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Pion nucleus potential from scattering data and a test of charge symmetry
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A modified form of the inverse scattering method of Newton and Sabatier is applied to generate local
complex potentials for the scattering af~ on zero spin and zero isospin nuclei. The phase shifts and
inelasticity parameters, used as inputs, are extracted from a partial wave analysis of the elastic differential
cross-section data by parametrizing the nuclear amplitude. Analytic mapping techniques are used to get a better
accuracy in the phase shift analysis. The nuclear parts of the inversion potentials ford 7~ scattering on
“He are compared as a possible test of charge symmetry breaking. The method has been repeated for several
incident pion energies below th8,3) resonance thresholfiS0556-28137)02805-7

PACS numbgs): 25.80.Dj, 13.75.Gx, 24.10.Ht, 24.80y

[. INTRODUCTION sponding phase shifts derived with the use of some standard
optical potentia[7].

A number of methods have been developed over the last Our interest in the present work concerns the application
several decades to determine the potential between two if the fixed energy inversion to the determination of pion-
teracting particles from a knowledge of their scattering datanucleus interactions. The motivation comes from a need for
Rigorous mathematical methods have been constructedgliable pion-nucleus potentials, since the pion-nuclear phys-
They have the specific advantage of generating the potentiés provides an important application of many-body theory to
directly from the available experimental information, without & fairly simple, strongly interacting system. Since the pion is
having to introduce a particular bias in constructing a modefpinless, many of the complications of spin-dependent ef-
potential. In the usual quantum mechanical problem involyfects present in the nucleon-nucleus interaction play no role,
ing strong interaction, one generally introduces a model opProvided we are careful to close nuclei also with zero spin
tical potential containing several free parameters which ar8:9)- Pion-nucleus interactions also provide new possibili-
optimized to fit the scattering and the bound state data. Sudifs fo_r studying charg_e symmetry-b_reaklng effects dug to
model potentials may not reveal the true information conten{he existence c_)f two pions of opposite charges. The pron-

%%cleus scattering data has traditionally been analyzed using

of the data, as sometimes several sets of free parameters Coptical potentials, such as the Kisslinger potenfis] or

equally well reproduce good agreement with the expenment.Ome variants of if11]. However, with such models, poten-

The information contained in the data may thus be maSkeaals as different as the Kisslinger potential and the Laplacian

by the model itself, obscuring the revelation of the true na'potential can provide equally good fits to the pionic atom

ture of the interaction. It is for this reason that the inversedata as well as the pion-nucleus scattering data

scattering formalism has drawn a lot of attention in recent |, an earlier work[12] we discussed a modified form of
years. A potential constructed by inversion is the best phee Newton-Sabatier formalism for the calculation of poten-
nomenological potential which one can construct, as it emtja| from the phase shifts at a fixed energy and subsequently
bodies a minimum of model dependence. As such it shoulghis was applied to the inversion of phases of elastic
serve as a guide for a better physical understanding of thg~-4He scattering13]. The procedure yields a unique solu-
interaction between two particles. tion for the interaction, if it is assumed to be local and is
The inverse scattering problem is related to the spectraknown from a certain radial distance up to infinity. This is
theory of a Sturm-Liouville eigenvalue problem. In connec-indeed the case with the pion-nucleus interaction where the
tion with the Schrodinger equation, two alternative proce-unknown strong interaction potential is of short range and is
dures have been suggested; these correspond to taking superimposed over the background Coulombic interaction of
either the energy or the angular momentum as the spectréifinite range. A somewhat similar method has been applied
variable. The first method developed by Gelfand and Levitario the study of the interaction between light heavy ions by
with its variant form due to MarchenK@] yields the poten- May and Scheid14]. In this paper we extend the earlier
tial at a fixed angular momentum. The later method, whichwork of Ref.[13] to calculate the potential forr* and 7~
we follow in this work, is a fixed energy scattering problem, with “He and*?C at several incident pion energies below 80
i.e., finding a potential from a set of partial wave phase shiftdMeV for which elastic cross-section data are available in the
at a fixed energy. Though for quite some time the probleniiterature. A very consistent picture which shows several dis-
has been formally solved by Newtd], Sabatief1], and tinct and systematic trends in the shape of the potentials and
others[4], it is only in the last decade that the method hastheir dependence on energy has been obtained. The phase
found successful application$,6]. May, Munchow, and shifts are calculated from the differential cross-section data
Scheid[5], in particular, have discussed a modified versionof Ref.[15]. The inversion potentials are compared with the
of the Newton-Sabatier formalism and have applied it to thestandard Laplacian optical potenti@lkl]. The potentials for
derivation of nucleus-nucleus potentials from the corre-m* andz~ with isoscalar nuclefHe are compared to get an
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TABLE |. Phase shifts and inelasticity parameters for-*He scattering.

Ex
in MeV I=0 =1 =2 =3 =4 =5 =6 =7 =8 =9
51 25(deg —15.0 18.0 2.0 0.2025 0.0216 0.0024 0.00027 0.00002 0.0000640.000006
n 0.9456 0.9260 0.9930 0.9994 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
60 25(deg —16.0 22.79 3.199 0.3745 0.0459 0.0058 0.00078 0.00009 0.000015 0.000008
7 0.9037 0.9523 0.9895 0.9988 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999
68 25(deg —17.2 26.8 4.2 0.5463 0.0745 0.0105 0.00155 0.00022 0.00003-0.000006
7 0.9423 0.8788 0.9792 0.9973 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999
75 25(deg —15.8 31 5.6 0.8060 0.1199 0.0185 0.0029 0.00047 0.000079 0.000002
7 0.9965 0.7777 09792 0.9974 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999

estimate of the charge symmetry in pion nucleus interactionsvhere

In Sec. Il we discuss the general procedure of calculating
potentials for a set of phase shifts at a fixed energy, where U(p)= V(r) V(r =V Iy 3
both the phase shifts and the potential may be complex. The (p)=—g=» V(N=Vn(n)+Ve(r), ©)
modifications needed to take into account the presence of the
Coulomb force are also discussed. In Sec. Ill the method ignd
applied to the elastic scattering data #f on “*He and
12C. The salient features of the resulting potentials are pre-
sented. The potentials far* and 7~ are compared and the function for the /th partial wave. (4)
status of charge symmetry in pion-nucleus interactions is dis-
cussed. Let (I)S(p) be the wave function when the nuclear part of the

interaction is switched off, so thdt?(p) =F _(p), the regu-
Il. THE INVERSION PROCEDURE lar solution of the Coulomb problem.
. . . . . Outside the range of the nuclear interaction, i.e., gor

The mterac'glon of c_harged pions Wlth the nucleu_s c_optalns>p0 the nuclear part of the potential may be neglected and
the Coulomb interaction terivc(r) which has an infinite  {hen the wave function in this region can be expressed as a
range and a short range nuclear potentig(r), the only  jinear combination of the regular and irregular Coulomb
restriction o?st/?e unknown pa¥fy(r) being that it de_cr_eases wave functionsF ,(p) andG ,(p)
faster tharr for larger [3] and, as we know, this is not
a stringent condition in the case of strong interaction poten- & ,(p)=A[cos5,F (p)+sind,G,(p)], for p>pq
tials. Let us introduce a dimensionless coordinate

=A,T,(p). ®)

D, (p)=ri, (r), where i, (r) is the wave

2uE 1/2

% r, (1)  The unknown amplitude#, are to be determined as dis-
cussed below. The nuclear phase shiftsare extracted from

wherey is the reduced mass of the pion-nucleus system, anthe experimental cross-section data afte_r properl_y subtracting

E is the center of mass energy. Assuming a spherically symthe Coulomb effect$13]. The phase shifts are, in general,

metric potentiaM(r) for the pion, the Schrodinger equation complex.

for the /th partial wave can be written as Let us define a kernel

p=kr=

oo

O (p)=/(/+1)D,(p), (2 K(p.p’)=/§0 C, D, (p)2p"), (6)

d2
P —=+1-U(p)
dp

TABLE Il. Phase shifts and inelasticity parameters fof-12C scattering.

Ex
in MeV I=0 =1 =2 =3 =4 I=5 =6 =7 =8 =9

30 S(deg —-41 11.5 1.9 0.1463 0.0109 0.00083 0.00006-0.000002
n 0.95 1.0 1.0 1.0 1.0 1.0 1.0 1.0

40 6 —-8.4 12.6 3.7 0.368 0.0358 0.00354 0.00036 0.00003 0.0000620.000005
7 0.94 0.96 0.97 0.9965 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999

50 o -0.5 23.9 8.2 0.966 0.1132  0.0135 0.00165 0.00019 0.00002 0.000005
7 0.79 0.7999 0.9499 0.9907 0.9989 0.9998 0.9999 0.9999 0.9999 0.9999
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FIG. 1. (8—(d): Nuclear part of ther™-*He optical potential obtained by inversion. The solid line and the dashed line represent the real
part of the inversion potential for~ and 7", respectively. The dash-dotted curve and the short-dashed curve are twice the negative of the
imaginary part of the inversion potential far~ and 7", respectively. Only one of the curves is shown when there is an overlap between
the former two or the latter two.

It has been shown by Newtdi6] and by Coudray and Coz o
[17] that, if one defines the potential as a(p.p')=2, C,0%p)p%p"). (9)
/=0
d
U(p)=Uc(p)—(2p) a0 [p K(p,p)], (7) The wave functionb ,(p) then satisfies the integral equation
p

p
the kernelK(p,p’) turns out to be the unique solution of the ®/(p)=(1>9(p)—J dp’(p’)*ZK(p,p’)CD(}(p’). (10
Gelfand-Levitan linear integral equatign8] 0

) SubstitutingK(p,p’) from Eq. (6) into Eq. (10) above, we
K(p,p'):g(p,p')_f dp”"(p") 2K (p,p")a(p".p"), get a set of coupled equations
0
(€S) ”

D (p)=D%p)— X C,i Lo s(p)®,i(p), (1D
where /'=0



3018 S. JENA AND S. SWAIN 55

(a) {b)
50 Mev 40 MeV
100} 5ok
401
30+
> -
z v 20
= =
> —
>
10r
= 0
_10_.
1 1 1 1 ] 1 1
0 2 4 6 8 10 0 8 10
r(fm)}
(c)
30 MeV
50}
40
30}
> 20
z
>
10-
’ | \47/
_]0_
0 6 8 10

FIG. 2. (8)—(c): =" -12C optical potential. The solid curve is the real part of the inversion potential. The dashed curve is the real part of
the Laplacian potential. The dash-dotted curve is twice the negative of the imaginary part of the inversion potential. The short-dotted curve

r(fm)

is twice the negative of the imaginary part of the Laplacian potential.

where the matrixt ., is given by

Lo [ 02010l oo 200, 2

Equation(11) can be rewritten as

oo

> (8, T (p)A 4L, (p)T,(p)b1=F Ap),
/=0
(13

efficientsA, andb,, and hence the coefficienG,. From
these the kernél(p,p) and the nuclear part of the potential
are obtained using Eq&6) and(7), respectively.

In potential problems the number of significant phase
shifts is roughlyL =kry. Normally the phase shifts become
negligibly small for partial waves of value somewhat higher
thanL. In the works of May, Munchow, and Schdifi] the
summation series in Eq13) is truncated at the value of
/" =L for computational reasons, even though theoretically
an infinite number of partial wave phase shifts contain all the
required information for reproducing the true interaction. In

where we have introduced a new set of coefficientshis work, Eq.(13) at more than two values ¢f are consid-

b,=C,A,. Solving the set of linear equation3) at two

ered, which in effect overdetermines the solution. The solu-

radial distancep=p1,p, (>pg) provides the unknown co- tions are then optimized by a standard procedf8. How-
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ever, in that procedure the total number of coefficiedis
calculated from the equivalent of E¢L3) is only equal to 50+ “ 2
L. As aresult, the series f&(p,p) of Eq. (6) is truncated at | _ ;J—Mcev
the value of/"=L. Unfortunately, even though the phase st ! —___ 40 MeV
shifts for />L may be negligible, the coefficient€, oo o 30 MeV
(#>L) may not be small. This was earlier demonstrated by
Sabatieff20]. Thus the truncation of the series 6(p,p) at
/=L will introduce a considerable amount of error in the \
value for the potential. In an earlier wofk2] we presented

a prescription for calculatingC,’'s for />L. Including a
larger number of coefficients in the series sum for the poten- 0 \
tial naturally increases the accuracy in the reproduction of

the actual potential. A sufficient number 6f,'s for />L 0
are included so as to obtain a convergence in the potential

with successiveC /'s.

30}

V(MeV)

Ill. RESULTS AND DISCUSSIONS

In an earlier work[13] we studied the inversion of the
phases of elastie™-*He scattering below thA(3,3) thresh-
old and discussed the salient features of the resulting poten-
tial. In this work we extend the formalism to calculate the
potential for 7=-*He and#*-%°C at several incident pion FIG. 3. The real part of inversion potential far"-1C at the
energies. Phase shifts for the first ten partial waves upto thigcident pion energies of 30, 40, and 50 MeV.
angular momentum state=9 are found from analyses of
differential cross-section data using the conformal mapping 3023
technique of Cutkowsky and Dd@1]. Partial waves for”  P(F)=(4/m"7a%)
>9 contribute insignificantly to the cross section in the en-
ergy region considered in this work. The ambiguities of com-The constant 4” is adjusted to fit the corresponding rms
plex phase shift analys[®2] are taken care of by minimiz- nuclear radius.
ing the chi-square for a fit to the differential cross-section In Fig. 2 the phenomenological Laplacian potentials as
data. The phase shifts for"-*He and="-1°C are given in  described above for*-12C are shown directly against the
Table | and Table Il, respectively. Phase shifts for-*He  calculated inversion potentials for comparison. Such a com-
have been reported earlier in RgL3]. parative study for ther-*He has already been presented in

The resulting complex phases are used to calculate thRef. [13]. As is seen, the inversion formalism yields pion-
potential with the help of the method outlined in the previousnucleus potentials which conform to our knowledge about
section. Figs. (8—1(d) show the real and imaginary parts of this interaction from earlier phenomenological models. How-
the complex potential forr*-*He at incident pion energies ever, the phenomenological potential and the inversion po-
of 51, 60, 68, and 75 MeV. The potential for™-1°C at tential differ in their details. A general feature of the pion-
energies of 50, 40, and 30 MeV are shown in Figa)22(c).  nucleus potentials for botdHe and *2C nuclei is that the
The inversion potentials are compared with their Laplaciarinteraction is attractive at large radii, becoming repulsive for
counterpart$11] which are given by a form shorter distances. The strength of the attractive part of the
real potential, as well as the imaginary potential increase
with increasing incident energy of the pion. This conforms to
the experimental observation that the inelastic absorption is
higher at higher energies. Figure 3 shows the real part of the
Herek is the center of mass momentum adhe center of ~ potential fora*-12C at three energies 50, 40, and 30 MeV.
mass total energy of the pion. The termér) and a(r) Figure 1 shows a direct comparison of the real and imagi-
result from thes-wave part and thg-wave part, respec- nary parts of the inversion potentials for" ands~. Due to
tively, of the pion-nucleon interaction. The detailed expres-the existence of two pions of opposite charges, the pion-
sions for these and the values of the parameters occurring imucleus interaction provides unique possibility of studying
these expressions are given in Rgff3] and hence are not the charge symmetry breaking in nuclear interactions. The
repeated here. For the evaluationgpfand « one needs a observed difference, if any, between the Coulomb corrected
knowledge of the nuclear matter density distribution func-cross sections forr™ and 7~ scattering on nuclei with zero
tions for the target nucleus. We assume the same densiigospin can be interpreted as a manifestation of different
distributions for both the protons and neutrons. Fele we  masses and widths @(3,3) isobar states excited in the re-

1 t 1 1

6 8 10
r (fm)

A-4
1+T(r/a)2 exf —r?/a?]. (16)

1
V(r)=E[Q(r)—kza(f)—%vza(r)]- (14)

have used a simple density distribution function spective processes. Mastersanal. [23] claim to have dis-
covered such a charge symmetry-breaking effect in the elas-
p(r)=(2/7%%a3)exp —r?/a?), (15) tic scattering of7* on d, ®He, and *H. Their observed

estimates of the splittings oA(3,3) states are in suitable
whereas for'C we have taken agreement with predictions of moddl24] which take into
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account the different quark composition df(3,3) reso- of the charge symmetry violation, it would have been appro-
nances. Nevertheless the evidence is not yet conclusivgriate to determine accurately the uncertainties in the poten-
there remains some doubt concerning the conclusion otials, so as to be able to specify within what limits charge
charge symmetry breakif@5]. These doubts arise from the symmetry is obtained. However, at the present state of the
fact that for any firm conclusion about charge symmetryinverse scattering algorithm, there is no specified procedure
breaking one must calculate the hadronic amplitude withg estimate the propagation of errors in the phase shifts for
very high precision. The matter is complicated by the presyjiferent partial waves to the final inversion potentials. Much
ence of Columb correction, for which doubts still exist re- yore work in this direction is needed to get the expected
garding the accuracy of the methods in use. Since the modek,swers from such analyses. It has been shown by

independent pion-nucleus potentials calculated in this Worlkhankhasaye\et al. [25] that for a mass difference of 6
have taken the Coulomb effect into consideration, they POf eV and a differe.nce in widths of 8 MeV foA** and

\{|de us with a suitable tool for the comparison o_f any V'OIa'A‘, the difference between the hadronic phases for scatter-
tion of charge symmetry. From Figs(al—1(d) it is noted . N - 4
that there is no significant difference between the hadronifgg CZf 7" and ™ on Hg at 75 MeV amounts to a mere
part of the potentials for* and =~ . Even though we have | .72°. Such a d|ﬁereqce in hadrgnlc ph_ases may be Qetected
not shown in the graphs the error bars in the potentials due ! Phase shift analysis, if the differential cross sections of
the uncertainties in the experimental cross section, at thglastic scattering are measured with 1-29% precision.
present stage of the experimental accuracy, they are expected [N conclusion we can state that the present study gives us
to be larger than any slight differences between the two pothe confidence that the inverse scattering theory has reached
tentials. However, no firm conclusions can be drawn, sincé& Stage where it can directly be applied to complex physical
the effect of charge symmetry breaking is expected to b&ystems to provide us with model-independent interactions
very small anyway. Considering the smallness of the effectseliably.
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