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Thermal damping width of the giant dipole resonance in hot nuclei
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An approach describing the thermal damping width of the giant dipole resonance~GDR! in hot nuclei is
presented. The GDR is generated by theph excitations within the finite-temperature random-phase approxi-
mation~FTRPA!, while its damping at finite temperature arises from irreversible coupling ofph configurations
to the thermalpp andhh ones beyond the FTRPA. A semimicroscopic unification of the quantal spreading and
thermal damping widths is undertaken within the framework of motional damping. The numerical calculations
are performed, using a schematic model with equally degenerate equidistant shells for a hot nucleus of mass
A5112 carrying no angular momentum. The results show that the total width of the GDR increases strongly
as a function of the excitation energy up toE*;120–130 MeV, where it reaches a saturation value. The
limiting temperature for the GDR in very hot nuclei is discussed.@S0556-2813~97!03806-5#

PACS number~s!: 24.30.Cz, 21.60.Jz, 24.60.2k, 27.60.1j
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I. INTRODUCTION

A great interest has been devoted to the properties
highly excited nuclei produced in heavy-ion fusion reactio
during the last decade. Analyzing the decay pattern of th
hot nuclei, the giant dipole resonance~GDR! built on com-
pound nuclear states has been observed@1–8#. The experi-
ments have shown that while centroid energy of the hot G
is almost independent of excitation energy~or temperature
T), its apparent width increases strongly as the excita
energy goes up, and saturates at around 130 MeV in
isotopes. This attractive phenomenon has become a
puzzle to be resolved for many theoretical studies in rec
years~see@9# for an overview!. Indeed, while most of theo
retical approaches agree in reproducing the centroid en
of the GDR atTÞ 0, many of them are still in contradictio
with each other in understanding the GDR width in hot n
clei. As an example we refer to two theoretical predictions
Refs. @10,11#. The former assumes a GDR width as t
square root of a quadratic sum of three termsGQ , G0,61, and
GT in the adiabatic regime, whereGQ is temperature inde
pendent,G0,61 is proportional to the nuclear spin in squar
GT is proportional to the square root of temperature, and
width saturation is explained as the saturation of the ma
mum spinJmax. The latter proposes a continuously increa
ing width with temperature. The quite recent measureme
in Ref. @12#, however, have shown that, in order to reprodu
theg spectra from the hot GDR in112Sn, the increase of the
width as a function of excitation energy~temperature! must
be much more rapid than both of these predictions. It
also been pointed out in Ref.@12# that the point should be
proved more clearly the role played by thermal and angu
momentum effects in the low excitation energy regi
(E*< 200 MeV!. The exclusive measurements in Ref.@13#
have shown a small increase of the total GDR width~by
roughly 1.2 MeV! with increasing the angular momentu
from spin 43 to spin 51 atT. 2 MeV in Sn isotopes. This
conclusion is reconfirmed in the recent measurements
Mattiuzziet al. @14#, where it has been shown clearly that t
GDR width does not change when the angular momentum
550556-2813/97/55~6!/2872~13!/$10.00
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varied in hot heavy rotating176W. Reference@14# has also
confirmed that the collisional damping does not change w
angular momentum and remains equal to the its value
T50. It is, therefore, important to see whether there is so
effect, which is not taken into account in the present theor
This is the main motivation for the present work.

The major assumption in the conventional extrapolat
of the microscopic framework at zero temperature to nonz
temperature is the replacement of the average over
ground state atT50 by the one over the grand canonic
ensemble. This means that the hot GDR has been consid
as quantal eigenstates built on top of the thermal equilibri
ensemble. It turned out that if other thermodynamical effe
such as thermal fluctuations of shapes, preequilibrium eff
effect of temperature-dependent transferred angular mom
tum, etc., are not introduced@15–18#, the results in these
approaches only show weak changes ofquantalproperties of
the system at various temperatures. Namely the Landau s
ting within the framework of the self-consistent random
phase approximation~RPA! at finite temperature~SC-
FTRPA! remains stable with increasingT @19,21#. The
spreading widthG↓ of the hot GDR, which has been calcu
lated after coupling theph states to 2p2h ones, does not
change at finite temperature either@22,23#. It is important to
note that in the SC-FTRPA thepp and hh configurations,
which appear at finite temperature, have been treated on
same footing as theph ones. Namely they have been in
cluded simultaneously with theph ones to form the new
collective eigenstates generating the hot GDR, although
SC-FTRPA calculations have shown that thesepp and hh
are mostlynoncollective@20,24,25#. Thus, it is beyond the
capacity of the SC-FTRPA in describing the temperature
pendence of the observed GDR width. Exploring the hig
excited states in nuclear systems, therefore, one has to e
ine thedynamicaleffects of temperature by goingbeyondthe
FTRPA.

Important efforts in this direction have been undertaken
Refs.@26,27#. Vinh Mau @26# has demonstrated that the co
pling to the subspace formed by the new configurations le
to the effect of the change of the Fermi sea on the G
2872 © 1997 The American Physical Society
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55 2873THERMAL DAMPING WIDTH OF THE GIANT DIPOLE . . .
width. The GDR width has been evaluated in a schem
model at the energy equal to the GDR energy. It has b
shown that the Landau damping width of the single GD
mode increases sharply from 0 atT50 up to 4 MeV and
saturates at a temperature aroundT;6 MeV. Braghin and
Vautherin @27# reexamined the effects due topp and hh
configurations within the SC-FTRPA. Their calculations
the response function of nuclear matter using a schem
Skyrme force have shown that the GDR width is also s
sible to the change of the residual interaction. Although th
have been several studies on the temperature dependen
the residual forces in hot nuclei~cf. @24,28#!, it should be
mentioned that so far most of microscopic calculations of
hot GDR characteristics up toT55–6 MeV has been per
formed using the interaction defined at zero temperature

The choice of an appropriate decoupling scheme is d
sive in the treatment of damping of the hot GDR. One kno
that the absence of damping in the mean-field theory an
the standard RPA is an artifact of approximated decoup
schemes due to their incomplete treatment of the resid
interaction. If the poles of the Green’s function, correspo
ing to the propagation of collective modes, will be all on t
real axis~or slightly below, if one cares about the preci
analytical properties of the response function!, as in the case
of the SC-FTRPA mentioned above, there will not be a
damping of the collective modes~cf. also @29#! except for
some Landau splitting. The essential step of the present
per is to present a decoupling scheme, which allows on
reveal the mechanism of thermal damping of the hot GD
The foundation of this scheme is the following. As the te
perature increases the quantal effects arising from a trem
dous number of noncollective degrees of freedom are
pected to diminish, which means they reach the ther
equilibrium much faster than a relatively smaller number
collective degrees of freedom. In the case of the hot GD
the collective degrees of freedom are theph phonon states
while the pp andhh configurations consist mostly of non
collective degrees of freedom. The collective degrees of fr
dom are experimentally relevant, while the noncollect
ones are constituting abackground, to which the collective
degrees of freedom are coupled. If the background is v
large it can be considered as aheat bathand this coupling
between collective and noncollective degrees of freedom
comesirreversible. This irreversible coupling is responsib
for the thermal damping of the hot GDR.

The importance of this concept will become clear in t
present paper. Namely, it will be shown that, propagat
through the heat bath, the collective RPAph phonons form-
ing the GDR are strongly polarized by the irreversible co
pling to the heat bath via the thermalpp andhh configura-
tions. This phenomenon is characterized by thepolarization
operator, whose presence in the Green’s function of the o
phonon propagation leads to abranch cut instead of poles
along the real axis. Therefore the Green’s function has p
only at a finite distance from the real axis. This distance
equal to the imaginary part of the polarization operator a
generates the thermal damping, whereas the real part of g
the energy shift. Just because of the thermal effects, the
lution of the collective one-phonon excitation acquires
definite damping~or a lifetime!. This feature cannot be ob
tained, in principle, within the SC-FTRPA, which treats t
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ph andpp (hh) components on an equal footing.
The formalism is presented in Sec. II, where a mic

scopic evaluation of thermal damping is developed using
two-time Green’s function method@30#. Here, for the sake of
generality, the formalism will be derived in the quasipartic
representation including superfluid pairing interaction. W
first construct thethermal ph (phonon) operators, describing
the GDR excitations, within the framework of the standa
quasiparticle RPA at finite temperature. We next cou
them in an irreversible way to the thermalpp andhh con-
figurations. We obtain a set of equations for two-tim
Green’s functions associated with the evolution of the th
mal phonon through the heat bath. From the polarizat
operator we derive an analytic expression for the damping
the thermal phonon due to the interaction with the he
bath. The physical meaning of the real and imaginary pa
of the polarization operator as the energy shift and ther
damping, respectively, is shown in the Appendix, consid
ing an example of damped harmonic oscillator. A sem
microscopic unification of this thermal damping and t
usual quantal spreading due to the coupling ofph configu-
rations to 2p2h ones is carried out in Sec. III. The formalism
is tested by using a simple model with equally degener
equidistant shells in Sec. IV, where the results of numer
calculations are discussed in comparison with the S
FTRPA and the experimental systematic. The paper is s
marized in the last section.

II. MICROSCOPIC EVALUATION OF THE THERMAL
DAMPING WITHIN THE TWO-TIME GREEN’S

FUNCTION FORMALISM

We consider the model Hamiltonian consisting of the
dependent motion of nucleons in the nuclear mean fi
HMF , the superfluid pairing interactionHpair, and the re-
sidual interaction in the form of the separable multipole for
HM @31#:

H5HMF1Hpair1HM , ~2.1!

where

HMF5(
jmtz

@Ej~ tz!2l tz
#ajm

† ajm ,

Hpair52
1

4(tz
G~ tz! (

jm j8m8
ajm
† ajm̃

†
aj 8m̃8aj 8m8,

HM52
1

2(lm
(

tzr561
~k0

~l!1rk1
~l!!Mlm

† ~ tz!Mlm~rtz!.

~2.2!

In Eqs.~2.1! and~2.2! the standard notation from Ref.@31# is
used. Thus,ajm

† andajm denote the single-particle creatio
and destruction operators, respectively;tz is thez projection
of the nucleon isospin;Ej (tz) are single-particle energies
l tz

are chemical potentials;G(tz) denote superfluid pairing

constants;k0
(l) andk1

(l) stand, respectively, for the isoscal
and isovector constants of the separable multipole forc
Mlm

† (tz) are the multipole operators. The tilde denotes
time-reversing operation:ajm̃5(2) j2maj2m .
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In the quasiparticle representationHMF andHpair can be
unified to describe the independent quasiparticles motion

Hq5HMF1Hpair.(
jm

e ja jm
† a jm , ~2.3!

wherea jm
† anda jm are the Bogoliubov quasiparticle oper

tors. The quasiparticle energye j is defined by the
temperature-dependent BCS~FT-BCS! equations. The mul-
tipole operatorMlm

† (tz) in Eqs.~2.2! has the form@31#

Mlm
† ~ tz!5

~2 !l2m

A2l11
(
j j 8

tz

f j j 8
~l!S 12 uj j 8~1 !

@Alm
† ~ j j 8!1Alm̃~ j j 8!#

1v j j 8
~2 !Blm

† ~ j j 8! D , ~2.4!

where f j j 8
(l)

5^ j 8uu iRl(r )uu j & are the single-particle reduce
matrix elements in the separable multipole interaction a
uj j 8
(1)[ujv j 81v juj 8, v j j 8

(2)[ujuj 82v jv j 8 with u andv being
the Bogoliubov coefficients. The quasiparticle-pair operat
are defined as

Alm
† ~ j j 8!5 (

mm8
^ jm j8m8ulm&a jm

† a j 8m8
† ,

Blm
† ~ j j 8!5 (

mm8
^ jm j8m̃8ulm&a jm

† a j 8m8. ~2.5!

The quasiparticle-scattering operatorBlm
† ( j j 8) satisfies

the following symmetry:

Blm~ j j 8!5~2 ! j2 j 81lBlm̃
†

~ j 8 j !. ~2.6!

In closed-shell nuclei whereuj p5v j h51 andujh5v j p50,

the coefficientuj j 8
(1) corresponds to theph transition while

v j j 8
(2) is associates with thepp and/orhh ones. Therefore the

quasiparticle-pair operatorsA† andA are responsible for the
ph excitations, whereas the quasiparticle-scattering opera
B† andB correspond to thepp and/orhh ones.

In extending the RPA theory to the nonzero temperat
case, the following assumption is adopted for the expecta
values of the commutation relations of operatorsA†,A,B†,
andB, respectively@20,21,24#:

^@Alm~ j aj b!,Al8m8
†

~ j c j d!#&

5dll8dmm8~12nja2njb!@d j aj c
d j bj d

2~2 ! j a1 j b2ld j aj d
d j bj c

#, ~2.7!

^@Blm~ j aj b!,Bl8m8
†

~ j c j d!#&

5dll8dmm8d j aj c
d j bj d

~njb2nja!, ~2.8!

with nj being the quasiparticle occupation number at te
peratureT5b21

nj5~ebe j11!21, ~2.9!
as

d

s

rs

e
n

-

and ^•••& denoting the thermal average over the grand
nonical ensemble:

^•••&5Tr@•••e2bH#/Tr@e2bH#. ~2.10!

Let us assume that before undergoing the thermal per
bation produced by the coupling to noncollectivepp and
hh configurations, the giant resonance, as a superpositio
elementary excitations, is generated by the thermal~collec-
tive! phonon operator, which has the sameph structure as
that of the RPA phonon at zero temperature:

Qlm i
† 5(

j j 8

1

ADj j 8

@xj j 8
l i Alm

† ~ j j 8!2yj j 8
l i Alm̃~ j j 8!#.

~2.11!

In Eq. ~2.11! the renormalization factor

Dj j 8512nj2nj 8 ~2.12!

is introduced to preserve the boson nature ofQn
† at finite

temperature in such a way that the amplitudesxph
n and yph

n

are still satisfying the well-known RPA normalization an
closure relations under the expectation value^@Aph ,Ap8h8

†
#&

in Eq. ~2.7!.
Applying the standard procedure to derive the RPA eq

tion for the thermal phonon operator with the Hamiltonian
Eq. ~2.1!, we end up with the FTRPA equation. Its form
structure is the same as the structure of the usual z
temperature RPA equation, but with arenormalizedinterac-
tion f j j 8

l ADj j 8 instead off j j 8
l . The solution of the obtained

ph FTRPA equation completely defines the energyvn as
well as the amplitudesxph

n and yph
n of the collective one-

phonon excitation generated by the phonon operatorQn
† in

Eq. ~2.11!
We are now goingbeyond the FTRPA to include the

damping emerged from the coupling of theph FTRPA
phonons to the heat bath. Let us express the Hamiltonia
Eq. ~2.1! in terms of the thermal phonon operators, which w
just defined in the FTRPA above, and quasipartic
scattering operators. The Hamiltonian~2.1! can be decom-
posed into three parts,HR , HI , andHRI , which describe the
motion of therelevant~collective! $R% and irrelevant ~non-
collective! $I % subsystems and their coupling, respectively

H5H01HRI , H0[HR1HI . ~2.13!

The explicit form ofH0 and the couplingHRI is

H05Hq2 (
lm i i 8

k~l!F~l i !F~l i 8!~Qlm i
† 1Qlm̃ i !~Qlm i 8

†
1Qlm̃ i 8!

2(
lm

k~l! (
j 1 j 18 j 2 j 28

Gj 1 j 18
~l! Gj 2 j 28

~l!
Blm
† ~ j 1 j 18!Blm~ j 2 j 28!,

~2.14!

HRI52(
lm i

k~l!F~l i !(
j j 8
Gj j 8

~l!

3@~Qlm i
† 1Qlm̃ i !Blm~ j j 8!1H.c.#. ~2.15!
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In Eqs.~2.14! and ~2.15! we use the following notations fo
the vertex functions:

F~l i !5(
j j 8

ADj j 8F j j 8
~l!

~xj j 8
l i

1yj j 8
l i

!, ~2.16!

F j j 8
~l!

5
1

2A2A2l11
f j j 8

~l!uj j 8
~1 ! ,

Gj j 8
~l!

5
1

A2A2l11
f j j 8

~l!v j j 8
~2 ! . ~2.17!

The vertexGj j 8
(l) has a symmetry property

Gj j 8
~l!

5~2 ! j2 j 81lGj 8 j
l . ~2.18!

The thermal damping of the phonon excitation can
studied introducing the following two-time Green’s fun
tions, which associate with~1) the propagation of a free
phonon through the hot nuclear media,

Gl i ;l8 i 8
2

~ t,t8!5^^Qlm i~ t !;Ql8m8 i 8
†

~ t8!&&, ~2.19!

(2) the coupling of a phonon with the quasiparticl
scattering process,

G j j 8l;l8 i 8
2

~ t,t8!5^^Blm~ j j 8!~ t !;Ql8m8 i 8
†

~ t8!&&,
~2.20!

and with their backward processes, namely:(3) the backward
free-phonon propagation,
e

Gl i ;l8 i 8
1

~ t,t8!5^^Qlm̃ i
†

~ t !;Ql8m8 i 8
†

~ t8!&&, ~2.21!

(4) the backward quasiparticle-phonon transition:

G j j 8l;l8 i 8
1

~ t,t8!5^^Blm̃
†

~ j j 8!~ t !;Ql8m8 i 8
†

~ t8!&&.
~2.22!

Since we have regarded theph phonons as quasibosons
the FTRPA, in the following we will consider
@Qlm i ,Bl8m8 i 8( j j 8)#50. Applying the standard method t
derive the equations for two-time Green’s functio
^^A(t);B(t8)&& with the Hamiltonian in Eqs.~2.14! and
~2.15!, we derive an hierarchy of Green’s functions, whi
contains not only the functions~2.19!–~2.22! but also the
higher-order ones, such aŝ^BQ;Q†&&, ^^QQ;Q†&&,
^^BQQ;Q†&&, etc. In order to close this hierarchy we use E
~2.8! to decouple, e.g.,

^^@Blm~ j aj b!,Bl8m8~ j c j d!#Qlm i ;Qlm i
† &&

5d j aj c
d j bj d

~njb2nja!^^Qlm i ;Qlm i
† &&. ~2.23!

In this way we obtain a closed set of equations for the tw
time Green’s functions in Eqs.~2.19!–~2.22!. Making the
Fourier transformation to the energy variableh, we end up
with a complete set of four equations for the Fourier comp
nents of the Green’s functions. They are

~h2vl i !Gl i ;l i
2 ~h!12k~l!F~l i !(

j j 8
Gj j 8

~l!G j j 8l;l i
2

~h!5
1

2p
,

~2.24!
~h2e j1e j 8!G j j 8l;l i
2

~h!22~nj2nj 8!k
~l!Gj j 8

~l!

3S (
i 8
F~l i 8!@Gl i 8;l i

2
~h!1Gl i 8;l i

1
~h!#1

1

2(
j 1 j 18
Gj 1 j 18

~l!
@G j 1 j 18l;l i

2
~h!1G j 1 j 18l;l i

1
~h!# D 50, ~2.25!

~h1vl i !Gl i ;l i
1 ~h!22k~l!F~l i !(

j j 8
Gj j 8

~l!G j j 8l;l i
1

~h!50, ~2.26!

~h1e j2e j 8!G j j 8l;l i
1

~h!12~nj2nj 8!k
~l!Gj j 8

~l!S (
i 8
F~l i 8!@Gl i 8;l i

2
~h!1Gl i 8;l i

1
~h!#1

1

2(
j 1 j 18
Gj 1 j 18

~l!
@G j 1 j 18l;l i

2
~h!1G j 1 j 18l;l i

1
~h!# D

50. ~2.27!

Using Eqs.~2.6! and ~2.18!, andG j j 8l;l i
1 (h)5(2) j2 j 81lG j 8 jl;l i

2 (h), it is easy to see that Eq.~2.27! is just Eq.~2.25! with
interchanged indicesj↔ j 8. Therefore, one can also expressGl i ;l i

1 (h) in Eq. ~2.26! in terms ofG j j 8l;l i
2 (h) as

Gl i ;l i
1 ~h!5

2k~l!F~l i !

h1vl i
(
j j 8
Gj j 8

~l!G j j 8l;l i
2

~h!. ~2.28!

Substituting Eq.~2.28! for Eq. ~2.24!, we get the final set of two equations for the Green’s functionsGl i ;l i
2 (h) and

G j j 8l;l i
2 (h) in the form

~h2vl i !Gl i ;l i
2 ~h!12k~l!F~l i !(

j j 8
Gj j 8

~l!G j j 8l;l i
2

~h!5
1

2p
, ~2.29!
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~h2e j1e j 8!G j j 8l;l i
2

~h!22~nj2nj 8!k
~l!Gj j 8

~l!S @11zl i~h,vl i !#(
j 1 j 18
Gj 1 j 18

~l!
G j 1 j 18l;l i

2
~h!1(

i 8
F~l i 8!Gl i 8;l i 8

2
~h!D 50.

~2.30!

The factorzl i(h,vl i) in Eq. ~2.30! arises from the backward process of phonon propagation in Eq.~2.21!. It has the form

zl i~h,vl i !5
2k~l!

h1vl i
F~l i !(

i 8
F~l i 8!. ~2.31!

The RHS of Eq.~2.31! shows that, for positive energiesh and vl i , the contribution of this factor is proportional t
O@(xj j 8

(l i )
1yj j 8

(l i ))2#, which is a second-order effect in terms of the phonon amplitudesxj j 8
(l i ) andyj j 8

(l i ) .
The set of equations~2.29! and~2.30! represents the basic equations for Green’s functions in our formalism, which a

one to study the damping of the thermal phonon excitations beyond the FTRPA. This can be seen clearly by consid
propagation of a phonon with numberi 85 i and multipolarityl. Eliminating the functionG j 1 j 18l;l i

2
(h) from Eqs.~2.29! and

~2.30! by expressing it in terms ofGl i 8;l i 8
2 (h), we obtain the equation

@h2vl i2Pl i~h!#Gl i ;l i
2 ~h!5

1

2p
. ~2.32!

The polarization operatorPl i(h) in Eq. ~2.32! has the explicit form as

Pl i~h!524@k~l!F~l i !#2
( j j 8@Gj j 8

~l!
#2~nj2nj 8!/~h2e j1e j 8!

122@11zl i~h,vl i !#k
~l!( j j 8@Gj j 8

~l!
#2~nj2nj 8!/~h2e j1e j 8!

. ~2.33!

The quantityh denotes the polarized thermal phonon energy under the thermal effects due to the couplingHRI in Eq. ~2.15!.
It is defined from the secular equation:

h2vl i2Pl i~h!50. ~2.34!

The explicit expression for thethermal dampinggl i of the thermal one-phonon excitation is the imaginary part of
analytical continuation of the polarizationPl i(h) into the complex energy plane

Pl i~h6 i«!5Pl i~h!7 igl i~h!. ~2.35!

Using the symbolical identity

1

h2v6 i«
5P

1

h2v
7 ipd~h2v!, ~2.36!

with «→ 0, we get the expression for the dampinggl i(h) in the form

gl i~h!524p
k~l!@F~l i !#2R~l!~h!

$122@11zl i~h,vl i !#L
~l!~h!%214p2$@11zl i~h,vl i !#R

~l!~h!%2
, ~2.37!
in

-

the
t
le
ary
ra-
al

of

he
where

R~l!~h!5k~l!(
j j 8

@Gj j 8
~l!

#2~nj2nj 8!d~h2e j1e j 8!,

~2.38!

L ~l!~h!5k~l!(
j j 8

@Gj j 8
~l!

#2~nj2nj 8!P
1

h2e j1e j 8
,

~2.39!

andP indicates the principal value of the corresponding
tegral. The poles of the polarization operatorPl i(h) in Eq.
~2.33! correspond to thepp andhh levels at finite tempera
ture when theHRI is switched off. The dampinggl i of the
-

thermal one-phonon excitation vanishes in cold nuclei as
factor (nj2nj 8) in Eqs. ~2.33! and ~2.37! becomes zero a
T50. In the Appendix, we show, by considering the simp
example of a damped harmonic oscillator, that the imagin
part of the analytical continuation of the polarization ope
tor into the complex energy plane is indeed the therm
damping, while its real part gives the energy shift.

The strength function, corresponding to the damping
thermal phonon, has the Lorenzian form as

Sl i~h!5
1

p

gl i~h!

@h2vl i2Pl i~h!#21gl i
2 ~h!

, ~2.40!

which provides the information about the evolution of t
hot GDR.
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The thermal damping widthGl
ITD integrated over the en

ergy interval (E1 ,E2), where the GDR is localized is now
calculated using the strength function in Eq.~2.40! as

Gl i
ITD5Amk~l i !

m0~l i !
2 Ē2, ~2.41!

where

mk~l i !5E
E1

E2
Sl i~h!hkdh ~2.42!

is thek moment, and

Ē5
m1~l i !

m0~l i !
~2.43!

is the energy centroid. Hereafter we call the widthGm
ITD the

integrated thermal damping width.
The results obtained above are different from solving

conventional SC-FTRPA equation in two steps. The rea
is the SC-FTRPA considers thepp andhh configurations at
finite temperature as elementary excitations on the s
footing with theph ones. Therefore thepp andhh configu-
rations in the SC-FTRPA partly participate to the collecti
motion restoring the strength and collectivity. The norm
ization condition within the conventional SC-FTRPA co
tain, beside the amplitudesxj j 8

l i andyj j 8
l i , also the amplitude

c j j 8
l i and f j j 8

l i , arising from the operatorsBj j 8
1 (l i ) and

Bj j 8(l i ), respectively. Therefore no thermal damping wid
for the SC-FTRPA modes can take place@19–25#. In our
formalism, thepp and hh configurations are expressed
terms of noncollective degrees of freedom. Consequen
they do not participate in constructing the collectiveph ex-
citations. Therefore they are treatedbeyondthe ph FTRPA.
Under this treatment they induce an irreversible coupl
HRI of collectiveph phonon to the noncollective subspac
constituting the heat bath. This phonon-heat bath coup
leads to the thermal damping of theph phonon in the col-
lective subspace after projecting out the noncollective
grees of freedom@functionGss8;n8

2 (h)#. This situation is very
similar to the quantal spreading~at T5 0!, which occurs in
the 1p1h subspace, when theph RPA phonons are couple
to the 2p2h ~two-phonon! configurations beyond RPA. Th
latter is however reversible because of the limitation of
2p2h space.

As the apparent width of the GDR observed in high
excited nuclei contains both the quantal spreading widthG↓

and the integrated thermal damping widthGm
ITD , it is useful

to unify these two mechanisms in one single description
the total width. This is done in the next section.

III. SEMIMICROSCOPIC UNIFICATION OF QUANTAL
AND THERMAL DAMPINGS

A consistent microscopic unification of quantal and th
mal dampings requires a systematic derivation of the t
width, which contains both quantal spreading and therm
damping widths in a microscopic way. In the present wo
we restrict ourselves only by combining the quantal spre
ing width GQ existing at zero temperature with the therm
e
n

e

-

y,

g
,
g

-

e

f

-
al
al
k
-
l

damping widthGm
ITD of the GDR at nonzero temperatur

discussed in the previous section. For the quantal sprea
width GQ , we assume it is given separately within the fram
work of some microscopic approach such as in Refs.@23#.
The standard theory@32# for evaluating strength functions i
applied for folding two quantal and thermal distributions
the GDR in hot nuclei as follows.

According to the compound nucleus hypothesis, we m
assume that the compound nuclear stateuc(E* )& at the exci-
tation energyE* is given as a combination of excited mu
tiquasiparticle statesum(E* )&

uc~E* !&5(
m

Xm
c um~E* !&. ~3.1!

The dipole-dipole residual interaction beyond the therm
mean field leads to theB(E1) distribution for each multiqua-
siparticle stateum(E* )& over the higher-lying ones. If the
multiquasiparticle states are associated with the collec
thermal phonon ones as within the framework of FTRP
~i.e., ^m8u•••um&5^Qm8•••Qm

† &), this corresponds to the
distribution of thermal one-phonon excitations

uc&5(
m

Xm
c um&, ~3.2!

where in the case of rotation the stateum& in general has
three spherical components, i.e.,um&[um,k& with k5 1, 2,
and 3. This distribution would represent the GDR built
top of the compound levels in Eq.~3.1! if the description of
the GDR as stationary quantal eigenstates~i.e., without ther-
mal damping! were valid. In that case the GDR would coup
only to particular quantal doorway states, containing the lo
lying surface vibrations. The GDR acquires then aquantal
~spreading! width GQ . In reality, this will not be a genera
situation because the nuclear shape fluctuations@34#, rota-
tional damping@33,35# as well as the irreversible coupling t
pp andhh configurations, proposed in the present work m
cause the variation of the GDR frequencies within the
semble of compound states. The result is anadditional
spreadingwidth of the GDR over compound states under t
effects of shape fluctuations and/or rotational damping or
thermal damping~a definite lifetime! of the GDR caused by
the irreversible couplingHRI in Eq. ~2.15!.

Based on this point of view we apply the system of equ
tions for evaluating the strength functions of the GDR with
themotional dampingscheme, given by the standard theo
@32# following Refs.@34,35# as

P~E!5
1

2p

G

~E2 Ē2dE!21~ 1
2G!2

, ~3.3!

G5GQ1@Dv0#
2E

2`

1`

P~x1 Ē!
2Gm

~E2x!21Gm
2 dx,

~3.4!

dE5@Dv0#
2E

2`

1`

P~x1 Ē!
E2x

~E2x!21Gm
2 dx. ~3.5!
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Here as in Refs.@34,35# P(E) is the strength distribution o
the GDR, localized at the energyE5 Ē. The quantityDv0
denotes the average deviation of the phonon ene
Dv05A^(h2v)2&. Since we are only focusing on the e
fects of the couplingHRI , the thermal damping of the GDR
statesum& over the compound nucleus stateuc& is character-
ized by the integrated thermal damping widthGm5Gm

ITD

alone, which has been calculated microscopically in the p
vious section. Finally, the quantityGQ is the quantal spread
ing width associated with the coupling to more complica
states such as (2p2h) ones~cf. also Ref.@36#!.

It should be mentioned that at high temperature~above
aroundT5 5 MeV! the disappearance of shell effects tur
the energy functional into the one given by the liquid dr
model. In the theory of Fermi liquids the damping of gia
resonances is described as the absorption of the nuclear
sound. The absorption coefficientg for a single GDR mode
with energyh is found analytically from the Landau colli
sional integral as

g5a@h21~2pT!2#, ~3.6!

where the first termah2 corresponds to the damping of th
GDR in the cold system whereas the second term contai
T2 dependence of the damping at finite temperature.
note, however, that the effects due to the finiteness of
nucleus were ignored in Eq.~3.6!. These effects are know
to be responsible for large thermal fluctuations, which c
tribute significantly in enlarging the width of the hot GDR
Unfortunately, to our best knowledge, a fully microscop
derivation of the parameterg in hot nuclei is still absent and
in general, more detailed investigations are called for. In
nite surface dominated systems, for instance, a linear de
dence onh andT for g in Eq. ~3.6! has been suggested
Ref. @22#. However the numerical calculations in realistic h
nuclei @23# have shown that the fragmentation of the h
GDR does not change much with varying temperature up
around 3 MeV even with theT2 dependence ofg as in Eq.
~3.6! taken into account. Therefore it is unlikely that the
will be a significant change in the width of the hot GDR
T;4–5 MeV after including theT2 dependence except tha
the fine structure of the GDR distribution is smeared
@28#. Taking into account these results and also the fact
in the present paper we concentrate the attention only on
thermal damping mechanism due to the coupling of coll
tive ph modes to the noncollectivepp and hh configura-
tions, we do not include theT2 dependence here.

The exact solution of the system described by Eqs.~3.3!–
~3.5! has been studied in Ref.@35#. In order to find a good
starting point for the iteration procedure, it has been s
gested to substitute Eq.~3.3! for Eqs.~3.4! and ~3.5!. When
the main contribution to the integrals in Eqs.~3.4! and~3.5!
comes aroundx'E after this substitution, one may set th
energy shiftdE(x)'dE(E) and G(x)'G(E) in the inte-
grand. In this case both integrals can be carried out ana
cally. The result is the linear equations for the initial valu
of G anddE, which already provide a good approximation
the exact solution so that only few iterations are need
With the present form of Eqs.~3.3!–~3.5!, we obtain for the
initial values ofG and dE simpler expressions than thos
given in Ref.@35#. They are
y
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G5GQ1@Dv0#
2

G12Gm
ITD

@~E2 Ē2dE!21~ 1
2G1Gm

ITD!2#
,

~3.7!

dE5
~G2GQ!~E2 Ē!

2~G1Gm
ITD!2GQ

. ~3.8!

Before evaluating Eqs.~3.7! and~3.8! in the next section,
it is worth mentioning how the damping widthGm in
Eqs. ~3.4! and ~3.5! has been evaluated so far. In Ref.@34#
the thermal fluctuations of the nuclear shape have been
sidered for a hot nucleus with massA5 110 carrying no
angular momentum. The estimationGm.1.7T3 and
Dv0.1.3AT extracted from the Fermi gas model has be
used. The FWHM of the GDR obtained by solving Eqs.~3.4!
and ~3.5! with these value ofGm and Dv0 has shown an
effect due to motionalnarrowing. Namely, the FWHM at
T>2 MeV is almost equal to its value atT50. Meanwhile
the calculations withGm50 in Eqs.~3.4! and ~3.5! gave a
FWHM of GDR, which grows almost linearly with increas
ing temperature. Both of these results disagree with the t
perature dependence of the apparent width of the GD
which has been observed in experiments@2–8#.

IV. NUMERICAL CALCULATIONS FOR THE GDR
WIDTH IN HOT NUCLEI WITHIN A SCHEMATIC MODEL

In this section we apply the proposed approach to a s
plest realization for the hot GDR in a system with ma
A5112, which is provided by the schematic model in Fig.
It consists of fourV-generate equidistant shells, which a
symmetrically located at both sides of the Fermi level a
interact via the separable dipole-dipole force with the sa
matrix element in the dipole operator in Eq.~2.4!:
f 125 f 135 f 245 f . Here the subscripts 1 and 3 numerate t
two shells above the Fermi level, while 2 and 4 those bel
it. This model generates one collectiveph phonon excitation
~the transition 2→1!, which is coupled to the thermalpp ~the
transition 1→3! andhh ~the transition 4→ 2! configurations.
The energies of four shells are, respective
e152e25E/2, e352e453E/2 with a valueE5 6 MeV,
chosen as the distant between shell. The FTRPA equa
and Eq. ~2.34! have analytical solutions in this mode

FIG. 1. Schematic model under consideration.
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The parameterC5 2
3k(V f )2 of the dipole interaction is ad

justed in such a way that the phonon energy

v5EA12C
~122n1!

E
, n15~ebe111!21 ~4.1!
.

re

t
tu

a
1
n

e
-o
el
-
e
t

A

reproduces the empirical energyĒGDR of the GDR at

T50: vT505 ĒGDR5 16 MeV. This value ofCT50 is ex-
trapolated toTÞ0.

The thermal damping in Eq.~2.37! is given by
g~h!5
«C2E2h~122n1!~n12n3!r ~h,E,«!

2v$@112CEz~h,v!/~h22E2!#2r 2~h,E,«!1@4«CEhz~h,v!#2%
, ~4.2!

where

r ~h,E,«!5@~h1E!21«2#@~h2E!21«2#, ~4.3!

z~h,v!5@11z~h,v!#~n12n3!, ~4.4!

and the representation

d~h!5
1

2p i S 1

h2 i«
2

1

h1 i« D5
1

p

«

h21«2
~4.5!

is applied for thed function.
The factorz in Eq. ~2.31! arising from the backward process in Eq.~2.21! is

z~h,v!5
CE~122n1!

8v~h1v!
, ~4.6!

and the polarization operator in Eq.~2.33! has the form

P~h!5
~h1v!C2E2~122n1!~n12n3!

4v~h1v!@h22E212CE~n12n3!#1C2E2~122n1!~n12n3!
. ~4.7!
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The finite« in Eqs. ~4.2!, ~4.3!, and ~4.5! plays a role of a
smearing parameter in calculating the strength function
can also account for coupling of 2p2h states to even more
complicated configurations. In numerical calculations in
alistic nuclei, to avoid spurious results,« is usually chosen to
be sufficiently small~0.1<«<1 MeV! such as the lowes
moments of the strength function are insensitive to its ac
value. In the following we choose«51 MeV and the shell
distanceE56 MeV. The GDR centroid energy atT50 has
been taken from the (g,n) reaction data for Sn isotopes@37#

as ĒGDR516 MeV.
The solutions of Eq.~2.34! are presented in Fig. 2 as

function of temperature. The level with energy equal to
MeV atT50 corresponds to the GDR energy, while the o
with energyE56 MeV atT→0 arises from thepp andhh
configurations. As seen from Fig. 2, the temperature dep
dence of the GDR energy becomes weaker by switching
the coupling to the thermal quasiparticle-scattering fi
~compare thick and thin curves!. The dashed curves are ob
tained without the factorz in the polarization operator. Th
comparison between solid and dashed curves shows tha
effect due to the backward process in Eq.~2.21! on the en-
ergy levels is negligible.

The strength function within the conventional SC-FTRP
at several temperatures and them0(1

2)-moment as a func-
tion of T are depicted in Fig. 3. Since them0(1

2)-moment
It

-

al

6
e

n-
n
d

the

decreases slightly atT>2 MeV, the total strength of the
distributionS(12,v) also decreases asT increases. In order
to keep the EWSR temperature independent, we renorma
the strength functionS(12,v), dividing it by m0(1

2). The
result is shown at the bottom of Fig. 3. As expected, ap
from a downward shift of the GDR localization, no change
the GDR shape occurs in the SC-FTRPA. The shift of
GDR energy takes place since we have fixed the param
C5CT50. One could readjust the parameterC so as to
reproduce the GDR energy at each temperature within
FTRPA. This would increase the absolute value ofC
(C,0), indicating an increase of the dipole-dipole corre
tions at finite temperature. As the study of the temperat
dependence of the effective forces is not complete, we pr
to keep the parameterC independent of temperature.

We calculated the dampingg(h) from Eq. ~4.2! and the
polarization operatorP(h) from Eq. ~4.7! as a function of
temperature. The obtained values are used to calculate
strength function in Eq.~2.40!, which describes the dampin
of the thermal one-phonon excitation. The results of the c
culation of the strength function at several temperatures
displayed in Fig. 4. The high-lying peak of this streng
function corresponds to the GDR. It has no width atT→0
and becomes broader noticeably with increasing the temp
ture. At the same time there appears a new peak cause
thepp andhh transitions in the low energy region at aroun
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8 MeV, which arises from the level with energy equal to
MeV at T→0 and can be regarded as the oversimplifi
influence of the noncollective degrees of freedom in hot
clei. A clear transfer of the strength from the region of GD
to the low-lying peak is observed atT.2 MeV. The strength
of the GDR peak is reduced while the strength concentra
on the low-lying mode increases with increasing tempe

FIG. 2. Energy levels as a function of temperature. Thin cur
correspond to the case when the interaction is switched off.
energiesh from Eq. ~2.34! with and without backward process a
given by the thick solid and dashed curves, respectively.

FIG. 3. SC-FTRPA strength function~top! at several tempera
turesT50, 2, 4, and 6 MeV and the momentm0(1

2) as a function
of temperature ~middle!. The renormalized strength functio
S(12,v)3m0(1

2) is depicted at the bottom. In the top and botto
parts, a thinner curve represents the result obtained at a hi
temperature.
d
-

d
-

ture, preserving the total integrated strength in the wh
energy region from 0 up to 20 MeV. AtT>4–6 MeV the
peak corresponding to the GDR is disappearing as
strength is almost exhausted by the low-lying mode. T
appearance of this low-lying mode in our schematic mode
interesting in the sense that it leads to a loss of strength
the GDR peak in hot nuclei and ultimately to its disappe
ance at high temperature. As this mode is located below
MeV its deexcitation must be within the low energy comp
nent of theg spectra, which is mainly coming from the sta
tistical decay of the final nuclei formed after particle dec
from the compound system. Since in realistic nuclei there
many pp and hh configurations at finite temperature, th
low-lying states are not concentrated in one single mode,
strongly fragmented. This makes the observation of th
low-lying modes difficult. In fact, after subtracting the low
energy component and the high-lying one due to the prot
neutron bremsstrahlung@6–8#, the GDR in the energy inter
val 10<Eg<20 MeV has been observed and its collectiv
is reduced at high excitation energy@38#. A possibility for
the low-lying component around 8 MeV in theg spectrum at
high temperature, which absorbs the main strength of
GDR, has been the subject of recent discussions by
MEDEA Collaboration at the GANIL facility@8#.

In order to see the detail behavior of the thermal damp
of the GDR we calculated the integrated thermal damp
width Gm

ITD in Eq. ~2.41! using the obtained strength function
The results are displayed in Fig. 5. It is important to prope
define the energy region of the GDR in performing the in

s
e

er

FIG. 4. Strength functionS1(h) in Eq. ~2.40! at several tem-
peraturesT.
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gration. Irrespectively of the value of the thermal dampi
g(h), a separation of the GDR and the low-lying peak~see
Fig. 4! is always possible by the poles of the polarizati
operator in Eq.~4.7!, at which the strength function in Eq
~2.40! becomes zero. The temperature dependence of
pole is illustrated in Fig. 2 by the thin curve, started from
MeV. This energy provides us with the proper lower limit
the integration in Eq.~2.42! while the upper limit is fixed at
20 MeV. As seen in Fig. 5, the integrated thermal damp
width of the GDR~thick curves! increases strongly with in
creasing temperature up to aroundT;2 MeV. At
T;2–2.5 MeV the GDR integrated thermal damping wid
Gm
ITD clearly reaches a saturated value. In the hig

temperature regionT> 6 MeV, where the GDR is disappea
ing ~Fig. 4!, it starts to decrease very slowly. It would not b
accurate to carry out the integration over the fixed ene
interval 10<Eg<20 MeV since there is an additional con
tribution from the tail of the low-lying mode~see Fig. 4!.
This contribution would lead to an enhancement of the wi
at aroundT;3–4 MeV ~thin curve in Fig. 5!. The contribu-
tion from the low-lying mode should be eliminated in th
discussion of the GDR width. The strength function and
integrated thermal damping width practically do not chan
by neglecting the effects due to the backward phonon pro
gation (z50) ~dashed curves in Figs. 3 and 5!.

The numerical calculations clearly show that the coupl
HRI @Eq. ~2.15!# of the hot GDR to noncollective degrees
freedom in the heat bath leads to a manifestation of the t
perature dependence for the GDR damping. Moreover
thermal damping reproduces quite well the tendency
served in the experiments. Namely, the thermal damp
width of the GDR increases sharply with increasing tempe
ture T up to around 2–2.5 MeV and reaches a saturation
higher temperatures. For a comparison, it is worth menti
ing that the temperature at which the thermal damping wi
of the GDR reaches the saturation as well as the satur
value for the damping width itself are considerablylower
than those calculated in Ref.@26#. The saturation of the GDR
thermal damping width has a simple interpretation in t

FIG. 5. Integrated thermal damping widthGm
ITD as a function of

temperature. Solid curves are obtained with the factorz, while the
dashed curves are without this factor. Thick curves~solid and
dashed! represent the results, where the lower integration limit
Eq. ~2.42! is chosen as the pole of the polarization operator in
~4.7!. Thin curves~solid and dashed! are obtained after carrying ou
the integration within the fixed interval 10<v<20 MeV.
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model. As discussed above, the irreversible coupling of hi
lying collective mode~representing the GDR! to the low-
lying configuration~appearing atTÞ0) leads to the energy
dissipation of the former to the latter. This dissipation, on
one hand, increases the damping, on the other hand red
the strength of the high-lying peak, conserving the total
tegrated dipole strength@the energy-weighted sum rul
~EWSR!# in the whole energy interval 0,h,20 MeV. The
competition of these two effects leads to the saturation of
GDR thermal damping width at a certain temperatureT. At
T>4–6 MeV the GDR is hard to be seen as its strength
almost absorbed by the low-lying mode. Obviously t
EWSR is conserved only for the total system (0,h,20
MeV!, while it decreases as increasingT in the collective
subspace, corresponding to the GDR peak (11,h,20
MeV!. This feature is a natural consequence wheneve
close system is decomposed into two~well-separated and
open-to-each other! relevant and irrelevant subsystem
which in the present case consist of the collectiveph exci-
tations and the noncollectivepp andhh configurations, con-
stituting the heat bath, respectively. The irreversible coupl
of relevant subsystem~the hot GDR! to the irrelevant one
~the heat bath! leads to an energy flow from the former to th
later. The loss of collectivity, reported by Gaardhoje@2#, and
the disappearance of the hot GDR, observed in the exp
ments at high temperatures~see, e.g., Ref.@38#!, can be
therefore interpreted within our approach as the result o
complete dissipation of the collectiveph modes to the non-
collective degrees of freedom in the heat bath. Physic
this means that as the temperature increases, the possi
for the development of pure quantal collective excitatio
such as the coherent motion ofall protons againstall neu-
trons in phase, is reduced to vanish completely atT;5–6
MeV because of the increase of stochastic motion of non
lective degrees of freedom constituting the heat bath.

It is exciting that Ref.@28# ~see also@29#!, which ap-
proached the damping mechanism using the linear resp
theory, has exposed a quite similar feature. Here one
serves that the strength of the high-lying resonance is tra
ferred to a pronounced low-lying mode~or moved gradually
to the low energy region! in such a way that it ceased to exi
at aroundT53 MeV since the low frequency mode has e
hausted all the strength. It is worth noticing that the effe
of the residual interaction was taken into account in Re
@28,29# by dressing the particles and holes such as to cre
an imaginary part of their self-energies. This scenario can
compatible with the present approach, which leads to
polarization operator, whose imaginary part yields the th
mal damping. Clearly, the imaginary part of the self-ener
which was taken as an ansatz in Ref.@28# may contain also
the effects of 2p2h configuration mixing as well. Even
though starting from a different approach, Refs.@28,29#
came to a similar conclusion regarding the damping at fin
temperature. Indeed, the damping factor in Ref.@29# is pro-
portional to the friction coefficient divided by the square ro
of the local stiffness, which also reach a plateau
T;3–4 MeV. In order to see the correspondence betw
our approach and the one in Refs.@28,29# it is necessary to
establish a clear relation between the imaginary part in
~3! of Ref. @28# and the thermal damping and spreadi
widths of GDR discussed in the previous sections. Ther

.
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no doubt that this would be a formidable task, which, on
completed, would resolve the long-standing discrepan
between several existing approaches to the hot GDR puz

The total GDR widthG ~FWHM!, which combines both
the quantal spreading widthG↓ and the integrated therma
damping oneGm

ITD , is calculated from Eqs.~3.4! and ~3.5!.
Hereafter we suppose that the quantal widthGQ can be de-
scribed within the framework of a microscopic approac
such as in Refs.@23#. The GDR in cold nuclei can then b
approximated by a single collective excitation, who
strength has a Lorenzian distribution centered at the G
energy centroidĒ with the FWHM equal to the quanta
spreading widthG↓. Following the calculations in Refs
@22,23#, we can putGQ5G↓5 4.8 MeV @37# independently
of temperature. The initial values for the widthG of the GDR
and the energy shiftdE @Eqs.~3.7! and~3.8!# turn out to be
very close to the exact ones in the present case. This prov
a convergence of the iteration procedure with a good pr
sion ~,1 keV! already at the second step in solving Eq
~3.4! and ~3.5!. The result for the FWHM of the GDR cen
tered atE5 ĒGDR is plotted versus the excitation energy p
nucleon in Fig. 6, where the experimental systematic for
isotopes@2–7# are also collected. In converting temperatu
to the excitation energyE*5aT2, we used several values fo
the level density parametera5A/82A/10. It is seen from
Fig. 6 that the qualitative behavior of the GDR width o
served in the experiments is well reproduced by applying
formalism to the simple model. The closest curve to the
perimental systematic is obtained by using the level-den
parametera5A/8 andA/9. The total GDR width increase
strongly as a function of the excitation energy up toE* /A
;1.1–1.2 MeV corresponding toE*; 120 – 130 MeV
and thereafter becomes approximately constant. We wo
like to emphasize only on the qualitative side of the pres
schematic calculations. In fact the pretty good agreem
with the experimental systematics shown in Fig. 6 may
illusory, since one should not forget that we have used
same matrix element and interaction parameterk for all ph
as well aspp and hh configurations. Reducing, e.g., th

FIG. 6. FWHM of the GDR as a function of the excitatio
energy per nucleonE* /A[aT2/A. The results obtained within ou
formalism are shown by the thick (a5A/8), thin (a5A/9), and
dotted (a5A/10) curves. The dashed curve represe
G54.8@11(E* /A)1.6# @3#. Data are from Refs.@2# ~white crosses!,
@3# ((), @4# (n), @5# (*), @6# ~blackh), @7# (d), and@37# (!).
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interaction parameterk for pp andhh levels, the saturated
value of the GDR width aboveE* /A;1.1–1.2 MeV be-
comes lower accordingly. Other mechanisms such as sh
fluctuations, etc., also contribute to the total width. In t
present schematic estimation these effects are effectively
cluded owing to a large smearing parameter«51 MeV. This
feature also agrees with the observation in Ref.@27#. The
thermal damping width also depends on the distant betw
shells, which is kept equal to 6 MeV in the present calcu
tions. With Fig. 6 we would like just to point out that th
saturation behavior of the GDR width can be understood
the present formalism.

We finish the present section with a discussion on
limiting temperature, above which the GDR does not exi
@38#. In this respect our formalism gives a different mech
nism from the classical approach in Ref.@39#, where the
conclusion about the disappearance of the GDR came f
its exceedingly large width at high temperature. In fact,
GDR width in our model remains nearly constant at exci
tion energyE*.130 MeV. The saturation of the GDR
width is not the real signature for its disappearance at h
temperatures. In the region with saturated width, the limit
temperature for the GDR can be discussed by using the
tegrated energy weighted strength. The EWSR of the G
decreases as increasing temperature at least in the pr
schematic model because of the existence of the low-ly
mode ~Fig. 4!. The ratio EWSR~T!/EWSR~0! over the en-
ergy interval of the GDR localization in the present mode
shown in Fig. 7~solid curve!. The EWSR obtained by using
the width given by the fitG2G05G0(E* /A)

1.6 @3# is also
shown by the dashed curve. The saturation temperature
be defined asT;3.5 MeV corresponding to the point wher
the two curves start to deviate. However the EWSR becom
really small (,10% of the ground state GDR EWSR! at
higher temperature around;5 MeV. Therefore it may be a
good reason to consider the temperatureT around 5 MeV as
the limiting temperature for the existence of the GDR in h
nuclei.

V. CONCLUSIONS

We have presented an approach, which allows to de
the thermal damping widthof the GDR in hot nuclei in a

s

FIG. 7. The ratio EWSR(T)/EWSR~0! as a function of tempera
ture. The solid curve is obtained by using the widthGm5Gm

ITD

within our formalism, while the dashed curve has been calcula
with Gm[G2GQ[4.8(E* /A)1.6 from Ref. @3# and using the level-
density parametera5A/8.
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microscopic way. We have demonstrated the importanc
the thermodynamical effects in the noncollectivepp and
hh configurations, which appear only at nonzero tempera
and can play the role of a background or the heat b
Namely, we have pointed out that the irreversible coupl
of theph GDR to this background~or heat bath! leads to the
thermal damping of GDR in hot nuclei. The application
our approach to a simple schematic model has shown
this thermal damping mechanism can be complementar
other mechanisms in understanding the behavior of the G
width at finite temperature. Finally a semimicroscopic un
cation of thequantal spreadingand theintegrated thermal
damping widthsshows that the behavior of the total wid
found in this approach is similar to the tendency in the
perimental findings in hot Sn isotopes including the region
width saturation. Our analysis has been performed within
oversimplified schematic model. A drawback of this mod
is, while the GDR can be described by one single collect
ph transition, the degeneracy of noncollectivepp and hh
configurations on only two levels made them too collect
and therefore artificially enhanced intensity of the low lyi
mode. In realistic situations we expect that a very large nu
ber of noncollectivepp and hh degrees of freedom wil
spread out the strength distributed on them. In our opin
the difference between the present schematic model and
reality is the difficulty of separating the low-lying modes o
from the background in realistic situations. Therefore in
ality high-precision measurements are required in the lo
energy part of theg-decay spectrum of hot nuclei. Noneth
less, since the mechanism of the thermal damping ar
from the coupling between collective and noncollective d
grees of freedom, we believe that the qualitative conclus
of our formalism on the behavior of the hot GDR, includin
the region of width saturation, is model independent.
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APPENDIX: PHYSICAL MEANING OF POLARIZATION
OPERATOR IN THE EXAMPLE OF DAMPED

HARMONIC OSCILLATOR

Let us consider a simple example of an ideal harmo
oscillatorR coupled to a heat bathI . The Hamiltonian of the
free oscillator is

HR5vQ†Q, ~A1!

where the ideal boson operatorsQ† andQ create and anni-
hilate, respectively, an elementary excitation~quanta! of en-
ergyv in the oscillator. The free heat bath Hamiltonian ne
not be specified in the present example. The oscillator he
bath coupling is chosen as

HRI5g~QB†1Q†B!, ~A2!

with unspecified dimensionless heat bath operatorsB† and
B.
of
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The two-time Green’s functionsG(t2t8) andG(t2t8),
which describe the motion of the oscillator in the heat ba
and the influence of the heat bath respectively, are defi
similarly to Eqs.~2.19! and ~2.20!. Applying the two-time
Green’s function method in the same way as in Sec. II,
get the corresponding set of equations for these two-t
Green’s functions

i
]

]t
G~ t2t8!5d~ t2t8!1vG~ t2t8!1gG~ t2t8!,

~A3!

i
]

]t
G~ t2t8!5NgG~ t2t8!. ~A4!

Their Fourier images satisfy the equations

hG~h!5
1

2p
1vG~h!1gG~h!, ~A5!

hG~h!5NgG~h!. ~A6!

Equation~A4! is derived as a result of decoupling simila
to Eq. ~2.23!

^^@B~ t !,B†~ t8!#Q~ t !;Q†~ t8!&&

'^@B~ t !,B†~ t !#&^^Q~ t !;Q†~ t8!&&

5^@B~ t !,B†~ t !#&G~ t2t8![NG~ t2t8!. ~A7!

Eliminating functionG(h) by expressing it in terms o
G(h) from Eq. ~A6! and substituting the result for Eq.~A5!
finally leads to an equation for the Green’s function of t
oscillator

@h2v2P~h!#G~h!5
1

2p
, ~A8!

where the polarization operatorP(h) in this example is

P~h!5
N

h
g2. ~A9!

Converting the last term on the RHS of Eq.~A3! in term
of its Fourier transformG(E) (E5h1 i«) and using Eqs.
~A6! and ~A9! to expressG(E) in terms of G(E) and
P(E), we get

i
]

]t
G~ t2t8!5d~ t2t8!1vG~ t2t8!

1E
2`

`

P~h1 i«!G~h1 i«!

3e2 ih~ t2t8!1«~ t2t8!dh. ~A10!

If the main value of the functionP(E) comes around the
pole h of Eq. ~A8! we can takeP(E) out of the integral,
approximating P(h1 i«)[Re@P(h1 i«)#1Im@P(h1 i«)#
by its value around the pole. The remaining integral is no



re
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ing but the double-time Green’s functionG(t2t8) thanks to
its analytical property. We end up with

]

]t
G~ t2t8!5@2 i ~v1D!1g#G~ t2t8!, tÞt8

~A11!

where
o

rt.

l.

s.
D5PRe@P~E!#E5h1 i«5P
N

h
g2,

g5Im@P~E!#E5h1 i«5pNg2d~h!.

It is easy to recognize that Eq.~A11! is nothing but the
equation for the damping of the harmonic oscillator, whe
D is the energy shift andg is the damping coefficient.
co,

g.

ys.
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