon magnetiguch knowledge. As a fallback strategy, one may invoke
moment and charge radius are generated by the followingne’s knowledge of the flavor content of the vector meson

VNN effective Lagrangian: wave functions, where such knowledge exists. In doing so, it
G is useful to follow the spirit of Refs[30,61,62 and write
vaB, n Voo v down dispersion relations for the nucleon form factors:
Lynn=2Gre" ﬂvaBUS%BUVW-l-A—XBUBUUMDVV“ , P
32 @2y E(@ 2 a” @) o2
F@ -F®(0)= ———+Q2f{2 ,
while the gauge-invariant coupling vector meson-photon T(Q)-FIHO=Q 2\/: m\z,—Q2 QR

coupling is given by (38)
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\2/ ﬁla) _ TABLE |. Theoretical predictions for nucleon strange quark
F(Q?)= > S+ f2(Q?), (39)  vector current form factors. Columns two and three give dimension-
v my—-Q less mean square Dirac strangeness radius and strangeness anoma-

. lous magnetic moment, respectively. The fourth column gives the
where the superscriptaj denotes the flavor channel gachs strangeness radip§= pS — 1%, To convert to(r2), multiply
(T=0,1 or strangenegswhere the poles arise from vector ,s py —0.066 . The first three lines give predictions of chiral
meson exchange as in Fig. 2, and where the functiongodels discussed in this worke) heavy baryon CHPT/resonance
fi(Q? represent contributions from the multimeson saturation employinge and ¢ residues of fit. 8.2 of Ref[62];
continuum? In the works of Refs[30,61,62, the continuum  numbers in parentheses give leading, nonanaljien,) loop con-
contributions were neglected in the isoscalar and strangenestbutions for u=m,, ; (b) nonlinearoc model with hadronic form
channels. In the spirit of resonance saturation, we retain th&actors using cutoff mass =1.2 GeV;(c) chiral quark model with
leading, nonanalytic loop contributions as an estimate of theutoff massA =1.0 GeV, oscillator parameter=1.93 fm ~*, and
continuum terms and assume that the countertdstnand  my=mp=0.33 GeV. Last four lines give previously reported pre-
c® are dominated by the vector meson pole contributionsdictions: (d) three pole model of Re{30]; (¢) linear ¢ model of

From Egs(34)—(39), these counterterms are easily related toRef. [31]; () hybrid pole/loop model of Re{:34]; (g) cloudy bag

the pole residues: model of Ref[32].
ba=< AX )E p(@ (40) Model P u® P
2m '
NPV ) Resonance s&. —3.62(1.52) 1.852.2 —5.47(-0.68)
A NL3 M/FF®) 0.11 -0.25 0.36
ca=>, aP| = (42) . ©
Vi my Chiral quark 0.53 —0.09 0.62
Poled? —-2.43+1.0 —0.31+0.009 —2.12+1.0
Thus, for purposes of determining the chiral coefficigsts L3 M/FF® 0.1 —(0.31-0.40)  0.410.49
andc?, it is just as effective to work with the residues in a Hybrid® 0.37 —(0.24-0.32) 0.61-0.68
pole analysis of the form factors as it is to try and determinecBm®@ 0.15 —0.09 0.24

the hadronic coupling&,, G, andF,,.
A determination of the residues was carried out by the
authors of Refd61,62, who employed a three-pole fit to the between the strangeness and isoscalar EM residues. One
isoscalar EM form factors. The poles were identified, respecmust therefore employ alternative strategies. Jaffe arrived at
tively, with the w, ¢, and one higher mass isoscalar vectorvalues for thea\sl, and b'\s,, by imposing conditions on the
mesonV’ (for an update, see Ref64]). The inclusion of at  asymptotic behavior of the form factorQf— ). Using a
least two poles was needed in order to reproduce the ohhree-pole fit, with all masses and two residues fixed, one is
served dipole behavior of the isoscalar form factors. Theynly able to require thaF{® vanish as 1p? and F$Y as
authors found that a third pole was needed in order to obtaip1/Q2)2. These asymptotic conditions are more gentle than
an acceptabley® for the fit. Subsequently, Jaffi80] ob-  one would expect based on the mosiveagquark counting
served that since the physical and ¢ are nearly pure ryles. As discussed in Reff40,41], consistency with the
uu+dd andss states, respectively, one can relate the resijatter would require the inclusion of more poles with un-
dues appearing in the strangeness form factor dispersion renown masses and residues than used in the fits of Refs.
lations to those associated with the isoscalar EM form fac{30,61,62,64 Since the adequacy of these quark counting
tors: rules for strangeness form factors is itself not clear, and since

as sine one’s predictions for the nucleon’s strangeness radius and
—eg=— V6| ——|, magnetic moment within this framework are nontrivially de-
a sin(e+ o) pendent on one’s assumptions about asymptiaiad 1], this

as COSe approach to treating th¥' contribution is ambiguous at
—e5=— 6] —————]|, (42 best.
Ve coq e+ ) o . _

¢ 0 Another alternative is to note that in the fits of Rgg§2],

. . — — the V' contributes very little to the isoscalar mean square
wheree is the mixing angle between the puei+dd and  54iys and anomalous magnetic moméess than 10% in
pure ss states andb is the “magic” octet-singlet mixing  he fits with the besty?). Indeed, the primary benefit of
angle giving rise to these pure states. Analogous formulaﬁ]duding theV' was to obtain acceptablg? over the full
apply for the residues appearing in the expressions fofange ofQ2 used in the fit; its impact on the value of the
F$. From Eqs.(40—(42), one may now determine the  form factors and their slopes at the origin is minimal. The
and ¢ contributions to the constanbs andc®. latter result is not surprising, sinde) it is necessary to in-

A determination of the remaining residua¥, andby, is  clude only the two lightest poles in order to reproduce the
more problematic. One does not possess sufficient knowbbserved dipole behavior of the isoscalar form factor, @nd
edge of theV’ flavor content to derive a simple relation the V' contribution to the lowQ?| behavior of the form

factors is suppressed by powers ma(¢/mvr)2 relative to
the w and ¢ contributions. Using analogous logic, it might
“Note that the continuum contribution need not enter additively;seem reasonable to neglect ¥iewhen seeking to determine
one may also include it as a multiplicative facf68,64. We write  the leading, nontriviaQ? behavior of the strangeness form
it additively for simplicity of illustration. factors. In Table I, we quote results for the nucleon’s Dirac
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strangeness radius and magnetic moment assumings the magnetic moments, despite the large value of #thé cou-
and ¢ residues saturate the constahtsandc®. We obtain  pling which enters this perturbative calculation. The lore
these constants using the Jaffe relations in @8), the re-  which developed in the aftermath of this calculation is that
sults from fit 8.2 of Ref[62] (which gives the bes¢?)®, and  the pion cloud dominates the nucleon’s isovector EM mo-
Egs.(40) and (41). ments and that a one-loop calculation sufficiently incorpo-
We expect this approach to yield a rough upper bound omates the physics of the pion cloud. Were this situation to
the resonance saturation predictions|to and|c®. Indeed, persist in the strangeness sector, one would expect that the

if the asymptotic behavior of the strangeness form factorgaon cloud gives the dominant contribution to th& and
follows that of the isoscalar EM form factors, then the two ;s and that a one-loop calculation would suffice to give their

lightest poles ought to give the dominant resonance contrigorrect magnitude and sign.

butions to the leading moments, as in the isoscalar case. If, A variety of one-loop calculations have been performed
however, the strangeness form factors fall off more rapidlyassuming that the kaon cloud dominates the strange form
than (1Q%)? at large momentum transfer, the presence ofactors. For example, the authors of RE§1] computedp,
higher mass poles might be required to cancel the leadingng Ws Within the context of the S(8) linear o model.
high-Q* behavior arising from thes and ¢ pole contribu-  within this framework, the leading strangeness moments are
tions. In this case, contributions from thé (or beyond to UV finite. Nevertheless, the calculation was performed by
the leading strangeness moments would reduce the combinggtiuding hadronic form factors at tHéNA vertices, draw-
w and ¢ contribution[40,41], thereby modifying the values ing on results of fits to baryon-baryon scattering in the one
quoted in Table I. One should also note that the presence gheson exchange approximation which find better agreement
higher-mass poles is not absolutely essential for modifyinguith data if hadronic form factors are included. The authors
the Q dependence of the form factors. A strong, nonresoof Refs.[33,34 extended this approach to compute both the
nant, multimeson continuum contribution could offset thejeading moments as well as the nonlead®® dependence
leading largeQ® behavior generated by the lightest poles.of the strangeness form factors using a hybrid kaon-loop—
Given these ambiguities, then, we take the two-pole resogector-meson pole model. Although the hybrid model goes
nance saturation predictions as crude estimates of the mageyond a simple one-loop approximation, it nevertheless rep-
nitudes whichb® and c® might attain in this approach. resents a type of kaon cloud model inasmuch as nonresonant
Kaon cloud dominanceA second possibility is to relax multipion contributions are omitted. Another variation of this
the requirement that one undertake a consistent chiral expageneral approach is a study performed using the cloudy bag
sion and use kaon loops alone to make a prediction. Théhodel (CBM) and the “cloudy” constituent quark model
rationale for this approach has a twofold basis. The first fol{CCQM) [32]. The CBM represents a kind of marriage of the
lows from a geometric interpretation of the nucleon chargeviT bag model with spontaneously broken chiral symmetry.
radius, wherein it characterizes a spatial asymmetry in thehe strength of the meson-baryon vertices is determined by
charge distribution. In this picture, a spatial polarization ofthe meson-quark coupling and the quark’s bag model wave
the strange sea arises from fluctuations of the nucleon into fynction. The CCQM is similar in spirit, though in this case
kaon and strange baryon. The kaon, having about half thghe nonrelativistic constituent quarks are confined with a har-
mass of the lightest strange baryons lives on average furthefonic oscillator potential. In effect, the CBM and CCQM
from the nucleon center of mass than the strange baryomalculations represent kaon loop calculations in which the
One would expect, then, to obtain a negative valug(f§f ~ NAK andNSK form factors are determined by the dynam-
(positive value forp®), since the kaon carries thge Implicit  ics of the particular models. More recently, Geiger and Isgur
in this picture is an assumption thes pair creation by the have extended the kaon cloud idea to include one loop con-
neutral gauge boson probe, which also contributes to thaibutions from all known strange mesons and baryons using
Dirac or electric form factors and which appears partially inthe nonrelativistic quark model to obtain a nucleon—strange
the guise of resonance contributions, is negligible comparetladron vertex functiofi39].
to the mechanism dfs spatial polarization. The kaon cloud In all cases, these models include contributions which are
dominance approach also assumes that the multipion contriboth nonanalytic and analytic in thequark mass, effec-
bution is negligible when compared to that of the kaon cloudtively modeling contributions from the relevant higher-
ostensibly because the pion contains no valeecer s  dimension operators appearing in an effective Lagrangian.
quarks. Moreover, in each instance the loop integration was cutoff at
The second motivation draws on the result of a pion loopsome momentum scale by including form factors at the had-
calculation of the nucleon’s EM form factors carried out by ronic vertices. In both respects, a consistent chiral expansion
Bethe and DeHoffmaf65]. This calculation was performed is lost. In principle, higher-order Lagrangians and loops
using the equivalent of the linear model. At the time they could yield terms of the same chiral order as some of the
were reported, the results were in surprising agreement withnalytic terms retained from the one-loop amplitudes. Simi-
the experimental values for the nucleon’s charge radii andarly, the use of hadronic form factors with a cutoff param-
eter breaks the consistency of the expansion because a new
scale is introducede.g., the 1/ hadron size) and/or because
SThe results using the other two fits of R¢62] give smaller the form factor itself contributes like an infinite tower of
magnitudes fopg and u®. Using the updated fit of Ref64] (see  higher-dimension operators.
also Ref[42]), and a somewhat larger-¢ mixing angle than used One might argue that sinee /A, is not small, the chiral
in Ref. [30] one obtains a larger Dirac strangeness radius tha@xpansion is not all that useful in the case of strange quarks
quoted in Table I. and that models inconsistent with this expansion may yet be
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credible[66,67]. We wish to illustrate, nonetheless, that theform above was employed in the Bonn potential fits to
approach of kaon cloud dominance still presents a host dbaryon-baryon scattering, and value of the cut-off
uncertainties. To do so, we compute the one-loop contribuA ~1.2—1.4 GeV was obtainedl60]. Various kaon cloud
tions top® andu® using the nonlinear SB3) o model. Since, models differ, in part, through the choice of form for
in this instance, we are no longer concerned to obtain a corf(k?) and the value of the cutoff parameter.
vergent chiral expansion, we retain an explicit dependence The inclusion of a hadronic form factor necessitates the
on the baryon mass and employ the “traditional” Lagrang-introduction of additional, “seagull”’ graphs in order to
ian of Eq.(13). The relevant diagrams are shown in Fig. 1. maintain the gauge invariance of the calculatjfigs. 1c)
The calculation is similar to that of Ref31], which was and(d)]. Without these new graphs, the loop calculation with
carried out using the linear $8) o model. In the present hadronic form factors does not satisfy the vector current
case, the strangeness radius is UV divergent, unless one iard-Takahashi identity. It was shown in Ref31,33 that
cludes form factors at the hadronic vertices. A simple choiceyse of the minimal subsitutick —k,+ |QZ in F(k?) gen-
and one which renders the |00p calculation most traCtable |§rates a set of Seagu” vertices Whose |00p graphs restore
the monopole form _ A2 agreement of the calculation with the WT identity. It is

2y— straightforward to show that for a meson-nucleon vertex of

F(k)=—T2—7 (43
—-A the form -
FiF (k?)kMTuy, ysu (44)

where k is the momentum of the kaon appearing at the
KNA vertex andA is a momentum cutoff. The monopole the corresponding seagull vertex is

{F[(Q+k)2] F(k*)}
[(Q=k)*—K’]

+iZ,,(Q*=2k*) KMNQ, I +iZ*FL(Q=K)2I[Q,IT] |uy, ysu, (45)

wherell is the pseudoscalar octet matrix defined in Sec. Il appropriate bound statéhadron, nucleuswave function.
Q, is the momentum of the sourc@ (for EM or baryon Chiral symmetry is invoked in deriving the constituent quark
number current O is the corresponding charge, and whereStrangeness current operators. Such a calculatiqrt afas

the upper(lower) sign corresponds to in incomirigutgoing ~ Performed by the authors of Rejf33], using the Nambu—
meson Jona-Lasinio(NJL) model [69] to compute the constituent
In Sec. IV and Table | we give the results of the kaon |00pquark strangeness radii. .

. . . : An alternative is to adopt a chiral quark model frame-

calculation using the nonlinear $8) ¢ model and hadronic . .
' : work, wherein the constituent quark strangeness currents

form factors(as in Eq.(43)] as a function of the cutoff. rise from fluctuations of the constituebt and D quarks
We compare these results with those of other kaon clou to a kaon plus a constituei® quark. The contributions
models in order to estimate the range in predictions wh|cr}rom the individualU andD quarks are added to give the
arises under the rubric of kaon cloud dominance. Indeed, thf\0 al nucleon strangeness matrix element using a quark
existence of such a range reflects the ambiguities associat

del spin-space-flavor wave function, as illustrated sche-
V;’]'th this general approach. We discuss these ambiguities fulqavically in Fig. 3. The strength of the kaon-constituent
ther in Sec. IV.

, ., quark interaction is governed by the paramejgmppearing
Cpnstltue_ntquarksThe final model approach we consider in the chiral Lagrangian of Eq7). This parameter can be
entayls treating the nucleon’s sirangeness matn.x elements ¥Rtermined by using the constituent chiral quark model to
arising from the strangeness ‘“content” of constituéhtand

D quarks. The motivation for this approach derives from a compute the nucleon’s axial vector current. Siggeenters
picture of the constituent quark as a current quark of QCD

surrounded by a sea of gluons and pairs. It follows that —
the nucleon’s strangeness radius and magnetic moment arise sV
from the corresponding quantities for the consituenand

D quarks [68].°5 The procedure one follows within this

framework is essentially the quark model analog of the one-

body approximation made in computing nuclear current ma-

trix elementg38]. Specifically, one derives an operator as- N
sociated with the individual constituentguarks, nucleons

and computes a matrix element of that operator using the

FIG. 3. Chiral quark model for nucleon strangeness. Shaded
®The CCQM calculations of Ref32] omit contributions from the  circle represents strange-quark vector current matrix element of a
strangeness content of the constituent quarks. Only the kaon clousbnstituentU or D quark, generated by the processes shown in
around the entire bag of quarks is considered. Fig. 1.
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the strangeness matrix element of the nucleon at one-loop R ~ ,F<22Q) R
order., one need (_Jnly determine _it at tree lefsgle below. <Q|S')’MS|Q>|Ioop~>‘]Z"ange: W F%yﬂ+2m 0,,Q" | ¢,

It is worth noting that the chiral quark model does not Q 47)
suffer from the same lack of convergence which plagues the

traditional baryon chiral LagrangiafEq. (13)] due to the \yhereQ denotes a constituent quark afdis a constituent

size ofmg. Since the constituent quark mass is considerabl)auark field operator. Nucleon matrix elements’jgfangemay

smaller than\ , , one has reason to believe that higher-order, . .
: . -9 be computed using quark model wave functions. We choose
corrections to the leading-order Lagrangian in Ef)., as

' . to employ wave functions in the light-front formalism, since
well as higher-order Iqop effects, \.N'” be ;uppressed. On th(%his framework allows one to use the on-shell constituent
other hand, the ambiguity associated with the coefficients

b® andc® remains. In the case of chiral quarks, one may stiIIquark curren{the form in Eq.(47)] and allows one to per-

write down corrections taCy associated with the magnetic form boosts along the direction of momentum transfer as
. Q “¥ . 9 needed to properly account for the nucleon’s center-of-mass
moment and Dirac charge radius of a constituent quark th

are. respectively. of lower order and the same order in otion® Although we are concerned only with the leading,
' P Y, . o ) nontrivial Q2 dependence of the strangeness form factors, it
1/A, as the corresponding contributions from loops:

is worth noting that the light-front quark model has success-
fully reproduced the the nucleon’s EM form factors over a
a e significant range in mon’[len]tum-transf[a?3—75. We also
— 9 AEsv_ 9 A wy follow the authors of Ref[75], who take a tree-level value
AL 2\, Yo QYF K)Z(IM"QW”F (49 for the meson-quark coupling,=1.0 and an oscillator pa-
rametery=1.93 fm ~! and reproduce the nucleon’s isovec-
tor axial charge to within 5%. The results are displayed in

whereQ is the appropriate charg&M or baryon numbey ~ T1able I.

F#¥ is the field strength ass_ouated with the corresponding IV. RESULTS AND DISCUSSION
source, and the &” superscript denotes the flavor channel
[70].

. . . In this section, we give predictions for the nucleon’s
' .AS n tohe caseo c.)f the baryon ph|ral Lagrangian, the Cc)Gf'strangeness radius and magnetic moment using the three chi-
f'C'entS_bq and cq in the SU3)-singlet channel cannot be ral model approaches discussed above. These results are
determined from known moments. Consequently, One MUS{,mmarized in Table I, where we also include predictions

invoke additional model assumptions in order to make chirak.om four previously reported approaches sharing some ele-
quark model predictions for the nucleon’s strangeness matrix,ants in common with those discussed here. For illustrative
elemepts. In thg present_ study, we.adqpt the following Stratburposes, we also display in Fig. 4 the dependengs ahd
gy First, we simply omit the contributions from thg and _ u® on the hadronic form factor cutoff parameter and pseudo-
Cq and take the constituent-quark—kaon one-loop contribuscajar meson mass entering the nonlineanodel calcula-
tion as an indication of the scale of the constituent quarkjon.
strangeness radius and magnetic moment. Although this as- Wwhen viewed from the most “impressionistic” perspec-
sumption, which represents our model ansatz, may appear {fe, the results in Table I illustrate the wide spread in pre-
be a drastic approximation, it is no more questionable thagjictions one encounters among approaches relying on chiral
would be any attempts to make model predictions for thesymmetry. Indeed, the strangeness radius and magnetic mo-
singlet coefficientdh andcg. ment can vary by an order of magnitude and by sign. One
Second, we cut the loops off &t , effectively restricting  ought to conclude that chiral symmetry by itself is not a
the virtual Goldstone bosons to have momenta less than therribly restrictive input principle when it comes to predict-
scale of chiral symmetry breaking. An alternative would being nucleon strangeness. The reason is essentially that the
to use dimensional regularization and subtract terms propoguantity one wishes to predict is the very quantity one needs
tional toC.. (equivalent taViS renormalization Since we are in order to make a prediction using CHPT: the(Sldsinglet
interested only in obtaining the scale of the constitudat  vector current. In the absence of experimental information on
and D-quark strangeness current and not in making airtighthe latter, the range in one’s predictions can be as wide as the
predictions, either approach would suffice. In order to cut thebreadth of one’s space of chiral models. From the standpoint
loops off in a gauge-invariant manner, we employ form fac-of hadron structure theory, this situation is not very satisfy-
tors at the quark-kaon vertices introducing the appropriaténg, since one would like to possess a reliable effective-
seagull graphs as necessary to preserve the WT identitietheory framework for interpreting the up-coming measure-
For simplicity, we use the monople form of E@t3), taking  ments of the low-energy properties of the sea.

the cutoff parameteA~ A, . In effect, we repeat the non- Nevertheless, a discussion of the physics input used in
linear o-model calculation discussed above for constituenieach model, along with the attendant model ambiguities,
quarks rather than nucleohs. may clarify the elements needed in a more realistic treat-

The results of the loop calculation generate effective, con-
stituent quark strangeness current operators
8We omit here a discussion of the ambiguities associated with the
light-front formalism, such as dynamical effects associated with the
"By choosing the form factor cutoff parameter to ke, we in- transformation from the equal-time framework. These ambiguities
troduce no new scale into the problem. are discussed elsewhere in the literatuté,72.
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tinuum states are the 5w, 77, and XK states and the

S
p lightest isoscalar 1~ vector mesons are the and ¢. Some
D thought about chiral counting suggests that the multipion
02 contributions ought to be suppressed relative to thec®n-

tribution. To the extent thati) this suppression holds and
that (ii) the total, nonresonanti? contribution to the isosca-
0.1} lar charge radius is no larger than the leading, nonanalytic
kaon loop contribution, the isoscalar charge radius would
then be dominated by the lightest isoscalar vector mesons,

00| (a) rendering the fit of Ref[62] quite valid. The results of this
S : fit indicate that thew and ¢ residues dominate the isoscalar
S Dirac radius; the contribution from higher mass vector me-
H sons is negligible. Thus, the isoscalar constnt® should
10} be given quite reliably by the and ¢ contributions.

(c) Knowledge of thew and ¢ flavor content allows one
to translate thes and ¢ contributions toc™=° into the cor-
05 responding contributions to the strangeness constantf
the nonresonant multipion contributions to the strangeness
radius are suppressed with respect to thecntribution, if
0.0 - (b) the nonanalytic kaon loop contributi¢iq. (29)] accurately
o . . reflects the scale of the two-kaon continuum, and if there are
0 1 2 3 no important vector meson effects beyond those ofuttend
A [GGV] ¢, thenpp ought to be given accurately by resonance satu-
ration model.
One should note that this line of argument avoids the
FIG. 4. Nucleon strangeness vector current moments in the norproblematic use of assumptions about the strangeness form
linear o model with hadronic form factors. Dimensionless Dirac factors’ IargeQ2 behavior while incorporating the consis-
strangeness radiu®@) and strangeness magnetic momet are  tency of the heavy baryon chiral expansion. The logic, nev-
shown as functions of the form factor cutoff parameter. To set theyrtheless, may be criticized on several grounds.
scale, noteﬁthat the nucleon’s dimensionless isovector EM Dirac First, the resonance saturation model is only partially suc-
radius ispp ™' = —4.68. cessful in the case of the nucleon’s EM moments, in contrast
to the situation with the pion form factor. In the case of the
ment. To that end, we summarize the logic behind each oisovector radius noted above, the nonanalytic loop contribu-
these models and point out the primary model uncertaintiegion is signficantly larger than the experimental value:
(1) Resonance saturation. Of the models considered herg{ >/pl t~1.5 (taking u~m,).? One therefore requires a
resonance saturation remains closest in spirit to CHPT whilgontribution fromc™=* which cancels about 40% of the loop
affording, perhaps, the clearest identification of the physicgontribution. Thep meson contribution ta'™=*, computed
elements included as well as those omitted from the analysigsing the values of, taken frome™e™ data andG,, deter-

In the case of the Dirac strangeness radius, these elementsined from fits toNN scattering amplitude50] does not
may be summarized as follows. give such a cancellation. In fact, a careful analysis of the
(a) Detailed dispersion theoretic analyses of the isovectofsovector spectral function for the Dirac form factor, which

charge radius imply that it is dominated by the lowest concontains information about both the complete setraf con-
tinuum state(two pions and the lightest isovector1” reso-  tinuum andp resonance contributions, can be used to extract
nance. Formally, the large two-pion continuum contributiong value forG,, consistent with the value used MN scatter-
results from a left-going branch cut just in théN scattering  jng studieg63]. Inclusion of the fullzar continuum, and not
amplitude below the two pion threshdl@4]. In CHPT, this  simply the leading nonanalytic term, appears to be crucial in
effect appears in the guise of the leading nonanalytic termhis case.
(Inm?/?). Contributions fromzrr continuum terms analytic Second, a more refined dispersion analysis of the isoscalar
in the light quark masses and from tperesonance are ac- spectral functions could reveal important nonresonant mul-
counted for by the chiral counterterngs, , which may be fit  tipion and kaon continuum contributions. While the leading,
to data. In the resonance saturation approach, one retaifngnanalytic kaon loop contribution to the isoscalar Dirac ra-
only the Imm?/u? term from the loop as an indication of the dius is small(about 15% of the experimental vajyeone
continuum contribution and models the isovector counter-
terms using the resonance. Although this model overpre-
dicts the isovector charge radius by a factor of52], the ®In the work of Ref.[76], only 7 loops were considered and the
sign and order of magnitude are given correctly. The overtesult forpI;pl is closer to the experimental value. Our result also
prediction appears to result from the omission of nonresoincludes theK-loop contribution. Although the calculation of Ref.
nant pion rescattering correctiofs6]. [76] was carried out without using the heavy baryon formalism, the
(b) One might expect an analogous situation to arise in theesult agrees with the chiral log of the heavy baryon calculation.
isoscalar and strangeness channels, where the lightest corhe results for the magnetic moment differ, however.

N
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does not know at present whether this result gives a reasomls rely on the ansatz thé) OZl-allowed processes give the
able estimate for the scale of the full continuum. Indeedmost important contribution to the strangeness form factors;
sincemg /A, is not small, it would not be surprising to find (ii) of the OZI-allowed contributions, the most significant are
important kaon rescattering corrections which could signifi-those involving intermediate states with valengeand s
cantly alter the leading-order nonanalytic result. Should thequarks; and(ii) the largest effects result from the lightest
continuum be significantly larger, the pole analyses of RefsY K states—especially in the case @f, which naively re-
[61,62,64 would require modification, presumably resulting flects the mean square spatial polarizatiors ahds quarks.
in signficantly different values for the residues. In this case\Vhen implementing this ansatz, kaon cloud dominance mod-
the w and ¢ contributions to the strangeness countertern€ls typically (i) rely on chiral symmetry to determine the
¢S, obtained via Eq(42), would be altered. Moreover, the NY Kcouplings for pointlike hadronsii) regulate UV diver-
presence of large nonresonant continuum effects in the iso§€nces in loops by employing form factors at ¥ K ver-
calar channel would suggest similar effects in the strangenedi§es; andiii) restrict themselves to one-loop order under the
channel. assumption that the one-loop result fairly reflects the scale of
Third, higher mass poles could play a more important rolgfull kaon cloud contribution.
in the strangeness form factors than in the isoscalar form While kaon cloud dominance models give a satisfying,
factors, as discussed in Refd0,41]. Indeed, something be- albeit simple, intuitive physical picture behind nucleon
yond the simplew and ¢ pole approximation would be re- Strangeness, each of the assumptions on which they rely can
quired to generate @2 dependence foF{Y consistent with  P€ challenged.

various scenarios for its asymptotic behavior. At present, one (@ Itis not at all clear that OZI-allowed processes domi-
has no knowledge of the couplings,, G, andF, associ- nate the strangeness form factors. Indeed, the pole analyses
o v discussed above and in Ref80,64,40,4}, if correct, imply

ated with higher mass poles, nor does one know their flavoI byt ¢ the(1020) Wh in to th
content. Consequently, the associated resid@escan only arge contributions from &( ). Whos€ coupling fo the
nucleon ostensibly involves an OZI-violating mechanism.

be fixed by assuming a particular largé- behavior for (b) It is similarly not clear that only intermediate states

(s) - — P -
Fi e containing valence ands quarks give important contribu-
In general terms, these criticisms apply as well 0 the;gns 1o the form factors. For example, a 3ntermediate has

- < - . .
model prediction foru”. In addition, one must note an IN* the correct quantum numbers to contribute to the strangeness
consistency between the resonance saturation modéd>for \ector current matrix element, even though it has no valence

and the way in which the constabf ~° has been extracted or s quarks. Moreover, three pions can resonate to the

from the isoscalar data. In the analysis of R¢&1,62, no  ;1020), which has a 15% branch to a three pion final state
continuum contributions were included in the fit to the 'Sos'(primarily through ap channe), and thereby generate a
calar form factors. Such an approximation may be valid inysntrivial contribution. In fact, a simple estimate of ther 3

the case of the isoscalar Dirac radius, for which the nongqnyibytion, based on this mechanism, suggests that its con-
analytic loop contributions represent a reasonably small fract'ribution need not be smaller than that ¥K intermediate
tion of the total. The?(y/m,) kaon loop contribution to the stateg77].

isoscalar anomalous magnetic moment, however, is large: (¢) The recent work of Ref39] points out the possibility
Kioop/ Kexpt ~20. Chiral perturbation theory therefore re- that higher masy*K* states may signficantly cancel con-
quires a large constari’™® to cancel most of this 100p tributions from the lightest K states(kaon cloud. In that
contribution. However, the most reliable information one hasca|culation, carried out at one-loop order and using the non-
on the resonance contributions to the isoscalar magnetigativistic quark mode(NRQM), the authors find that one

form factor is derived from the fits of Ref62], which in-  myst includeY*K* states at rather high excitation before
cluded no continuum. The residuh?,;}o obtained from these  optaining a stable result fos® and w°. Similarly, calcula-
fits are small(on the order of«lg) and, therefore, cannot tions carried out using hadronic effective approaches find
cancel the large kaon loop contribution. In order to removeimportant contributions frony K* loops[78]. While one has
this inconsistency, one would need a reanalysisFéf°  reason to question the reliability of one-loop resuyus),
which includes a realistic treatment of the continuum. these results nevertheless raise questions about validity of
While these observations raise questions about the credssuming kaon cloud dominance.
ibility of the resonance saturation model, they also highlight (d) The use of chiral symmetry in kaon cloud models is
several of the elements needed in a more realistic analysigiot self-consistent. As noted earlier, these models abandon a
(a) better knowledge of the nonresonant continuum contribuwell-defined chiral expansion by employing form factors at
tions to the isoscalar spectral functions, which includes inthe hadronic vertices and by retaining both analytic and
formation beyond the leading, nonanalytic ternis) a re- nonanalytic terms from the one-loop calculation. Terms of
analysis of the isoscalar pole contributions in light@f, (c) the former class are indistinguishable from contributions
a means for including the analytic, nonresonant multipiongenerated by higher-dimension operators in the chiral La-
and kaon continuum contributions to the strangeness forrgrangian. Moreover, higher-order loop graphs may yield ana-
factors;(d) an estimate of the higher-madseyond thew and  lytic terms of the same chiral order as some of the analytic
¢) vector meson pole contributions t§ and u5; and(e) a  terms retained from the one-loop graphs. A consistent chiral
clear understanding of the relationship between theapproach would require the inclusion of all analytic contri-
asymptotic behavior of the strangeness form factors(ahd butions of a given order in &/, . In the absence of such an
and (d). expansion, one has no principle to justify the omission of
(2) Kaon cloud dominance. Kaon cloud dominance mod-escattering corrections associated with higher-order loops.
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In fact, any calc_ula_tion which retgins both analytic andpirac radius iSPES/Plfptl*W%)- Taking the limitA — o
nonanalytic contributions must also include higher-order resgjyeg Kioa | ket ~=54% (the isovector Dirac radius diverges

cattering effects in order to be consistent with the requirejp, this limit). One might argue, then, that choosing any value

ments of unitarity{49]. _ . _ of the cutoff in the rangeA ,<A<%= would be equally

(€) The choice of hadronic form factor is not unique. In justified—at least for the magnetic moments which are UV
the CBM, for example, the form of the effectié(k®) is  finite. As the cutoff is varied over this range$ varies from
approximately Gaussian rather than monopole.as used herge value quoted in Table | taS=—1.31. This situation
Moreover, the scale of the momentum cutoff is set by the,nhears to persist in the case of the CBM and CCQM models
inverse bag radius, which is on the order of a few hundred,q \ye||. The authors of Ref32] originally found values for
MeV [32]. The CBM constitutes a chiral model with a dif- {he cutoff which optimized agreement with all the nucleon’s
ferent underlying physical picture than the nonlinear gy moments. However, a subsequent inclusion of covarian-
m_odel, and its parameters can be tuned to produce agreeme[,}qng seagull graphs changed the magnetic moment predic-
with at least some of the nucleon’s EM form factors. Inions by 50% so that an optimum cutoff no longer exists.
short, one has no strong phenomenological reason to choogg)nsequently, the corresponding predictions for the strange-
one model—corresponding to one form ftk”*)—over an-  ness moments contains an uncertainty associated with the

other; only a model preference. value of the cutoff.
(f) The prescription for maintaining gauge invariance is A comparison between different kaon cloud models re-
also not unique. The one shown above in Ef) is amini-  yveals a similar degree of ambiguity. We consider first the

mal procedure. One may include additional seagull contribujinear and nonlineas- models. When one of the baryons is
tions which are purely transverse and, therefore, do not affeaff shell, as is the case in a loop calculation, the structure of
the WT identity. The presence of these additional terms maythe meson-baryon vertices differ in the two models, even
nevertheless, affect one’s results for the form factors. though the same monopole form factor was used in both
It is instructive to try and quantify the uncertainty associ-calculations. When one takés~ A , ~ A gy, the two mod-
ated with these ambiguities. This effort has been accomels give nearly identical predictions f@,. One might not
plished in Ref.[49], where the numerical impact of rescat- be surprised by this result, since in both cases the radius
tering corrections and/or higher-order loops has beerontains a chiral log. At least in the chiral limit, this infrared
estimated using unitarity bounds. In the case of form factogingularity dominates over contributions analytiawg , and
ambiguities[point (e) abovd, one may attempt to quantify it is essentially terms of the latter type which would be re-
the uncertainty by considering the dependence of the lin- sponsible for any differences in the two predictions. For
ear and nonlineaw-model predictions and by comparing A —c«, on the other handpy, diverges in the nonlineas
these predictions with those of the CBM and CCQM calcu-model but only doubles in value in the lineamodel. In the
lations. Turning first to the issue of the cutoff dependencecase of the strangeness magnetic moments, which contain no
one may argue about which value &fto use. The results infrared or ultraviolate singularities, the model predictidns
quoted in Table | and Ref31] for the linearoc model were  differ by a factor of about 1.5 fo~A, but come into
obtained using the Bonn valué,~Agy,~1.2 GeV. Ac-  closer agreement foA —%. Comparing the CBM andr
cording to the fits of Ref[60], taking A~ Aggn, Optimizes  model (A =Ag,,,) predictions, one finds CBM gives a 50%
agreement with baryon-baryon scattering data in the one mearger Dirac radius but a value fae® that is a factor of three
son exchange approximation. For this choice\othowever,  or four smaller than the linear-model prediction.
the corresponding pion loop contributions to the EM mo-  These comparisons are not definitive. Nevertheless, they
ments are in serious disagreement with the experimental vakuggest a scale for uncertainty in the kaon cloud dominance
ues. In fact, there exists no value dfwhich produces agree- predictions that amounts to about a factor of 5 or more times
ment between experiment and the lineamodel values for the smallest values fopd| and|uS|. Moreover, as in the
the EM moments. The best choice occurs for5 GeV. In case of the resonance saturation model, a study of the weak-
this case, experiment and the linear model agree for nesses of the kaon cloud models highlights important ele-
« T~ ! while the prediction fop™~* is 60% of the experimen- ments which a more realistic calculation should inclide
tal value. Changing\ from Ag,n,to A~5 GeV doubles the method for including higher-order rescattering corrections;
prediction forx® and reduces the prediction fpg, by 25%. (i) a procedure which avoids the ambiguities associated with
The choice ofA in the case of the nonlinear model is  hadronic off-shell effects, that is, hadronic form factors and
equally debatable, as a study of the pion-loop contribution tahe attendant gauge invariance issu@) an analysis of
the isovector magnetic moment illustrat8swe find no  contributions from as full a set of allowed hadronic interme-
value of the cutoff which reproduces the experimentaldiate states, including thossuch as the 3 stat¢ which
value. Choosing A~A ~Agq,, Yields, for example, contain no valence or s quarks.
Kioop! Kexpt = 25% (the corresponding ratio for the isovector  (3) Chiral quarks. The insights embodied in the chiral
quark model approach are the success of the constituent
quark model in describing hadron properties, the picture of a
100one would not expect the pion loop graphs to produce agreeconstituent quark as a QCD quark dressed by a cloud of
ment with the isoscalar moments. As the heavy baryon calculation
illustrates, the leading contribution arises from the diagrams where
the current is inserted in the meson line. In the case of the pion The lower value for|u® in the case of the lineasr model
loops, these diagrams only contribute to the isovector moments. corresponds to\ =1.2 GeV.
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qq pairs and gluons, and idea that the spontaneous breakirige chiral quark model, the situation is even less controlled.
of chiral symmetry in the QCD Lagrangian ought to be re-For example, the NJL model, which provides an alternative
flected by interactions between the Goldstone modes anghodel for the constituent quark strangeness radius, gives a
constituent quarks. In the case of strangeness, the primamalue forpg that has the opposite sign from the chiral quark
assumptions underlying the chiral quark approach are thgtrediction and about 40% of the magnituds].
nucleon’s strangeness moments arises from a quark-model Finally, when one compares the predictions for chiral
average of the constituent quark strangeness radii and maguark model and nonlinear-model predictions fopg , one
netic moments and that the latter are generated constituefinds that the former is a factor of five larger than the latter.
quark-Goldstone boson interactions. Despite the attractivé) both cases, the form for the meson-fermion vertex is the
features of this approach, however, it can be questioned of@me, including the approximate value of the form factor
both conceptual and technical grounds. cutoff. One faces the question as to whether these two cal-
From the conceptual standpoint, perhaps the primary difculations give independent contributions which should be

ficulty involves an issue of double counting. As noted in Ref.2dded, or whether there is some overlap between the two.

[51], the chiral quark effective theory contains both the pseuOne might argue in favor of the second possibility by noting

. that at the quark level, a loop involving a kaon and strange
doscalarQQ bound states as well as the octet of light pseu'baryon intermediate state contains diagrams in which a con-

doscalar Goldstone bosons. To the extgnt that the latter afgy, '+ quark fluctuates into a freely propagatBgjuark
also QQ bound states, the theory contains the same set ofnd kaon(i.e., the chiral quark model contributipplus oth-
states in two different guises. The authors of Ré1] argue, ers in which the S-quark interacts with the other
based on a simple Goldstone bo€Q®@ mixing diagram, intermediate-state constituent quarks. More generally, a
that the mass of the bound state must be either somewhaimple dimensional arguments suggest that the mean lifetime
greater than\, , in which case it lies outside the realm of the of a virtual Ss pair is not so short compared with typical
low-energy effective theory, or infinity, in which case it is hadronic lifetimes that one may neglect collective., had-
unphysical. One would conclude that the Goldstone bosofenic) effects involving the nucleon’s strange sea. It would

octet is distinct from the lighte€DQ states of the theory. A appear that a simple quark model average of theand
study of meson spectroscopy, however, suggests otherwisB-duark strangeness moments omits such hadronic pro-

Indeed, the pattern of mass splittings in tB&*, DD*,  C€SSes.
KK*, and 7p systems is remarkably consistent with the (4) Other model approaches. For completeness, we com-

mass splittings in conventional quarkonia between the Iight_rnent briefly on the other model approaches listed in Table I.

3 1 , Pure vector meson dominance models, such as the three pole
est°S; and S, QQ states[79]. This pattern strongly sug- model of Ref.[30], omit all nonresonant Goldstone boson

gests that the Goldstone bosons are the ligf@3tbounds  continuum contributions. This practice is not justified by any
states of the effective theofy0], in conflict with the con-  deep theoretical arguments, but rather by one’s experience in
clusions of Ref[51]. There do exist methods for construct- the isoscalar channel where an acceptapleis obtained
ing a chiral quark effective theory which includes mesons asvith a three-pole only fit. The one-loop heavy baryon calcu-
specific degrees of freedom while avoiding the double counttation implies, however, that the continuum contributions
ing problem(see, e.g., Ref[81]). However, performing a need not be negligible in the strangeness sector. Moreover,
calculation at this level of sophistication lies beyond thethe prediction of Ref[30] relies on questionable assump-
scope of the present study. tions about the asymptotic behavior of the form factors. The
A second issue is equally as problematic. As in the case diybrid model of Refs[33,34 attempts to model both reso-
baryon effective theories, the calculation of the constituenfiant and nonresonant kaon cloud contributions in a self-
quark strangeness matrix elements employs loops. A consi§onsistent manner while avoiding the problematic assump-
tent chiral expansion requires that one retain from thesd0nS regarding asymptopia. In treating the two-kaon
loops only those terms which cannot be mimicked by treecontinuum, however, the hybrid model still |nvokes hadronic
level contributions from higher-order terms in the chiral La-meson-baryon form factors to cutoff the Io_op mtegrals for
grangian[e.g., Eq.(46)]. Such higher-order Lagrangians mome”ta above\.x. Moreovgr, o.ther potentially |mpprtant
come with coefficients which cannot be determined withoulmummeson continuum contrlt_)utlons are not taken into ac-
knowing the strangeness matrix elements themselves. Tthount. Consequently, the hybrid model suffers from the same

dilemma is the same one which hampers heawv bar Oambiguities discussed in relation to the other kaon cloud
P y y %ominance models.

CHPT as a predictive tool. One is hard pressed to go beyon Experimental ImplicationsIn light of the variety of

t_he leading nonanalytic contributions without invoking addi- physical processes which may contribute to the strangeness
tional model assumptions. form factors, as well as the ambiguities and oversimplifica-
As a fall back, one can employ form factors to cut off the tions which each model entails, is there any insight which a
loop integrals at a scald, as we did in arriving at the study of chiral models might yield when compared with fu-
numbers in Table I, but price one pays is the presence of aflire experimental results? At the most general level, mea-
the ambiguities encountered when using hadronic form facsurements ofu® and p° will determine the chiral counter-
tors in hadronic loops. Presumably, the spread in predictiongerms, b, and c,. Insofar as the nonanalytic loop
for the constituent quark strangeness currents is as broad asntributions and counterterms reflect the presence of “long-
are the kaon cloud dominance predictions for the nucleon’slistance” and “short-distance” physic&@s is the standard
strangeness moments. When one considers models other thane in CHPT), such a determination would indicate the rela-
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tive importance of these two types of physics in shaping thdnas been suggested that a determination of this linear com-
low-energy structure of thes sea. bination is useful as a “first pass” probe of the nucleon’s
It would be desirable, however, to make more specificstrangeness vector current. Waly, a one might conclude
statements about the hadronic mechanisms contributing tihat a small result for this quantity would indicate small
the strangeness matrix elements. In this respect, our analysisagnitudes foiGE) andG(J . In the case of the resonance
of the chiral model shortcomings may shed some light. Tosaturation model, for example, prediction foy+ uPusis an
that end, some observations about the magnitudes and sigpgder of magnitude smaller than the predicted values of ei-
of their predictions is in order. In the case pf, all of the therpg or u° alone, owing to a cancellation between the two
models, except for the resonance saturation model, givesrms. Similarly serious cancellations occur in the case of
pus~—pu'=° The large positive value fop® in the reso-  several of the other model predictions. One ought to be cau-
nance saturation model results from a large loopious, therefore, about drawing strong conclusions from a
contribution—enhanced by a factor e{my /A ,)—and the  forward angle measurement alone. A pair of forward and
questionable absence of correspondingly large vector mesqfackward angle measurements, allowing for separate deter-

terms. As for the strangeness radius, all of the calculationginations ofx® andpS, would be more relevant to the com-
containing kaon loopgexcept resonance saturatiagive the  parison of model predictions.

same sign fop® and magnitudes which vary by a factor of 5.
The sign corresponds to the maiexpectation derived from
the kaon cloud picture in which the kaon, containing the
quark, lives farther, on average, from the nucleon’s center of V. SUMMARY
mass than does th&, where thes quark resides. The pole
and resonance saturation models, however, give strangenesslIn this study, we sought to delineate the extent to which
radii having much larger magnitudes and the opposite sigrchiral symmetry can be used to arrive at credible predictions
The latter results follow from the fits of Ref61,62 which ~ for the nucleon’s strangeness vector current form factors.
yield a large NN coupling. Note that in the case of the Since CHPT has proven quite useful in other contexts, it is
resonance saturation model, the laggole contribution to  timely to analyze its usefulness in the case of nucleon
pp is cancelled to some extent by the continuum termstrangeness. Moreover, since the role of fisesea in the
(loops, whereas in the pure pole model, tlecontribution  nucleon’s low-energy properties is of considerable interest to
is cancelled to an even greater degree by the questionabiee hadron structure community, and since significant experi-
V' residue. An experimental result consistent with resonancenental effort is being devoted to measuring the nucleon’s
saturation valuepy, would suggest that resonatichannel  strange quark form factors, one would like to possess an
kaon and multipion rescatteririgoles is the most important  effective theory framework in which to understand the strong
physics behind the strangeneness radius. A significantlirteraction dynamics behind the numbers to be extracted.
smaller result, or one having the opposite sign, would imply|deally, CHPT would have provided such a framework. We
the presence of large continuum contributions going beyongiope to have convinced the reader that nucleon strangeness
one-loop order and/or important higher-mass resonancgyr, equivalently, the S(8)-singlet channdlpresents barriers
terms. to the applicability of chiral symmetry not present in other
How might the various parity-violating electron scattering cases where symmetry has proven more useful. To reiterate:
experiments do in terms of sorting out among these scehe reason for this difficulty is that the quantity one wishes to
narios? The SAMPLE experiment at MIT-Batg2,3] and  predict—the strangeneg®r SU@3)-singlef vector current
“ G®” experiment planned for TINAF4] anticipate a deter- matrix element—is the same quantity one needs to know in
mination of u° with an error bar of+0.2. At this level of  grder to make a prediction.
precision, these experiments could confirm the presence of a Consequently, we turned our attention to chiral models.
large strangeness magnetic momi@nt the order of the reso- \We explored three such model approaches as a representative
nance saturation predictipor rule out the remaining predic- sampling: a resonance saturation model for the unknown
tions. It would be difficult for the SAMPLE an&° measure- low-energy constants arising in CHPT; kaon cloud domi-
ments to confirm any of these remaining predictions withouhance models; and models in which chiral symmetry is used
significantly better precision. As far as the strangeness radiug obtain the strangeness currents of constitug¢nand D
is concerned, one anticipates a determinatiopdfvith an  quarks. These different approaches yield a wide range of
error of ~+1.0 from the Hall A and C experiments at predictions for the nucleon’s strangeness radius and mag-
TINAF [4,6]. These experiments could see a strangeness rawetic moment. This situation is not surprising, since none of
dius at the level of the pole and resonance saturation predithe approaches relies solely on the underlying symmetries of
tions and, at best could rule o{ftut not confirm the remain-  low-energy QCD, but invokes, in addition, various model
ing entries in Table I. It appears that a “second generation”assumptions. We have argued that the set of physical pro-
of parity-violation experiments, designed to reduce the errotesses which may influence the strangeness form factors is
in the strangeness moments, would be useful in pointing teoo broad to be encompassed by any one of these models. As
the mechanisms responsible for their magnitudes as signs.a result, models which emphasize different subsets of these
Parenthetically, we note that forward angle parity-processes can lead to rather different predictions. A more
violating electron scattering experiments with a proton targetealistic and comprehensive analysis should incorporate the
[4,6,7] are sensitive to the linear combinatigig+xPu®  complete range of physically significant effects, including
where uP~2.79 is the proton’s magnetic momdrt 10]. It  the full set of mesonic continuum contributions and not sim-
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