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Finite-size corrections in the spatial contribution to the density of states
in nuclear multifragmentation
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The density of states in statistical approaches to nuclear multifragmentation includes a contribution from
permutations of fragment positions in the physical spdice volumeVg) occupied by the fragments. Fbr
pointlike noninteracting particle@erfect gasthis factor is simply proportional W’;‘. We propose a correc-
tion due to the finite size of fragments which is based on an evaluation of the two-body overlap probability.
The correction exhibits an approximate exponential dependence on the multiplicity
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I. INTRODUCTION Higher-order corrections are not rigorously treated but are
approximated by an “occupied volume” correction. Never-
Prompt nuclear multifragmentation is a perhaps idealizedheless we have succeeded in producing a calculational
image of a decay mechanism for highly excited atomic nuscheme which predicts finite size corrections in agreement
clei in which a set of fragments is instantaneously producedavith the Monte Carlo estimates to within typically 20% for
as a partition of the parent nucleus mass and chftgd.  values in the range 1-10.
Many authors have proposed statistical models of this pro- To within a factor of 5-10 the survival probability turns
cess[3-6]. One of the most important problems for statisti- out to depend exponentially on the partition multiplicity. We
cal models is to calculate the density of stafeportional show, in Sec. Ill, that this observation can be straightfor-
to the probability of observatigrassociated with any given wardly understood in terms of the two-body overlap prob-
partition. A particular difficulty in this calculation concerns abilities. In this section we sacrifice the precision of the pre-
corrections to the spatial contribution to the density of phaseeeding analysis in order to emphasize the physical origin of
space states caused by the finite size of the fragments. Ahe multiplicity dependence. In Sec. Il B we also depart
investigation of one such correction has been carried out byriefly from the situation analyzed in depth in the main body
Randrup, Robinson, and Snepdéh. of the paper to consider configurations in which the frag-
For a small number of fragments one approach to thisnents are entirely contained in the freeze-out voljitdein
problem is via Monte Carlo simulations. The methodology ofSec. IV we present a summary of our work together with a
such simulations provides a good introduction to the problenbrief discussion of related topics.
of finite size corrections. The usual procedure is to generate
a set of trial events for any given partition. Suppose we
stipulate that fragments should be constrained to lie withIl. SPATIAL OVERLAPS OF FRAGMENT PAIRS INSIDE
their mass centers inside some “freeze-out” voluie. In THE FREEZE-OUT VOLUME
a particular trial, each fragment is placed at a uniformly ran-
dom position inside the freeze-out volume, animated with
some initial (thermal and/or collectiyevelocity and sub- We suppose that the position and momentum contribu-
jected to the Coulomb repulsion due to the other fragmentdijons to the density of states can be estimated separ@esty
One rejects trials in which any two fragments overlap eithefor example, Ref[4]). This is trivially true if the system
at the initial stage or at any time in the subsequent evolutionenergy is independent of the spatial configuration of the frag-
The phase-space densignd thus the probability for observ- ments. It is also true in the canonical ensemble for a gas of
ing the partition under consideratipis then modified by the interacting fragments whose energy can be expressed as a
survival probability which is estimated as the proportion ofsum of kinetic energies which are independent of the spatial
nonrejected trials. The modification may be rather importantonfiguration and potential energies which depend on this
(several orders of magnitugand the Monte Carlo method configuration[7].
may even become impractical due to lack of statistics. It is We shall be concerned with the contribution to the density
therefore desirable to make an analytical estimation of thef phase-space states due to permutations of fragment posi-
survival probability. tions. We suppose the fragments to be spherical and to be
This work is concerned with the contribution to the sur- confined such that their mass centers are randomly disposed
vival probability due to finite size effects in the initial con- within a spherical “freeze-out” volume with radiuRg.
figuration for fragments constrained to lie with their massThis corresponds to the ideal-gas picture, i.e., to the case of
centers inside the freeze-out volur(®ec. I). Our calcula- noninteracting fragmentsin the limit of pointlike frag-
tions of this contribution are compared with Monte Carlo ments. Extension to other geometries may be carried out
simulations. The approach is semianalytic insofar as it isvith more or less difficulty but the physical picture which we
based on estimates of two-body overlap probabilitiesanalyze herein is thought to be a good starting point for the

A. Introductory remarks
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analysis of the multifragmentation mechanism. This choice
coincides with that of Randrup and KoonfB]. The main
alternative(see Sec. Il Bis to define the freeze-out volume
as a spherical region which entirely englobes the fragments
[1]. For pointlike fragments the two choices are obviously
equivalent. For nonoverlapping finite sized fragments, ac-
cording to the authors of Rg5] the two choices are roughly
equivalent (to within an appropriate readjustment of the
freeze-out radius

We now consider the problem of estimating, to within a
global constant, the number of ways of distributMgpheri-
cal fragments in a spherical freeze-out voluWe (with ra-
dius Rg) such thatnho two fragments overlafExplicitly we
will evaluate y(Rg) such that the spatial contribution to the
phase-space density is

Freeze-out volume

F(RF):X(RF)VFN: (1)
wherey is a quantity f¢<1) which formally expresses the le
suppression of spatial configurations which contain interpen- _ _ o
etrating(overlapping fragmentgnote that this definition dif- FIG. 1. A two-dimensional schematic picture of the two-body
fers from that used in Ref4]). approximation. To avoid overlap, the fragment labgléslexcluded

As stated in the introduction, one can solve this problenfrom the volumeV;;(r;) enclosed by the dotted line. In the example
approximately(often quite accuratejyby using Monte Carlo shown, a part of this volume lies outside the freeze-out vol(see
methods. This Monte Carlo technique consists in making 4exd.
large numberN,,c of attempts to distribute the fragments . . . o
at random positions in the freeze-out volume. The number ofnents in the. set. Let us first calculate this probability t_)y
retained eventsy, is then that number of trials for which '91°ring the influence of fragments other than the specific

the distance between all pairs of fragments is greater or equgﬁ'r considered. -
to the sum of their radii, i.e., for allj Suppose we position the center of the freeze-out volume

at the origin of our coordinate system and place the fragment

labeledi at the radial coordinate . In order to avoid overlap

\/(xi—xj)2+(yi—yj)2+(zi—zj)2>(Ri+ Rj). (2 with any other fragment we need to exclude the center of
mass of fragment from the volume

The spatial contribution to the phase-space density is then A
simply estimated as Vi :?(Ri"'Rj)a- (4)
(Vo) =V N& 3 The physical picture which corresponds to this situation is
we(Ve) =VeN 1=, 3 ne prysic . s sit
MC depicted in Fig. 1. If; is such that the volum¥;; is entirely
enclosedwithin Vg then we see immediately that the prob-
so that the survival probability is estimated adNg/Nyc - ability that fragment will overlap with fragment is
Clearly if Ng is small, the relative error iry may be very
large. A difficulty with this technique thus arises when the Vi (Ri+Rj)3
freeze-out volume/r is sufficiently small so that the calcu- Djj(ri)= V_F:R—Fs ®)

lation time spent estimating becomes prohibitively long.

In Ref.[7], the authors discussed a virial approximation in os we increase the value of, it will eventually be the case
which the survival probability is simply expressed as the that the volumev;; will be only partially contained in the
product of two-body terms. We take basically the same startyeeze-out volume. The overlap probability due to the frag-
ing point. However our estimation is based on an exacientj is then simply given by the part of;; which lies

evaluation of the spatially averaged bare two-body term in anside the freeze-out voluntivided by the freeze-out vol-
model in which all fragment mass centers are confined to lig,me itself. Thus, provided that; <Vg, then for all values
within the freeze-out volume. of r; '

B. Two-body approximation Dj(ri)=1. (6)

We consider a particular mass partition and we assign
label 1-N to each fragment. The probability that a configu-
ration is retained is the probability that all distinct fragment V(1)
pairs do not overlap. Thus the problem is solved if we can Dy(r)= uo )
calculate the overlap probability for any given pair of frag- \

Fhis observation leads us to generalize E5).by writing




2980 A. J. COLE, D. HEUER, AND M. CHARVET 55

wherev(o)(r) is the part of the volume/” which overlaps This last expression is interesting because, in the limit in

the freeze out volume. This definition is appropriate becauswhich, for all pairsi,j, (®;;)<1, we obtain using Eqg7)

even in cases wheré;; >V, the overlap requirement en- and(14)

tails V(O)—V,: and thus guarantees an upper bound of unity

for <1>,J(r ) and also for the average value of this ratio taken X(RF)IG

over the freeze-out volume. Both of these quantities can

therefore be interpreted as probabilities in the commonly ac-

cepted sense. in which the summation sign is to be understood as a short-
Let us use the symbdR;; to denote the “interaction ra- hand expression of the double summation in €id). Equa-

. in Ref.[7], states that for large enough freeze-out volumes a

ri+Rij<Rg. (8) first approximation to the survival probability can be found
) _ o by simply dividing the sum of the average overlap volumes
For larger radiir; (Fig. 1) the common volume is given by  of the interaction spherdwith V) by the freeze-out volume
itself.

(0 (0
Vil 2V >

v v (15)

2 wrd
ViPr) = 5 (R *+ RS + =5 = —

7~ 7 R tReD)

C. Corrections for the presence of other fragments
) . In order to give a precise account of the corrections
4_ri[(Rii —Re7] ©  for the presence of other fragments we need a slightly more
explicit notation. We will therefore denote the radially
The average number of overlaps of fragmemt the radial averaged overlap volume of the interaction sphere with
positionr; is simply radius R;; =R;+R; with a second sphere of radidg as
(V(°) Rij ,RK)>R where the average is taken over the radial
<°)( ) domaln(for the center of the interaction sphgfeom r;=0
(mi(r) =3 —y— Vr 10 o ri=R. Thus, for example, Eq12) would be represented
aS<V(0)(RIj Re))R,-
and the probability that fragmentdoes not overlap with any | the preceding section this volume was calculated by
other fragment is ignoring the influence of other fragments. We have at-
tempted to take account of this influence by recalculatin
piri) = Hl*'[l_q)ii(ri)]' (12) Eqsp(lz) and (13) as the average overlap &?f/ with an ’
effectivevolume which is simply the original freeze out vol-
€ume reduced by the sum of the average volume overlaps of
all the other fragments with/p. Explicitly, we replace
(VU(Rij ,Re))r, Of Eq. (12) by (VP(R;j ,Re1)g_ Where

We now calculate the spatially averaged value of the
overlap volume for the pair of fragmenitsandj which we
denote ag V(). Here, it is useful to be explicit about the
limiting value of r; such that the sphere with radi&; is
entirely enclosed within the freeze-out volume atfer-
nately, that the freeze-out volume is entirely enclosed in the Re/(i,j)=
sphere with radiu®;; . Thus we defin& y =|R-—R;;| and
V| as min{;; ,Vg). Then the required average value is ex-

(16)

Ve—(AV;) ¥
4 ’

The physical interpretation is that fragments other than

pressed as the pairi,j under study are considered to form an outer
v, fRump 2y, + [R V(o)r 24r. spherical shell which is removed when constructing the vol-
<V(o) Re))= 7o Ry ! (12) ume overlap of the interaction sphere with the freeze-out

sphere. The volumenclosedy this shell is considered to be
empty so that the exact two-body term is valid in this region.
We should state that this quantity is unchanged by inter!n Eq.(16) the mean valugAV;;) of the excluded volume is
changing the indices andj. We can now obtain the global therefore the average overlap of all other fragméntgi or
survival probabilityy which is the probability that each and j) with a volume equal to the freeze-out volume reduced by
every fragment is not overlapped by one or more fragmentghe average volume occupied by free fragmentand j
The construction of this quantity is not unique. We have[(V(O)(RI ,RF))RF+(V(°)(RJ ,RF)>RF] ie.,

adopted a method which is consistent with our two-body

approximation, i.e., we take the product of all terms each of

which corresponds to thapatially averagednonoverlap <AVU’>:2 k#i 1<V(0)(Rk’Rf)>RF 17
probability of a distinct pair of fragments. Thus

X(Re) =TT (1—(Dy))). (13

Equation(13) can also be expressed by writing the logarithm
of x(Rg) as a sum over distinct pairs:

Rp. 2
fOFri dri

where(V(%}(R¢,Ry))r_ is the spatially averaged overlap vol-
ume of fragmenk, with a sphere of radius

Ve—(VI%(R,Re))r.— (VI”(R; ,Re))r, |

Ri(i,1)= 413
IN[x(Re)1=2 1S In(1— (D)), (14) (18)
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We can now reconstruct the corresponding overlap probabil- 10

ity (®j;) [see Eq(13)] as i
10

(VIP(Rij ,Re)re 107

Ve—(AVj) 19 10°

pi ()

<(Dij>:

-
S,
IS
L]
—
()
~

We wish to draw attention to the fact that, according to
our physical picture, the spatial average(19) is still con-
structed over the radial domain from 0 B&-. We further
emphasize that the application of Eq$6)—(19) constitutes
anad hocone-body correction. Other possible schemes may
be considered and indeed we have studied a few alternatives.
However, we have found this simpinsatzto be rather suc-
cessful.
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D. Comparison with Monte Carlo calculations

1t gt

We begin by considering the survival probability for a
particular fragment placed at a specified radial position, i.e., ]
the quantitiesp;(r;) of Eq. (11) calculated using the cor- 10 oo Jb0 | 400 660
rected theory discussed above. Figure 2 shows the calculated ~ T onem '

values for mass 8 fragments compared with Monte Carlo 07

calculations (1D trials at eactr; valug. We have “embed-
ded” this fragment in three rather different partitions and
have chosen three values Rf which produce rather differ-
ent spatial variations. In all cases the survival probability
diminishes with decreasing;. Furthermore, in all three
cases the theory is successful near the surface of the freeze-
out volume and underpredicts the survival probability near
the center(we should mention that the bare two-body ap-
proximation presented in Sec. Il B is much more successful 10 , : , -
in reproducing the one-body profiles but overestimates the 0.00 4.00 8.00
global survival probabilitiels rj (fm)

The discrepancy cited above does not, however, strongly
influence the calculated values gf The reason for this is FIG. 2. Radial profiles of one-body survival probabilities for a
not clear but must certainly originate in two-bothnd pos-  single fragment in three typical partitiofig) one fragment of mass
sibly higher-order spatial correlations. As can be seen in 8 in a partition containing three mass 8 fragmems £ 4.5 fm). (b)
Fig. 3, where we show the calculationspfas a function of a fragment of mass 8 in the partiton formed by masses
Re, the agreement between the corrected two-body theor§.7.6,5.4,3,2,1R-=6 fm) (c) a fragment of mass 8 in the partition

and the corresponding Monte Carlo estimates is maintaine@rmed by 6 mass 8 fragment&¢=8 fm). All fragment radii are
over at least four orders of magnitude. given byR,=1.2A}. The Monte Carlo calculations are shown as
In Fig. 4, we show a global evaluation of our calculation filled circles and the results of calculations made using the corrected

by considering partitions of mass 12 in a freeze-out volumdwo-body theqry(Sec. I Q as continuous lines. AII. calculations
with radiusRe=4 fm (pg/po=0.32) and of mass 40 in a were made with fragment mass centers enclosed in the freeze-out
freeze-out sphere of radii& =8 fm (pr/po=0.135). Typi-  VolUme-

cally the prediction is accurate to within 20% fgrvalues

down to the limit of accuracy in our Monte Carlo calcula-

tions (10 %). However it will be noted that there is a slight multiplicities. This is illustrated in Fig. 5 in which, for the
tendency for the theory to overestimate the correction fotwo cases depicted in Fig. 4 we have plotted the theoretical
small values of this latter quantity. This figure also empha-correction(on a logarithmic scajeagainst the multiplicity
sizes the importance of a correct evaluationy¢Rg) since  (N). The variation is roughly exponential but falls off rather
for a given nucleus and a given freeze-out volume the cormore slowly for small multiplicities. The exponential falloff

pi (i)

(c)

rection may extend over several orders of magnitude. can be qualitatively understood using the bare two-body
term. We make use of the fact that for partitions within a
IIl. MULTIPLICITY DEPENDENCE given multiplicity class the correction exhibits relatively

little variation so that we may reasonably represent the situ-
ation by partitioning the parent maésinto N equal masses.

It is obvious from Fig. 4a) that the corrections fall into Let us denote the radius of each fragmenRgsind use Eg.
groups which are quickly found to correspond to different(14) to write

A. Mass centers confined in freeze-out volume
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~ 107 = FIG. 4. Global evaluation of the proposed finite-size correction
o 3 for configurations with mass centers enclosed in the freeze-out vol-
=2 10-35 ume. The figure shows the mean of the ratio of the Monte Carlo
= result (exp) to the theoretical predictiofth) for: (a) partitions of
10_4_ mass 12 R.=4 fm) and(b) mass 40 R=8 fm). For mass 12 all
77 partitions were included. For mass 40 the figure displays results
5 for 1% of the total numbe(37 338 of partitions selected randomly.
10771 ' I ' Monte Carlo calculations were run until 100 trials with no overlaps
4.00 6.00 8.00 were obtained. The statistical accuracy is thus 10%. A limit of
R (fm) 108 trials was imposed on each mass 12 run so thaalues down

FIG. 3. Variation of calculated survival probabilitieg(Rg)
(continuous lineswith freeze-out radiu®k for the three partitions
considered in Fig. 2. The Monte Carlo calculations are shown, a
before, as filled circles. For the largest valueRy we used 18
trials. This number was linearly increased tc® ¥6r the smallest
value. The lower dashed lines show results obtained with Bapf

Ref. [7].

IN[x(Re) 1= S In(1—(Dy;))

N(N—1)

= ———In[1—(Dy)].

2

Neglecting edge effects we can approximetg;) using Eq.

(5), i.e.,

<‘Dij>%

RF3 Npo'

to 10" * could be estimated. This number was reduced fofdOthe
mass 40 study.

Wherepr is the density at freeze-out apqg is the density of
the fragmentgor of the parent nuclelslf N is sufficiently
large so thaf®;;)<1 we can expand the logarithm in Eq.
(20) to first order to obtain

IN[x(Rg)]~—a(N-1), (22

which exhibits the required exponential behavior with
a=4pc/pg. It turns out that edge effects can be simply in-
cluded because the average volume overlap of a sphere with
radiusRg [in our caseRs=2Ry=2r,(A/N)*? and volume

Vg, with a sphere of radiu®: (Rs<Rg) is quite closely
approximated by

v —L0-05%:. (23)
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10 5 FIG. 6. Plots ofy versus the multiplicity obtained from Monte
8 Carlo simulations in which the fragments were entirely enclosed in
10 Y the freeze-out volume. All plots are for mass 40. The various curves
7 (b) Mass 40, Rg =8.0fm

107 are labeled by the rati¥g /V,=po/pr (see Sec. Il B.
-8
101 T T i 1 . .
0 20 40 point we have carried out a number of Monte Carlo calcula-
Multiplicity (N) tions made by enclosing fragments entirely within the freeze-

out volume. In Fig. 6 we show plots of Ig( versus the
multiplicity N for a parent mass of 40 and various values of
the freeze-out volume. One observes a rather uniform expo-
nential falloff except for very small freeze-out volumes. We
have also extracted the slope parameters for various masses
as a function of the ratio of the freeze-out volume to the
We may therefore simply correct for this effect tgdefining ~ Volume of the parent\(e/V,), which are compared with the

the slope parameter of Eq. (22) as simple two-body prediction of Eq25) in Fig. 7. The figure
demonstrates firstly that, as expected, the slope parameters

depend essentially ovi: /V, and also that the two-body pre-
: (24 diction is rather accurate for values BE /R,>2.

FIG. 5. Theoretical calculation§illed circles of the survival
probabilities () for the systems considered in the previous figure
displayed as a function of the multiplicity. The continuous lines are
estimates using the simplified theory described in Sec. Il A.

4pe
a=—

2R,
1.0-0.53—
Po Re

Clearly this redefined value depends weakly on the multi- IV. SUMMARY AND DISCUSSION

plicity (via Rp). In fact we have included the calculation of The obiective of this work was to construct an improved
Eq. (24) in Fig. 5. Despite the approximations the observedf. ite si ) tion to th tial tation fact P hich
slope is reasonably accounted for especially for the smallgf'€ Siz€ correction 1o the spatial permutafion factor whic
freeze-out density. appears in the perfect gas density pf states an.d which is used
in statistical models of nuclear multifragmentation. The work
was mainly focused on the situation in which the fragment
mass centers are constrained to lie within the freeze-out vol-
We have also carried out simulations in which fragmentsume. Our proposed correction is semianalytic as it involves
were completely containedn the freeze-out volume. For more or less intuitive choices in the detailed construction of
equal mass fragments one quickly sees that this strategy e survival probabilities and in the estimation of the ex-
exactly equivalent to that of the preceding subsection procluded volume. Nevertheless, it is based on the rigorous
vided we modify the freeze-out radius by the common radiusvaluation of the two-body overlap probability and has been
of the fragments. Thus the expected slope of the exponentighown to successfully reproduce results of Monte Carlo cal-
falloff for large multiplicities would, in this case be culations for survival probabilities down to at least 0
The calculations reveal that the survival probability falls
10-0 52Ro} 25 of_f _approximately as an exponential ir_n the par_tition _multi-
) ) ﬁ ! plicity. We were able to understand this behavior using the
two-body approximation. An obvious consequence is that
where Ry =Rg— Ry and pp,=47Rg,3/3A is the corre- one should be very careful to interpret correctly experimental
sponding density. One may note that E5) exhibits a measurements of the freeze-out volume especially for small
modified multiplicity dependence because bd®, and values of this quantity.
prr depend explicitly on the multiplicity. To investigate this At present there is no universally accepted manner for

B. Fragments completely contained within freeze-out volume

a'=

Po
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12- nique of randomly distributing the centers of mass of the
] spherical fragments inside the freeze-out volume.
We have not attempted to determine additional suppres-
] gt voes 2 = sion factors due to overlaps encountered in the dynamic evo-
So
S 097 o~ lution of the initial spatial configuration. This is, in principle,
! ] * a complicated problem. In the limit where the motion of
o fragments is dominated by a radial collective expansion one
0.6 - would expect that initially nonoverlapping fragments will
] o tend to increase their relative distances as for pure Coulomb
A=10 expansion. Dynamically induced spatial overlaps would then
A=20 not occur. In the opposing limit where random thermal mo-
A=35 tion dominates one would certainly expect interfragment col-
A=50 lisions to play a non-negligible role. It is perhaps appropriate
to mention here that a detailed discussion of reliable methods
3 — of assigning fixed values of collective dynamic variables to
10° 10" 102 10° multifragmentation configurationgncluding modifications
to the density of phase-space statess been given by Ran-
Ve/ Wb drup[8].
We would like to emphasize that our calculation assumes
FIG. 7. Values ofe™ @ (obtained from Monte Carlo simulations that all partitions are contained in the saomwnstantfreeze-
in which the fragments were entirely enclosed in the freeze-ouput volume. This is an assumption which seems justified by
volume compared with the two-body theo[fq. (25]. The parent  recent experimental work9]. It would also be possible to
massedA) are indicated in the figure. The theoretical values wereconsider models in which the freeze-out volume depends ex-
obtained as average values over multiplicite. The figure dem-  plicitly on the partition. In this case a further modification of
onstrates the accuracy of the simple two-body theory forthe phase-space density would be required. Finally we
Ve/Vp>8. should perhaps mention that an adaptation of the present

defining the freeze-out volume. This is one of the typical"‘{o.rk should be applicaple to the problem Of. a _real_gas, Spe-
cifically to the calculation of the energy distribution of a

difficulties of small systems. As mentioned in the introduc- i ) . .

tion it would be possible to insist that all fragments are en-confined set of interacting particles.
tirely contained within this spherical regighriefly explored

in Sec. Il B). This definition however would involve a
modification of the basid/';‘ factor and thus a significant The authors would like to express their thanks to Profes-
departure from the perfect gas formula. This is the mairsor Pierre Dsesquelles for a critical reading of the manu-
reason why we have concentrated our analysis on the teckeript.

e %/e

0.31
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