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Angular-momentum structure of the yrast bands of deformed nuclei

S. Kahane* and S. Raman
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

K. H. Bhatt
Department of Physics and Astronomy, University of Mississippi, University, Mississippi 38677

and Joint Institute for Heavy-Ion Research, Oak Ridge, Tennessee 37831
~Received 1 November 1996!

We have quantitatively analyzed the wave functions of the low-lying yrast states of deformed, heavy nuclei
~specifically 238U and 168Er! given by different models to determine the relative contribution of the valence
nucleons to the total angular momentum of the nucleus. In all models, an yrast state is generated, as expected,
by collective contributions from both proton and neutron angular momenta. We have also examined the
relative contribution of valence nucleons in the normal-parity states and in the abnormal-parity, high-j , intruder
states to the yrast angular momentum. If the states with definite angular momenta projected from the Nilsson
intrinsic state of the nucleus are assumed to provide a good approximation to the structure of the yrast band, the
contribution of nucleons in the abnormal-parity states to the yrast angular momentum is shown to be about the
same as that of nucleons in the normal-parity states. This result is in marked contrast to the assumption made
in two prominent models~pseudo-SU3 model and its symplectic extension and fermion dynamic symmetric
model! that the nucleons in abnormal-parity states, do not, in the first approximation, contribute any angular
momentum to the yrast band. We also find that the distribution of angular momenta contained in the intrinsic
state of the abnormal-parity nucleons in thej n configuration, which does not have any SU3 symmetry, is
surprisingly similar to the distribution of angular momenta contained in an SU3 intrinsic state with the same
average value of angular momentum.@S0556-2813~97!04706-7#

PACS number~s!: 21.60.Fw, 21.60.Cs, 27.70.1q, 27.90.1b
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I. INTRODUCTION

The simplest description of the yrast band of an axia
symmetric deformed nucleus is provided by hydrodynam
or rigid-rotor models@1#. In these models, this band resu
from the rotation of a deformed intrinsic state~in its ground
state! around an axis perpendicular to the axis of symme
Yrast states with increasing angular momentaJ50,2,4, . . .
arise as a result of increasing kinetic energy of rotation.
nucleons participate in this collective rotation—althou
their actual motions would be different in the two models

In shell models@2#, low-lying states of nuclei are attrib
uted to the dynamics of nucleons in a valence shell. E
though the majority of nucleons belong to a spherical c
and remain dynamically inert, they still exert influence
the dynamics of valence nucleons by modifying the effect
interactions and transition operators. In these models,
shortest route to a description of rotational states is provi
by considering them to be a consequence of SU3 symmetry
based, one way or another, on the quadrupole-quadru
(qq) interactions between~i! valence nucleons~pseudo-
SU3 model@3# and microscopic SU3 model@4#! or ~ii ! s and
d bosons representing nucleon pairs~interacting boson ap
proximation @5#! or ~iii ! S and D nucleon pairs~fermion
dynamic symmetry model@6#!.

A more direct description of the yrast band of a deform
nucleus which does not necessarily invoke SU3 symmetry is
obtained by considering it to be the set of states of defi
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angular momenta projected from the lowest-energy intrin
state@7#. The Nilsson model@8# provides a good approxima
tion to this state. A Hartree-Fock~HF! calculation restricted
to the valence configuration space@9# would provide an in-
trinsic state that is better, in principle, than the Nilsson sta
Such calculations have been carried out and they con
@10# that the Nilsson state is a good approximation to
intrinsic state of a heavy deformed nucleus.

In an earlier work@11# on the structure of the collective
states in 56Fe, a suggestion was made~by extension and
inference! that the rotational features of heavy deformed n
clei could be a consequence of approximate macrosc
SU3 symmetry even when a substantial number of nucle
have no microscopic SU3 symmetry. This suggestion is pur
sued in this paper.

Exact diagonalization of the Hamiltonian matrices for d
ferent values of angular momenta in the chosen vale
space have reproduced not only the rotationlike yrast ba
but also many other low-lying states of light nuclei wi
nucleons in the 0p and 1s 0d shells @12,13#. Such calcula-
tions have also been attempted for nuclei at the middle of
1p 0f shell @14#. This approach cannot be used, however,
describe the structure of heavy deformed nuclei because
configuration space is prohibitively large. However, a tru
cation scheme based on approximate quasi-SU3 symmetry
has been recently implemented@15# to describe rotationa
motion in the spherical shell model.

In general, the aim of nuclear models is to calculate th
physical quantities for which measurements exist or can
made relatively easily. It turns out that models with signi
cantly different internal content often produce numbers
measured quantities that are quite similar. Therefore, a m
er-
2885 © 1997 The American Physical Society
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2886 55S. KAHANE, S. RAMAN, AND K. H. BHATT
listing of the agreement with the available measured qua
ties is insufficient to provide a proper appreciation of t
inner workings of various models. A closer examination
the structure of the wave functions may provide a better
derstanding of the models and of the physics of the proce
that these models are attempting to describe.

In this paper, we examine the structure of the yrast ba
of highly deformed nuclei such as238U and 168Er. We con-
sider 208Pb as the core for238U and 132Sn as the core for
168Er. Specifically, we want to determine the relative con
butions of angular momentaJp of valence protons (p) and
Jn of valence neutrons (n) to the total angular momentum
J of the yrast state. The statesuJp& and uJn& have different
microscopic structures in different nuclear models. Howev
the strong quadrupole correlation between these stat
required to produce rotationally collective states—should
largely independent of their microscopic structure. We sh
obtain a quantitative estimate of this correlation.

We also pay special attention to the role played by
lence nucleons in the intruder abnormal-parity, highj ,
single-particle~sp! states 0h11/2, 0i 13/2, and 0j 15/2 in the
50–82, 82–126, and 126–184 shells, respectively, in de
mining the angular-momentum structure of the yrast ban
Different models assign different~and sometimes contradic
tory! roles to nucleons in intruder levels. When these nuc
ons are allowed to participate in a unified collective motio
we want to know their contributions relative to those ma
by all other nucleons.

In Sec. II, we first describe the calculation of the pro
abilities of differentJ contained in a deformed intrinsic sta
denoted byFK . We then describe the structure of the pr
jected state1 uJK& in terms of statesuJpKp& anduJnKn& pro-
jected from the proton and neutron parts of the intrinsic st
The stateuJpKp& is further analyzed to determine the rel
tive contribution of protons in the normal-parity (n) and
abnormal-parity (a) states~with angular momentaJpn and
Jpa , respectively! to the totalJp . A similar decomposition
is done for the stateuJnKn&. This information is used to
determine the probabilities that nucleons inn and a states
~referred to loosely asn anda nucleons! contribute different
angular momentaJn andJa to the totalJ of an yrast state.

In Sec. III, we consider the description of rotational sta
with models using SU3 symmetry. In these models, the yra
states belong to the highest available SU3 representation~ab-
breviated as rep! @l,m#; that is, they can be projected from
the most deformed intrinsic state of this rep. We describe
calculation of the probabilities of different angular momen
contained in this intrinsic state. States with totalJ resulting
from the coupling of reps@lp , mp# of protons and
@ln , mn# of neutrons are expanded in terms of the sta
u@Jp3Jn#J&.

In Secs. IV and V, we consider238U and 168Er and outline
their descriptions in terms of the pseudo-SU3 model ~PSM!,
interacting boson approximation~IBA !, fermion dynamic
symmetry model~FDSM!, and single-shell asymptotic Nils
son model~SSANM!. In their simplest implementations~and
the ones currently available! the PSM and FDSM assum

1Occasionally, we refer to the projected statesuJK&, uJpKp&,
uJnKn&, etc. more simply asuJ&, uJp&, uJn&, etc.
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that nucleons in the intruder high-j state are coupled to an
gular momentum zero withzero seniority; the IBA and
SSANM do not make this assumption. We examine the
fect of this assumption on the structure of the yrast state
these nuclei by expandinguJ& in terms of uJn& and uJa&. In
Sec. V C, we discuss briefly the microscopic SU3 model and
its treatment of the contributions of protons and neutrons
then anda states to the totalJ of an yrast state of168Er.

The essential point of the description of rotational sta
in shell models using projected HF approaches or SU3 sym-
metry is that the energy spectrum of yrast states results f
differences in the energies~of states with different angula
momenta! caused by the two-body interactions andnot from
the differences in the kinetic energies of rotation. This d
tinction is brought out in Sec. VI. Finally, a summary
given in Sec. VII.

II. DISTRIBUTION OF ANGULAR MOMENTA
IN AN INTRINSIC STATE

In this section we describe the construction of an intrin
stateFK and the procedure for projecting out various sta
with different angular momenta from this intrinsic state. W
calculate the probability distributions of~i! total J contained
in FK ; ~ii ! Jp , in FKp

p ; ~iii ! Jn , in FKn

n ; and ~iv! Jp and

Jn , in the projected stateuJ&. We then calculate the prob
abilities P3(Jp ;Jpn ,Jpa) that the stateuJp& projected from
uFKp

p & contains the statesu@Jpn3Jpa#Jp& and the corre-

sponding probabilitiesP3(Jn ;Jnn ,Jna) for neutrons. Finally,
we calculate the probabilitiesP3(J;Jn ,Ja) that the projected
state uJ& contains n and a nucleons coupled toJn and
Ja , respectively, and then the related probabiliti
P3(J;Jn ,Ja50).

A. Structure of the intrinsic state

Let fk
a(x) be the deformed sp state of nucleons in

axially symmetric intrinsic stateFK(x). Here,k5^ j z8& is the
projection of sp angular momentum along the symmetry a
~body-fixed z8 axis!, a labels different deformed sp state
with samek value, andK5( iki ~summed over all occupied
statesi ) is the projection of the total angular momentu
along the same axis. Generally, for an axially symmetric
formation,K50 for even-even nuclei. Within the configura
tion space of a single major shell,fk

a(x) can be expanded in
terms ofsphericalsp statesck

j (x) as

fk
a~x!5(

j
cj ,k

a ck
j ~x!. ~1!

For an intrinsic state symmetric about midplane, we have

cj ,2k
a 5~2 ! j2kcj ,k

a . ~2!

The simplest intrinsic stateFK is a Slater determinant con
structed with occupied sp statesfk

a . For example, conside
an intrinsic state of four particles occupying statesfki

a i. This

intrinsic state can be written as
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FK5A 1

4!Ufk1

a1~1! fk2

a2~1! fk3

a3~1! fk4

a4~1!

fk1

a1~2! . . . . . . fk4

a4~2!

fk1

a1~3! . . . . . . fk4

a4~3!

fk1

a1~4! fk2

a2~4! fk3

a3~4! fk4

a4~4!

U .
~3!

All intrinsic states appearing in this paper are of this type

B. Projection of states with definite angular momenta fromFK
The intrinsic stateFK is deformed and can be expanded

terms of the statesCK
J8 with definite total angular momentum

J8 of valence nucleons as

FK~x!5(
J8

CJ8KCK
J8~x!, ~4!

whereCK
J8(x)[^xuJ8K& are normalized wave functions o

state uJ8K&. We want to determine the distributio
P1(J)[uCJKu2 which gives the probability thatFK contains
a stateuJK& with definite J. This distribution is a partial
measure of the correlation between differentJ states required
to produce the intrinsic state. This correlation is produced
the mean field generated by the effective interactions i
chosen configuration space. Relative phases between d
ent CJK amplitudes, needed for specifying this correlati
more completely, are omitted because they are not requ
in the current discussion.

Consider a projection operatorP K
J , which, acting on an

arbitrary intrinsic state, projects out the stateuJK& with the
wave functionCK

J . Then, by definition

P K
JFK5P K

J(
J8

CJ8KCK
J85CJKCK

J . ~5!

Therefore

CK
J 5

1

CJK
P K

JFK , ~6a!

^CK
J uCK

J &5
1

CJK* CJK
^FKuP K

JP K
J uFK&51. ~6b!

For any projection operator,P 25P; hence,

uCJKu25^FKuP K
J uFK&. ~7!

The projection operator is given by@9#

P K
J 5

2J11

8p2 E „DKK
J ~V!…*R~V!dV, ~8!

where „DKK
J (V)… are standardD functions @1# and

R(V)5R(a,b,g)5e2 iaJze2 ibJye2 igJz is the rotation opera-
tor which rotates coordinatesx to x8 by the Euler angles
V5a,b,g. The integration is over all angles wit
dV5da sinb db dg.

We can write Eq.~7! as
y
a
er-

ed

uCJKu25
2J11

8p2 E „DKK
J ~V!…* ^FKuR~V!uFK&dV. ~9!

The term^FKuR(V)uFK& is just the overlap ofFK(x) with
the same function rotated by the Euler anglesV. If FK is a
determinant, we can write

^FKuR~V!uFK&5^FKue2 ibJyuFK&5det @Nst~b!#.
~10!

Thestth element,Nst(b), of this determinant is given by

Nst~b!5(
j
cj ,ks

as*cj ,kt

at dkskt

j ~b!, ~11!

where

dkskt

j ~b!5^ jksue2 ibJyu jkt& ~12!

and thec coefficients are defined in Eq.~1!.
As an example, thes52,t53 element N23(b) of

det@Nst(b)# for the four-particle intrinsic state of Eq.~3! is
given by

N23~b!5(
j
cj ,k2

a2*cj ,k3
a3 dk2k3

j ~b!. ~13!

Once the sequence of occupied orbitsfk
a in FK is specified,

det@Nst(b)# can be calculated. The probabilityuCJKu2 is
obtained by evaluating Eq.~9!. After carrying out the inte-
gration over the Euler anglesa andg, this equation reduces
to

uCJKu25
2J11

2 E dKK
J ~b!^FKue2 ibJyuFK&sinb db.

~14!

Equation~14! is valid for a general intrinsic state, but he
we shall calculateuCJKu2 only for determinant states of th
type given by Eq.~3!. The average valueJ̄ of the total
angular momentum contained in an intrinsic stateFK is de-
fined by

J̄5A^J2&, ~15!

where

^J2&5(
J
J~J11!uCJKu2 ~16!

is the average value ofJ2 in FK .

C. Distribution of angular momenta of protons and neutrons
in the projected state zJK‹

Because protons and neutrons share a common defor
mean field produced by effective interactions, their motio
are correlated. A partial measure of this mean-field-genera
p-n correlations is given by the distributionP3(J;Jp ,Jn),
which denotes the probability that the yrast stateuJ& with
total angular momentumJ ~projected from the intrinsic state
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2888 55S. KAHANE, S. RAMAN, AND K. H. BHATT
FK) contains protons and neutrons with corresponding an
lar momentaJp andJn . This intrinsic state can be factore
as

uFK&5uFKp

p &uFKn

n &. ~17!

The statesuFKp

p & and uFKn

n & can be expanded as

uFKp

p &5(
Jp8

CJ
p8Kp

p uJp8Kp& and uFKn

n &5(
Jn8

CJ
n8Kn

n uJn8Kn&,

~18!

where uJp8Kp& and uJn8Kn& are alternate notations for th

wave functionsC
Kp

Jp8 andC
Kn

Jn8 , respectively. The squares o

the expansion coefficientsuCJpKp

p u2 and uCJnKn

n u2 can be cal-

culated using Eq.~14! with FK replaced byFKp

p or FKn

n .

Substituting Eq.~18! into Eq. ~17!, we obtain

FK5 (
Jp8 ,Jn8

CJ
p8Kp

p
CJ

n8Kn

n
C

Kp

Jp8 C
Kn

Jn8

5(
J8

(
Jp8 ,Jn8

CJ
p8Kp

p
CJ

n8Kn

n
~Jp8 Jn8KpKnuJ8K !u@Jp8 3Jn8#J8K&,

~19!

where (Jp8 Jn8KpKnuJ8K) are Clebsch-Gordan coefficien
and u@Jp8 3Jn8#J8K& is the normalized and properly antisym
metrized state with totalJ8 obtained by couplingJp8 and
Jn8 . Comparing the expansions ofFK in Eqs.~19! and~4!, we
conclude that the wave functionCK

J with a specifictotal J
projected fromFK has the structure

CK
J 5

1

CJK
(
Jp8 ,Jn8

CJ
p8Kp

p
CJ

n8Kn

n
~Jp8 Jn8KpKnuJK!u@Jp8 3Jn8#JK&.

~20!

This equation can be written as

CK
J 5 (

Jp8 ,Jn8
A~J;Jp8 ,Jn8!u@Jp8 3Jn8#JK&, ~21!

where

A~J;Jp8 ,Jn8!5

CJ
p8Kp

p
CJ

n8Kn

n
~Jp8 Jn8KpKnuJK!

CJK
. ~22!

The probabilityP3(J;Jp ,Jn) that protons and neutrons con
tribute specificJp andJn to the totalJ is given by

P3~J;Jp ,Jn!5uA~J;Jp ,Jn!u2. ~23!

TheseP3 values satisfy the normalization condition

(
Jp8 ,Jn8

P3~J;Jp8 ,Jn8![ (
Jp8 ,Jn8

uA~J;Jp8 ,Jn8!u251. ~24!

From Eqs.~24! and ~22!, we obtain
u-
P1~J![uCJKu25 (

Jp8 ,Jn8
uCJ

p8Kp

p
CJ

n8Kn

n
~Jp8 Jn8KpKnuJK!u2.

~25!

For axially symmetric even-even nuclei, allK values with
subscripts appearing in the above formulas are zero in a
tion to K50. Various probabilities for the yrast states
238U and 168Er will be examined in Secs. IV and V, respe
tively.

D. Distribution of proton and neutron angular momenta
in n and a states

Let Npn andNpa represent valence protons inn and a
states, respectively. ThenNp5Npn1Npa is the total number
of valence protons. Similarly, we writeNn5Nnn1Nna for
valence neutrons. Ifn anda protons share a common field
their Jpn and Jpa must be correlated in a specific way
generate the statesuJp&. We are interested in the probabilitie
P3(Jp ;Jpn ,Jpa) and the related probabilitie
P3(Jn ;Jnn ,Jna) andP3(J;Jn ,Ja). They provide partial mea-
sures of the quadrupole correlations between then and a
protons,n and a neutrons, andn and a nucleons, respec
tively.

In general, the proton intrinsic state can be factored a

FKp

p 5A FKpn

pn FKpa

pa , ~26!

whereA implies antisymmetrization between then and a
protons. Because then and a sp states are different, thi
antisymmetrization puts no restriction on the angul
momentum content ofFKp

p . Analogous to Eq.~23!, we ob-

tain

P3~Jp ;Jpn ,Jpa!

5
uCJpnKpn

p CJpaKpa

p ~JpnJpaKpnKpauJpKp!u2

uCJpKp
u2

. ~27!

Analogous to Eq.~25!, we also obtain

P1~Jp!5 (
Jpn8 ,Jpa8

uCJ
pn8 Kpn

p
CJ

pa8 Kpa

p
~Jpn8 Jpa8 KpnKpauJpKp!u2.

~28!

Similar expressions hold for neutrons.

E. Distribution of total angular momentum in n and a states

The statesuJ& are generated byn-a correlations in a way
completely analogous top-n correlations. Following again
the procedures used to derive Eqs.~23! and ~27!, we get

P3~J;Jn ,Ja!5
uCJnKn

n CJaKa
a ~JnJaKnKauJK!u2

uCJKu2
, ~29!

where

uCJnKn
n U25 (

Jpn8 ,Jnn8
UCJ

pn8 Kpn

p
CJ

nn8 Knn

n
~Jpn8 Jnn8 KpnKnnuJnKn!u2.

~30!
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A similar expression holds foruCJaKa
a u2. The contribution of

a givenJa to the totalJ irrespective of theJn values is given
by

P2~J;Ja!5(
Jn

P3~J;Jn ,Ja!. ~31!

One of our aims is to obtain the probabilities that the st
uJ& has a component withJa50 in which thea neutrons and
a protons are separately coupled to angular momentum
~as assumed in PSM and FDSM!. These joint probabilities
are given by

P5@J;Jn ,Ja50 ~Jpa5Jna50!#

5P3~J;Jn ,Ja50!3P3~Ja50;Jpa50,Jna50!.

~32!

III. ANGULAR MOMENTA CONTAINED IN THE
INTRINSIC STATES OF SU3-SYMMETRY MODELS

The yrast band of states with definiteJ contained in a
SU3 rep @l,m# can be projected from the highest-weig
intrinsic stateF@l,m#. For prolate nuclei of interest to u
here,l . m. An intrinsic state withmÞ0 is triaxial in shape
and contains different K bands with
K5m,m22, . . . ,1 or 0. Aband withK50 contains states
CK

J with J50,2,4, . . . ,l1m. Bands with KÞ0 contain
J5K,K11, . . . ,K1l states. The statesCK

J can be obtained
from F@l,m# by the Elliott projection procedure@16,17#.
The angular-momentum content of theF@l,m# state can be
brought out by expanding it in terms of stat
C(@l,m#JK) as

F@l,m#5 (
J8,K8

a~@l,m#;J8,K8!C~@l,m#J8K8!. ~33!

Projected statesC(@l,m#JK) of the sameJ belonging to
different K bands are not orthogonal. The overlap betwe
two such states is given by

^C~@l,m#JK!uC~@l,m#JK8!&

5
R~@l,m#JKK8!

a~@l,m#;J,K !a~@l,m#;J,K8!
. ~34!

Because the stateuC(@l,m#JK& is normalized, we get

ua~@l,m#;J,K !u25R~@l,m#JKK!. ~35!

The functions2 R(@l,m#JKK8) derived by Elliott @16,17#
are given by

R~@l,m#JKK8!5
~2J11!m!

8p2 (
n50

m
~2 !n

n! ~m2n!!
I a I g I b ,

~36!

2We use the notationR(@l,m#JKK8) in place of the usual nota
tion P(@l,m#JKK8) to avoid confusion with probabilities denote
by P.
e

ro

n

where

I a5E
0

2p

da eiK 8asin~a!ncos~a!m2n, ~37a!

I g5E
0

2p

dg eiKgsin~g!ncos~g!m2n, ~37b!

I b5E
0

p

sinb db dK8K
J

~b!cos~b!n1l. ~37c!

Convenient algebraic formulas for calculatin
R(@l,m#JKK85K) have been provided by Vergados@18#
up tom54.

The normalization ofF@l,m# given in Eq.~33! together
with Eq. ~34! gives the normalization condition on theR
function

^F@l,m#uF@l,m#&5(
J

(
K8

(
K
R~@l,n#JKK8!51.

~38!

For axially symmetric reps@l,0#, K5K850. In this case,
we get

(
J
R~@l,n#J,K50,K850!5(

J
ua~@l,0#;J,0!u251,

~39!

and ua(@l,0#;J,0)u2 is the probabilityP1(SU3@l,m#:J) that
the intrinsic stateF@l,0# contains angular momentumJ.

For triaxial reps@l,m#, we shall associate the yrast ban
with only the K50 band. In this case, the sum
(Jua(@l,m#;J,K50)u2,1. We can multiply the
amplitudesa(@l,m#;J,K50) by a normalization constan
N0 such that N0

2(Jua(@l,m#;J,K50)u251. We
regard N0

2 ua(@l,m#;J,K50)u2 as the probability
P1(SU3 @l,m#:J,K50) that theK50 band contains angu
lar momentumJ.

In the following sections, we shall use the results of th
section to calculate the distributions ofJpn , Jpa , Jnn ,
Jna , Jp , Jn , Jn , Ja , andJ in the Nilsson or SU3 intrinsic
states for 238U ~Sec. IV! and 168Er ~Sec. V!. The Nilsson
intrinsic states are axially symmetric in both cases while
SU3 reps are axially symmetric in the238U case and either
axially symmetric or triaxial in the168Er case depending on
the distribution of neutrons inn anda states.

IV. STRUCTURE OF THE YRAST BAND OF 92
238U146

The highest angular momentum of the yrast band
served experimentally in238U till now is Jmax530 @19#. In a
shell-model description, this band arises as a result
interactions among valence nucleons. With82

208Pb126
as the core, the ten valence protons in92

238U146 are
confined to the sp ~notation nl j ) states
(0h9/2, 1f 7/2), (1f 5/2, 2p3/2), 2p1/2, and to the high-spin
intruder state 0i 13/2 appropriate for the 82–126 majo
shell. The 20 valence neutrons occupy t
(0i 11/2, 1g9/2), (1g7/2, 2d5/2), (2d3/2, 3s1/2) states and
the intruder 0j 15/2 state in the 126–184 shell.
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A. Pseudo-SU3 model „PSM…

In the PSM, doublets of sp states of normal parity~those
within parentheses in the preceding paragraph! are consid-
ered to be pseudospin doublets attributed to pseudoang

momenta l̃ p54, 2, and 0 forming a Ñ54 pseudo-

oscillator shell and tol̃ n55, 3, and 1 forming aÑ55
shell. The observed near degeneracy of these doublets~im-
plying small pseudo-spin-orbit coupling! together with the
dominance of theqq component of the effective interactio
has led to the introduction of an approximately conserv
pseudo-SU3 symmetry within then sector of configuration
space@3#. The coupling ofa nucleons can, in principle, lea
to a breakdown of SU3 symmetry for then nucleons. The
symmetry is, however, preserved if one assumes~for sim-
plicity! that thea nucleons remain coupled to zero seniori
With this assumption, PSM identifies the yrast band as
longing to the highest SU3 rep of nucleons occupying then
states.

In the case of92
238U146, the number of particles occupyin

n anda states are determined from the Nilsson energy-le
diagram at the measured deformation ofb'0.25. These
numbers areNn

p56, Na
p54, Nn

n512, andNa
n58. The total

numbers of nucleons in these two groups areNn518 and
Na512. These numbers are assumed to be conserved in
dynamics of PSM implemented thus far.

The assumptions made in the simplest and extensi
implemented calculations in the PSM~and in FDSM! regard-
ing the structure of the yrast bands of nuclei imply cert
restrictions on the relative importance of different parts
the pairing interaction. For example, transitions of the ty
j 1nj 2n
 j 1aj 2a for proton or neutron pairs are an importa
consequence of the pairing interaction. Such transitions c
nectingn anda sectors are suppressed, for the sake of s
plicity, with the assumption that the yrast band can be w
described with constant values ofNn andNa . Transitions of
the type j 1nj 2n
 j 1n8 j 2n8 within the n sector also form an
important part of the pairing interaction. Again, the simp
fying assumption made in the PSM that the yrast band is w
described by asingleSU3 rep implies that pairing may als
be neglected in then sector in comparison with theqq in-
teraction. The remaining part of the pairing interaction a
only within the a sector. It must be abnormally strong
maintain thea nucleons in seniority-zero states in the d
formed mean field of the nucleus. Although this conclus
is inevitable, an explicit pairing interaction for thea nucle-
ons is not used in the PSM or FDSM to produce the qu
spherical band—with the maximally deformedn nucleons
coupled to the seniority-zero state of thea nucleons—as the
yrast band. In these models, such a band is made yrast
easily by just assuming it to be the lowest-energy state. T
assumption is justified by the success of these model
reproducing the experimental data.

1. Angular-momentum content of valence protons and neutron

The highest pseudo-SU3 rep of 6 protons in theÑ54
shell is p@18,0# and of 12 neutrons in theÑ55 shell is
n@36,0# ~see Table 8 of Ref.@20#!. Thep@18,0# rep contains
states withJp50, 2, 4, . . .,18, and then@36,0# rep states
with Jn50, 2, 4, . . .,36. The yrast band of238U is de-
lar

d

.
e-

l

the

ly

f
e

n-
-
ll

ll

s

-
n

si

ore
is
in

scribed by the highest SU3 rep @54,0# obtained by coupling
thep@18,0# andn@36,0# reps. This band, therefore, extend
up to theJmax5(Jn)max554 state.

We want to examine the structure of the yrast stateuJ& in
terms of statesuJpn& and uJnn&. To do so, we use the Elliot
expansion@Eq. ~33!# of Fp@lp ,mp# and Fn@ln ,mn# in
terms of the states Cp(@lp ,mp#JpKp) and
Cn(@ln ,mn#JnKn), respectively, belonging to differentKp

andKn bands. For
238U, m50 for both protons and neutrons

Therefore,Kp5Kn50. We expand@cf. Eq. ~33! with the
expansion coefficienta replaced byup, un, andU#:

Fnp~PSM@18,0# !

5(
Jpn8

up~@18,0#;Jpn8 ,0!Cp~@18,0#Jpn8 0!,

Jpn8 50,2, . . .,18, ~40a!

Fnn~PSM@36,0# !

5(
Jnn8

un~@36,0#;Jnn8 ,0!Cn~@36,0#Jnn8 0!,

Jnn8 50,2, . . .,36, ~40b!

Fn~PSM@54,0# !

5(
Jn8

U~@54,0#;Jn8,0!C~@54,0#Jn80!, Jn850,2, . . .,54.

~40c!

For later convenience, these equations are written in a s
pler notation as

FIG. 1. Probability distributionP1 that the PSM SU3 @18,0#
intrinsic state contains a state with definite angular momen
Jpn . The smooth curve represents what is actually a distribut
restricted to even values ofJpn . Hereafter allP1 distributions are
shown as smooth curves. The curve shown here is again reprod
in Fig. 2~a!.
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Fnp~PSM@18,0# !5(
Jpn8

uJ
pn8

pn uJpn8 &, ~41a!

Fnn~PSM@36,0# !5(
Jnn8

uJ
nn8

nn uJnn8 &, ~41b!

Fn~PSM@54,0# !5(
Jn8

UJ
n8
n uJn8&. ~41c!

Quantitiesuup(@18,0#;Jpn,0)u2 and uun(@36,0#;Jnn,0)u2 give
the probabilities P1(PSM@18,0#:Jpn) and
P1(PSM@36,0#:Jnn) that the intrinsic states inp@18,0# and
n@36,0# reps containJpn andJnn , respectively. These prob-
abilities are evaluated using Eqs.~35! and~36! and plotted in
Figs. 1 and 2~a!. The average angular momentaJ̄pn and
J̄ nn in these SU3 states are 6.0 and 8.5, respectively. Th
quantity uU(@54,0#;J,0u2 gives the probability
P1(PSM@54,0#:J) that the intrinsic state of nucleons inn
states contains a state of the yrast band with angular mom
tum J; this probability is also shown in Fig. 2~a!. The aver-
age angular momentum in the@54,0# rep is J̄510.4.

FIG. 2. ~a! P1 distributions as a function ofJi . Depending on
the curve, the abscissa isJpn , Jnn , or J in ~a! andJp , Jn , or J in
~b!. The stated PSM and IBA SU3 representations are for238U.
n-

2. Collectivity of the distribution of Jpn and Jnn in stateszJn‹

We can use the projection procedure described in Sec
to show @cf. Eq. ~20!# that the stateC(@54,0#Jn0) can be
written in terms ofJpn andJnn as

C~@54,0#Jn0![uPSM:Jn&

5 (
Jpn8 ,Jnn8

A~PSM:Jn ;Jpn8 ,Jnn8 !

3u@Jpn8 3Jnn8 #Jn&, ~42!

where

uA~PSM:Jn ;Jpn8 ,Jnn8 !u2

5
uup~@18,0#;Jpn8 ,0! un~@36,0#;Jnn8 ,0!~Jpn8 Jnn8 00uJ0!u2

uU~@54,0#;J,0!u2
~43!

is the probabilityP3(PSM:Jn ;Jpn8 ,Jnn8 ) that uJn& contains
the stateu@Jpn8 3Jnn8 #Jn&. The P3 distributions ofJpn and
Jnn in the yrast state with totalJ5Jn510 is shown as a
three-dimensional plot in Fig. 3. These distributions for othe
J states are also three-dimensional but they are shown
Figs. 4~a!–4~d! for theJ5Jn50, 2, 4, and 6 states as two-
dimensional plots to convey more quantitatively the frag
mentation of an yrast stateuJ& into components of the type
u@Jpn3Jnn#Jn&. Each stateuJ& has significant contributions
from many of the possible couplings of the angular momen
of n protons andn neutrons which share the common de
formed field. The probability that anyJ is generated by neu-
trons acting alone (Jpn50,Jnn5J) or by protons acting
alone (Jpn5J,Jnn50) is small~only ;7%!. Then protons
andn neutrons contribute collectively to the totalJ.

The contribution of a givenJpn irrespective of theJnn
values is given by@cf. Eq. ~31!#

FIG. 3. A three-dimensional view of theP3 distribution that the
yrast state uJ& with J510 in 238U contains the state
u@Jpn3Jnn#J& according to PSM.
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FIG. 4. Probability distributionP3 that a particular yrast stateuJ& in 238U contains the stateu@Jpn3Jnn#J& according to PSM.
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P2~J5Jn ;Jpn!5(
Jnn8

P3~J5Jn ;Jpn ,Jnn8 !. ~44!

The P2(PSM:J5Jn ;Jpn) distributions are shown in
Fig. 5~a!. They are surprisingly similar regardless ofJ.

3. Distribution of Jn and Ja in stateszJ‹

According to PSM assumptions,CJ5Cn(Jn)
Ca(Ja50) ,

and the probability that the totalJ results from the coupling
of Jn and (Ja50) is given by

P3~PSM:J;Jn ,Ja50!51 for J5Jn , ~45a!

50 otherwise.
~45b!

Figure 6 illustrates the effect of this assumption made
PSM. The reason for the qualitative difference betwe
P3(PSM:J;Jn ,Ja) in Fig. 6 and P3(PSM:J;Jpn ,Jnn) in
Fig. 4 is that in PSM the seniority-zero assumption fora
nucleons quenches the mean-field-induced correlations
tween then anda nucleons.

4. Relation between measured electric quadrupole moment
and (Jp)max

The mass quadrupole moment ofQp of the a-proton in-
trinsic state belonging to an SU3 rep @lp ,0# is
Qp52lp52(Jp)max in units of the oscillator paramete
a25\/(Mv)50.0101A1/3 b. Here (Jp)max is the maximum
angular momentum contained in the rep@lp ,0#. The mea-
n
n

e-

sured electric quadrupole momentQ0 has contributions from
both valence protons and core protons~the latter polarized by
valence nucleons!. A rough estimate by Mottelson@21#
shows that core protons contribute about half of the intrin
electric quadrupole moment. Hence the contribution of
lence (v) protons to the intrinsic electric moment isQ0,p

v

' 1
2Q0. The measured intrinsic quadrupole moment of238U

is Q0511.0 e b5176 ea2 @22# and henceQ0,p
v '88 ea2.

The implied mass quadrupole moment of valence proton
Qp
v'88 a2. If valence protons belonged to an SU3 rep

@lp* ,0#, the intrinsic mass quadrupole moment would
Qp
v 52lp* . Equating these two values, we obtainlp*544.

The SU3 rep p@44,0# and (Jp)max544 implied for valence
protons by the measured intrinsic quadrupole moment
significantly larger than the PSM reppn@18,0# and
(Jpn)max518 of only then protons.

B. Interacting boson approximation „IBA …

In IBA-2, the 10 valence protons of92
238U146 are repre-

sented by 5p bosons and the 20 valence neutrons by 10n
bosons. In the SU3 limit, the boson reps arep@10,0# and
n@20,0#, and the yrast band is described by@30,0#. These
reps are significantly smaller than the corresponding one
PSM. The intrinsic states can be expanded as@cf. Eq. ~41!#

Fp~ IBA @10,0# !5(
Jp8

vJ
p8

p uJp8 &, Jp8 50,2, . . .,10,

~46a!
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Fn~ IBA @20,0# !5(
Jn8

vJ
n8

n uJn8&, Jn850,2, . . .,20,

~46b!

F~ IBA @30,0# !5(
J8

VJ8uJ8&, J850,2, . . .,30. ~46c!

The distributions P1(IBA @10,0#:Jp), P1(IBA @20,0#:Jn),
andP1(IBA @30,0#:J) are plotted in Fig. 2~b!.

1. Introducing n and a bosons in IBA-2

Even though it would violate the spirit of IBA to distin
guish between bosons inn anda states, we do so for com
paring the structure of the yrast states in IBA-2 with those
PSM and FDSM. In IBA-2,s andd bosons are supposed
represent the lowest quadrupole collective states of two id
tical nucleons withJ50 andJ52, respectively, in the va

FIG. 5. Probability distributionsP2 as a function ofJi . The
abscissa isJpn in ~a!, Ja in ~b!, andJa in ~c!. These results are fo
238U.
n

n-

lence sp space. Bothn and a sp states contribute to thes
coherent pair states. If we were to distinguish betweenn and
a bosons, then bosons (sn ,dn) would represent the
n-nucleon pair states, and thea bosons (sa ,da) the
a-nucleon pair states. To mimic PSM, we assume that
numbersNn of n bosons andNa of a bosons remain sepa
rately constant, whereas in IBA-2 only the total number
bosons,N5Nn1Na , would remain constant.

In 238U, there are threep bosons of then type and two of
the a type. The corresponding SU3 reps arepn@6,0# and
pa@4,0#. Similarly, the n-boson reps arenn@12,0# and
na@8,0#. The highest SU3 reps of n and a nucleons are,
therefore,n@18,0# anda@12,0#.

2. Comparison of thep-n distributions in PSM and IBA-2
within the n sector

The intrinsic statesFpn, Fnn, andFn are expanded as

Fpn~ IBA @6,0# !5(
Jpn8

vJ
pn8

pn uJpn8 &, Jpn8 50,2, . . . ,6,

~47a!

Fnn~ IBA @12,0# !5(
Jnn8

vJ
nn8

nn uJnn8 &, Jnn8 50,2, . . .,12,

~47b!

Fn~ IBA @18,0# !5(
Jn8

VJ
n8
n uJn8&, Jn850,2, . . .,18,

~47c!

where the coefficientsvJ
pn8

pn
, vJ

nn8
nn

, andVJ
n8
n
are determined

from Eqs. ~35! and ~36!. The statesuJn8& of n bosons are
given by

uIBA: Jn& 5 (
Jpn8 ,Jnn8

A~ IBA: Jn ;Jpn8 ,Jnn8 !u@Jpn8 3Jnn8 #Jn&,

~48!

FIG. 6. Probability distributionP3 that a particular yrast state
uJ& with J5Jn54 contains the stateu@Jn3Ja#J& according to PSM.
The P3 distribution for any otherJ (5Jn) up to Jmax554 is the
same as that shown here forJ54. These results are for238U.
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where

P3~ IBA: Jn ;Jpn8 ,Jnn8 ![uA~ IBA: Jn ;Jpn8 ,Jnn8 !u2

5

uvJ
pn8

pn vJ
nn8

nn
~Jpn8 Jnn8 00uJn0!u2

uVJn
n u2

~49!

is the probability thatJn contains the stateu@Jpn8 3Jnn8 #Jn&.
The IBA rep @18,0# for n bosons is significantly smalle

than the PSM rep@54,0# for n nucleons. Hence, details of th
distributions ofJn over Jpn and Jnn would be different in
these two models, but the overall distributions should
qualitatively similar because of SU3 symmetry. A quantita-
tive measure of this similarity can be obtained by calculat
the overlap between the statesu IBA: Jn& anduPSM:Jn& given
by Eqs.~48! and~42!, respectively, which are both express
in terms of the componentsu@Jpn3Jnn#Jn&. This overlap is
given by

^IBA: JnuPSM:Jn&

5 (
Jpn8 ,Jnn8

@A~ IBA: Jn ;Jpn8 ,Jnn8 !#@A~PSM:Jn ;Jpn8 ,Jnn8 !#

3^IBA @Jpn8 3Jnn8 #Jn u PSM@Jpn8 3Jnn8 #Jn&. ~50!

Of course, there is no clear connection between the b
statesJpn ~or Jnn) occurring in IBA and PSM. However, fo
the limited purpose of examining the angular-moment
structure of the yrast band of238U, we will assume these
basis states to be the same in the two models. With
assumption, the overlap term on the right-hand side is un
and the overlap values given by Eq.~50! are 0.868, 0.865
0.867, and 0.844, respectively, for the states w
Jn50, 2, 4, and 6.

The statistical significance of these overlaps can be e
mated by calculating the probabilityP(N:r) of obtaining an
overlap equal to or greater thanr between a given state~with
N components! and another arbitrary state~with the same
number of components!. This probability is

P~N:r!'A N

2pEr

1

e2~1/2!Nx2dx. ~51!

Derivation of Eq.~51! is discussed in Ref.@11#.
The number NJn

of components u@Jpn3Jnn#Jn& in

uIBA: Jn& areN054,N2510,N4514, andN6516. Between
uIBA: Jn& and an arbitrary stateuJn&8, the probabilities of
obtaining overlap values greater than the given values
1.931022, 2.331023, 5.831024, and 3.431024, respec-
tively, for the Jn50, 2, 4, and 6 states. In view of thes
small probabilities, the overlaps obtained between the IBA
and PSM states imply that thep-n angular-momentum dis
tributions in then sector of the configuration space are sim
lar in the two models. If the stateuPSM:Jn& is truncated to
contain the same number of components of the t
u@Jpn3Jnn#Jn& as are contained inuIBA: Jn& and the result-
ing state is normalized, the overlaps betweenuPSM:Jn& and
uIBA: Jn& increase to 0.913, 0.913, 0.912, and 0.911, resp
e

g

is

is
y,

h

ti-

re

2

e

c-

tively, for the Jn50, 2, 4, and 6 states with the probabil
ties of random occurrences decreasing to 1.131022,
1.231023, 2.331024, and 1.031024, respectively.

3. Distribution of yrast angular momentum
over the n and a sectors

The total intrinsic stateF(IBA @30,0#) can be factored
into n and a partsF n(IBA) @18,0#) and F a(IBA) @12,0#).
Analogous to Eq.~47c!, these states can be expanded as

F n~ IBA @18,0# !5(
Jn8

VJ
n8
n uJn8&, ~52a!

F a~ IBA @12,0# !5(
Ja8

VJ
a8
a uJa8&, ~52b!

F~ IBA @30,0# !5(
J8

VJ8uJ8&. ~52c!

The yrast statesuJ& projected fromF(IBA @30,0#) are written
as

uJ& 5 (
Jn8 ,Ja8

A~ IBA: J;Jn8 ,Ja8!u@Jn83Ja8#J&, ~53!

where

P3~ IBA: J;Jn ,Ja![uA~ IBA: J;Jn ,Ja!u2

5
uVJn

n VJa
a ~JnJa00J0!u2

uVJu2
~54!

is the probability thatuJ& containsJn and Ja . These prob-
abilities are plotted in Figs. 7~a!–7~d! for the four lowest
yrast states. The totalJ is spread out over a number of com
ponentsu@Jn3Ja#J&~cf. Fig. 6 for PSM!. The summed con-
tributionsP2(IBAJ;Ja) are again similar, as shown in Fig
5~b!.

The probability that the totalJ of an yrast state arise
entirely from bosons in then states is given by

P3~ IBA: J;Jn5J,Ja50!5
uVJn5J

n VJa50
a u2

uVJu2
. ~55!

These probabilities are plotted as a function ofJ in Fig. 8~a!
by a dashed line. The full line in this figure shows the pro
abilities that, in addition toJa50, the angular momenta o
p bosons andn bosons ina states are individually coupled
to zero @cf. Eq. ~32!#. The latter probabilities never excee
;6%, whereas they are assumed to be 100% in PSM
FDSM. Thus, while the structures of IBA-2 states are simi
to that of the PSM~see Sec. IV B 2 above! and the FDSM
~see Sec. IV C below! over then sector of configuration
space, they are significantly different over thea sector.

C. Fermion dynamic symmetry model„FDSM…

In this model, the quadrupole collective states arise fr
(Sp ,Dp) and (Sn ,Dn) pairs inn states coupled to angula
momenta 0 and 2. The number of protons and neutrons in
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FIG. 7. P3 distribution that the stateuJ& in 238U contains the stateu@Jn3Ja#J& according to IBA.
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n states are 6 and 12, respectively—the same as in the P
The pair degeneraciesVn , defined byVn5

1
2( j n

(2 j n11),

areVpn515 andVnn521. According to FDSM, the SU3 rep
for the yrast band is given by@l52Nn ,0# if Nn<Vn /3,
whereNn is the number of pairs ofn nucleons. For

238U, the
FDSM reps arenp@6,0# andnn@12,0#; the total rep is there-
foren@18,0#. These reps are the same as those ofn bosons in
IBA. In IBA, however, the total yrast band to which bothn
anda bosons contribute extends up toJmax536, whereas in
the FDSM the collective part of the yrast band extends o
up to theJmax5(Jn)max518 state. Yrast states withJ.18
arise in FDSM as a result of contributions from degrees
freedom regarded as noncollective.

In the FDSM, the only collective mode ofa protons and
a neutrons is the mode of remaining in the state of senio
zero. The effective interactions can always be chosen
make this mode sufficiently stable under the influence
even the maximum quadrupole collectivity ofn nucleons.
Apart from mathematical simplicity, there are physical re
sons for making this assumption; it helps, for instance,
extend the range of deformed nuclei for which axially sy
metric reps can occur in FDSM.

D. Projected single-shell asymptotic Nilsson model
„projected SSANM…

The basic assumption of this model is that the yrast st
are well described by the band of states of definiteJ pro-
jected from the asymptotic Nilsson intrinsic state within
major shell. We list the maximum values of angular m
menta of protons and neutrons in then anda sectors of this
M.

y

f

y
to
f

-
o
-

es

-

intrinsic state. The distributions of angular momenta in the
sectors are then calculated. We bring out in some detail
SU3-like behavior of thea nucleons. Finally, we illustrate
the collective distribution of the totalJ of an yrast state ove
both Jn andJa states.

1. The asymptotic Nilsson intrinsic state

The deformed sp Nilsson statesfk
a(b) are eigenstates o

the Nilsson Hamiltonian

h~b!5h02b \v0r
2Y0

2 , ~56!

whereb is the deformation parameter,\v0541A21/3 MeV,
andr 2 is in units of the harmonic oscillator length parame
a2. The spherical Hamiltonianh0 has the eigenstatesck

j with
sp energiese j . For each value ofb, the Nilsson eigenstate
fk

a(b) can be obtained by diagonalizingh(b) with the
spherical statesck

j ~within a single major shell! as basis
states. The resulting eigenstatesfk

a(b) can be expanded, a
in Eq. ~1!, in terms of ck

j . When h0 is specified by the
empirically determined sp energiese j , the coefficients
cj ,k

a (b) of the expansion change rapidly withb for small
b. As b is increased, these coefficients approach asymp
cally the values obtained by taking the sp energiese j to be
degenerate. For sufficiently large deformations~say,
b.0.15), the energy eigenvaluesek

a(b) of the single-shell
Nilsson states vary linearly withb. The statesfk

a , obtained
by diagonalizingh(b) with the sp energies taken to be d
generate, are defined to be asymptotically deformed
states. These states are also eigenstates ofr 2Y0

2 and can be
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labeled by the eigenvaluesqk
a5^fk

aur 2Y0
2ufk

a& of the quad-
rupole moment. The state with a larger value ofqk

a has a
lower energy eigenvalueek

a .
In Tables I, II, and III, we list the expansion coefficient

cj ,k
a for all asymptotically deformed statesfk

a in the 50–82,
82–126, and 126–184 shells, respectively. The states
listed in order of decreasing values ofqk

a . In evaluating
qk

a , harmonic-oscillator wave functions were used for th
radial part ofck

j . Only those coefficients for positive values
of k are listed; those for negative values ofk are given by
Eq. ~2!. In addition,qk

a5q2k
a . Some details concerning the

calculation ofqk
a are given in the Appendix.

The SSANM is based on the ansatz ‘‘a nucleus is as d
formed as it can be in asinglemajor shell.’’ This ansatz is
supported by our previous demonstration@20# that
B(E2;01

1→21
1) values for even-even nuclei calculated us

ing the asymptotically deformed Nilsson intrinsic state are
good agreement with measured values. In view of this agr
ment, we expect the states of definiteJ projected from this
intrinsic state to provide a good description of the yrast ban

The intrinsic Nilsson state of238U is obtained by placing
sequentially the 10 valence protons and 20 valence neutr
in the eigenstatesfk

a with the largest available eigenvalue
qk

a consistent with the Pauli principle. Accordingly, proton

FIG. 8. Dashed curve shows theP3 distribution if the stateuJ&
in 238U arises entirely from~a! bosons in then states of IBA and~b!
nucleons in then states of SSANM. Solid curves show the prob
ability distributionsP5 that result ifJpa50 andJna50 in addition
to Ja50.
re
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-
n
e-

d.

ns

occupy~see Table II! six n states withkn56 1
2

2, 6 1
2

2, and
6 3

2
2 and foura states withka56 1

2
1 and 6 3

2
1. The 20

valence neutrons are similarly placed~see Table III! in 12
n states withkn56 1

2
1, 6 1

2
1, 6 3

2
1, 6 3

2
1, 6 1

2
1, and

6 5
2

1 and in 8a states withka56 1
2

2, 6 3
2

2, 6 5
2

2, and
6 7

2
2.
Once the number of nucleons in then states is determined

on the basis of increasing energy values from the Nils
diagram ~at the physical deformation of the nucleus!, the
PSM and FDSM assign to these nucleons the most defor
SU3 rep available. In our SSANM approach, we construct
most deformed Nilsson intrinsic state of all nucleons first a
then determine the number of nucleons inn and a states
based on decreasingqk

a values. The two procedures genera
give the same occupancy numbers.

The effect of pairing is neglected in the SSANM~just as it
is in the PSM and FDSM for nucleons in then states! by
arguing that it is reasonable, as a first approximation, to
nore pairing for nucleons in a well-deformed mean fie
This is particularly true for models in which the moment
inertia of the rotational band can be varied independently
deformation as it can be in the PSM and FDSM.

2. Angular momentum content of the intrinsic state

The intrinsic states of protons and neutrons in238U can be
regarded as superpositions of states with definite angular

TABLE I. Quadrupole operator eigenvalues^qk& and expansion
coefficientscj k

a for the asymptotically deformed sp states in t
50–82 shell listed in the order of decreasing quadrupole mome
a enumerates eigenstates belonging to a givenk. Only values for
positive k are given. For negativek, the symmetry relation

cj2k
5(2) j2kcj k applies. PSM values are for the@ l̃ ,0#5@3,0# rep-

resentation. For abnormal-parity states, the^qk& SSANM moments
are in brackets. There are no corresponding PSM moments.a51
label is implicit for all abnormal-parity states.

a k ^qk& ^qk& c(7/2)k
a c(5/2)k

a c(3/2)k
a c(1/2)k

a c(11/2)k
1

PSM SSANM

1 1
2 6 7.379 -0.417 -0.483 0.600 0.483

2 1
2 3 3.849 0.646 -0.609 -0.313 0.337

1 3
2 3 3.520 0.737 0.495 -0.46
1
2 ~3.182! 1
3
2 ~2.636! 1
5
2 ~1.545! 1

2 3
2 0 0.238 -0.586 0.807 -0.071
7
2 ~-0.091! 1

3 1
2 0 -0.165 0.593 0.485 0.579 0.278

1 5
2 0 -0.192 0.948 0.318

9
2 ~-2.273! 1

2 5
2 -3 -3.475 -0.318 0.948

3 3
2 -3 -3.758 0.336 0.332 0.885

1 7
2 -3 -3.667 1

4 1
2 -3 -3.730 -0.239 0.400 -0.455 0.759
11
2 ~-5! 1
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TABLE II. Quadrupole operator matrix elements^qk& and expansion coefficientscj k
a for the asymptoti-

cally deformed sp states in the 82–126 shell. PSM values are for the@ l̃ ,0#5@4,0# representation. Also see
caption for Table I.

a k ^qk& ^qk& c(9/2)k
a c(7/2)k

a c(5/2)k
a c(3/2)k

a c(1/2)k
a c(13/2)k

1

PSM SSANM

1 1
2 8 9.596 -0.290 -0.407 0.518 0.543 -0.433

2 1
2 5 6.173 0.539 -0.516 -0.498 0.435 0.076

1 3
2 5 5.898 -0.558 -0.504 0.571 0.331

1
2 ~3.692! 1
3
2 ~3.231! 1

2 3
2 2 2.703 -0.623 0.667 0.187 -0.343
5
2 ~2.308! 1

3 1
2 2 2.243 0.647 0.496 0.196 0.105 -0.534

1 5
2 2 2.184 0.812 0.433 -0.393

7
2 ~0.923! 1

2 5
2 -1 -0.896 -0.504 0.858 -0.096
9
2 ~-0.923! 1

4 1
2 -1 -1.340 -0.420 0.497 -0.519 0.539 -0.131

1 7
2 -1 -1.358 0.965 0.261

3 3
2 -1 -1.434 0.523 0.386 0.730 0.210

11
2 ~-3.231! 1

2 7
2 -4 -4.551 -0.261 0.965

1 9
2 -4 -4.727 1

4 3
2 -4 -4.803 -0.163 0.372 -0.326 0.854

3 5
2 -4 -4.834 0.296 0.276 0.915

5 1
2 -4 -4.854 0.175 0.273 0.420 0.463 0.710
13
2 ~-6! 1
e
g

.

ic
r

1,
tio

m

th
ar

sic

y.
mentaJp andJn . The minimum value ofJp or Jn is zero.
The maximum value ofJp is equal to the maximum possibl
valueMp of the projection of total angular momentum alon
the space-fixedz axis. The maximumMp value is obtained
by assigning protons to the spherical statescm

j with the larg-
est available value ofm consistent with the Pauli principle
For then protons in the 82–126 shell, the largestm value
(m5 9

2! belongs to theh9/2 state with the largestj value. The
valuem5 7

2 is contributed by theh9/2 and g7/2 states. The
next smaller valuem5 5

2 is contributed by theh9/2, g7/2, and
d5/2 states. Hence, the maximum possibleMpn value for six
n protons is (Mpn)max5

9
21

7
21

7
21

5
21

5
21

5
2519, and hence

(Jpn)max519. Reflection symmetry imposed on the intrins
state allows it to contain only even angular momenta. The
fore, the intrinsic state of sixn-protons will contain states
with Jp50,2, . . . up toJp518.

Although states likeh9/2,m59/2, h9/2,m57/2, . . . are not ex-

plicitly present in the intrinsic state listed in Sec. IV D
they are generated from the intrinsic state by the projec
procedure described in Sec. II B.

Similarly, the maximum value of the angular momentu
of four protons in thei 13/2 state is (Jpa)max5

13
2 1 11

2 1 9
21

7
2

520, and the intrinsic state will contain states wi
Jpa50,2, . . .,20. Corresponding values for the neutrons
e-

n

e

(Jnn)max536 for 12 n neutrons and (Jna)max532 for 8 a
neutrons. The yrast band projected from the Nilsson intrin
state extends up toJmax5106 composed of (Jn)max554 and
(Ja)max552.

3. Distribution of angular momenta in different sectors
of the intrinsic state

The intrinsic state can be factored into four partsFKpn

pn ,

FKpa

pa , FKnn

nn , and FKna

na consisting of (636), (434),

(12312), and (838) Slater determinants, respectivel
These parts, in turn, can be expanded as

FKpn

pn 5(
Jpn8

WJ
pn8 ,Kpn

pn uJpn8 &, Jpn8 50,2, . . .,18, ~57a!

FKpa

pa 5(
Jpa8

WJ
pa8 ,Kpa

pa uJpa8 &, Jpa8 50,2, . . .,20, ~57b!

FKnn

nn 5(
Jnn8

WJ
nn8 ,Knn

nn uJnn8 &, Jnn8 50,2, . . .,36, ~57c!
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TABLE III. Quadrupole operator matrix elements^qk& and expansion coefficientscj k
a for the asymptoti-

cally deformed sp states in the 126–184 shell. PSM values are for the@ l̃ ,0#5@5,0# representation. Also see
caption for Table I.

a k ^qk& ^qk& c(11/2)k
a c(9/2)k

a c(7/2)k
a c(5/2)k

a c(3/2)k
a c(1/2)k

a c(15/2)k
1

PSM SSANM

1 1
2 10 11.742 -0.202 -0.335 0.420 0.525 -0.485 -0.399

2 1
2 7 8.409 -0.425 0.440 0.548 -0.473 -0.285 0.146

1 3
2 7 8.207 -0.411 -0.471 0.560 0.463 -0.286

2 3
2 4 5.042 0.577 -0.565 -0.394 0.437 0.037

3 1
2 4 4.602 0.612 0.485 -0.134 -0.071 -0.487 -0.361

1 5
2 4 4.549 0.648 0.482 -0.534 -0.251
1
2 ~4.200! 1
3
2 ~3.800! 1
5
2 ~3.000! 1

7
2 ~1.800! 1

2 5
2 1 1.580 -0.584 0.732 0.109 -0.333

4 1
2 1 1.055 0.533 -0.516 0.350 -0.279 -0.229 0.444

1 7
2 1 0.961 0.857 0.379 -0.348

3 3
2 1 0.901 0.616 0.418 0.426 0.152 -0.492
9
2 ~0.2! 1

11
2 ~-1.800! 1

2 7
2 -2 -2.006 -0.439 0.892 -0.111

1 9
2 -2 -2.469 0.975 0.221

4 3
2 -2 -2.469 -0.315 0.489 -0.447 0.659 -0.162

3 5
2 -2 -2.586 0.474 0.333 0.799 0.161

5 1
2 -2 -2.594 0.329 0.372 0.558 0.450 0.473 0.125

13
2 ~-4.200! 1

2 9
2 -5 -5.608 -0.221 0.975

1 11
2 -5 -5.769 1

4 5
2 -5 -5.851 -0.121 0.348 -0.254 0.894

3 7
2 -5 -5.878 0.269 0.248 0.931

6 1
2 -5 -5.906 -0.109 0.231 -0.268 0.464 -0.413 0.691

5 3
2 -5 -5.911 0.141 0.213 0.387 0.370 0.805
15
2 ~-7! 1
d
th

-
s
a-

ose

the
FKna

na 5(
Jna8

WJ
na8 ,Kna

na uJna8 &, Jna8 50,2, . . .,32. ~57d!

The distributions P1(SSANM:Jpn), P1(SSANM:Jpa),
P1(SSANM:Jnn), andP1(SSANM:Jna) in the correspond-
ing intrinsic states are given by the squaresuWJpn ,Kpn

pn u2,
uWJpa ,Kpa

pa u2, uWJnn ,Knn

nn u2, and uWJna ,Kna

na u2, respectively. To
determine these expansion coefficients, we first use the
formed sp states listed in Tables II and III to calculate
functions ^FKue2 ibJyuFK& @see Eq.~10!#. For each of these
functions, the integral in Eq.~14! is carried out to calculate
the correspondinguWu2 value.

4. Normal-parity sector

The distributions P1(SSANM:Jpn), P1(SSANM:Jnn),
andP1(SSANM:Jn) in the n statesFpn, F nn, andF n are
e-
e

shown in Figs. 9~a!–9~c!. Also shown there are the corre
spondingP1 distributions from PSM. These comparison
show that the PSM intrinsic state is an excellent approxim
tion to the SSANM intrinsic state in then sector.

5. SU3-like behavior of the abnormal-parity sector

The distributions of angular momenta in thea states
FKpa

pa , F Kna

na , andF Ka
a are shown in Figs. 10~a!–10~c!. In

this case there is no underlying SU3 symmetry. However, in
the same figures, we compare these distributions with th
corresponding to the SU3 reps pa@20,0#, na@32,0#, and
a@52,0# which contain the same angular momenta as
Nilsson states. The distributions are similar.

The overlaps between ~i! F Kpa

pa (SSANM) and

F Kpa

pa @20,0#, ~ii ! F Kna

na (SSANM) andF Kna

na @32,0#, and ~iii !
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F Ka
a (SSANM) andF Ka

a @52,0# are found to be 0.990, 0.987

and 0.999, respectively. The stateFKpa

pa has 11 component

uJpa& with Jpa50,2,4, . . . ,20. Similarly, the statesF Kna

na and

F Ka
a have 17 and 27 components, respectively. The pr

abilitiesP(N:r) of randomly obtaining these overlap valu
areP(11:0.990)52.131023, P(17:0.987)58.931025, and
P(27:0.999)55.431027.

Although thedistributionsof Jpa andJna in the Nilsson
intrinsic state are SU3-like, the quadrupole moments of th
a nucleons in this intrinsic state are much smaller than
pected on the basis of this similarity. From the effective v
ues lpa520 and lna532, the expected moments a
Qpa@20,0#540 andQna@32,0#564 in units ofa2. The val-
ues obtained using theqk values from Tables II and III are
Qpa(SSANM)513.8 andQna(SSANM)525.6 in the same
units. Thus, the quadrupole collectivity of thea nucleons is

FIG. 9. P1 distributions of nucleons in then states compared fo
SSANM and PSM. The abscissa isJpn in ~a!, Jnn in ~b!, andJn in
~c!. These results are for238U.
-

-
-

only ;40% of the value expected on the basis of SU3 sym-
metry.

Instead of using the highestJ contained in the Nilsson
state ofa nucleons to determine the value ofl for the effec-
tive SU3 rep @l,0#, we may choosel such that the averag
value J̄ (l) is closest to the value ofJ̄ (SSANM) for the
Nilsson intrinsic state. For238U, such SU3 reps are found to
bep@22,0# andn@24,0#. As shown in Figs. 10~d! and 10~e!,
the P1(SU3) distributions for these reps are indeed close
the corresponding SSANM ones. The new value oflp522
is close to the value 20 deduced from (Jp)max, butln524 is
significantly smaller than (Jn)max536.

As shown in Fig. 10~f!, the P1(SSANM) distribution of
Ja in the combined intrinsic state of the 12 nucleons in t
a sector is so well reproduced by the distribution of t
effective SU3 rep a@46,0# that the two curves in Fig. 10~f!
are hardly distinguishable. It is nota priori obvious why the
P1(SU3) distributions ofJ in an SU3 rep@l,0# for which the
J̄ (l) value is closest to theJ̄ (SSANM) value should agree
as well with theP1(SSANM) distributions as they do@see
Figs. 10~d!–10~f!#.

6. Collective distribution of the total angular momentum
over the n and a sectors

The intrinsic statesF Kn
n , F Ka

a , andFK can be written as

F Kn
n 5(

Jn8
WJ

n8
n uJn8&, Jn850,2, . . .,54, ~58a!

F Ka
a 5(

Ja8
WJ

a8
a uJa8&, Ja850,2, . . .,52, ~58b!

FK5(
J8

WJ8uJ8&, J850,2, . . .,106. ~58c!

We show in Fig. 11 the distributionuWJu2 of the totalJ in the
Nilsson intrinsic state. If this distribution is compared, as
Fig. 11, with the corresponding one obtained for the S3
@106,0# rep, the two distributions are remarkably close ov
27 orders of magnitude. This similarity is surprising becau
unlike the n nucleons thea nucleons—which contribute
about half of the total angular momentum—do not ha
SU3 symmetry. The overlap̂F(SU3@106,0#uF(SSANM)& is
0.9998. WithN554 components, the probability of rando
occurrence is 1.1310215.

The stateuJ& projected from the Nilsson intrinsic state
factored inton anda parts, can be written as

uJ&5 (
Jn8 ,Ja8

A~SSANM:J;Jn8 ,Ja8!u@Jn83Ja8#J&, ~59!

where

P3~SSANM:J;Jn ,Ja![uA~SSANM:J;Jn ,Ja!u2

5
uWJn

n WJa
a ~JnJa00J0!u2

uWJu2
. ~60!
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FIG. 10. P1 distributions of
nucleons in the a states of
SSANM showing their SU3-like
behavior. The abscissa isJpa in
~a! and~d!, Jna in ~b! and~e!, and
Ja in ~c! and~f!. These results are
for 238U.
to
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FIG. 11. P1 distribution for the total SSANM intrinsic state
~dashed curve! compared with that for an SU3 representation
@106,0# ~full curve! for 238U. The inset shows the early portion o
the figure on a linear vertical scale.
These probability distributions are shown in Figs. 12~a!–
12~d! and P2(SSANM:J;Ja) distributions in Fig. 5~c!. A
decomposition ofJ into eitherJp andJn or Jn andJa will
ipso facto result in broad distributions~see, for example,
Figs. 4, 7, and 12! provided that both sectors are allowed
share the same mean field. The consequence of not allow
the a nucleons to do so results in what is shown in Fig.
which is drastically different from the results shown in Fig
4, 7, and 12.

TheP3 distributions such as those shown in Figs. 12~a!–
12~d! become so complex for higherJ values that a three
dimensional view is required to convey adequately the fr
mentation of the totalJ into Jn andJa . Figure 13 shows this
fragmentation for theJ510 state in238U. In PSM, the prob-
ability bar corresponding toJn510, Ja50, marked by an
arrow, becomes unity, and all other probabilities are se
zero.

In Fig. 8~b! we present P3(J;Jn ,Ja50) and
P5@J;Jn ,Ja50 (Jpa5Jna50)# for SSANM. They show
that if the Nilsson intrinsic state is a good description of t
intrinsic state of238U, the probability that thea protons and
a neutrons are individually coupled to angular momentu
zero in a yrast stateJ is ,0.4% and decreases withJ. The
statesuJpa50& and uJna50& projected from the Nilsson in-
trinsic state do not have definite seniority. Hence, the pr
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FIG. 12. P3 distribution that a particular yrast stateuJ& in 238U contains the stateu@Jn3Ja#J& according to SSANM.
st

th c-
the
ability that thea nucleons have seniority zero in the yra
band is even smaller.

In Sec. IV B 2, we calculated the overlaps between
statesuIBA: Jn& and uPSM:Jn& in the n sector. We now do
the same between the statesuIBA: Ja& and uSSANM:Ja& in
e

the a sector. The number NJa of components
u@Jpa3Jna#Ja& in the IBA states areN053, N257,
N459, andN658 for theJa50, 2, 4, and 6 states, respe
tively. The corresponding numbers of components in
states uSSANM:Ja& are N0511, N2531, N4549, and
l
FIG. 13. A three-dimensiona
view of the P3 distribution that
the yrast stateuJ& with J510 in
238U contains the state
u@Jn3Ja#J& according to
SSANM.
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N6565. The overlapŝIBA: JauSSANM:Ja& are 0.66, 0.68,
0.70, and 0.72, respectively, for theJa50, 2, 4, and 6
states. The probabilities of randomly getting these values
0.09, 0.03, 0.02, and 0.02, respectively. These overlaps
relatively small becauseN(SSANM) is much larger than
N(IBA). If the statesuSSANM:Ja& are truncated to contain
the same numbers of componentsu@Jpa3Jna#Ja& as occur in
IBA and then normalized, the overlaps of these truncated
normalized SSANM states increase to 0.79, 0.82, 0.88,
0.94 while the probabilities of random occurrences decre
to 0.05, 0.01, 0.003, and 0.002, respectively, for
Ja50, 2, 4, and 6 states.

V. STRUCTURE OF THE YRAST BAND OF 68
168Er100

In PSM and FDSM, the structure of168Er is more com-
plex than that of238U. In the PSM, the SU3 reps of valence
nucleons in 168Er are triaxial (mÞ0). In the FDSM, the
complexity has two origins:~i! SU3 symmetry is possible
only for valence neutrons with the available rep being@18,0#
and ~ii ! valence protons have SO~6! symmetry@6#. Because
there is no single overall symmetry for both protons a
neutrons, the structure of the yrast band has to be obta
by explicitly carrying out a diagonalization of the FDSM
Hamiltonian. In the SSANM, we shall associate the yr
band of 168Er with the states projected from the most d
formed Nilsson intrinsic state, as was done for238U.

The highest angular momentum of the yrast band
served experimentally in168Er till now is Jmax518 @23#. In
shell models, this band results from the interaction betw
18 valence protons and 18 valence neutrons. The former
cupy the spherical sp states (0g7/2, 1d5/2), (1d3/2, 2s1/2) of
n parity and 0h11/2 of a parity in the 50–82 shell. The latte
occupy the states (0h9/2, 1f 7/2), (1f 5/2, 2p3/2), 2p3/2 of n
parity and 0i 13/2 of a parity in the 82–126 shell.

A. Pseudo-SU3 model „PSM…

The Nilsson diagram~of the energies of deformed s
states! for 168Er atb'0.25 shows that 10 protons are in th
n states and 8 in theh11/2 state. Similarly, the number o
neutrons in then anda states are also 10 and 8, respective
The pseudo-SU3 reps for the n nucleons are

@ l̃p ,m̃p#5@10,4# and@ l̃ n ,m̃n#5@20,4#. Both reps have tri-
axial intrinsic states containing bands withK50,2, and 4
in the Elliott classification~or k50, 2, and 4 in the Verga
dos orthogonal classification!. TheKpn50 yrast band con-
tains states withJpn50,2, . . . ,14 and theKnn50 band
states withJnn50,2, . . . ,24. Thetotal pseudo-SU3 rep of
168Er is @30,8# with the Kn50 band containing states wit
Jn50,2 . . . ,38. Theyrast band is generally associated w
the K50 band and we confine our discussion to the dis
bution of angular momenta only in this band. These distri
tions, normalized to unity, are shown in Figs. 14~a!–14~c!
for the proton, neutron, and coupled reps. In the PSM, the
nucleons in thea states are assumed to contribute zero
gular momentum; therefore, the total angular momentum
generated only by then nucleons~that is,J5Jn).
re
re

d
d
se
e

d
ed

t
-

-

n
c-

.

-
-

6
-
is

B. Single-shell asymptotic Nilsson model„SSANM…

The most deformed proton intrinsic state of168Er is ob-
tained by placing the 18 valence protons in the first 18fk

a

states listed in Table I. These include the 10n states
with kp

n (qk
n)56 1

2
1(7.38), 6 1

2
1(3.85), 6 3

2
1(3.52),

6 3
2

1(0.24), and 6 5
2

1(20.19), and 8 a states with
kp
a (qk

a)56 1
2

2(3.18), 6 3
2

2(2.64), 6 5
2

2(1.54), and
6 7

2
2(20.09).
Similarly, the most deformed neutron intrinsic state

168Er is obtained by placing 12 neutrons in then orbits with
kn
n(qk

n)56 1
2

2(9.60),6 1
2

2(6.17),6 3
2

2(5.90),6 3
2

2(2.70),
6 1

2
2(2.24), and6 5

2
2(2.18), and 6 neutrons in thea orbits

kn
a(qk

a)56 1
2

1(3.69), 6 3
2

1(3.23), and6 5
2

1(2.31). There-
fore,Nnn512 andNna56. These values are slightly differ
ent fromNnn510 andNna58 obtained in the PSM from the
Nilsson diagram atb'0.25. The PSM values can be reco
ered from Table II by promoting a pair of neutrons from t
6 1

2
2(2.24) orbits~which are the highest-lying occupiedn

orbits in the Nilsson diagram for168Er! to the6 7
2

1(0.92)
orbits ~which are the lowest unoccupied orbits!. In this sec-
tion, we will present calculations done withNnn512 and
Nna56, but we have verified that the results are very simi
with Nnn510 andNna58.

1. Distributions of Jpn and Jnn

The axially symmetric intrinsic statesFKpn

pn , F Knn

nn , and

F Kn
n contain even angular momenta up to (Jpn)max514,

(Jnn)max524, and (Jn)max538, respectively. The
P1(SSANM) distributions ofJpn , Jnn , andJn in the corre-
sponding intrinsic states are shown in Figs. 14~a!–14~c!, in
which they are compared with those obtained for theK50
band of the triaxial reps in the PSM. The overall agreem
is excellent.

In Figs. 14~d!–14~f!, we have compared the
P1(SSANM) distributions with those obtained from theaxi-
ally symmetricp@14,0#, n@24,0#, and@38,0# reps which con-
tain the same set of angular momenta as theK50 parts of
the triaxial repsp@10,4#, n@20,4#, and@30,8#, respectively.
The agreement is not so good as before~cf. the right-hand
side of Fig. 14 with the left-hand side!.

2. SU3-like distributions of Ja

The intrinsic@p(h11/2)#
8 and@n( i 13/2)#

8 states contain an
gular momenta up to (Jpa)max516, and (Jna)max524. The
P1(SSANM) distributions ofJpa , Jna , and Ja in FKpa

pa ,

F Kna

na , andF Ka
a are shown in Figs. 15~a!–15~c! along with

those for the SU3 repsp@16,0#, n@24,0#, and @40,0# with
same angular-momentum content. They are noticeably
ferent. Alternately, we can match theJ̄ values in the
SSANM and SU3 as before, and the resulting distribution
are shown in Figs. 14~d!–14~f!. In this case, the
P1(SSANM) and P1(SU3) distributions are very similar.
The maximum angular momenta in the intrinsic state
168Er are (Jn)max538, (Ja)max540, andJmax578, according
to SSANM.

C. Microscopic SU3-symmetry model

In the simplest version of the microscopic SU3 model@4#,
the intrinsic state of a nucleus is given by the Nilsson mo
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FIG. 14. P1 distributions as a
function of Ji . The abscissa is
Jpn in ~a! and ~d!, Jnn in ~b! and
~e!, and Jn in ~c! and ~f!. These
results are for168Er.
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in which the spin-orbit interaction has been switched off.
a harmonic-oscillator potential without spin-orbit interactio
shell closures occur at neutron or proton numbers 2, 8,
40, 70, 112, and 168 for theN50–6 shells.

For 68
168Er100, the ‘‘core’’ for protons consists of filled

shells up toN53. Of the 28 valence protons in the intrins
state, 20 occupy the most deformed sp states in theN54
shell, and the remaining 8 protons occupy the intruder st
of the N55 shell. The asymptotically deformed states a
labeled by the quantum numberskp@Nnz8L,qk#, where
k5^ j z8&, p5parity, N5harmonic-oscillator shell quantum
number,nz85number of oscillator quanta along thez8 axis,
L5^ l z8&, and qk5^kuq0

2uk& the quadrupole moment. Th
quantum numbers of the occupied orbits are listed in Ta
IV. The 10 states withkp5 1

2
1, 3

2
1, 5

2
1, 7

2
1, and 9

2
1 of the

N54 shell, listed in the first column of Table IV, originat
from the 0g9/2 spherical state in a Nilsson diagram. The r
maining 10n states listed in the second and third colum
have the samekp values as then states of protons in the
50–82 major shell used in the PSM, FDSM, and SSAN
However, their structures are significantly different. To sh
this, we calculate the overlap between the intrinsic sta
constructed from~i! the 10 SU3 spn states of theN54 shell
listed in the second and third columns of Table IV and~ii !
the ten spn states with the correspondingkp values listed in
Table I ~and used in the PSM, FDSM, and SSANM!. This
,
0,

es
e

le

-
s

.

s

overlap value is only 0.038. The four negative-parity sta
listed in the first column of Table IV are the intruder stat
from theN55 shell with the samekp values as the occupie
a states used in SSANM. However, in SSANM, these
truder states are assumed to be pure 0h11/2, whereas those
listed in the first column of Table IV contain admixture
from all j states belonging to theN55 oscillator shell. As a
result, the quadrupole moments of thea states,qk510, 7, 4,
and 1 for thekp5 1

2
2, 3

2
2, 5

2
2, and 7

2
2 states, respectively

are larger than the corresponding pure 0h11/2 values of 3.69,
3.23, 2.31, and 0.92. The overlap of the eight-proton intrin
state constructed with~i! theN55 SU3 a states and~ii ! the
kp56 1

2
2, 6 3

2
2, 6 5

2
2, and 6 7

2
2 states arising from the

0h11/2 state alone is 0.006.
We shall consider the 20 valence protons in theN54

shell to be then protons of this model. Their SU3 rep is
np@20,0# ~see Table 8 of Ref.@20#!. ~This rep may be com-
pared to the PSM repnp@10,4# for the 10n protons in the
50–82 major shell.! The SU3 rep for the eighta protons in
the N55 shell isap@26,4#. Therefore, thea protons con-
tribute up to (Ja)max530, which is larger than (Jn)max520
contributed by then protons. The total SU3 rep of protons is
p@46,4#.

Of the 30 valence neutrons, 22 occupy the states belo
ing to theN55 shell, and 8 occupy the intruder states b
longing to theN56 shell. These states are also listed
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FIG. 15. P1 distributions as a
function of Ji . The abscissa is
Jpa in ~a! and ~d!, Jna in ~b! and
~e!, and Ja in ~c! and ~f!. These
results show SU3-like behavior of
the a nucleons in 168Er also,
though slightly less clearly than in
the case of238U ~cf. right-hand
side of this figure with the same
side of Fig. 9!.
ic

of

te
n

its
Table IV. The total SU3 rep of neutrons isn@66,14# made up
of nn@34,8# andan@32,6#.

The total SU3 reps for n and a nucleons in 168Er are
n@54,8# anda@58,10#. Hence, according to the microscop
SU3 model, nucleons in thea sector will contribute a little
more than those in then sector to the angular momentum
the yrast states in this nucleus.
Combiningp@46,4# with n@66,14#, the final total rep for
168Er is @112,18#. This rep corresponds to the intrinsic sta
which is asymptotically deformed within the configuratio
space of theN54 andN55 oscillator shells. The intrinsic
mass quadrupole moment, (2l1m), is 242. The spin-orbit
interaction tends to decrease the deformation from
asymptotic value. Using the Nilsson sp states~with spin-
g

TABLE IV. Occupied valence asymptotic Nilsson states in168Er according to the microscopic SU3

model. The states are labeled bykp@NnzL,qk# and only those with positivek are listed. The correspondin
states with negativek are also occupied.

Protons Neutrons

1
2

1 @440, 8# 1
2

2 @550, 10#
3
2

1 @431, 5# 1
2

1 @431, 5# 3
2

2 @541, 7# 1
2

2 @541, 7#
5
2

1 @422, 2# 3
2

1 @422, 2# 1
2

1 @420, 2# 5
2

2 @532, 4# 3
2

2 @532, 4# 1
2

2 @530, 4#
7
2

1 @413, -1# 5
2

1 @413, -1# 3
2

1 @411, -1# 7
2

2 @523, 1# 5
2

2 @523, 1# 3
2

2 @521, 1#
9
2

1 @404, -4# 9
2

2 @514, -2#
11
2

2 @505, -5#

1
2

2 @550, 10# 1
2

1 @660, 12#
3
2

2 @541, 7# 3
2

1 @651, 9#
5
2

2 @532, 4# 5
2

1 @642, 6#
7
2

2 @523, 1# 7
2

1 @633, 3#
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orbit interaction!, averaged valueŝ2l1m& and ^m& have
been calculated@4# as 202 and 11.5, respectively, for th
168Er intrinsic state at the measured deformation. Thus,
effect of switching on the spin-orbit interaction is such th
while the mass quadrupole moment is reduced by,20%, the
reduction in the triaxiality parameterm is ;35%. In the
configuration space of theN54 andN55 shells, the yrast
band of 168Er extends up toJmax5130 compared to
Jmax578 in the SSANM andJmax538 in the PSM.

VI. PHYSICAL ORIGINS OF ROTATIONAL STATES

While projected HF calculations~with a resonable effec
tive interaction! do give rise to a rotationlike energy spe
trum for deformed nuclei, such a spectrum is not a con
quence of differences in the kinetic energy of rotation of
intrinsic state. The latter is the intuitive description of t
rotational spectrum used to develop the phenomenolog
rigid-rotor model or the hydrodynamic model or their mo
satisfying microscopic extension to the Nilsson or crank
Woods-Saxon model. We follow a reasoning suggested
Khadkiker @24# to show that the energy spectrum of th
states projected from an HF intrinsic state results entir
from differences in the contributions of the two-body pote
tial energies to states of different angular momentaJ.

Consider an intrinsic stateFK(HF) obtained self-
consistently by an HF calculation with a Hamiltonian

H5(
i

~ t i1v i !1(
i, j

v i j ~61!

consisting of one-body and two-body parts. The energ
EJK of the stateCK

J projected fromuFK(HF)& are given by

EJK5^CK
J uHuCK

J &, ~62!

with CK
J given by Eq.~6a!. We can write

EJK5
1

CJK*
1

CJK
^FKuP K

JHP K
J uFK&. ~63!

BecauseH commutes withP K
J andP 25P, we get

EJK5
1

uCJKu2 ^FKuP K
JHuFK&. ~64!

This equation can be written as

EJK5
1

uCJKu2(G ^FK~HF!uP K
J uG&^GuHuFK~HF!&, ~65!

where the statesuG& form a complete set of states. Wit
FK as the HF state, the setuG& may be conveniently classi
fied as the set ofu0p20h&, u1p21h&, and u2p22h& states
with respect to FK . The term in Eq. ~65! with
uG&5u0p20h& is just the energyEHF ~of the stateFK)
which is independent of J. The next term with
uG&5u1p21h& vanishes because, by definition, the Ham
tonian cannot connect the HF state to any intermed
u1p21h& state. Hence, aJ-dependent contribution toEJK is
obtained only withuG&5u2p22h& and only the two-body
part ofH can contribute to this term. We get
e
t

e-
e

al

d
y

ly
-

s

te

EJK5EHF1eJK , ~66!

where

eJK5
1

uCJKu2 (
2p22h

^FK~HF!uP K
J u2p22h&

3^2p22huHuFK~HF!&. ~67!

Thus thedifferencein the energies of the yrast states pr
jected from the HF state are determined entirely by the
ferences in thepotential energiesof two-body interactions
and not by the differences in the kinetic energy of rotation
a function of angular momentum. Although the kinetic e
ergy part of the Hamiltonian does, by itself, contribute to t
J-dependent part of the total energy of the projected st
this contribution is cancelled exactly by the contributio
from the one-body potentialv i and the one-body potentia
extracted from the two-body interaction. Thus, the rotatio
spectrum of a deformed nucleus obtained in a projected
calculation is not a consequence of the rotation of
nucleus. On the other hand, the description of the rotatio
band in terms of cranked HF or cranked Woods-Saxon
tential model explicitly invoke rotation of the nucleus. Th
connection between these two descriptions of the same
nomena remains to be satisfactorily explored, although c
siderable progress in this direction has been made with s
plectic models.

VII. SUMMARY

There is general agreement about the collective partic
tion of protons and neutrons in generating the quadrup
collective states of a deformed nucleus. A closer examina
shows that this agreement is restricted to protons and n
trons in then sp states. Two prominent models~PSM and
FDSM!, specially designed to describe quadrupole collect
phenomena, treat nucleons in thea sp states as spectators
the collective motion executed by nucleons in then sp states.
Other models~IBA-2, SSANM, HF, etc.! allow nucleons in
states of both parities to participate actively.

We have determined the contribution of angular mome
Jpn and Jnn of n protons andn neutrons to the total yras
angular momentumJn . We find that the totalJn is collec-
tively distributed over many components of the ty
u@Jpn3Jnn#Jn& allowed by angular momentum conservatio
and that these distributions, obtained for different mode
are similar.

For the IBA-2 and SSANM we have, in addition, calc
lated~but not shown in this paper! the distribution of a yrast
angular momentumJ over the statesuJp& and uJn&, which
contain bothn anda nucleons. These distributions are sim
lar to the one obtained for the PSM, in which only then
nucleons contribute to the totalJ. To bring out the contribu-
tion of thea nucleons in the IBA-2 and SSANM, we hav
calculated the distribution ofJ over the components
u@Jn3Ja#J&. This distribution is similar to that ofJ over
u@Jp3Jn#J&. This similarity shows that just as protons an
neutrons contribute collectively to the yrast angular mom
tum, nucleons in then anda states also do so, if permitted
In the PSM and FDSM, thea nucleons are allowed to inter
act with each other by a strong pairing interaction, but t
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dynamic possibility is ignored for then nucleons. More sig-
nificantly, thea nucleons are denied dynamic participation
the quadrupole mean field, in which then nucleons partici-
pate fully.

The PSM assumptions regarding thea nucleons are car
ried over to the symplectic extension of the model@25#. This
extension does take into account explicitly the quadrup
polarization of the shell-model core resulting from intera
tions between valence and core nucleons, but the treatme
restricted to then sector. Because core polarization aris
primarily by coupling to the giant quadrupole resonance,
average contribution of the polarized core to the total ang
momentum is expected to be fewer than two units. Hen
the angular-momentum content of then part of the intrinsic
state of a deformed nucleus, as described in the pseudo
plectic SU3 model, should be about the same as in the PS
Just as in the PSM, thea nucleons do not contribute an
angular momentum to the yrast band in the implementa
of the symplectic extension of the PSM reported so far@25#.
The expected contribution ofa nucleons to the tota
B(E2;01

1→21
1) value can be simulated by multiplying th

value obtained for then nucleons with an appropriate sca
factor. It would be difficult to take into account the contr
bution of thea nucleons to the total angular momentum
an yrast state by such a scaling procedure.

One of the reasons for rendering thea nucleons spectro
scopically inert in the PSM and FDSM is that neither Ellio
SU3 symmetry nor pseudo-SU3 symmetry exists for thej n

configuration assigned to them. The advantage of us
SU3 symmetry~for describing rotational states! is that most
measured properties are well reproduced by appropr
choice of the parameters describing this symmetry, altho
the building blocks of SU3 symmetry are quite different in
these two models. In view of the overall agreement betw
measurements on the one hand and calculations invol
only then nucleons on the other, no strong motivation cu
rently exists for including the effect ofa nucleons in these
models. In other words, to do so would make the calculati
prohibitively large and cumbersome~if not impossible! with-
out a comparable increase in the quality of agreement w
experiment.

Projected SSANM provides a physically meaningful a
proach for including the contribution of thea nucleons to the
collective rotational states while retaining the indubitable
vantage of using SU3 symmetry for then nucleons. In the
asymptotically deformed Nilsson intrinsic state, then nucle-
ons have good pseudo-SU3 symmetry, but thea nucleons, at
first sight, have no inherent underlying SU3 symmetry. How-
ever, an important finding of this work~that partly confirms
the suggestion made earlier in Ref.@11#! is that the distribu-
tion of angular momentaJa in the a part of the Nilsson
intrinsic state is SU3-like. The yrast band is then generate
by the quadrupole coupling of SU3 states uJn& and
SU3-like statesuJa& contained in the intrinsic state. An un
avoidable consequence of this coupling scheme is that
probability for an yrast angular momentumJ to be generated
entirely by then nucleons is very small in contrast to th
coupling scheme of the PSM and FDSM in which this pro
ability is 1. ~Note that in the PSM the probability that a
yrast stateuJn& is produced by excitation of protons alone
le
-
t is
s
e
ar
e,

m-
.

n

g

te
h

n
g
-

s

th
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he

-

neutrons alone is also quite small.!
All models discussed in this paper have possibilities

improving their description of the angular-momentum stru
ture of rotational yrast states. Unfortunately, current exp
ments can distinguish only between yrast states of differ
J and can give few details about how that angular mom
tum is generated. In spite of this drawback, it seems m
reasonable that nucleons in abnormal-parity states sh
contribute substantially rather than not at all to the total
gular momentum of collective rotation.

Recently, significant advances have occurred in the imp
mentation of the PSM. The effect of pairing within then
sector has been explored in a series of papers@26#. This
model is also being extended@27# to allow thea nucleons to
participate actively in the collective dynamics. The calcu
tions are quite complex and have not been, to our kno
edge, implemented to describe the yrast bands of238U and
168Er in detail. However, the results of the initial schema
calculations confirm that thea nucleons play an importan
role in the spectroscopy of deformed nuclei when they
allowed to participate in the dynamics.
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APPENDIX: SOME CALCULATIONAL DETAILS

Computationally, a main problem in this paper is the c
culation of the expansion coefficientsa(@l,m#;J,K) and
CJK of the SU3 and SSANM intrinsic states, respective
@see Eqs.~33! and ~4!#. Knowing these coefficients, we ca
obtain the probabilitiesP1, P3, andP5 from Eqs.~25!, ~29!,
and ~32!, respectively.

For calculating the expansion coefficients in t
SU3-based models, we use the Elliott function
R(@l,m#LKK8) given in Eq.~36! and evaluate them usin
algebraic formulas@18# for SU3 reps@l,m<4#. We switch
to numerical integration when dealing with the@30,8# rep
suggested in168Er ~see Sec. V A!. TheR function is simply
related toa(@l,m#;J,K) @see Eq.~35!#.

In the SSANM, we construct the deformed sp orbita
fk

a from the spherical sp orbitalsck
nl j with k being the pro-

jection ^ j z&. We use harmonic-oscillator wave functions
the sp spherical basis states. We make a further distinc
between then anda states. For the latter, the spherical ba
consists of only one orbital; therefore,fk

1[ck
nl j with

cj ,k
1 [1. For then states, we work in a single major she
There are 4, 5, and 6 spherical sp orbitals in the 56–
82–126, and 126–184 shells, respectively. These orbitals
mixed by theqq interaction. The matrix elements of the s
quadrupole operatorq0

25A16p/5r 2Y20 between the spherica
sp harmonic-oscillator states are given by@7#
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^n8l 8 j 8kuq0
2unl jk&5

~ j2k0u j 8k!

A2 j 811
^n8l 8 j 8uuq0

2uunl j & ~A1!

^n8l 8 j 8uuq0
2uunl j &5A16p

5
^n8l 8 j 8uur 2Y20uunl j & ~A2!

^n8l 8 j 8uur 2Y20uunl j &52A5~2 j 811!

16p S j 82120U j 12D ^n8l 8uur 2uunl& ~A3!

^n8l 8uur 2uunl&5A2l1 l 82n2n812
~2l12n11!!! ~2l 812n811!!!

n!n8!p
~A4!

3(
s50

n

(
s850

n8

~22!s1s8S nsD S n8

s8
D @~2s12s81 l1 l 81211!/2#!

~2l12s11!!! ~2l 812s811!!!
. ~A5!

A matrix (535 in the case of the 82–126 shell! is built up out of these matrix elements for each possible positive valu
projectionk. The eigenvalues and eigenvectors of these matrices are the quadrupole moments^qk& and the expansion coef
ficientscj ,k

a given in Tables I, II, and III.
Once the coefficientscj ,k

a are known, we proceed to evaluate the matrix^FKue2 ibJyuFK&, the elements of which are give
in Eq. ~11!. We need to pick only thosecj ,k

a coefficients consistent with the procedure used to build the intrinsic state~see Sec.
IV D 1!. We employ numerical and analytical programs to compute the rotation functionsdKK8

J (b), frequently checking
numerical results with analytic calculations. In the final step, we calculate theCJK coefficients by numerically integrating Eq
~14!.

These calculations are done in thepn, pa, nn, andna sectors separately. To obtain the combinedCJK for all nucleons in
the n sector we use Eq.~30!. Depending on the case of interest~all nucleons in thea sector, all protons, all neutrons, a
nucleons, etc.!, we invoke an expression similar to Eq.~30! for calculating theCJK coefficients.

In evaluating theP3 probabilities, we need Clebsch-Gordan coefficients of very large values ofJ. They are of the type
(J1J200uJ0) expressible by formulas involving only multiplications and divisions. We evaluate them by summati
logarithms, thereby ensuring their respective accuracy at very large values ofJ.
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