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Finite-size corrections in the spatial contribution to the density of states
in nuclear multifragmentation

A. J. Cole, D. Heuer, and M. Charvet
Institut des Sciences Nucle´aires (IN2P3) and Universite´ Joseph Fourier, 53 Avenue des Martyrs, 38026 Grenoble Cedex, France

~Received 28 October 1996!

The density of states in statistical approaches to nuclear multifragmentation includes a contribution from
permutations of fragment positions in the physical space~the volumeVF) occupied by the fragments. ForN
pointlike noninteracting particles~perfect gas! this factor is simply proportional toVF

N . We propose a correc-
tion due to the finite size of fragments which is based on an evaluation of the two-body overlap probability.
The correction exhibits an approximate exponential dependence on the multiplicityN.
@S0556-2813~97!02906-3#

PACS number~s!: 25.70.Pq, 24.10.2i, 25.70.Mn
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I. INTRODUCTION

Prompt nuclear multifragmentation is a perhaps ideali
image of a decay mechanism for highly excited atomic
clei in which a set of fragments is instantaneously produ
as a partition of the parent nucleus mass and charge@1,2#.
Many authors have proposed statistical models of this p
cess@3–6#. One of the most important problems for statis
cal models is to calculate the density of states~proportional
to the probability of observation! associated with any given
partition. A particular difficulty in this calculation concern
corrections to the spatial contribution to the density of pha
space states caused by the finite size of the fragments
investigation of one such correction has been carried ou
Randrup, Robinson, and Sneppen@7#.

For a small number of fragments one approach to
problem is via Monte Carlo simulations. The methodology
such simulations provides a good introduction to the prob
of finite size corrections. The usual procedure is to gene
a set of trial events for any given partition. Suppose
stipulate that fragments should be constrained to lie w
their mass centers inside some ‘‘freeze-out’’ volumeVF . In
a particular trial, each fragment is placed at a uniformly ra
dom position inside the freeze-out volume, animated w
some initial ~thermal and/or collective! velocity and sub-
jected to the Coulomb repulsion due to the other fragme
One rejects trials in which any two fragments overlap eit
at the initial stage or at any time in the subsequent evolut
The phase-space density~and thus the probability for observ
ing the partition under consideration! is then modified by the
survival probability which is estimated as the proportion
nonrejected trials. The modification may be rather import
~several orders of magnitude! and the Monte Carlo metho
may even become impractical due to lack of statistics. I
therefore desirable to make an analytical estimation of
survival probability.

This work is concerned with the contribution to the su
vival probability due to finite size effects in the initial con
figuration for fragments constrained to lie with their ma
centers inside the freeze-out volume~Sec. II!. Our calcula-
tions of this contribution are compared with Monte Ca
simulations. The approach is semianalytic insofar as i
based on estimates of two-body overlap probabiliti
550556-2813/97/55~6!/2978~7!/$10.00
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Higher-order corrections are not rigorously treated but
approximated by an ‘‘occupied volume’’ correction. Neve
theless we have succeeded in producing a calculatio
scheme which predicts finite size corrections in agreem
with the Monte Carlo estimates to within typically 20% fo
values in the range 1–1024.

To within a factor of 5–10 the survival probability turn
out to depend exponentially on the partition multiplicity. W
show, in Sec. III, that this observation can be straightf
wardly understood in terms of the two-body overlap pro
abilities. In this section we sacrifice the precision of the p
ceding analysis in order to emphasize the physical origin
the multiplicity dependence. In Sec. III B we also dep
briefly from the situation analyzed in depth in the main bo
of the paper to consider configurations in which the fra
ments are entirely contained in the freeze-out volume@1#. In
Sec. IV we present a summary of our work together with
brief discussion of related topics.

II. SPATIAL OVERLAPS OF FRAGMENT PAIRS INSIDE
THE FREEZE-OUT VOLUME

A. Introductory remarks

We suppose that the position and momentum contri
tions to the density of states can be estimated separately~see,
for example, Ref.@4#!. This is trivially true if the system
energy is independent of the spatial configuration of the fr
ments. It is also true in the canonical ensemble for a ga
interacting fragments whose energy can be expressed
sum of kinetic energies which are independent of the spa
configuration and potential energies which depend on
configuration@7#.

We shall be concerned with the contribution to the dens
of phase-space states due to permutations of fragment p
tions. We suppose the fragments to be spherical and to
confined such that their mass centers are randomly disp
within a spherical ‘‘freeze-out’’ volume with radiusRF .
This corresponds to the ideal-gas picture, i.e., to the cas
noninteracting fragments~in the limit of pointlike frag-
ments!. Extension to other geometries may be carried
with more or less difficulty but the physical picture which w
analyze herein is thought to be a good starting point for
2978 © 1997 The American Physical Society
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55 2979FINITE-SIZE CORRECTIONS IN THE SPATIAL . . .
analysis of the multifragmentation mechanism. This cho
coincides with that of Randrup and Koonin@5#. The main
alternative~see Sec. III B! is to define the freeze-out volum
as a spherical region which entirely englobes the fragme
@1#. For pointlike fragments the two choices are obviou
equivalent. For nonoverlapping finite sized fragments,
cording to the authors of Ref.@5# the two choices are roughl
equivalent ~to within an appropriate readjustment of th
freeze-out radius!.

We now consider the problem of estimating, to within
global constant, the number of ways of distributingN spheri-
cal fragments in a spherical freeze-out volumeVF ~with ra-
diusRF) such thatno two fragments overlap. Explicitly we
will evaluatex(RF) such that the spatial contribution to th
phase-space density is

G~RF!5x~RF!VF
N, ~1!

wherex is a quantity (x<1) which formally expresses th
suppression of spatial configurations which contain interp
etrating~overlapping! fragments~note that this definition dif-
fers from that used in Ref.@4#!.

As stated in the introduction, one can solve this probl
approximately~often quite accurately! by using Monte Carlo
methods. This Monte Carlo technique consists in makin
large number,NMC of attempts to distribute theN fragments
at random positions in the freeze-out volume. The numbe
retained events,NR , is then that number of trials for which
the distance between all pairs of fragments is greater or e
to the sum of their radii, i.e., for alli , j ,

A~xi2xj !
21~yi2yj !

21~zi2zj !
2>~Ri1Rj !. ~2!

The spatial contribution to the phase-space density is t
simply estimated as

GMC~VF!5VF
N
NR

NMC
, ~3!

so that the survival probabilityx is estimated asNR /NMC .
Clearly if NR is small, the relative error inx may be very
large. A difficulty with this technique thus arises when t
freeze-out volumeVF is sufficiently small so that the calcu
lation time spent estimatingx becomes prohibitively long.

In Ref. @7#, the authors discussed a virial approximation
which the survival probabilityx is simply expressed as th
product of two-body terms. We take basically the same st
ing point. However our estimation is based on an ex
evaluation of the spatially averaged bare two-body term i
model in which all fragment mass centers are confined to
within the freeze-out volume.

B. Two-body approximation

We consider a particular mass partition and we assig
label 1–N to each fragment. The probability that a config
ration is retained is the probability that all distinct fragme
pairs do not overlap. Thus the problem is solved if we c
calculate the overlap probability for any given pair of fra
e
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ments in the set. Let us first calculate this probability
ignoring the influence of fragments other than the spec
pair considered.

Suppose we position the center of the freeze-out volu
at the origin of our coordinate system and place the fragm
labeledi at the radial coordinater i . In order to avoid overlap
with any other fragmentj we need to exclude the center o
mass of fragmentj from the volume

Vi j5
4p

3
~Ri1Rj !

3. ~4!

The physical picture which corresponds to this situation
depicted in Fig. 1. Ifr i is such that the volumeVi j is entirely
enclosedwithin VF then we see immediately that the pro
ability that fragmentj will overlap with fragmenti is

F i j ~r i !5
Vi j

VF
5

~Ri1Rj !
3

RF
3 . ~5!

As we increase the value ofr i , it will eventually be the case
that the volumeVi j will be only partially contained in the
freeze-out volume. The overlap probability due to the fra
ment j is then simply given by the part ofVi j which lies
inside the freeze-out volumedivided by the freeze-out vol-
ume itself. Thus, provided thatVi j<VF , then for all values
of r i

F i j ~r i !<1. ~6!

This observation leads us to generalize Eq.~5! by writing

F i j ~r i !5
Vi j

~o!~r i !

VF
, ~7!

FIG. 1. A two-dimensional schematic picture of the two-bo
approximation. To avoid overlap, the fragment labeledj is excluded
from the volumeVi j (r i) enclosed by the dotted line. In the examp
shown, a part of this volume lies outside the freeze-out volume~see
text!.
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2980 55A. J. COLE, D. HEUER, AND M. CHARVET
whereVi j
(o)(r i) is the part of the volumeVi j which overlaps

the freeze-out volume. This definition is appropriate beca
even in cases whereVi j.VF , the overlap requirement en
tails Vi j

(o)5VF and thus guarantees an upper bound of un
for F i j (r i) and also for the average value of this ratio tak
over the freeze-out volume. Both of these quantities
therefore be interpreted as probabilities in the commonly
cepted sense.

Let us use the symbolRi j to denote the ‘‘interaction ra
dius’’ Ri1Rj . We can state that Eq.~5! is valid as long as

r i1Ri j<RF . ~8!

For larger radiir i ~Fig. 1! the common volume is given by

Vi j
~o!~r i !5

2p

3
~Ri j

31RF
3!1

pr i
3

12
2

pr i
2

~Ri j
21RF

2!

2
p

4r i
@~Ri j

22RF
2!2#. ~9!

The average number of overlaps of fragmenti at the radial
position r i is simply

^ni~r i !&5S jÞ i
N

Vi j
~o!~r i !

VF
, ~10!

and the probability that fragmenti does not overlap with any
other fragment is

pi~r i !5P jÞ i
N @12F i j ~r i !#. ~11!

We now calculate the spatially averaged value of
overlap volume for the pair of fragmentsi and j which we
denote aŝVi j

(o)&. Here, it is useful to be explicit about th
limiting value of r i such that the sphere with radiusRi j is
entirely enclosed within the freeze-out volume or,alter-
nately, that the freeze-out volume is entirely enclosed in
sphere with radiusRi j . Thus we defineRLIM5uRF2Ri j u and
Vl as min(Vi j ,VF). Then the required average value is e
pressed as

^Vi j
~o!~RF!&5

Vl*0
RLIMr i

2dri1*RLIM
RF Vi j

~o!r i
2dri

*0
RFr i

2dri
. ~12!

We should state that this quantity is unchanged by in
changing the indicesi and j . We can now obtain the globa
survival probabilityx which is the probability that each an
every fragment is not overlapped by one or more fragme
The construction of this quantity is not unique. We ha
adopted a method which is consistent with our two-bo
approximation, i.e., we take the product of all terms each
which corresponds to thespatially averagednonoverlap
probability of a distinct pair of fragments. Thus

x~RF!5P i51
N21P j.1

N ~12^F i j &!. ~13!

Equation~13! can also be expressed by writing the logarith
of x(RF) as a sum over distinct pairs:

ln@x~RF!#5S i51
N21S j. i

N ln~12^F i j &!. ~14!
e
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This last expression is interesting because, in the limit
which, for all pairsi , j , ^F i j &!1, we obtain using Eqs.~7!
and ~14!

x~RF!5e
2(^Vi j

~o!&
VF

;12
(^Vi j

~o!&
VF

, ~15!

in which the summation sign is to be understood as a sh
hand expression of the double summation in Eq.~14!. Equa-
tion ~15!, which is essentially the virial approximation use
in Ref. @7#, states that for large enough freeze-out volume
first approximation to the survival probability can be foun
by simply dividing the sum of the average overlap volum
of the interaction spheres~with VF) by the freeze-out volume
itself.

C. Corrections for the presence of other fragments

In order to give a precise account of the correctio
for the presence of other fragments we need a slightly m
explicit notation. We will therefore denote the radial
averaged overlap volume of the interaction sphere w
radiusRi j5Ri1Rj with a second sphere of radiusRK as
^Vi j

(o)(Ri j ,RK)&R where the average is taken over the rad
domain~for the center of the interaction sphere! from r i50
to r i5R. Thus, for example, Eq.~12! would be represented
as ^Vi j

(o)(Ri j ,RF)&RF.
In the preceding section this volume was calculated

ignoring the influence of other fragments. We have
tempted to take account of this influence by recalculat
Eqs. ~12! and ~13! as the average overlap ofVi j with an
effectivevolume which is simply the original freeze-out vo
ume reduced by the sum of the average volume overlap
all the other fragments withVF . Explicitly, we replace
^Vi j

(o)(Ri j ,RF)&RF of Eq. ~12! by ^Vi j
(o)(Ri j ,RF8&RF where

RF8~ i , j !5F3~VF2^DVi j &!

4p G1/3. ~16!

The physical interpretation is that fragments other th
the pair i , j under study are considered to form an ou
spherical shell which is removed when constructing the v
ume overlap of the interaction sphere with the freeze-
sphere. The volumeenclosedby this shell is considered to b
empty so that the exact two-body term is valid in this regio
In Eq. ~16! the mean valuêDVi j & of the excluded volume is
therefore the average overlap of all other fragments~not i or
j ) with a volume equal to the freeze-out volume reduced
the average volume occupied by free fragmentsi and j
@^Vi

(o)(Ri ,RF)&RF1^Vj
(o)(Rj ,RF)&RF#, i.e.,

^DVi j &5SkÞ i , j
N ^Vk, f

~o!~Rk ,Rf !&RF, ~17!

where^Vk, f
(o)(Rk ,Rf)&RF is the spatially averaged overlap vo

ume of fragmentk, with a sphere of radius

Rf~ i , j !5FVF2^Vi
~o!~Ri ,RF!&RF2^Vj

~o!~Rj ,RF!&RF
4p/3

G1/3.
~18!
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55 2981FINITE-SIZE CORRECTIONS IN THE SPATIAL . . .
We can now reconstruct the corresponding overlap proba
ity ^F i j & @see Eq.~13!# as

^F i j &5
^Vi j

~o!~Ri j ,RF8!&RF
VF2^DVi j &

. ~19!

We wish to draw attention to the fact that, according
our physical picture, the spatial average in~19! is still con-
structed over the radial domain from 0 toRF . We further
emphasize that the application of Eqs.~16!–~19! constitutes
anad hocone-body correction. Other possible schemes m
be considered and indeed we have studied a few alternat
However, we have found this simplyansatzto be rather suc-
cessful.

D. Comparison with Monte Carlo calculations

We begin by considering the survival probability for
particular fragment placed at a specified radial position,
the quantitiespi(r i) of Eq. ~11! calculated using the cor
rected theory discussed above. Figure 2 shows the calcu
values for mass 8 fragments compared with Monte Ca
calculations (105 trials at eachr i value!. We have ‘‘embed-
ded’’ this fragment in three rather different partitions a
have chosen three values ofRF which produce rather differ-
ent spatial variations. In all cases the survival probabi
diminishes with decreasingr i . Furthermore, in all three
cases the theory is successful near the surface of the fre
out volume and underpredicts the survival probability n
the center~we should mention that the bare two-body a
proximation presented in Sec. II B is much more succes
in reproducing the one-body profiles but overestimates
global survival probabilities!.

The discrepancy cited above does not, however, stron
influence the calculated values ofx. The reason for this is
not clear but must certainly originate in two-body~and pos-
sibly higher-order! spatial correlations. As can be seen
Fig. 3, where we show the calculations ofx as a function of
RF , the agreement between the corrected two-body the
and the corresponding Monte Carlo estimates is mainta
over at least four orders of magnitude.

In Fig. 4, we show a global evaluation of our calculati
by considering partitions of mass 12 in a freeze-out volu
with radiusRF54 fm (rF /r050.32) and of mass 40 in a
freeze-out sphere of radiusRF58 fm (rF /r050.135). Typi-
cally the prediction is accurate to within 20% forx values
down to the limit of accuracy in our Monte Carlo calcul
tions (1023). However it will be noted that there is a sligh
tendency for the theory to overestimate the correction
small values of this latter quantity. This figure also emph
sizes the importance of a correct evaluation ofx(RF) since
for a given nucleus and a given freeze-out volume the c
rection may extend over several orders of magnitude.

III. MULTIPLICITY DEPENDENCE

A. Mass centers confined in freeze-out volume

It is obvious from Fig. 4~a! that the corrections fall into
groups which are quickly found to correspond to differe
il-
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multiplicities. This is illustrated in Fig. 5 in which, for the
two cases depicted in Fig. 4 we have plotted the theoret
correction ~on a logarithmic scale! against the multiplicity
(N). The variation is roughly exponential but falls off rath
more slowly for small multiplicities. The exponential fallof
can be qualitatively understood using the bare two-bo
term. We make use of the fact that for partitions within
given multiplicity class the correction exhibits relative
little variation so that we may reasonably represent the s
ation by partitioning the parent massA into N equal masses
Let us denote the radius of each fragment asR0 and use Eq.
~14! to write

FIG. 2. Radial profiles of one-body survival probabilities for
single fragment in three typical partitions~a! one fragment of mass
8 in a partition containing three mass 8 fragments (RF54.5 fm!. ~b!
a fragment of mass 8 in the partition formed by mass
8,7,6,5,4,3,2,1 (RF56 fm! ~c! a fragment of mass 8 in the partitio
formed by 6 mass 8 fragments (RF58 fm!. All fragment radii are
given byRk51.2Ak

1/3. The Monte Carlo calculations are shown
filled circles and the results of calculations made using the corre
two-body theory~Sec. II C! as continuous lines. All calculation
were made with fragment mass centers enclosed in the freeze
volume.
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2982 55A. J. COLE, D. HEUER, AND M. CHARVET
ln@x~RF!#5S i51
N21S j. i

N ln~12^F i j &!

5
N~N21!

2
ln@12^F i j &#. ~20!

Neglecting edge effects we can approximate^f i j & using Eq.
~5!, i.e.,

^F i j &'
~Ri1Rj !

3

RF
3 5

8rF
Nr0

, ~21!

FIG. 3. Variation of calculated survival probabilitiesx(RF)
~continuous lines! with freeze-out radiusRF for the three partitions
considered in Fig. 2. The Monte Carlo calculations are shown
before, as filled circles. For the largest value ofRF we used 105

trials. This number was linearly increased to 106 for the smallest
value. The lower dashed lines show results obtained with Eq.~7! of
Ref. @7#.
whererF is the density at freeze-out andr0 is the density of
the fragments~or of the parent nucleus!. If N is sufficiently
large so that̂ F i j &,1 we can expand the logarithm in Eq
~20! to first order to obtain

ln@x~RF!#'2a~N21!, ~22!

which exhibits the required exponential behavior w
a54rF /r0. It turns out that edge effects can be simply i
cluded because the average volume overlap of a sphere
radiusRs @in our caseRs52R052r 0(A/N)

1/3] and volume
Vs , with a sphere of radiusRF (Rs,RF) is quite closely
approximated by

^Vs
~o!&
Vs

51.0–0.53
Rs

RF
. ~23!

s

FIG. 4. Global evaluation of the proposed finite-size correct
for configurations with mass centers enclosed in the freeze-out
ume. The figure shows the mean of the ratio of the Monte Ca
result ~exp! to the theoretical prediction~th! for: ~a! partitions of
mass 12 (RF54 fm! and~b! mass 40 (RF58 fm!. For mass 12 all
77 partitions were included. For mass 40 the figure displays res
for 1% of the total number~37 338! of partitions selected randomly
Monte Carlo calculations were run until 100 trials with no overla
were obtained. The statistical accuracy is thus 10%. A limit
106 trials was imposed on each mass 12 run so thatx values down
to 1024 could be estimated. This number was reduced to 105 for the
mass 40 study.
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55 2983FINITE-SIZE CORRECTIONS IN THE SPATIAL . . .
We may therefore simply correct for this effect byredefining
the slope parametera of Eq. ~22! as

a5
4rF
r0

F1.0–0.532R0

RF
G . ~24!

Clearly this redefined value depends weakly on the mu
plicity ~via R0). In fact we have included the calculation o
Eq. ~24! in Fig. 5. Despite the approximations the observ
slope is reasonably accounted for especially for the sma
freeze-out density.

B. Fragments completely contained within freeze-out volume

We have also carried out simulations in which fragme
were completely containedin the freeze-out volume. Fo
equal mass fragments one quickly sees that this strateg
exactly equivalent to that of the preceding subsection p
vided we modify the freeze-out radius by the common rad
of the fragments. Thus the expected slope of the expone
falloff for large multiplicities would, in this case be

a85
4rF8
r0

F1.0–0.532R0

RF8
G , ~25!

where RF85RF2R0 and rF854pRF83/3A is the corre-
sponding density. One may note that Eq.~25! exhibits a
modified multiplicity dependence because bothRF8 and
rF8 depend explicitly on the multiplicity. To investigate th

FIG. 5. Theoretical calculations~filled circles! of the survival
probabilities (x) for the systems considered in the previous figu
displayed as a function of the multiplicity. The continuous lines
estimates using the simplified theory described in Sec. III A.
i-

d
er

s

is
-
s
ial

point we have carried out a number of Monte Carlo calcu
tions made by enclosing fragments entirely within the free
out volume. In Fig. 6 we show plots of ln(x) versus the
multiplicity N for a parent mass of 40 and various values
the freeze-out volume. One observes a rather uniform ex
nential falloff except for very small freeze-out volumes. W
have also extracted the slope parameters for various ma
as a function of the ratio of the freeze-out volume to t
volume of the parent (VF /Vp), which are compared with the
simple two-body prediction of Eq.~25! in Fig. 7. The figure
demonstrates firstly that, as expected, the slope param
depend essentially onVF /Vp and also that the two-body pre
diction is rather accurate for values ofRF /Rp.2.

IV. SUMMARY AND DISCUSSION

The objective of this work was to construct an improv
finite size correction to the spatial permutation factor wh
appears in the perfect gas density of states and which is
in statistical models of nuclear multifragmentation. The wo
was mainly focused on the situation in which the fragme
mass centers are constrained to lie within the freeze-out
ume. Our proposed correction is semianalytic as it involv
more or less intuitive choices in the detailed construction
the survival probabilities and in the estimation of the e
cluded volume. Nevertheless, it is based on the rigor
evaluation of the two-body overlap probability and has be
shown to successfully reproduce results of Monte Carlo c
culations for survival probabilities down to at least 1024.

The calculations reveal that the survival probability fa
off approximately as an exponential in the partition mul
plicity. We were able to understand this behavior using
two-body approximation. An obvious consequence is t
one should be very careful to interpret correctly experimen
measurements of the freeze-out volume especially for sm
values of this quantity.

At present there is no universally accepted manner

e

FIG. 6. Plots ofx versus the multiplicity obtained from Monte
Carlo simulations in which the fragments were entirely enclosed
the freeze-out volume. All plots are for mass 40. The various cur
are labeled by the ratioVF /Vp5r0 /rF ~see Sec. III B!.
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2984 55A. J. COLE, D. HEUER, AND M. CHARVET
defining the freeze-out volume. This is one of the typic
difficulties of small systems. As mentioned in the introdu
tion it would be possible to insist that all fragments are e
tirely contained within this spherical region~briefly explored
in Sec. III B!. This definition however would involve a
modification of the basicVF

N factor and thus a significan
departure from the perfect gas formula. This is the m
reason why we have concentrated our analysis on the t

FIG. 7. Values ofe2a ~obtained from Monte Carlo simulation
in which the fragments were entirely enclosed in the freeze-
volume! compared with the two-body theory@Eq. ~25!#. The parent
masses~A! are indicated in the figure. The theoretical values w
obtained as average values over multiplicities>2. The figure dem-
onstrates the accuracy of the simple two-body theory
VF /Vp.8.
d

l
-
-

n
h-

nique of randomly distributing the centers of mass of t
spherical fragments inside the freeze-out volume.

We have not attempted to determine additional supp
sion factors due to overlaps encountered in the dynamic e
lution of the initial spatial configuration. This is, in principle
a complicated problem. In the limit where the motion
fragments is dominated by a radial collective expansion
would expect that initially nonoverlapping fragments w
tend to increase their relative distances as for pure Coulo
expansion. Dynamically induced spatial overlaps would th
not occur. In the opposing limit where random thermal m
tion dominates one would certainly expect interfragment c
lisions to play a non-negligible role. It is perhaps appropri
to mention here that a detailed discussion of reliable meth
of assigning fixed values of collective dynamic variables
multifragmentation configurations~including modifications
to the density of phase-space states! has been given by Ran
drup @8#.

We would like to emphasize that our calculation assum
that all partitions are contained in the sameconstantfreeze-
out volume. This is an assumption which seems justified
recent experimental work@9#. It would also be possible to
consider models in which the freeze-out volume depends
plicitly on the partition. In this case a further modification
the phase-space density would be required. Finally
should perhaps mention that an adaptation of the pre
work should be applicable to the problem of a real gas, s
cifically to the calculation of the energy distribution of
confined set of interacting particles.
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