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Angular-momentum structure of the yrast bands of deformed nuclei
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We have quantitatively analyzed the wave functions of the low-lying yrast states of deformed, heavy nuclei
(specifically 28 and %%Tr) given by different models to determine the relative contribution of the valence
nucleons to the total angular momentum of the nucleus. In all models, an yrast state is generated, as expected,
by collective contributions from both proton and neutron angular momenta. We have also examined the
relative contribution of valence nucleons in the normal-parity states and in the abnormal-parity, inighder
states to the yrast angular momentum. If the states with definite angular momenta projected from the Nilsson
intrinsic state of the nucleus are assumed to provide a good approximation to the structure of the yrast band, the
contribution of nucleons in the abnormal-parity states to the yrast angular momentum is shown to be about the
same as that of nucleons in the normal-parity states. This result is in marked contrast to the assumption made
in two prominent modelgpseudo-SY model and its symplectic extension and fermion dynamic symmetric
mode) that the nucleons in abnormal-parity states, do not, in the first approximation, contribute any angular
momentum to the yrast band. We also find that the distribution of angular momenta contained in the intrinsic
state of the abnormal-parity nucleons in tHeconfiguration, which does not have any S&ymmetry, is
surprisingly similar to the distribution of angular momenta contained in apiftdnsic state with the same
average value of angular momentu80556-281@7)04706-7

PACS numbsgs): 21.60.Fw, 21.60.Cs, 27.70q, 27.90+b

I. INTRODUCTION angular momenta projected from the lowest-energy intrinsic
state[7]. The Nilsson mod€]8] provides a good approxima-
The simplest description of the yrast band of an axiallytion to this state. A Hartree-FodidF) calculation restricted
symmetric deformed nucleus is provided by hydrodynamido the valence configuration spak® would provide an in-
or rigid-rotor modelq1]. In these models, this band results trinsic state that is better, in principle, than the Nilsson state.
from the rotation of a deformed intrinsic stafe its ground  Such calculations have been carried out and they confirm
stat¢ around an axis perpendicular to the axis of symmetry[10] that the Nilsson state is a good approximation to the
Yrast states with increasing angular momedta0,2,4, ...  intrinsic state of a heavy deformed nucleus.
arise as a result of increasing kinetic energy of rotation. All In an earlier work[11] on the structure of the collective
nucleons participate in this collective rotation—althoughstates in%%Fe, a suggestion was madey extension and
their actual motions would be different in the two models. inference that the rotational features of heavy deformed nu-
In shell modeld 2], low-lying states of nuclei are attrib- clei could be a consequence of approximate macroscopic
uted to the dynamics of nucleons in a valence shell. EversuU, symmetry even when a substantial number of nucleons
though the majority of nucleons belong to a spherical coréhave no microscopic Slsymmetry. This suggestion is pur-
and remain dynamically inert, they still exert influence onsued in this paper.
the dynamics of valence nucleons by modifying the effective  Exact diagonalization of the Hamiltonian matrices for dif-
interactions and transition operators. In these models, thggrent values of angular momenta in the chosen valence
shortest route to a description of rotational states is providedpace have reproduced not only the rotationlike yrast bands
by considering them to be a consequence of Syimmetry  put also many other low-lying states of light nuclei with
based, one way or another, on the quadrupole-quadrupolfucleons in the @ and 1 0d shells[12,13. Such calcula-
(qq) interactions betweerii) valence nucleongpseudo- tions have also been attempted for nuclei at the middle of the
SU; model[3] and microscopic Syymodel[4]) or (i) sand  1p Of shell[14]. This approach cannot be used, however, to
d bosons representing nucleon pafisteracting boson ap- describe the structure of heavy deformed nuclei because the
proximation [5]) or (iii) S and D nucleon pairs(fermion  configuration space is prohibitively large. However, a trun-
dynamic symmetry moddE]). cation scheme based on approximate quasi-S{gnmetry
A more direct description of the yrast band of a deformedhas been recently implement¢#l5] to describe rotational
nucleus which does not necessarily invoke;Symmetry is  motion in the spherical shell model.
obtained by considering it to be the set of states of definite In general, the aim of nuclear models is to calculate those
physical quantities for which measurements exist or can be
made relatively easily. It turns out that models with signifi-
*Permanent address: Nuclear Research Center—Negev, Beeaantly different internal content often produce numbers for
Sheva, Israel. measured quantities that are quite similar. Therefore, a mere
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listing of the agreement with the available measured quantithat nucleons in the intruder highstate are coupled to an-
ties is insufficient to provide a proper appreciation of thegular momentum zero witlzero seniority the IBA and
inner workings of various models. A closer examination of SSANM do not make this assumption. We examine the ef-
the structure of the wave functions may provide a better unfect of this assumption on the structure of the yrast states of
derstanding of the models and of the physics of the processéisese nuclei by expanding) in terms of|J,) and|J,). In
that these models are attempting to describe. Sec. V C, we discuss briefly the microscopicStlodel and

In this paper, we examine the structure of the yrast bandis treatment of the contributions of protons and neutrons in
of highly deformed nuclei such &% and %%r. We con-  then anda states to the total of an yrast state of®r.
sider 2%%Pp as the core for*®U and '*2Sn as the core for The essential point of the description of rotational states
1881, Specifically, we want to determine the relative contri-in shell models using projected HF approaches og Sjn-
butions of angular momenta, of valence protons+) and  metry is that the energy spectrum of yrast states results from
J, of valence neutronsi) to the total angular momentum differences in the energid®f states with different angular
J of the yrast state. The statgk.) and|J,) have different momenta caused by the two-body interactions amat from
microscopic structures in different nuclear models. Howeverthe differences in the kinetic energies of rotation. This dis-
the strong quadrupole correlation between these states-tinction is brought out in Sec. VI. Finally, a summary is
required to produce rotationally collective states—should begiven in Sec. VII.
largely independent of their microscopic structure. We shall
obtain a quantitative estimate of this correlation.

We also pay special attention to the role played by va-
lence nucleons in the intruder abnormal-parity, hjgh-

single-particle(sp) states 0115, Oi1zp, and Qisp in the In this section we describe the construction of an intrinsic
50-82, 82-126, and 126-184 shells, respectively, in detekiate 7, and the procedure for projecting out various states
mining the angular-momentum structure of the yrast bandsyith different angular momenta from this intrinsic state. We
Different models assign differeriand sometimes contradic- ca|culate the probability distributions ¢ total J contained
tory) roles to nucleons in intruder levels. When these nuclejy £ - (i) J_, in FZ ;5 (i) J,, in 7% ; and(iv) J, and

ons are allowed to participate in a unified collective motion, . .
P b J,, in the projected statf]). We then calculate the prob-

we want to know their contributions relative to those made™ 7! . .
by all other nucleons abilities P3(J,;Jd.m,J-a) that the statéd,) projected from

In Sec. II, we first describe the calculation of the prob-17k,) contains the statef{J.,xJ..]J-) and the corre-

abilities of differentd contained in a deformed intrinsic state sponding probabilitie®3(J,;J,n,J,a) for neutrons. Finally,
denoted byF, . We then describe the structure of the pro-we calculate the probabilitieB;(J;J,,J,) that the projected
jected statb|JK> in terms of state§) .K ;) and|J,K,) pro-  state |J) containsn and a nucleons coupled tdJ,, and
jected from the proton and neutron parts of the intrinsic statela, respectively, and then the related probabilities
The statglJ K ) is further analyzed to determine the rela- P3(J;J,,J,=0).
tive contribution of protons in the normal-parityn) and
abnormal-parity &) states(with angular momentd ., and
J.a, respectively to the totald,. A similar decomposition
is done for the statéJ,K,). This information is used to  Let ¢i(x) be the deformed sp state of nucleons in an
determine the probabilities that nucleonsrimand a states ~ axially symmetric intrinsic statéy (x). Here,k=(j,) is the
(referred to loosely as anda nucleon$ contribute different  projection of sp angular momentum along the symmetry axis
angular momentd,, andJ, to the totald of an yrast state.  (body-fixedz’ axis), a labels different deformed sp states
In Sec. lIl, we consider the description of rotational stategvith samek value, andK =ZXk; (summed over all occupied
with models using Sysymmetry. In these models, the yrast statesi) is the projection of the total angular momentum
states belong to the highest available;3epresentatiogab- ~ along the same axis. Generally, for an axially symmetric de-
breviated as rep[\,«]; that is, they can be projected from formation,K=0 for even-even nuclei. Within the configura-
the most deformed intrinsic state of this rep. We describe théon space of a single major shefh(x) can be expanded in
calculation of the probabilities of different angular momentaterms ofsphericalsp states/l(x) as
contained in this intrinsic state. States with tolalesulting

Il. DISTRIBUTION OF ANGULAR MOMENTA
IN AN INTRINSIC STATE

A. Structure of the intrinsic state

from the coupling of reps[\,, u,] of protons and Qg a i
[N\,, u,] of neutrons are expanded in terms of the states $i(x) 2 ¢ kthi(X). (€N
I[32%J,19).

In Secs. IV and V, we considéf®U and %8r and outline
their descriptions in terms of the pseudo-3todel (PSM),
interacting boson approximatiofiBA), fermion dynamic .
symmetry mode(FDSM), and single-shell asymptotic Nils- ¢t = (=) 2
son modelSSANM). In their simplest implementatioriand
the ones currently availabldhe PSM and FDSM assume

For an intrinsic state symmetric about midplane, we have

The simplest intrinsic statéy is a Slater determinant con-
structed with occupied sp stateg . For example, consider

10ccasionally, we refer to the projected stae&), |[J,K.),  an intrinsic state of four particles occupying staﬂ;(qé. This

|3,K,), etc. more simply agl), |J.), |J,), etc. intrinsic state can be written as
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All intrinsic states appearing in this paper are of this type.

B. Projection of states with definite angular momenta fromFy

The intrinsic stateFy is deformed and can be expanded in

terms of the state‘ifJK' with definite total angular momentum
J' of valence nucleons as

Fe(¥)=2 Cy ¥y (x), 4)
J!

where W (x)=(x|J'K) are normalized wave functions of
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IC |2=2J+1f Dk () (F|R(Q)| FHdQ.  (9)
JK W KK K K .

The term({F«|R(Q)|Fx) is just the overlap ofFi(x) with
the same function rotated by the Euler andlesIf Fi is a
determinant, we can write

(FcIR(Q)| Fey=(Fxle Bl F)=det [N, (B)].
(10)

The o rth elementN, (8), of this determinant is given by

NorB)= 2 ¢/ Cl di s (B). (11)

where
di 1 (B)=(ik,le""#H|jk,) (12

and thec coefficients are defined in E¢L).
As an example, thec=2,7=3 element Ny3(B) of

state [J'K). We want to determine the distribution det[N,.(8)] for the four-particle intrinsic state of E¢@) is

P,(J)=|C,«|? which gives the probability thaFy contains
a state|JK) with definite J. This distribution is a partial
measure of the correlation between differ@states required

to produce the intrinsic state. This correlation is produced by

given by

Nz B)= 20 €503 Qi (B)- (13

the mean field generated by the effective interactions in a

chosen configuration space. Relative phases between diff
ent C;x amplitudes, needed for specifying this correlationdet[N (B)

€nce the sequence of occupied orkis in Fy is specified,

] can be calculated. The probabilitZ;x|? is

more completely, are omitted because they are not requiregh-ined by evaluating Eq9). After carrying out the inte-

in the current discussion.

Consider a projection operat@y , which, acting on an
arbitrary intrinsic state, projects out the stal) with the
wave function®y, . Then, by definition

PrFc=Pr2 Cy¥x =Cyc¥i. (5
J/
Therefore
J 1 J
Yi==—PkF, (6a)
CJK
(VR = o (A PRPIF)=1. (6D
CJKCJK
For any projection operatof??="P; hence,
|Corl®=(Fl Pkl F)- (7)
The projection operator is given §9]
; 23+1 3 .
=z | Ok ROd0, @

where (Dy«(Q)) are standardD functions [1] and
R(Q)=R(a,B,y)=e '¥ze"Alye" 17z |5 the rotation opera-
tor which rotates coordinates to x’ by the Euler angles
QO=a,B,y. The integration is over all angles with
dQ=da singdgdy.

We can write Eq(7) as

gration over the Euler angles and vy, this equation reduces

2J+1 .
|CJK|2:TJ dik(B)(Fle™ | Fi)sing dp.
(14

Equation(14) is valid for a general intrinsic state, but here
we shall calculatéC,«|? only for determinant states of the
type given by Eq.(3). The average valudl of the total
angular momentum contained in an intrinsic st&ieis de-
fined by

J=1(3%, (15)
where
<J2>=§ J(I+1)[Cyel? (16)

is the average value @ in Fy .

C. Distribution of angular momenta of protons and neutrons
in the projected state|JK)

Because protons and neutrons share a common deformed
mean field produced by effective interactions, their motions
are correlated. A partial measure of this mean-field-generated
-v correlations is given by the distributioB3(J;J,,J,),
which denotes the probability that the yrast stpte with
total angular momenturd (projected from the intrinsic state
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Fx) contains protons and neutrons with corresponding angu-

lar momental,, andJ, . This intrinsic state can be factored
as

| F=1FIF). (17)

The stategFy ) and|Fy ) can be expanded as

> Ch 13K,
J, v v

v

P2 )= Cly K, and |7 )=
w o
(18

where |J/K ) and |J/K,) are alternate notations for the

wave functionS\PJK“ and \PJK , respectively. The squares of

the expansion coefficient€] , | and|C}  |? can be cal-
culated using Eq(14) with F¢ replaced by]-‘;ﬂ or ]—",ZV.
Substituting Eq(18) into Eq. (17), we obtain

T v J! J

— T v

Fe= 2 Cly Cr Wy
\]ﬂ_,\]v T v

=2 2 Cly Chy (BLIKKIK)[ILX;137K),
J’ \],;TVJ,’, T T v v

(19

where Q/J/K_K,|J'K) are Clebsch-Gordan coefficients
and|[J! xJ!13'K) is the normalized and properly antisym-
metrized state with total’ obtained by couplingl, and
J;,. Comparing the expansions &% in Eqs.(19) and(4), we
conclude that the wave functiolry with a specifictotal J
projected fromFy has the structure

J 1 ™ v rqr ! ’
\PK:C_JKJZJ, CJ;TK”CJ,VKV(J,TJVKﬁK,JJK)|[J,TXJ,,]JK).
ke 14 (20)
This equation can be written as
V= 2 A3IL,30)[[35X3,19K), (21)
R
where
Cly Chy (373K K,|IK)
AL )= — (22)

CJK

The probabilityP5(J;J,,J,) that protons and neutrons con-
tribute specific,. andJ, to the totalJ is given by

P3(3;3,,d,)=1A(J;3,,3,)|% (23
TheseP; values satisfy the normalization condition
Y Pa(33;.3)= 2 [AQI;,3)P=1. (24

roqr roqr
‘]77"]1) ‘]'n"JV

From Egs.(24) and(22), we obtain
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P1(J)=[Cyul?= X [CT Ch (3LIKK,|IK)|Z
RN v

(29

For axially symmetric even-even nuclei, &l values with
subscripts appearing in the above formulas are zero in addi-
tion to K=0. Various probabilities for the yrast states of
233 and %% r will be examined in Secs. IV and V, respec-
tively.

D. Distribution of proton and neutron angular momenta
in n and a states

Let N, andN_, represent valence protons mand a
states, respectively. Thési.=N_,+ N, is the total number
of valence protons. Similarly, we writsl,=N,,+N,, for
valence neutrons. Ifi anda protons share a common field,
their J,, and J, must be correlated in a specific way to
generate the statéd). We are interested in the probabilities
P3(J3;:dmn I ma) and the related probabilities
P3(J,;3,n,d,a) andP5(J;J,,J,). They provide partial mea-
sures of the quadrupole correlations between rthand a
protons,n and a neutrons, anch and a nucleons, respec-
tively.

In general, the proton intrinsic state can be factored as

— n a
Fe =AF T (26)
where A implies antisymmetrization between tmeand a
protons. Because the and a sp states are different, this
antisymmetrization puts no restriction on the angular-
momentum content OFEﬂ. Analogous to Eq(23), we ob-

tain
P3(‘]7T ;‘an "]7Ta)
| 3 CSTﬂ_aK,n_a(‘]ﬂ'nJﬂaKﬂTnK#a|J‘ITK‘IT)|2

CJ K
2
1Cs x|

Analogous to Eq(25), we also obtain

>

J

N’ Ta

(27)

Cﬂ'

J;TaK ma

, |C§’ K (‘J;rnJ;raKﬂ-nKrralJrer)lz-

an - 7n

(28)

Similar expressions hold for neutrons.

E. Distribution of total angular momentum in n and a states

The stategJ) are generated by-a correlations in a way
completely analogous tar-v correlations. Following again
the procedures used to derive E¢&3) and (27), we get

|C5 k. C5.x,(IndaKnKalIK)|?
|Coul? '

PB(J;JnaJa): (29)

where

|Clik

nn

™
CJ' K
an 7n

2_
- 'E,

wn "~ vn

Clr e, TrndnK anK ol JoKo) %

(30
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A similar expression holds fdnC?aKa|2. The contribution of

a givenJ, to the totald irrespective of thel, values is given
by

Pz(J;Ja>=JE P3(3;35,J4). (3D)

One of our aims is to obtain the probabilities that the state

|J) has a component with,= 0 in which thea neutrons and

a protons are separately coupled to angular momentum zero

(as assumed in PSM and FD3M hese joint probabilities
are given by

Ps[J;30,3a=0(J7a=J,a=0)]
=P3(J;3,,Ja=0)XP3(1,=0;J,,=0J,,=0).
(32
I1l. ANGULAR MOMENTA CONTAINED IN THE
INTRINSIC STATES OF SU3;-SYMMETRY MODELS

The yrast band of states with definifecontained in a

2889
where
2 .
Ia=f da €€ ?sin(a)"coq a)* ", (373
0
2 i )
= fo dy e7sin(y)"cog y)* ", (37
| 5= fo sing dg dy,(B)cod B)" . (379
Convenient  algebraic  formulas  for  calculating
R([\,#]IKK"=K) have been provided by Vergadfks]
up tou=4.

The normalization ofFf[ \,u] given in Eq.(33) together
with Eq. (34) gives the normalization condition on the
function

(DA LD =20 2 2RI PIKK) =1.
K!
(39)

SU; rep [N, 1] can be projected from the highest-weight For axially symmetric repg\,0], K=K’ =0. In this case,
intrinsic stateF[\,u]. For prolate nuclei of interest to us we get

here,\ > w. An intrinsic state withu # 0 is triaxial in shape
and contains different K bands with

K=u,u—2,...,1 or 0. Aband withK=0 contains states

Py with J=0,2,4... \+u. Bands with K#0 contain
J=K,K+1,... K+\ states. The statek} can be obtained
from F[\,u] by the Elliott projection procedurgl6,17.
The angular-momentum content of th¢A, ] state can be
brought out by expanding it in
V([N u]JIK) as

FNpl= 2 a((n,ulid KHW(Np]IK). (33
J' K’

Projected state® ([A,u]JK) of the samed belonging to

terms of states

2 R([A,V]J,K=O,K’=O):2 la([\,0];3,0)2=1,
(39

and|a([\,0];J,0)|? is the probabilityP,(SUJ N, ]:J) that
the intrinsic statef[ \,0] contains angular momentut

For triaxial repq A\, ], we shall associate the yrast band
with only the K=0 band. In this case, the sum
>sla([a,x];d,K=0)|2<1. We can multiply the
amplitudesa([\,x];J,K=0) by a normalization constant
No such that N3Zjla([\,ux];d,K=0)?=1. We
regard N3 |a([\,u];d,K=0)]> as the probability
P.(SU; [A,]:3,K=0) that theK=0 band contains angu-

different K bands are not orthogonal. The overlap betweer@ momentumJ.

two such states is given by

(PN, p]IK)|P(IN,x]IK"))
_ R(I\ENKK)
Ca(h,uld.Ka( w3, K

(39

Because the staf& ([\,u]JK) is normalized, we get

la([h, 11:3.K)[2=R([\, 1 ]IKK). (35
The functiond R([\,x]IJKK') derived by Elliott[16,17]
are given by

(23+Du' & ()"
8m? zon!(u—n)!'“'“ﬁ'
(36)

R[N, u]IKK") =

2We use the notatioR([ X, ]IKK') in place of the usual nota-

tion P([\,x]JKK") to avoid confusion with probabilities denoted

by P.

In the following sections, we shall use the results of this
section to calculate the distributions df.,, J.a, Jun,
Jyar Iy 3y, Jns Ja, @andJ in the Nilsson or Syl intrinsic
states for?%U (Sec. IV and **%€Er (Sec. \J. The Nilsson
intrinsic states are axially symmetric in both cases while the
SU;, reps are axially symmetric in th&U case and either
axially symmetric or triaxial in the'*®€r case depending on
the distribution of neutrons in anda states.

IV. STRUCTURE OF THE YRAST BAND OF 23U ,,4

The highest angular momentum of the yrast band ob-
served experimentally iU till now is J;,=30[19]. In a
shell-model description, this band arises as a result of
interactions among valence nucleons. Wit?gOZBPbm
as the core, the ten valence protons U4 are
confined to the sp (notation n/j)  states
(Ohgjp, 1fp), (1fgm, 2ps3), 2P, and to the high-spin
intruder state 0,3, appropriate for the 82-126 major
shel. ~The 20 wvalence neutrons occupy the
(Oiy12, 19912, (19752, 2dsp), (2d3p, 3sy,) states and
the intruder (45, State in the 126—184 shell.
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A. Pseudo-SY model (PSM) scribed by the highest Sltep [54,0] obtained by coupling

In the PSM, doublets of sp states of normal pa(‘t‘bose the ’77[18,@ and V[36,0] reps. This band, therefore, extends
within parentheses in the preceding paragramte consid- UP t0 theJna= (Jn)max=54 state. .
ered to be pseudospin doublets attributed to pseudoangular W€ want to examine the structure of the yrast stajein

~ . ~ terms of state$J .,y and|J,,). To do so, we use the Elliott
momenta | =4, 2, and 0 forming aN=4 pseudo- . .

} —~ ) - expansion[Eq. (33)] of F[\,,u,] and F [\, ,u,] in
oscillator shell and tol ,=5, 3, and 1 forming aN=5  terms of the states ¥7([\,,u.]J,K,) and
she;ll. The observed near degeneracy of these dqu(cMBtS (N, ,u,]d,K,), respectively, belonging to differef€ ;
plying small pseudo-spin-orbit couplingogether with the  andK , bands. Forr*®U, u =0 for both protons and neutrons.
dominance of thejq component of the effective interaction Therefore,K,=K,=0. We expandcf. Eq. (33) with the

has led to the introduction of an approximately conservedxpansion coefficiera replaced byu™, u”, andU]:
pseudo-SlY symmetry within then sector of configuration

spacd 3]. The coupling ofa nucleons can, in principle, lead

to a breakdown of Sysymmetry for then nucleons. The Fa(PSM18,0)

symmetry is, however, preserved if one assurties sim-

plicity) that thea nucleons remain coupled to zero seniority. = E u”([18,01;97,,00¥"([18,0137,,0),

With this assumption, PSM identifies the yrast band as be- Jon

longing to the highest Slrep of nucleons occupying the

states. J/,=02,...,18, (409
In the case ofsxU 146, the number of particles occupying

n anda states are determined from the Nilsson energy-level

diagram at the measured deformation @&0.25. These Fn(PSM36,0)

numbers ar&N7=6, NJ=4, N;=12, andN;=8. The total

numbers of nucleons in these two groups Are=18 and =2 u”([36,01;3,,,0¥"([36,0,,0),

N,=12. These numbers are assumed to be conserved in the I,

dynamics of PSM implemented thus far.

_ The assumptions _mad_e in the simp_lest and extensively J,.=02,...36, (40D

implemented calculations in the PSfeind in FDSM regard-

ing the structure of the yrast bands of nuclei imply certain

restrictions on the relative importance of different parts ofFn(PSM 54,0])

the pairing interaction. For example, transitions of the type

Jj1nl 2n=1]1al 2a fOr proton or neutron pairs are an important :2 U([54,0];3,,0%([54,013,0), J,=0,2,...54.

consequence of the pairing interaction. Such transitions con- J

nectingn anda sectors are suppressed, for the sake of sim-

plicity, with the assumption that the yrast band can be well

described with constant values df, andN, . Transitions of _ _ _ _ _

the typejlnj ZH‘:\jinj én within the n sector also form an For later -Conver"ence, these equat|0ns are written In a sim-

important part of the pairing interaction. Again, the simpli- Pler notation as

fying assumption made in the PSM that the yrast band is well

described by &ingle SU; rep implies that pairing may also

be neglected in tha sector in comparison with theq in-

teraction. The remaining part of the pairing interaction acts - ]

only w?thin thea sector._lt must _be abnormally _strong to 0.30 P,(PSM[18,0]: J,.,) i

maintain thea nucleons in seniority-zero states in the de- BN

formed mean field of the nucleus. Although this conclusion

is inevitable, an explicit pairing interaction for tlzenucle-

ons is not used in the PSM or FDSM to produce the quasi

spherical band—with the maximally deformednucleons

coupled to the seniority-zero state of thewucleons—as the 0.10 |

yrast band. In these models, such a band is made yrast mot

easily by just assuming it to be the lowest-energy state. This

assumption is justified by the success of these models ir 0.00

reproducing the experimental data.

n

(400

0.40

0.20 |-

Probability

0 2 4 6 8 10 12 14 16 18
Angular momentum J ., (%)
1. Angular-momentum content of valence protons and neutrons

The highest pseudo-SUep of 6 protons in theN=4 . FlG L ProbabiIiFy distributionEl that_the PSM Sy[18,0

) ) — ) intrinsic state contains a state with definite angular momentum
shell is #[18,0] and of 12 neutrons in th&l=5 shell is 3 The smooth curve represents what is actually a distribution
[ 36,0] (see Table 8 of Ref20]). The w[18,0] rep contains  restricted to even values df,,. Hereafter allP; distributions are
states withJ ,=0, 2, 4,...18, and they[36,0] rep states shown as smooth curves. The curve shown here is again reproduced
with J,=0, 2, 4,...,36. Theyrast band of?*% is de- in Fig. 2a).
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2 FIG. 3. A three-dimensional view of tHe; distribution that the
a i T yrast state |J) with J=10 in 2% contains the state
0.10 + - [[J-nXJ,n]d) according to PSM.
i 7 2. Collectivity of the distribution of 1, and J,,, in states|J,)
0.00 TR We can use the projection procedure described in Sec. Il
0 4 8 12 16 20 24 28 to show|[cf. Eq. (20)] that the state¥'([54,0]J,0) can be
Angular momentum J; (%) written in terms ofJ ,, andJ,, as

W ([54,013,0)=|PSM:J,,)
FIG. 2. (a) P, distributions as a function aof; . Depending on

the curve, the abscissads,,, J,,, orJ in (a) andJ,, J,, orJin = > A(PSMJ, Jndin)
(b). The stated PSM and IBA Slepresentations are fGreU. I3
X|EI7n X Il 3n), (42)
_ mn !

|A(PSM:J,,530,,00) |

FHPSM36,0)=2>, u} 3., (41b) |um([18,01;3;,,,0)0 u"([36,0];3,,,00(37,d,,00[30)|?

G " B |U([54,0];3,0)|?

(43
N is the probabilityPz(PSM3J,,;J.,,,J.,) that |J,) contains

fn(PSN[54'0]):Z UJ;|Jn>- (410 the state|[J],xJ..]J,). The P3 distributions ofJ ., and

In J,n in the yrast state with total=J,=10 is shown as a
three-dimensional plot in Fig. 3. These distributions for other
J states are also three-dimensional but they are shown in
Figs. 4a)-4(d) for theJ=J,=0, 2,4, and 6 states as two-
dimensional plots to convey more quantitatively the frag-

. . _ mentation of an yrast stafd) into components of the type
v136,0] reps containd, andJ,y , respectively. These prob I[J-nXJ,n]dn). Each statdd) has significant contributions

abilities are evaluated using Eq85) and(36) and plotted in . )

i — from many of the possible couplings of the angular momenta
Figs. 1 and £a). The average angular momenda,, and 4t iy protons andh neutrons which share the common de-
J,n in these SY states are 6.0 and 8.5, respectively. Theformed field. The probability that anyis generated by neu-
quantity  |U([54,0;3,0° gives the probability trons acting alone J,,=0.J,,=J) or by protons acting
P1(PSM 54,0]:J) that the intrinsic state of nucleons m  alone ¢,,=J,J,,=0) is small(only ~7%). Then protons
states contains a state of the yrast band with angular momegndn neutrons contribute collectively to the tothl
tum J; this probability is also shown in Fig.(@. The aver- The contribution of a giverd,,, irrespective of thel,,

age angular momentum in thi64,0] rep is J = 10.4. values is given bycf. Eq. (31)]

Quantities|u™([18,0];J,.,,0)|? and |u”([36,0];J,,,0)|? give
the probabilities P,(PSM18,01:3..,) and
P,(PSM 36,0]:J,,) that the intrinsic states imr[18,0] and
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FIG. 4. Probability distributiorP5 that a particular yrast statd) in 2*%U contains the statfJ..,xJ,,]J) according to PSM.

Po(I=3nidmn) =2 Ps(3=31dmm.d). (49

J

vn

The P,(PSMJ=J,;J,,) distributions are shown in

Fig. 5@). They are surprisingly similar regardless bf

3. Distribution of J, and J, in states|J)

According to PSM assumptionslff\Ifn(Jn)\Ifa(Jazo),
and the probability that the totdl results from the coupling

of J,, and @,=0) is given by
P3(PSMJ;J,,J,=0)=1 for

J=J,, (453

=0 otherwise.

(45b)

Figure 6 illustrates the effect of this assumption made i

n

sured electric quadrupole mome®g has contributions from
both valence protons and core protdtie latter polarized by

valence nucleons A rough estimate by Mottelsom21]

shows that core protons contribute about half of the intrinsic
electric quadrupole moment. Hence the contribution of va-
lence @) protons to the intrinsic electric moment @
~1Q,. The measured intrinsic quadrupole moment’&U

is Qo=11.0 e b=176 ea? [22] and henceQ} ,~88 ea’.

The implied mass quadrupole moment of valence protons is
Qu~88 «?. If valence protons belonged to an $lep
[\X,0], the intrinsic mass quadrupole moment would be
QY=2\}. Equating these two values, we obtaiij =44.
The SU; rep 7[44,0] and () max= 44 implied for valence
protons by the measured intrinsic quadrupole moment are
significantly larger than the PSM reprn[18,0] and
(J.2n) max= 18 of only then protons.

PSM. The reason for the qualitative difference between

P5;(PSMJ;J,,J,) in Fig. 6 and P3(PSM:J;J,,,,J,n) INn
Fig. 4 is that in PSM the seniority-zero assumption éor

B. Interacting boson approximation (IBA)

nucleons quenches the mean-field-induced correlations be- In IBA-2, the 10 valence protons ofyU 146 are repre-

tween then anda nucleons.

4. Relation between measured electric quadrupole moment
and (J;)max

The mass quadrupole moment @f, of the a-proton in-
trinsic state belonging to an SUrep [A,,0] is
Q,=2N,=2(J,)max INn units of the oscillator parameter
a?=1/(Mw)=0.010A"2 b. Here () max is the maximum
angular momentum contained in the rgp,,0]. The mea-

sented by 57 bosons and the 20 valence neutrons byv10
bosons. In the SYlimit, the boson reps arer[10,0] and
v[20,0], and the yrast band is described [30,0]. These
reps are significantly smaller than the corresponding ones in
PSM. The intrinsic states can be expandedlcisEq. (41)]

FT(IBA[10,0))= 2, =

.10,

(463

vy L), J3.=02,..
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0.40 | . J=0 J
> L — = J=2
£ oa30f L s j:g . FIG. 6. Probability distributiorP; that a particular yrast state
s L - |J) with J=J,=4 contains the staf¢J, < J,]J) according to PSM.
EL? 0.20 |- - The P; distribution for any othed (=J,) up to J,,,=54 is the
v ] same as that shown here fde=4. These results are fgreu.
0.10 |- N i
Ny . lence sp space. Both and a sp states contribute to these
0.00 | , | | | ) coherent pair states. If we were to distinguish betweemd
: : | : : : a bosons, then bosons §,,d,) would represent the
0.30 - n-nucleon pair states, and tha bosons §,,d,) the
a-nucleon pair states. To mimic PSM, we assume that the
numbersN,, of n bosons andN, of a bosons remain sepa-
0.20 |- rately constant, whereas in IBA-2 only the total number of
bosonsN=N,+ N,, would remain constant.
In 238, there are threer bosons of the type and two of
0.10 - the a type. The corresponding SUeps arewn[6,0] and
7a[4,0]. Similarly, the v-boson reps arevn[12,0] and
va[ 8,0]. The highest Sy reps ofn and a nucleons are,
0.00F | | | ' | _ thereforen[18,0] anda[12,0].

4

Angular momentum I (W

2. Comparison of therr-v distributions in PSM and IBA-2
within the n sector

The intrinsic statesF™, 7", and 7" are expanded as
The

2?%?|ssa id,., In (a), J; in (b), andJ, in (c). These results are for FT”(IBA[G,O])=JZ er |J7m> J,’Tn=0,2, ....6,
mn (47@
F(IBA[20,0)=2> v}[3,), J,=0.2,....20,
o FNIBA[12,0)=2, v |J, J,=02,...,12,
- (IBA[ ])%Jlr» "
(47b)
F(IBA[30,0)=>, Vy|J'), J'=0,2,...30. (460
¥ FN(IBA[18,0)=> V),[3}), J3,=0.2,...18,
J! n
The distributions P,(IBA[10,0:J,), P;(IBA[20,0]:J,), " (479

andP,(IBA[30,0]:J) are plotted in Fig. ).

Even though it would violate the spirit of IBA to distin-
guish between bosons manda states, we do so for com-

1. Introducing n and a bosons in IBA-2

vn

where the coefﬁmentsJ, , vJ, , and Vn are determined

from Egs.(35) and (36). The stateﬂJn) of n bosons are
given by

paring the structure of the yrast states in IBA-2 with those in

PSM and FDSM. In IBA-2s andd bosons are supposed to

IBA:J)) = X A(IBA:Jn;30,.300)1[ 350X 300130,

represent the lowest quadrupole collective states of two iden- RN

tical nucleons withJ=0 andJ=2, respectively, in the va-

(48)
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where
P3(IBA:J,;d! .3, =|A(IBA: J,;J3. ,J’m)|2

037 037 (37030001340) 2

nj|2
V3]
(49)
is the probability thatl,, contains the statgJ. < J’.13,).
The IBA rep[18,Q] for n bosons is significantly smaller

than the PSM rep54,0] for n nucleons. Hence, details of the
distributions ofJ,, over J_, and J,,, would be different in
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tively, for the J,=0, 2,4, and 6 states with the probabili-
ties of random occurrences decreasing to X110 2,
1.2x1073, 2.3x 104, and 1.0 10" 4, respectively.

3. Distribution of yrast angular momentum
over the n and a sectors

The total intrinsic stateF(IBA[30,0]) can be factored
into n and a parts #"(IBA)[18,0]) and F2(IBA)[12,0]).
Analogous to Eq(470), these states can be expanded as

these two models, but the overall distributions should be

qualitatively similar because of Ssymmetry. A quantita-

tive measure of this similarity can be obtained by calculating

the overlap between the statdBA: J,,) and|PSM:J,)) given

by Egs.(48) and(42), respectively, which are both expressed

in terms of the component§J .., X J,,]J,). This overlap is
given by

(IBA: J,|PSM:J,))

= > [A(IBA:J,;J.., 3. )ITA(PSM:J,;d
Iondin

Jin)]

X(IBA[In X 3uldn | PSM 0% 30130, (50)

Of course, there is no clear connection between the basis

states] ., (or J,,,) occurring in IBA and PSM. However, for

the limited purpose of examining the angular-momentum

structure of the yrast band o, we will assume these

basis states to be the same in the two models. With this
assumption, the overlap term on the right-hand side is unity,

and the overlap values given by E&Q) are 0.868, 0.865,
0.867, and 0.844, respectively, for the states wit
J,=0,2,4, and 6.

The statistical significance of these overlaps can be estP

mated by calculating the probabili§(N:p) of obtaining an
overlap equal to or greater tharbetween a given statavith
N componentsand another arbitrary stafgvith the same
number of componenksThis probability is

N (1
P(N:p)”\/EJ e~ (VANCgy
p

Derivation of Eq.(51) is discussed in Refl11].

The number N; ~of components [ 7nXJpnldn) in
[IBA:J,) areNg=4,N,=10,N,= 14, andNg= 16. Between
[IBA:J,) and an arbitrary statg],)’, the probabilities of
obtaining overlap values greater than the given values a
1.9x10°2, 2.3x10° 3, 5.8x10 4 and 3.410 4, respec-
tively, for the J,=0, 2,4, and 6 states. In view of these
small probabilities, the overlaps obtained between the IBA-
and PSM states imply that the-v angular-momentum dis-
tributions in then sector of the configuration space are simi-
lar in the two models. If the stat®SM:J,)) is truncated to

(51)

re

FM(IBA[18,0)= >, V5|37, (529
Jh n
FAIBA[12,0)=2 V5|35, (52b)
35 a

(520

F(IBA[30,0))= >, Vy/|J’).
<

The yrast state]) projected fromZ(IBA[30,0]) are written
as

13y =2 A(IBA:J3;J.,3)|[3,% 3,13, (53
RMN A
where
P4(IBA: J;J,,,J,)=|A(IBA: J;J,,,J,)|?
V3 V3 (3,3,0030)|2
= (54)

V,f?

is the probability tha{J) containsJ, andJ,. These prob-

habilities are plotted in Figs. (@-7(d) for the four lowest

yrast states. The totdlis spread out over a number of com-
onents|[J, X J,]J)(cf. Fig. 6 for PSM. The summed con-
tributions P,(IBAJ;J,) are again similar, as shown in Fig.
5(b).

The probability that the total of an yrast state arises
entirely from bosons in tha states is given by

V3 V3 o

P3(IBA: J;3,=3,),=0)=————>—. (55
WAl

These probabilities are plotted as a functiorJah Fig. 8a)
by a dashed line. The full line in this figure shows the prob-
abilities that, in addition tal,=0, the angular momenta of
7+ bosons and bosons ina states are individually coupled
to zero[cf. Eq. (32)]. The latter probabilities never exceed
6%, whereas they are assumed to be 100% in PSM and
FDSM. Thus, while the structures of IBA-2 states are similar
o that of the PSM(see Sec. IV B 2 aboyeand the FDSM
see Sec. IV C belowover then sector of configuration
space, they are significantly different over thesector.

C. Fermion dynamic symmetry model (FDSM)

contain the same number of components of the type
[[37nXJ,n]dn) as are contained iiBA: J,)) and the result- In this model, the quadrupole collective states arise from
ing state is normalized, the overlaps betw¢e8M:J,) and (S,,D,) and S,,D,) pairs inn states coupled to angular
[IBA:J,,) increase to 0.913, 0.913, 0.912, and 0.911, respeanomenta 0 and 2. The number of protons and neutrons in the
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FIG. 7. P4 distribution that the statil) in 233U contains the statl J,,x J,]J) according to IBA.

n states are 6 and 12, respectively—the same as in the PShtrinsic state. The distributions of angular momenta in these
The pair degeneracieQ,,, defined byQ,= %2jn(2jn+ 1), sectors are then calculated. We bring out in some detail the
areQ_,,= 15 and(),,,= 21. According to FDSM, the Sirep SUslike bghavior .of t.hea nucleons. Finally, we illustrate
for the yrast band is given byx=2N,,0] if N,<Q,/3, the collective distribution of the totdl of an yrast state over
whereN,, is the number of pairs af nucleons. For*®U, the ~ bothJ, andJ, states.

FDSM reps are [ 6,0] andnv[12,0]; the total rep is there-
foren[18,0]. These reps are the same as those lebsons in
IBA. In IBA, however, the total yrast band to which bath The deformed sp Nilsson stateg(3) are eigenstates of
anda bosons contribute extends up ig.,= 36, whereas in the Nilsson Hamiltonian

the FDSM the collective part of the yrast band extends only

1. The asymptotic Nilsson intrinsic state

up to theJma=(JIn) max=18 state. Yrast states with>18 h(B)=ho— B fiwerY§, (56)
arise in FDSM as a result of contributions from degrees of _ )
freedom regarded as noncollective. whereg is the deformation parametérwo=41A""° MeV,

In the FDSM, the only collective mode af protons and andr? is in units of the harmonic oscillator length parameter

a neutrons is the mode of remaining in the state of seniority’. The spherical Hamiltoniah, has the eigenstates with
zero. The effective interactions can always be chosen t6p energies;. For each value of3, the Nilsson eigenstate
make this mode sufficiently stable under the influence ofi(B8) can be obtained by diagonalizing(B) with the
even the maximum quadrupole collectivity of nucleons. spherical statesy) (within a single major shellas basis
Apart from mathematical simplicity, there are physical rea-states. The resulting eigenstaig$(8) can be expanded, as
sons for making this assumption; it helps, for instance, tqn Eqg. (1), in terms of ¢L_ When hy is specified by the
extend the range of deformed nuclei for which axially sym-empirically determined sp energies;, the coefficients

metric reps can occur in FDSM. c¢{"«(B) of the expansion change rapidly wif for small
B. As B is increased, these coefficients approach asymptoti-

D. Projected single-shell asymptotic Nilsson model cally the values obtained by taking the sp energieto be

(projected SSANM) degenerate. For sufficiently large deformatior(say,

The basic assumption of this model is that the yrast state8>0.15), the energy eigenvalueg(g) of the single-shell
are well described by the band of states of defiditero-  Nilsson states vary linearly wits. The statesp , obtained
jected from the asymptotic Nilsson intrinsic state within aby diagonalizingh(g) with the sp energies taken to be de-
major shell. We list the maximum values of angular mo-generate, are defined to be asymptotically deformed sp
menta of protons and neutrons in theinda sectors of this ~ states. These states are also eigenstate$¥§f and can be
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TABLE |. Quadrupole operator eigenvalugg) and expansion

- P bt coefficientsc;’ for the asymptotically deformed sp states in the
- / RABA: 1) =1y, J,=0) (a) . 50-82 shell listed in the order of decreasing quadrupole moments.
10"k Tt eeal - . a enumerates eigenstates belonging to a gie®nly values for
RN positive k are given. For negativek, the symmetry relation
g C ] cjfk:(—)j"(cjk applies. PSM values are for tha,0]=[3,0] rep-
é - . resentation. For abnormal-parity states, ¢gg) SSANM moments
2 10k . are in brackets. There are no corresponding PSM momentsl.
& label is implicit for all abnormal-parity states.
- . a k (a0 (qw Clziak C(siak Carak C(u2)k C(111/2)|<
10° L BIBA:5J=10,,J,=0(Jzs=Jyg=0)] ~§ PSM SSANM
1 1 3 6 7.379 -0.417 -0.483 0.600 0.483
| | I I ] [ ] | ]
10" 3 P(SSANM: J;J=J,,J, =0) (b) 3 2 3 3  3.849 0.646 -0.609 -0.313 0.337
F /. ] 1 3 3 3520 0.737 0495 -0.46
T T 1 3 (3.182 1
>, el 3 (2.636 1
z °F Tt ; (1549 1
3 : ]
& i 1 2 g 0 0.238 -0.586 0.807 -0.071
r ) 7
10 L ] 2 (-0.092) 1
E / 3 3 3 0 -0.165 0.593 0.485 0.579 0.278
a ] 5
F RISSANM: 57 =0, 1, =0y, = Jyy=0)] 1 3 0 -0.192 0.948 0.318
1 [ | 1 | | | | {
0O 2 4 6 8 10 12 14 16 18 2 (-2.273 1
2 3 -3 -3.475 -0.318 0.948
Angul tum J (% 2
ngular momentum J (7) 3 3 3 .3758 0336 0332 0.885
1 4 -3 -3667 1
FIG. 8. Dashed curve shows tiiR distribution if the statgJ) 4 3 -3 -3.730 -0.239 0.400 -0.455 0.759
in 238 arises entirely fronta) bosons in the states of IBA andb) i -5 1
2

nucleons in then states of SSANM. Solid curves show the prob-
ability distributionsPs that result ifJ,,=0 andJ,,=0 in addition
to J,=0.

occupy(see Table I six n states witkk,=+3~, =1~ and
+3~ and foura states withk,==3" and =3*. The 20
labeled by the eigenvalueg = (¢;|r2Y5| 4 of the quad-  valence neutrons are similarly placésee Table 1) in 12
rupole moment. The state with a larger valueggf has a n states withk,=+3", =3, +32+ +3* +1% and
lower energy eigenvalue; . +32% and in 8a states withk,=+3~, +3~, =37, and
In Tables I, Il, and Ill, we list the expansion coefficients = 5~
¢’ for all asymptotically deformed statef in the 50-82, Once the number of nucleons in thestates is determined

82-126, and 126-184 shells, respectively. The states a@n the basis of increasing energy values from the Nilsson

listed in order of decreasing values qf . In evaluating diagram(at the physical deformation of the nuclgushe

q¢, harmonic-oscillator wave functions were used for thePSM and FDSM assign to these nucleons the most deformed
radial part ofyl,. Only those coefficients for positive values SYs 'ep available. In our SSANM approach, we construct the

of k are listed; those for negative valueslofire given by most deform_ed Nilsson intrinsic state of all _nucleons first and

Eq. (2). In addition,q®=g%,. Some details concerning the then determine the number of nucleonsninand a states

calculation ofq? are given in the Appendix. based on decreasimy values. The two procedures generally

The SSANM is based on the ansatz “a nucleus is as degive the same occupancy numbers.. .
formed as it can be in aingle major shell.” This ansatz is The effect of pairing is neglected in the SSANMst as it

supported by our previous demonstratiof20] that is in the PSM and FDSM for nucleons in tmestate$ by

B(E2;0; —27) values for even-even nuclei calculated us- 2949 that it is reasonable, as a first approximation, to ig-
nore pairing for nucleons in a well-deformed mean field.

ing the asymptotica_\lly deformed Nilsson intri_nsic state are inThis is particularly true for models in which the moment of
good agreement with measured values. In view of this agree-

ment, we expect the states of definkeprojected from this inertia of the rotational band can be varied independently of

intrinsic state to provide a good description of the yrast band(_}leformatlon as it can be in the PSM and FDSM.

The intrinsic Nilsson state of*® is obtained by placing o
sequentially the 10 valence protons and 20 valence neutrons 2 Angular momentum content of the intrinsic state
in the eigenstategy with the largest available eigenvalues  The intrinsic states of protons and neutron$ifU can be
gk consistent with the Pauli principle. Accordingly, protons regarded as superpositions of states with definite angular mo-
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TABLE II. Quadrupole operator matrix elements,) and expansion coefﬁcientﬁ*k for the asymptoti-

cally deformed sp states in the 82—126 shell. PSM values are fgntjté=[4,0] representation. Also see
caption for Table I.

a @ @ @ @ 1
a k (aK (g Clar2)k C712)k C(si2)k C(3i2)k C(ar2)k Cl13i2k
PSM SSANM

1 3 8 9.596 -0.290  -0407 0518 0543  -0.433
2 3 5 6.173 0539  -0516 -0.498 0435  0.076
1 3 5 5.898 0558  -0.504 0571  0.331
3 (3.692 1
3 (3.231) 1
2 3 2 2.703 -0.623 0667  0.187  -0.343
3 (2.308 1
3 3 2 2.243 0647 0496  0.196  0.105 -0.534
1 3 2 2.184 0.812 0433  -0.393
" (0.923 1
2 3 -1 -0.896 -0.504  0.858  -0.096
2 (-0.923 1
4 1 -1 -1.340 -0.420  0.497  -0519 0539  -0.131
1 z -1 -1.358 0.965  0.261
3 3 -1 -1.434 0523 0386  0.730  0.210
Z (-3.231) 1
2 u -4 -4.551 -0.261  0.965
1 o -4 -4.727 1
4 3 -4 -4.803 -0.163  0.372  -0.326  0.854
3 2 -4 -4.834 0296 0276 0915
5 i -4 -4.854 0175 0273 0420 0463  0.710
3 (-6) 1

mental . andJ,. The minimum value ofl ; or J, is zero.  (J,.)ma=36 for 12 n neutrons and J,,) max= 32 for 8 a
The maximum value od . is equal to the maximum possible neutrons. The yrast band projected from the Nilsson intrinsic
valueM ;. of the projection of total angular momentum along state extends up td,,,= 106 composed ofX,) max= 54 and

the space-fixed axis. The maximunM . value is obtained  (J,) a= 52.

by assigning protons to the spherical statéswith the larg-

est available value af consistent with the Pauli principle. 3. Distribution of angular momenta in different sectors

For tgen protons in the 82-126 shell, the largestvalue of the intrinsic state

(m=3) belongs to théng,, state with the largegtvalue. The L .
value m=1 is contributed by theng, and g, states. The The intrinsic state can be factored into four pa:FﬁS:‘m,
next smaller valuen=$ is contributed by théag, g7, and ~ Fk.,. Fk. . and A consisting of (6<6), (4x4),
ds/, states. Hence, the maximum possiMe,, value for six ~ (12x12), and (8<8) Slater determinants, respectively.
N protons is M ) ma= 3+ 3+ 3+3+3+3=19, and hence These parts, in turn, can be expanded as

(In) max= 19. Reflection symmetry imposed on the intrinsic

state allows it to contain only even angular momenta. There-

fore, the intrinsic state of six-protons will contain states Fh = W k 1 9m) 35,=02,...18, (573
with J_=0,2, ... up toJ ,=18. oy, Tmem
Although states likéng; m—o/2, Noam=7/2, - . . are not ex-

plicitly present in the intrinsic state listed in Sec. IVD 1, a a , .
they are generated from the intrinsic state by the projection FKTWa:Z w ;Ta,KmUwa)' J7a=0.2,...,20, (570
procedure described in Sec. Il B. Jra

Similarly, the maximum value of the angular momentum
of four protons in thei;g, state iS 0,.)ma= 2+ 2+ 3+ 2 .
=20, and the intrinsic state will contain states with Fo =2 W), « [Jm)y 3n=02,...36, (579
J.2=0,2,...,20. Corresponding values for the neutrons are Iin g
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TABLE Ill. Quadrupole operator matrix elementg,) and expansion coefficient%’k for the asymptoti-

cally deformed sp states in the 126—184 shell. PSM values are fontg=[5,0] representation. Also see
caption for Table I.

@ k (0w (aw) Caigk Sk Ciak Sk Cak Sk C(115/2)k
PSM  SSANM
1 3 10 11.742  -0.202 -0.335 0.420 0525 -0.485 -0.399
2 3 7 8.409  -0.425 0.440 0548 -0.473 -0.285 0.146
1 3 7 8.207 -0.411  -0.471 0560 0.463 -0.286
2 2 4 5.042 0577 -0.565 -0.394 0.437  0.037
3 i 4 4.602 0612 0485 -0.134 -0.071 -0.487 -0.361
1 3 4 4.549 0.648 0482 -0.534 -0.251
: (4.200 1
3 (3.800 1
3 (3.000 1
u (1.800 1
2 5 1 1580  -0584 0732 0.109 -0.333
4 3 1 1.055 0533 -0516 0.350 -0.279 -0.229  0.444
1 z 1 0.961 0.857  0.379 -0.348
3 3 1 0.901 0616 0418 0426 0.152 -0.492
o 0.2 1
Z (-1.800 1
2 u -2 -2.006  -0.439 0.892 -0.111
1 3 -2 -2.469 0975  0.221
4 2 -2 -2.469  -0.315 0489 -0.447 0.659 -0.162
3 3 -2 2586  0.474 0.333 0.799  0.161
5 i -2 2594  0.329 0372 0558 0450 0.473  0.125
2 (-4.200 1
2 3 -5 -5.608  -0.221  0.975
1 Z -5 -5.769 1
4 3 -5 -5.851  -0.121  0.348 -0.254 0.894
3 u -5 -5.878 0.269  0.248  0.931
6 3 -5 -5.906  -0.109 0.231 -0.268 0.464 -0.413  0.691
5 3 -5 5911  0.141 0213 0.387 0.370  0.805
z (-7) 1

. a ) ) shown in Figs. éa)—9(c). Also shown there are the corre-
]‘_ﬁvazz w La,KVaUVa), J,a=0.2,...32. (570  sponding P, distributions from PSM. These comparisons
Yia show that the PSM intrinsic state is an excellent approxima-

The distributions P;(SSANM:J_,), P;(SSANM:J_,), tion to the SSANM intrinsic state in the sector.
P,(SSANM:J,,), and P;(SSANM:J,,) in the correspond-

. . . . . 2
ing intrinsic states are given by the squaited;” . |%, 5. SUylike behavior of the abnormal-parity sector

Ta 2 vn 2 va 2 i
|WJwavK_ﬂa| ’ |W‘]un*Kvn| ’ ‘T’md|Wquv'$ya| ’ respgcnvely. To The distributions of angular momenta in tlee states
determine these expansion coefficients, we first use the desra | ]_-;aa, and fﬁa are shown in Figs. 18)—100c). In

formed sp states listed in Tables Il and Ill to calculate theth.”a here i derlvi v, H .
functions(Fx|e™ "#%| F) [see Eq.(10)]. For each of these Is case there is no underlying $eymmetry. However, in

functions, the integral in Eq14) is carried out to calculate the same figures, we compare these distributions with those

the corresponding|? value. correspond_ing to thg SUreps 7a[20,0], va[32,0], and
a[52,0] which contain the same angular momenta as the
4. Normal-parity sector Nilsson states. The distributions are similar.

The distributions P;(SSANM:J,..), P1(SSANM:J,,), The overlaps between (i) Fi® (SSANM) and
and P;(SSANM:J,) in the n statesF™", F*", and 7" are  F° [20,0], (i) Fi’ (SSANM) and 7’ [32,0], and (iii)
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FIG. 9. P, distributions of nucleons in the states compared for
SSANM and PSM. The abscissads, in (a), J,, in (b), andJ, in
(c). These results are for@U.

fﬁa(SSANM) and]—‘ﬁa[52,0] are found to be 0.990, 0.987,
and 0.999, respectively. The sta;”t@""a has 11 components
|J,a) With J,.,=0,2,4 . ..,20. Similarly, the stateg;* and

a
]-"ﬁa have 17 and 27 components, respectively. The prob-

abilities P(N:p) of randomly obtaining these overlap values
areP(11:0.990)=2.1x 10 3, P(17:0.987)=8.9x 10 °, and
P(27:0.999)=5.4x10".

Although thedistributionsof J., andJ,, in the Nilsson
intrinsic state are SHlike, the quadrupole moments of the

ANGULAR-MOMENTUM STRUCTURE OF THE YRAST ...

2899

only ~40% of the value expected on the basis of;Sym-
metry.

Instead of using the highest contained in the Nilsson
state ofa nucleons to determine the valueoffor the effec-
tive SU; rep[\,0], we may choosa such that the average

value J(\) is closest to the value of (SSANM) for the
Nilsson intrinsic state. Fof>3U, such SY reps are found to
be #[22,0] andv[24,0]. As shown in Figs. 1@) and 1@e),
the P4(SU,) distributions for these reps are indeed close to
the corresponding SSANM ones. The new value\gf= 22
is close to the value 20 deduced from, J,ax, BUtA, =24 is
significantly smaller thanJ),) nax= 36.

As shown in Fig. 1(f), the P;(SSANM) distribution of
Jo in the combined intrinsic state of the 12 nucleons in the
a sector is so well reproduced by the distribution of the
effective SU rep a[46,0] that the two curves in Fig. 1f)
are hardly distinguishable. It is natpriori obvious why the
P1(SUs;) distributions ofd in an SY; rep[ \,0] for which the

J(\) value is closest to thd (SSANM) value should agree
as well with theP;(SSANM) distributions as they dgsee

Figs. 1ad)—10f)].
6. Collective distribution of the total angular momentum
over the n and a sectors

The intrinsic statesFy , F_, andFi can be written as

Fr=2 Wy |3), 3=02,...54, (583
Jh n

Fr =2 Wy|3), 3;=02,...52, (580
4 a

Fe=2, Wy |d'), J3'=0,2,...,106. (580
J!

We show in Fig. 11 the distributiofW,|? of the totalJ in the
Nilsson intrinsic state. If this distribution is compared, as in
Fig. 11, with the corresponding one obtained for the; SU
[106,0 rep, the two distributions are remarkably close over
27 orders of magnitude. This similarity is surprising because
unlike the n nucleons thea nucleons—which contribute
about half of the total angular momentum—do not have
SU; symmetry. The overlapF(SUs[ 106,0| F(SSANM)) is
0.9998. WithN=54 components, the probability of random
occurrence is 1.X10 15,

The state|J) projected from the Nilsson intrinsic state,
factored inton anda parts, can be written as

a nucleons in this intrinsic state are much smaller than ex-
pected on the basis of this similarity. From the effective val-where

ues \,,=20 and \,,=32, the expected moments are
Q.4[20,0/=40 andQ,,[32,0/=64 in units ofa?. The val-
ues obtained using thg, values from Tables Il and IIl are
Q.,a(SSANM)=13.8 andQ,,(SSANM)=25.6 in the same
units. Thus, the quadrupole collectivity of thenucleons is

|3)= >, A(SSANM:J;J;,30)|[3/x3.13),  (59)
RMIA
P3(SSANM:J;J,,,J.)=|A(SSANM:J;J,,,J,)|?
|Wj W5 (3,J,0030)/?
_ n a (60)

[W,|*
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J, in (c) and(f). These results are
for 238U,
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FIG. 11. P, distribution for the total SSANM intrinsic state
(dashed curve compared with that for an SUrepresentation
[106,0 (full curve) for 228U, The inset shows the early portion of

the figure on a linear vertical scale.
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These probability distributions are shown in Figs.(@2
12(d) and P,(SSANM:J;J,) distributions in Fig. &c). A
decomposition ofl into eitherJ andJ, or J,, and J, will

ipso factoresult in broad distributiongsee, for example,
Figs. 4, 7, and 1Rprovided that both sectors are allowed to
share the same mean field. The consequence of not allowing
the a nucleons to do so results in what is shown in Fig. 6
which is drastically different from the results shown in Figs.
4,7, and 12.

The P4 distributions such as those shown in Figs(a)2
12(d) become so complex for highdrvalues that a three-
dimensional view is required to convey adequately the frag-
mentation of the total into J,, andJ, . Figure 13 shows this
fragmentation for thed =10 state in?>3. In PSM, the prob-
ability bar corresponding td,,=10, J,=0, marked by an
arrow, becomes unity, and all other probabilities are set to
zero.

In Fig. 8b) we present P3(J;J,,J,=0) and
P5[J;3,,J,=0 (J,2=J,2=0)] for SSANM. They show
that if the Nilsson intrinsic state is a good description of the
intrinsic state of?*3U, the probability that the protons and
a neutrons are individually coupled to angular momentum
zero in a yrast statd is <0.4% and decreases with The
statesJ,,,=0) and|J,,=0) projected from the Nilsson in-
trinsic state do not have definite seniority. Hence, the prob-
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FIG. 12. P4 distribution that a particular yrast stdt#) in 233U contains the statfJ,xJ,]J) according to SSANM.

ability that thea nucleons have seniority zero in the yrastthe a sector. The number N;, of components
band is even smaller. [[J,a%Jd,alda) in the IBA states areNyg=3, N,=7,

In Sec. IVB 2, we calculated the overlaps between theN,=9, andNg=8 for theJ,=0, 2,4, and 6 states, respec-
states|IBA: J,) and|PSM.J,)) in the n sector. We now do tively. The corresponding numbers of components in the
the same between the sta{¢BA:J,) and |[SSANM:J,) in  states |[SSANM:J,) are No=11, N,=31, N,=49, and

FIG. 13. A three-dimensional
view of the P3 distribution that
the yrast statdJ) with J=10 in
2%y  contains the  state
[[InxJIa1d) according to
SSANM.

Probability
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Ng=65. The overlapgIBA: J,|SSANM:J,) are 0.66, 0.68, B. Single-shell asymptotic Nilsson mode(SSANM)

0.70, and 0.72, respectively, for th&=0,2,4, and 6 The most deformed proton intrinsic state $fEr is ob-
states. The probabilities of randomly getting these values ar@ined by placing the 18 valence protons in the first#8
0.09, 0.03, 0.02, and 0.02, respectively. These overlaps agtates listed in Table I. These include the hOstates
relatively small becaus®l(SSANM) is much larger than Wit3h knﬂ(qﬂ)=i“g7-38), +37(3.85), *37(352),
N(IBA). If the states|SSANM:J,) are truncated to contain * 2 +a(0-24)1,_ and = §+(—30_-19), and 8a states with
the same numbers of componeljts, . < J,]Ja) as occurin - Kz(A)==5 (3.18), *£57(2.64), =3 (1.54), and
IBA and then normalized, the overlaps of these truncated and 2 ,(_,0-09)- o
normalized SSANM states increase to 0.79, 0.82, 0.88, angg,omiiarly, the most deformed neutron intrinsic state of
0.94 while the probabilities of random occurrences decreasenBE[] IS Obtla_'”ed by ple}c_lng 12 neust[ons n m®3rt_3|ts with
: Ki(a)=+17(9.60), = (6.17),+ § (5.90), + 3 (2.70),
to 0.05, 0.01, 0.003, and 0.002, respectively, for the »}™ 5 ; X
1.=0.2.4. and 6 states +37(2.24), and*=3"(2.18), and 6 neutrons in the orbits
a o e ' k3(gd)=+3"(3.69), = 27(3.23), and=3*(2.31). There-
fore, N,,=12 andN,,=6. These values are slightly differ-
" ent fromN,,,=10 andN,,= 8 obtained in the PSM from the
V. STRUCTURE OF THE YRAST BAND OF ‘GEr 10 Nilsson diagram aB~0.25. The PSM values can be recov-

In PSM and EDSM. the structure df%Er is more com- ered from Table Il by promoting a pair of neutrons from the

+37(2.24) orbits(which are the highest-lying occupieu
3 2

plex than t,h?g of*. In the PSM, the SYlreps of valence o in the Nilsson diagram fot®Er) to the +2*(0.92)
nucleons in®%r are triaxial w+0). In the FDSM, the

> razidl i ' orbits (which are the lowest unoccupied orbitén this sec-
complexity has two origins(i) SU; symmetry is possible tjon, we will present calculations done witd,,=12 and

only for valence neutrons with the available rep beib8,0] N =6, but we have verified that the results are very similar
and (i) valence protons have $6) symmetry[6]. Because with N,,=10 andN,,=8.

there is no single overall symmetry for both protons and
neutrons, the structure of the yrast band has to be obtained 1. Distributions of J.., and J,,
by explicitly carrying out a diagonalization of the FDSM - C L n vn
Hamiltonian. In the SSANM, we shall associate the yrast nThe axu’_:1l|y symmetric intrinsic stateic_ , Fi,, and
band of 1% with the states projected from the most de-7 k, COntain even angular momenta up t9.4)max= 14,
formed Nilsson intrinsic state, as was done f3fU. (Jon)max=24, and  ()ma=38, respectively.  The
The highest angular momentum of the yrast band obP1(SSANM) distributions of),, J,,, andJ, in the corre-
served experimentally ift®8Er till now is J,.,=18[23]. In  Sponding intrinsic states are shown in Figs(a414(c), in
shell models, this band results from the interaction betweeM/hich they are compared with those obtained for ke 0
18 valence protons and 18 valence neutrons. The former 0(!';)_and of the triaxial reps in the PSM. The overall agreement
cupy the spherical sp statesgi,, 1ds), (1dsy, 25,5 of 'S €xcellent

. LS In  Figs. 14d)-14f), we have compared the
n parity and (h,,,, of a parity in the 50—82 shell. The latter v . . .
occupy the states (@, 1f7), (1fsz, 2p32), 2psp of n P.(SSANM) distributions with those obtained from thgi-

: ! ally symmetricsr[ 14,0], v[24,0], and[38,0] reps which con-
parity and 03, of a parity in the 82-126 shell. tain the same set of angular momenta asKhe0 parts of

the triaxial reps#[10,4], v[20,4], and[ 30,8], respectively.
The agreement is not so good as bef@@k the right-hand

A. Pseudo-Sy model (PSM) side of Fig. 14 with the left-hand sitle

The Nilsson diagram(of the energies of deformed sp _ S
stateg for %%Er at 8~0.25 shows that 10 protons are in the 2. SUylike distributions of J,

n states and 8 in thé,,, state. Similarly, the number of  The intrinsic[ 7(h;4/,) 1® and[ »(i13,,) ]° States contain an-
neutrons in they anda states are also 10 and 8, respectively.gular momenta up t0J,.) ma= 16, and 0,.)ma=24. The

The pseudo-S) reps for the n nucleons are p,(SSANM) distributions ofd.s, J,a, andJ, in g2,
[Nz pr]=[10,4 and[\,,x,]=[20,4). Both reps have tri- Fi& , and Fg_are shown in Figs. 18)-15(c) along with

axial intrinsic states containing bands wikh=0,2, d4 .
xial nsic States ning bands w an those for the Sy reps #[16,0], »[24,0], and[40,0] with

in the Elliott classificatiorfor k=0, 2, and 4 in the Verga- I t tent. Th ceably dif
dos orthogonal classificatipnThe K .,=0 yrast band con- Same angular-momentum content. They are noticeably dil-

tains states with_,=0,2,...,14 and theK,,=0 band ferent. Alternately, we can match thé values in the
states withJ,,=0,2, ... ,24. Thetotal pseudo-SYrep of SSANM and Slal as before, and the result_ing distributions
168y js [30,8] with the K,=0 band containing states with areé shown in Figs. 1d)-14f). In this case, the
J,=0,2...,38. Theyrast band is generally associated with P1(SSANM) and P(SU;) distributions are very similar.
the K=0 band and we confine our discussion to the distri-Th€ maximum angular momenta in the intrinsic state of
bution of angular momenta only in this band. These distribu-" ET are ) max=38, (Ja) max=40, andJma= 78, according
tions, normalized to unity, are shown in Figs.(d4-14(c) to SSANM.
for the proton, neutron, and coupled reps. In the PSM, the 16

nucleons in thea states are assumed to contribute zero an-

gular momentum; therefore, the total angular momentum is In the simplest version of the microscopic $tdodel[4],
generated only by the nucleons(that is,J=J,). the intrinsic state of a nucleus is given by the Nilsson model

C. Microscopic SU;-symmetry model
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in which the spin-orbit interaction has been switched off. Inoverlap value is only 0.038. The four negative-parity states
a harmonic-oscillator potential without spin-orbit interaction, listed in the first column of Table IV are the intruder states
shell closures occur at neutron or proton numbers 2, 8, 2Grom theN=5 shell with the sam&™ values as the occupied
40, 70, 112, and 168 for thd=0-6 shells. a states used in SSANM. However, in SSANM, these in-
For 16688Er100, the “core” for protons consists of filled truder states are assumed to be puhg,f, whereas those
shells up toN=3. Of the 28 valence protons in the intrinsic listed in the first column of Table IV contain admixtures
state, 20 occupy the most deformed sp states inNke4  from all j states belonging to the=5 oscillator shell. As a
shell, and the remaining 8 protons occupy the intruder stateesult, the quadrupole moments of thetatesg,= 10, 7, 4,
of the N=5 shell. The asymptotically deformed states areand 1 for thek,=3", 37, 27, and4~ states, respectively,
labeled by the quantum numbels’[Nn, A,q,], where are larger than the corresponding pute ), values of 3.69,
k={j,), m=parity, N=harmonic-oscillator shell quantum 3.23, 2.31, and 0.92. The overlap of the eight-proton intrinsic
number,n,, =number of oscillator quanta along tlaé axis,  state constructed witfi) the N=5 SU, a states andii) the
A=(l,/), and q,=(k|g3|k) the quadrupole moment. The kK"™=*3", =37, £37, and =~ states arising from the
quantum numbers of the occupied orbits are listed in Tabl®h,,,, state alone is 0.006.
IV. The 10 states witk™=3*, 2+ 3% 1% and?™ of the We shall consider the 20 valence protons in the 4
N=4 shell, listed in the first column of Table IV, originate shell to be then protons of this model. Their SUrep is
from the Qyo, spherical state in a Nilsson diagram. The re-nw[20,0] (see Table 8 of Ref20]). (This rep may be com-
maining 10n states listed in the second and third columnspared to the PSM rep#[10,4] for the 10n protons in the
have the sam&™ values as then states of protons in the 50-82 major shell. The SU; rep for the eighta protons in
50-82 major shell used in the PSM, FDSM, and SSANM.the N=5 shell isan[26,4]. Therefore, thea protons con-
However, their structures are significantly different. To showtribute up to J,)max— 30, which is larger thanJdy) yax= 20
this, we calculate the overlap between the intrinsic statesontributed by then protons. The total SyJrep of protons is
constructed frongi) the 10 SUY spn states of thdN=4 shell  7[46,4].
listed in the second and third columns of Table IV gnd Of the 30 valence neutrons, 22 occupy the states belong-
the ten sm states with the correspondihg values listed in  ing to theN=5 shell, and 8 occupy the intruder states be-
Table | (and used in the PSM, FDSM, and SSANNrhis  longing to theN=6 shell. These states are also listed in
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T T T T T T T T T T T T T
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0.00 |- ! 1 1 1 1 1 1 1 1 1 1 ! ! .
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025t f .\  ----- B(SU;124,01: 1,.,) 4 L R(SSANM: J,;) G. 15. P, distributions as a
function of J;. The abscissa is
2 020 - Jrain (& and(d), J,, in (b) and
? oash R (e), and J, in (c) and (f). These
J 010 results show Sbllike behavior of
T i the a nucleons in %Er also,
0.05 | - though slightly less clearly than in
0.00 L B the case of*3%U (cf. right-hand
! ; L : . L L L L . side of this figure with the same
0 4 8 12 16 20 24 0 4 8 12 16 . .
side of Fig. 9.
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Table IV. The total SYrep of neutrons is[ 66,14 made up Combining 7[46,4] with »[66,14], the final total rep for

of ny[34,8 anda[32,6]. 188y js[112,19. This rep corresponds to the intrinsic state
The total SUY reps forn and a nucleons in1%%r are  which is asymptotically deformed within the configuration

n[54,8] anda[58,10. Hence, according to the microscopic space of theN=4 andN=5 oscillator shells. The intrinsic

SU; model, nucleons in tha sector will contribute a little mass quadrupole moment, N2 u), is 242. The spin-orbit

more than those in the sector to the angular momentum of interaction tends to decrease the deformation from its

the yrast states in this nucleus. asymptotic value. Using the Nilsson sp statesth spin-

TABLE IV. Occupied valence asymptotic Nilsson states'fiEr according to the microscopic SU
model. The states are labeled k¥{ Nn,A,q,] and only those with positivi are listed. The corresponding
states with negativi are also occupied.

Protons Neutrons
1+ [440, § 1~ [550, 10
3+ 1431, § 3i*[431, § 3-[541, 7 3 [541, 7
5t 1422, 2 3t (422, 2 i*[420, 2 5-0[532, 4 2 (532, 4 i [530, 4
171413, -1 3413, -1 3*[411, -1 170523, 1 2 (523, 1 3 [521, 1
2* [404, -4 27 [514, -2
2~ [505, -5
1-[550, 10 1+ [660, 17
3-[541, 7 3+ [651, 9
27 [532, 4 2+ [642, §
17523, 1 1+ 1633, 3
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orbit interaction, averaged value$2\ + ) and (u) have E;x=Enet €3¢, (66)
been calculated4] as 202 and 11.5, respectively, for the
188y intrinsic state at the measured deformation. Thus, thavhere
effect of switching on the spin-orbit interaction is such that 1
while t_he mass qua_drgp(_)le moment is reduced:t%i)%, the EJK:W 2 <FK(HF)|73f<|2p—2h>
reduction in the triaxiality parameteg is ~35%. In the JKI 2p—2h
configuration space of thd=4 andN=5 shells, the yrast

J P y X (2p—2h|H| Fic(HF). (67)

band of %Er extends up toJn.,=130 compared to

Jmax= 78 in the SSANM and),= 38 in the PSM. Thus thedifferencein the energies of the yrast states pro-

jected from the HF state are determined entirely by the dif-
ferences in theotential energieof two-body interactions
and not by the differences in the kinetic energy of rotation as
While projected HF calculation&vith a resonable effec- a function of angular momentum. Although the kinetic en-
tive interaction do give rise to a rotationlike energy spec- ergy part of the Hamiltonian does, by itself, contribute to the
trum for deformed nuclei, such a spectrum is not a consed-dependent part of the total energy of the projected state,
guence of differences in the kinetic energy of rotation of thethis contribution is cancelled exactly by the contributions
intrinsic state. The latter is the intuitive description of thefrom the one-body potential; and the one-body potential
rotational spectrum used to develop the phenomenologicaxtracted from the two-body interaction. Thus, the rotational
rigid-rotor model or the hydrodynamic model or their more spectrum of a deformed nucleus obtained in a projected HF
satisfying microscopic extension to the Nilsson or crankectalculation is not a consequence of the rotation of the
Woods-Saxon model. We follow a reasoning suggested byucleus. On the other hand, the description of the rotational
Khadkiker [24] to show that the energy spectrum of the band in terms of cranked HF or cranked Woods-Saxon po-
states projected from an HF intrinsic state results entirelyential model explicitly invoke rotation of the nucleus. The
from differences in the contributions of the two-body poten-connection between these two descriptions of the same phe-

VI. PHYSICAL ORIGINS OF ROTATIONAL STATES

tial energies to states of different angular momehta
Consider an intrinsic stateFy(HF) obtained self-
consistently by an HF calculation with a Hamiltonian

H=2, (t+v)+ vy (61)
i i<j

nomena remains to be satisfactorily explored, although con-
siderable progress in this direction has been made with sym-
plectic models.

VIl. SUMMARY

There is general agreement about the collective participa-

consisting of one-body and two-body parts. The energiesion of protons and neutrons in generating the quadrupole

E;k of the state\IfJK projected from| Fi(HF)) are given by

EJK=<‘I’JK|H|\I’JK>v (62)
with ¥}, given by Eq.(6a). We can write
1 1 3.3
EJK:_*_<]:K|PKHPK|]:K>' (63)
Cik Cak
BecauseH commutes withPy andP?=P, we get
Eak=1e 2l PrHIFi)- (64)

[
This equation can be written as
1

LT

2 (FHPIPITKT[H| F(HP), (69

where the state$l’) form a complete set of states. With
Fx as the HF state, the sgt) may be conveniently classi-
fied as the set ofop—0h), |1p—1h), and|2p—2h) states
with respect to Fx. The term in Eg. (65 with
[Ty=|0p—0h) is just the energyEy (of the stateFy)
which is independent ofJ. The next term with

[Ty=|1p—1h) vanishes because, by definition, the Hamil-

collective states of a deformed nucleus. A closer examination
shows that this agreement is restricted to protons and neu-
trons in then sp states. Two prominent modglBSM and
FDSM), specially designed to describe quadrupole collective
phenomena, treat nucleons in thep states as spectators of
the collective motion executed by nucleons in thep states.
Other modelqIBA-2, SSANM, HF, etc) allow nucleons in
states of both parities to participate actively.

We have determined the contribution of angular momenta
J., andJ,, of n protons andh neutrons to the total yrast
angular momentund,,. We find that the total,, is collec-
tively distributed over many components of the type
I[JnxJd,n]dn) allowed by angular momentum conservation
and that these distributions, obtained for different models,
are similar.

For the IBA-2 and SSANM we have, in addition, calcu-
lated (but not shown in this papgthe distribution of a yrast
angular momentund over the state$J,,) and|J,), which
contain bothn anda nucleons. These distributions are simi-
lar to the one obtained for the PSM, in which only the
nucleons contribute to the totdl To bring out the contribu-
tion of thea nucleons in the IBA-2 and SSANM, we have
calculated the distribution of] over the components
I[J3,%Ja]d). This distribution is similar to that ofl over
|[J,%J,]13). This similarity shows that just as protons and

tonian cannot connect the HF state to any intermediat@eutrons contribute collectively to the yrast angular momen-

|1p—1h) state. Hence, a-dependent contribution t&; is
obtained only with|T'y=|2p—2h) and only the two-body
part of H can contribute to this term. We get

tum, nucleons in th&@ anda states also do so, if permitted.
In the PSM and FDSM, tha nucleons are allowed to inter-
act with each other by a strong pairing interaction, but this
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dynamic possibility is ignored for the nucleons. More sig- neutrons alone is also quite small.
nificantly, thea nucleons are denied dynamic participation in ~ All models discussed in this paper have possibilities of
the quadrupole mean field, in which thenucleons partici-  improving their description of the angular-momentum struc-
pate fully. ture of rotational yrast states. Unfortunately, current experi-
The PSM assumptions regarding thenucleons are car- Mments can distinguish only between yrast states of different
ried over to the symplectic extension of the mof®8]. This ~ J and can give few details about how that angular momen-
extension does take into account explicitly the quadrupoldUm is generated. In spite of this drawback, it seems more
polarization of the shell-model core resulting from interac-'¢asonable that nucleons in abnormal-parity states should

tions between valence and core nucleons, but the treatment(fg’ntribUte substantially rather than.not at all to the total an-
gular momentum of collective rotation.

restricted to then sector. Because core polarization arises L . .
Recently, significant advances have occurred in the imple-

primarily by coupling to the giant quadrupole resonance, thementation of the PSM. The effect of pairing within the

average contribution of the polarized core to the total angulagector has been explored in a series of pape. This

momentum is expected to be fewer than two UI’.]ItS.' H.encemodel is also being extend¢d87] to allow thea nucleons to
the angular-momentum content of thepart of the intrinsic

) ! articipate actively in the collective dynamics. The calcula-
state of a deformed nucleus, as described in the pseudosyiis s are quite complex and have not been, to our knowl-

plectic SU; model, should be about the same as in the PSMedge, implemented to describe the yrast band&*&§ and
Just as in the PSM, tha nucleons do not contribute any 168 i detail. However, the results of the initial schematic
angular momentum to the yrast band in the implementatioa|culations confirm that tha nucleons play an important
of the symplectic extension of the PSM reported so 4.  role in the spectroscopy of deformed nuclei when they are
The expected contribution of nucleons to the total allowed to participate in the dynamics.

B(E2;0; —2;) value can be simulated by multiplying the

value obtained for th@ nucleons with an appropriate scale ACKNOWLEDGMENTS
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the building blocks of SYsymmetry are quite different in
these two models. In view of the overall agreement between  APPENDIX: SOME CALCULATIONAL DETAILS
measurements on the one hand and calculations involving

only then nucleons on the other, no strong motivation cur- X ) - !
rently exists for including the effect af nucleons in these culation of the expansion coefficient([x,u];J,K) and

models. In other words, to do so would make the calculationfJK of the Sl and SSANM intrinsic states, respectively
prohibitively large and cumberson(ié not impossiblg with-  [5€€ Eqs(33) and(4)]. Knowing these coefficients, we can

out a comparable increase in the quality of agreement wit@Ptain the probabilitie®;, P, andPs from Egs.(25), (29),
experiment. and(32), respec_tlvely. . -~ .
Projected SSANM provides a physically meaningful ap- For calculating the expansion coefﬂqents in _the
proach for including the contribution of thenucleons to the SUs-based models, ~we ~ use the Elliott ~functions
collective rotational states while retaining the indubitable ad*([\,#]LKK') given in Eq.(36) and evaluate them using
vantage of using SiJsymmetry for then nucleons. In the algebraic formulag18] for SUs reps[\,u<4]. We switch

asymptotically deformed Nilsson intrinsic state, theucle- ~ © nhumerical Jntegration when dealing with th80,8] rep
ons have good pseudo-S$&ymmetry, but thex nucleons, at suggested in%er (see Sec. V A TheR function is simply
first sight, have no inherent underlying S&ymmetry. How-  related toa([x,u];J,K) [see Eq(35)]. _
ever, an important finding of this worfthat partly confirms In the SSANM, we construct the deformed sp orbitals
the suggestion made earlier in REEL]) is that the distribu-  #« from the spherical sp orbitakgy” with k being the pro-
tion of angular momentd, in the a part of the Nilsson J€ction (j2- We use harmonic-oscillator wave functions as

intrinsic state is SkHlike. The yrast band is then generated the sp spherical basis states. We make a further distinction
by the quadrupole coupling of SUstates |[J,) and between ther anda states. For the latter, the spherical basis

SUylike states|J,) contained in the intrinsic state. An un- consists of only one orbital; thereforepy=yy" with
avoidable consequence of this coupling scheme is that thef =1. For then states, we work in a single major shell.
probability for an yrast angular momentuhto be generated There are 4, 5, and 6 spherical sp orbitals in the 56-82,
entirely by then nucleons is very small in contrast to the 82—126, and 126—184 shells, respectively. These orbitals are
coupling scheme of the PSM and FDSM in which this prob-mixed by theqq interaction. The matrix elements of the sp
ability is 1. (Note that in the PSM the probability that an quadrupole operath%:\/l&-r/SrzYzo between the spherical
yrast statdJ,,) is produced by excitation of protons alone or sp harmonic-oscillator states are given [}

Computationally, a main problem in this paper is the cal-
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. . (j2k0[j k) . .
n'l’j’k|g|Inljk) = ———==(n'l"j’||g?||nl Al
(n"l"j"K|qg|nljk) m( i'llaglIntj) (A1)
i 2 H 167 e 2 :
(n"1"j"[|gglInlj)= — ("' [[r2Y ool [nl}) (A2)
. _ 5(2j'+1)/ 1] 1
rrir|le2 — 1o - 2
13 ooty =2y 2 2 7250013 [l a9
) L (2I+2n+ )21+ 2n + 1!
(n’l’||r2||nl)=\/2'*' -n—-n +2( ) (, ) (A4)
n'n'tz
non n\(n'\ [(2s+2s +1+1"+2+1)/2]!
__~\s+s’ '
X2 EO( 2) (s)(s’ 2t 2st D2+ 25 + ) (AS)

A matrix (5X5 in the case of the 82—126 shel built up out of these matrix elements for each possible positive value of
projectionk. The eigenvalues and eigenvectors of these matrices are the quadrupole m@pgeatel the expansion coef-
ficientscy’ given in Tables I, II, and III.

Once the coefficients;’, are known, we proceed to evaluate the mafthk|e 'A%| F¢), the elements of which are given
in Eq. (11). We need to pick only thosg’, coefficients consistent with the procedure used to build the intrinsic (sia¢eSec.
IV D 1). We employ numerical and analytical programs to compute the rotation funml@ls(ﬁ), frequently checking
numerical results with analytic calculations. In the final step, we calculat€ fheoefficients by numerically integrating Eq.
(14).

These calculations are done in the, 7a, vn, andva sectors separately. To obtain the combiag for all nucleons in
the n sector we use Eq30). Depending on the case of interdatl nucleons in thea sector, all protons, all neutrons, all
nucleons, etg¢, we invoke an expression similar to EQO) for calculating theC; coefficients.

In evaluating theP; probabilities, we need Clebsch-Gordan coefficients of very large valuds Tiey are of the type
(J1J,00J0) expressible by formulas involving only multiplications and divisions. We evaluate them by summation of
logarithms, thereby ensuring their respective accuracy at very large valdes of
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