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Pion nucleus potential from scattering data and a test of charge symmetry

S. Jena and S. Swain
Department of Physics, Utkal University, Bhubaneswar-751004, India

~Received 25 November 1996!

A modified form of the inverse scattering method of Newton and Sabatier is applied to generate local
complex potentials for the scattering ofp6 on zero spin and zero isospin nuclei. The phase shifts and
inelasticity parameters, used as inputs, are extracted from a partial wave analysis of the elastic differential
cross-section data by parametrizing the nuclear amplitude. Analytic mapping techniques are used to get a better
accuracy in the phase shift analysis. The nuclear parts of the inversion potentials forp1 andp2 scattering on
4He are compared as a possible test of charge symmetry breaking. The method has been repeated for several
incident pion energies below the~3,3! resonance threshold.@S0556-2813~97!02805-7#

PACS number~s!: 25.80.Dj, 13.75.Gx, 24.10.Ht, 24.80.1y
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I. INTRODUCTION

A number of methods have been developed over the
several decades to determine the potential between two
teracting particles from a knowledge of their scattering da
Rigorous mathematical methods have been construc
They have the specific advantage of generating the pote
directly from the available experimental information, witho
having to introduce a particular bias in constructing a mo
potential. In the usual quantum mechanical problem invo
ing strong interaction, one generally introduces a model
tical potential containing several free parameters which
optimized to fit the scattering and the bound state data. S
model potentials may not reveal the true information cont
of the data, as sometimes several sets of free parameter
equally well reproduce good agreement with the experim
The information contained in the data may thus be mas
by the model itself, obscuring the revelation of the true n
ture of the interaction. It is for this reason that the inve
scattering formalism has drawn a lot of attention in rec
years. A potential constructed by inversion is the best p
nomenological potential which one can construct, as it e
bodies a minimum of model dependence. As such it sho
serve as a guide for a better physical understanding of
interaction between two particles.

The inverse scattering problem is related to the spec
theory of a Sturm-Liouville eigenvalue problem. In conne
tion with the Schrodinger equation, two alternative proc
dures have been suggested@1#; these correspond to takin
either the energy or the angular momentum as the spe
variable. The first method developed by Gelfand and Levi
with its variant form due to Marchenko@2# yields the poten-
tial at a fixed angular momentum. The later method, wh
we follow in this work, is a fixed energy scattering proble
i.e., finding a potential from a set of partial wave phase sh
at a fixed energy. Though for quite some time the probl
has been formally solved by Newton@3#, Sabatier@1#, and
others@4#, it is only in the last decade that the method h
found successful applications@5,6#. May, Munchow, and
Scheid@5#, in particular, have discussed a modified vers
of the Newton-Sabatier formalism and have applied it to
derivation of nucleus-nucleus potentials from the cor
550556-2813/97/55~6!/3015~6!/$10.00
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sponding phase shifts derived with the use of some stan
optical potential@7#.

Our interest in the present work concerns the applicat
of the fixed energy inversion to the determination of pio
nucleus interactions. The motivation comes from a need
reliable pion-nucleus potentials, since the pion-nuclear ph
ics provides an important application of many-body theory
a fairly simple, strongly interacting system. Since the pion
spinless, many of the complications of spin-dependent
fects present in the nucleon-nucleus interaction play no r
provided we are careful to close nuclei also with zero s
@8,9#. Pion-nucleus interactions also provide new possib
ties for studying charge symmetry-breaking effects due
the existence of two pions of opposite charges. The pi
nucleus scattering data has traditionally been analyzed u
optical potentials, such as the Kisslinger potential@10# or
some variants of it@11#. However, with such models, poten
tials as different as the Kisslinger potential and the Laplac
potential can provide equally good fits to the pionic ato
data, as well as the pion-nucleus scattering data.

In an earlier work@12# we discussed a modified form o
the Newton-Sabatier formalism for the calculation of pote
tial from the phase shifts at a fixed energy and subseque
this was applied to the inversion of phases of elas
p2-4He scattering@13#. The procedure yields a unique solu
tion for the interaction, if it is assumed to be local and
known from a certain radial distance up to infinity. This
indeed the case with the pion-nucleus interaction where
unknown strong interaction potential is of short range and
superimposed over the background Coulombic interaction
infinite range. A somewhat similar method has been app
to the study of the interaction between light heavy ions
May and Scheid@14#. In this paper we extend the earlie
work of Ref. @13# to calculate the potential forp1 andp2

with 4He and12C at several incident pion energies below
MeV for which elastic cross-section data are available in
literature. A very consistent picture which shows several d
tinct and systematic trends in the shape of the potentials
their dependence on energy has been obtained. The p
shifts are calculated from the differential cross-section d
of Ref. @15#. The inversion potentials are compared with t
standard Laplacian optical potentials@11#. The potentials for
p1 andp2 with isoscalar nuclei4He are compared to get a
3015 © 1997 The American Physical Society
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TABLE I. Phase shifts and inelasticity parameters forp1-4He scattering.

Ep

in MeV l50 l51 l52 l53 l54 l55 l56 l57 l58 l59

51
2d ~deg! 215.0 18.0 2.0 0.2025 0.0216 0.0024 0.00027 0.00002 0.00000420.000006
h 0.9456 0.9260 0.9930 0.9994 0.9999 0.9999 0.9999 0.9999 0.9999 0.99

60
2d ~deg! 216.0 22.79 3.199 0.3745 0.0459 0.0058 0.00078 0.00009 0.000015 0.00
h 0.9037 0.9523 0.9895 0.9988 0.9998 0.9999 0.9999 0.9999 0.9999 0.99

68
2d ~deg! 217.2 26.8 4.2 0.5463 0.0745 0.0105 0.00155 0.00022 0.0000320.000006
h 0.9423 0.8788 0.9792 0.9973 0.9996 0.9999 0.9999 0.9999 0.9999 0.99

75 2d ~deg! 215.8 31 5.6 0.8060 0.1199 0.0185 0.0029 0.00047 0.000079 0.00
h 0.9965 0.7777 0.9792 0.9974 0.9996 0.9999 0.9999 0.9999 0.9999 0.99
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estimate of the charge symmetry in pion nucleus interactio
In Sec. II we discuss the general procedure of calcula

potentials for a set of phase shifts at a fixed energy, wh
both the phase shifts and the potential may be complex.
modifications needed to take into account the presence o
Coulomb force are also discussed. In Sec. III the metho
applied to the elastic scattering data ofp6 on 4He and
12C. The salient features of the resulting potentials are p
sented. The potentials forp1 andp2 are compared and th
status of charge symmetry in pion-nucleus interactions is
cussed.

II. THE INVERSION PROCEDURE

The interaction of charged pions with the nucleus conta
the Coulomb interaction termVC(r ) which has an infinite
range and a short range nuclear potentialVN(r ), the only
restriction on the unknown partVN(r ) being that it decrease
faster thanr23/2 for large r @3# and, as we know, this is no
a stringent condition in the case of strong interaction pot
tials. Let us introduce a dimensionless coordinate

r5kr5F2mE

\2 G1/2r , ~1!

wherem is the reduced mass of the pion-nucleus system,
E is the center of mass energy. Assuming a spherically s
metric potentialV(r ) for the pion, the Schrodinger equatio
for the l th partial wave can be written as

r2F d2dr2
112U~r!GF l ~r!5l ~ l 11!F l ~r!, ~2!
s.
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where

U~r!5
V~r !

E
, V~r !5VN~r !1VC~r !, ~3!

and

F l ~r!5rc l ~r !, where c l ~r ! is the wave

function for the l th partial wave. ~4!

LetF l
0 (r) be the wave function when the nuclear part of t

interaction is switched off, so thatF l
0 (r)5F l (r), the regu-

lar solution of the Coulomb problem.
Outside the range of the nuclear interaction, i.e., forr

.r0 the nuclear part of the potential may be neglected a
then the wave function in this region can be expressed a
linear combination of the regular and irregular Coulom
wave functionsF l (r) andGl (r)

F l ~r!5Al @cosd l F l ~r!1sind l Gl ~r!#, for r.r0

5Al Tl ~r!. ~5!

The unknown amplitudesAl are to be determined as dis
cussed below. The nuclear phase shiftsd l are extracted from
the experimental cross-section data after properly subtrac
the Coulomb effects@13#. The phase shifts are, in genera
complex.

Let us define a kernel

K~r,r8!5 (
l 50

`

Cl F l ~r!F l
0 ~r8!, ~6!
99

0005
99
TABLE II. Phase shifts and inelasticity parameters forp1-12C scattering.

Ep

in MeV l50 l51 l52 l53 l54 l55 l56 l57 l58 l59

30
d ~deg! 24.1 11.5 1.9 0.1463 0.0109 0.00083 0.0000620.000002
h 0.95 1.0 1.0 1.0 1.0 1.0 1.0 1.0

40
d 28.4 12.6 3.7 0.368 0.0358 0.00354 0.00036 0.00003 0.00000220.000005
h 0.94 0.96 0.97 0.9965 0.9996 0.9999 0.9999 0.9999 0.9999 0.99

50 d 20.5 23.9 8.2 0.966 0.1132 0.0135 0.00165 0.00019 0.00002 0.00
h 0.79 0.7999 0.9499 0.9907 0.9989 0.9998 0.9999 0.9999 0.9999 0.99



e real
of the

ween

55 3017PION NUCLEUS POTENTIAL FROM SCATTERING DATA . . .
FIG. 1. ~a!–~d!: Nuclear part of thep6-4He optical potential obtained by inversion. The solid line and the dashed line represent th
part of the inversion potential forp2 andp1, respectively. The dash-dotted curve and the short-dashed curve are twice the negative
imaginary part of the inversion potential forp2 andp1, respectively. Only one of the curves is shown when there is an overlap bet
the former two or the latter two.
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It has been shown by Newton@16# and by Coudray and Co
@17# that, if one defines the potential as

U~r!5UC~r!2~2/r!
d

dr
@r21K~r,r!#, ~7!

the kernelK(r,r8) turns out to be the unique solution of th
Gelfand-Levitan linear integral equation@18#

K~r,r8!5g~r,r8!2E
0

r

dr9~r9!22K~r,r9!g~r9,r8!,

~8!

where
g~r,r8!5 (
l 50

`

Cl F l
0 ~r!f l

0 ~r8!. ~9!

The wave functionF l (r) then satisfies the integral equatio

F l ~r!5F l
0 ~r!2E

0

r

dr8~r8!22K~r,r8!F l
0 ~r8!. ~10!

SubstitutingK(r,r8) from Eq. ~6! into Eq. ~10! above, we
get a set of coupled equations

F l ~r!5F l
0 ~r!2 (

l 850

`

Cl 8 ,L l l 8~r!F l 8~r!, ~11!
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FIG. 2. ~a!–~c!: p1-12C optical potential. The solid curve is the real part of the inversion potential. The dashed curve is the real
the Laplacian potential. The dash-dotted curve is twice the negative of the imaginary part of the inversion potential. The short-dot
is twice the negative of the imaginary part of the Laplacian potential.
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where the matrixL l l 8 is given by

L l l 8~r!5E
0

r

F l
0 ~r!F l 8

0
~r!r22dr. ~12!

Equation~11! can be rewritten as

(
l 850

`

@d l l 8Tl 8~r!Al 81L l l 8~r!Tl 8~r!bl 8#5F l ~r!,

~13!

where we have introduced a new set of coefficie
bl 5Cl Al . Solving the set of linear equations~13! at two
radial distancesr5r1,r2 (.r0) provides the unknown co
s

efficientsAl andbl , and hence the coefficientsCl . From
these the kernelK(r,r) and the nuclear part of the potenti
are obtained using Eqs.~6! and ~7!, respectively.

In potential problems the number of significant pha
shifts is roughlyL5kr0 . Normally the phase shifts becom
negligibly small for partial waves of value somewhat high
thanL. In the works of May, Munchow, and Scheid@5# the
summation series in Eq.~13! is truncated at the value o
l 85L for computational reasons, even though theoretica
an infinite number of partial wave phase shifts contain all
required information for reproducing the true interaction.
this work, Eq.~13! at more than two values ofr are consid-
ered, which in effect overdetermines the solution. The so
tions are then optimized by a standard procedure@19#. How-
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55 3019PION NUCLEUS POTENTIAL FROM SCATTERING DATA . . .
ever, in that procedure the total number of coefficientsCl
calculated from the equivalent of Eq.~13! is only equal to
L. As a result, the series forK(r,r) of Eq. ~6! is truncated at
the value ofl 85L. Unfortunately, even though the pha
shifts for l .L may be negligible, the coefficientsCl
(l .L) may not be small. This was earlier demonstrated
Sabatier@20#. Thus the truncation of the series forK(r,r) at
l 5L will introduce a considerable amount of error in th
value for the potential. In an earlier work@12# we presented
a prescription for calculatingCl ’s for l .L. Including a
larger number of coefficients in the series sum for the pot
tial naturally increases the accuracy in the reproduction
the actual potential. A sufficient number ofCl ’s for l .L
are included so as to obtain a convergence in the pote
with successiveCl ’s.

III. RESULTS AND DISCUSSIONS

In an earlier work@13# we studied the inversion of th
phases of elasticp2-4He scattering below theD~3,3! thresh-
old and discussed the salient features of the resulting po
tial. In this work we extend the formalism to calculate t
potential forp6-4He andp1-12C at several incident pion
energies. Phase shifts for the first ten partial waves upto
angular momentum stateL59 are found from analyses o
differential cross-section data using the conformal mapp
technique of Cutkowsky and Deo@21#. Partial waves forl
.9 contribute insignificantly to the cross section in the e
ergy region considered in this work. The ambiguities of co
plex phase shift analysis@22# are taken care of by minimiz
ing the chi-square for a fit to the differential cross-sect
data. The phase shifts forp1-4He andp1-12C are given in
Table I and Table II, respectively. Phase shifts forp2-4He
have been reported earlier in Ref.@13#.

The resulting complex phases are used to calculate
potential with the help of the method outlined in the previo
section. Figs. 1~a!–1~d! show the real and imaginary parts
the complex potential forp6-4He at incident pion energie
of 51, 60, 68, and 75 MeV. The potential forp1-12C at
energies of 50, 40, and 30 MeV are shown in Figs. 2~a!–2~c!.
The inversion potentials are compared with their Laplac
counterparts@11# which are given by a form

V~r !5
1

2E
@q~r !2k2a~r !2 1

2,2a~r !#. ~14!

Herek is the center of mass momentum andE the center of
mass total energy of the pion. The termsq(r ) and a(r )
result from thes-wave part and thep-wave part, respec
tively, of the pion-nucleon interaction. The detailed expr
sions for these and the values of the parameters occurrin
these expressions are given in Ref.@13# and hence are no
repeated here. For the evaluation ofq and a one needs a
knowledge of the nuclear matter density distribution fun
tions for the target nucleus. We assume the same den
distributions for both the protons and neutrons. For4He we
have used a simple density distribution function

r~r !5~2/p3/2a3!exp~2r 2/a2!, ~15!

whereas for12C we have taken
y
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r~r !5~4/p3/2a3!F11
A24

6
~r /a!2Gexp@2r 2/a2#. ~16!

The constant ‘‘a’’ is adjusted to fit the corresponding rm
nuclear radius.

In Fig. 2 the phenomenological Laplacian potentials
described above forp1-12C are shown directly against th
calculated inversion potentials for comparison. Such a co
parative study for thep2-4He has already been presented
Ref. @13#. As is seen, the inversion formalism yields pio
nucleus potentials which conform to our knowledge ab
this interaction from earlier phenomenological models. Ho
ever, the phenomenological potential and the inversion
tential differ in their details. A general feature of the pio
nucleus potentials for both4He and 12C nuclei is that the
interaction is attractive at large radii, becoming repulsive
shorter distances. The strength of the attractive part of
real potential, as well as the imaginary potential increa
with increasing incident energy of the pion. This conforms
the experimental observation that the inelastic absorptio
higher at higher energies. Figure 3 shows the real part of
potential forp1-12C at three energies 50, 40, and 30 MeV

Figure 1 shows a direct comparison of the real and ima
nary parts of the inversion potentials forp1 andp2. Due to
the existence of two pions of opposite charges, the pi
nucleus interaction provides unique possibility of studyi
the charge symmetry breaking in nuclear interactions. T
observed difference, if any, between the Coulomb correc
cross sections forp1 andp2 scattering on nuclei with zero
isospin can be interpreted as a manifestation of differ
masses and widths ofD~3,3! isobar states excited in the re
spective processes. Mastersonet al. @23# claim to have dis-
covered such a charge symmetry-breaking effect in the e
tic scattering ofp6 on d, 3He, and 3H. Their observed
estimates of the splittings ofD~3,3! states are in suitable
agreement with predictions of models@24# which take into

FIG. 3. The real part of inversion potential forp1-12C at the
incident pion energies of 30, 40, and 50 MeV.



iv
o
e
tr
it
es
e-
d
or
ro
la

n

e
th
c
po
nc
b
c

ro-
ten-
ge
the
ure
for
ch
ted
by

tter-
e
cted
of

s us
ched
ical
ons

3020 55S. JENA AND S. SWAIN
account the different quark composition ofD~3,3! reso-
nances. Nevertheless the evidence is not yet conclus
there remains some doubt concerning the conclusion
charge symmetry breaking@25#. These doubts arise from th
fact that for any firm conclusion about charge symme
breaking one must calculate the hadronic amplitude w
very high precision. The matter is complicated by the pr
ence of Columb correction, for which doubts still exist r
garding the accuracy of the methods in use. Since the mo
independent pion-nucleus potentials calculated in this w
have taken the Coulomb effect into consideration, they p
vide us with a suitable tool for the comparison of any vio
tion of charge symmetry. From Figs. 1~a!–1~d! it is noted
that there is no significant difference between the hadro
part of the potentials forp1 andp2. Even though we have
not shown in the graphs the error bars in the potentials du
the uncertainties in the experimental cross section, at
present stage of the experimental accuracy, they are expe
to be larger than any slight differences between the two
tentials. However, no firm conclusions can be drawn, si
the effect of charge symmetry breaking is expected to
very small anyway. Considering the smallness of the effe
s
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of the charge symmetry violation, it would have been app
priate to determine accurately the uncertainties in the po
tials, so as to be able to specify within what limits char
symmetry is obtained. However, at the present state of
inverse scattering algorithm, there is no specified proced
to estimate the propagation of errors in the phase shifts
different partial waves to the final inversion potentials. Mu
more work in this direction is needed to get the expec
answers from such analyses. It has been shown
Khankhasayevet al. @25# that for a mass difference of 6
MeV and a difference in widths of 8 MeV forD11 and
D2, the difference between the hadronic phases for sca
ing of p1 andp2 on 4He at 75 MeV amounts to a mer
0.72°. Such a difference in hadronic phases may be dete
in phase shift analysis, if the differential cross sections
elastic scattering are measured with 1–2% precision.

In conclusion we can state that the present study give
the confidence that the inverse scattering theory has rea
a stage where it can directly be applied to complex phys
systems to provide us with model-independent interacti
reliably.
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