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Thermal damping width of the giant dipole resonance in hot nuclei
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An approach describing the thermal damping width of the giant dipole reson@fz®) in hot nuclei is
presented. The GDR is generated by fheexcitations within the finite-temperature random-phase approxi-
mation(FTRPA), while its damping at finite temperature arises from irreversible couplinhafonfigurations
to the thermapp andhh ones beyond the FTRPA. A semimicroscopic unification of the quantal spreading and
thermal damping widths is undertaken within the framework of motional damping. The numerical calculations
are performed, using a schematic model with equally degenerate equidistant shells for a hot nucleus of mass
A=112 carrying no angular momentum. The results show that the total width of the GDR increases strongly
as a function of the excitation energy up B3 ~120-130 MeV, where it reaches a saturation value. The
limiting temperature for the GDR in very hot nuclei is discus4&0556-28187)03806-3

PACS numbes): 24.30.Cz, 21.60.Jz, 24.60K, 27.60:+]

l. INTRODUCTION varied in hot heavy rotating’®. Referencg14] has also
confirmed that the collisional damping does not change with
A great interest has been devoted to the properties adingular momentum and remains equal to the its value at
highly excited nuclei produced in heavy-ion fusion reactionsT=0. It is, therefore, important to see whether there is some
during the last decade. Analyzing the decay pattern of theseffect, which is not taken into account in the present theories.
hot nuclei, the giant dipole resonan@@DR) built on com-  This is the main motivation for the present work.
pound nuclear states has been obseifdeeB]. The experi- The major assumption in the conventional extrapolation
ments have shown that while centroid energy of the hot GDRf the microscopic framework at zero temperature to nonzero
is almost independent of excitation ener@y temperature temperature is the replacement of the average over the
T), its apparent width increases strongly as the excitatiomround state af=0 by the one over the grand canonical
energy goes up, and saturates at around 130 MeV in Sensemble. This means that the hot GDR has been considered
isotopes. This attractive phenomenon has become a reab quantal eigenstates built on top of the thermal equilibrium
puzzle to be resolved for many theoretical studies in recentnsemble. It turned out that if other thermodynamical effects
years(see[9] for an overview. Indeed, while most of theo- such as thermal fluctuations of shapes, preequilibrium effect,
retical approaches agree in reproducing the centroid energsffect of temperature-dependent transferred angular momen-
of the GDR afT# 0, many of them are still in contradiction tum, etc., are not introduced5-18, the results in these
with each other in understanding the GDR width in hot nu-approaches only show weak changegadntalproperties of
clei. As an example we refer to two theoretical predictions inthe system at various temperatures. Namely the Landau split-
Refs. [10,11. The former assumes a GDR width as theting within the framework of the self-consistent random-
square root of a quadratic sum of three tedfgs 'y -1, and  phase approximation(RPA) at finite temperature(SC-
I'r in the adiabatic regime, whet, is temperature inde- FTRPA remains stable with increasing [19,21]. The
pendent[’y ., is proportional to the nuclear spin in square, spreading widtH™! of the hot GDR, which has been calcu-
I'; is proportional to the square root of temperature, and théated after coupling theh states to p2h ones, does not
width saturation is explained as the saturation of the maxiehange at finite temperature eith@2,23. It is important to
mum spind.c. The latter proposes a continuously increas-note that in the SC-FTRPA thpp and hh configurations,
ing width with temperature. The quite recent measurement&hich appear at finite temperature, have been treated on the
in Ref.[12], however, have shown that, in order to reproducesame footing as th@h ones. Namely they have been in-
the y spectra from the hot GDR ih*?Sn, the increase of the cluded simultaneously with theh ones to form the new
width as a function of excitation enerdyemperaturemust  collective eigenstates generating the hot GDR, although the
be much more rapid than both of these predictions. It haSC-FTRPA calculations have shown that thegeand hh
also been pointed out in Ref12] that the point should be are mostlynoncollective[20,24,25. Thus, it is beyond the
proved more clearly the role played by thermal and angulacapacity of the SC-FTRPA in describing the temperature de-
momentum effects in the low excitation energy regionpendence of the observed GDR width. Exploring the highly
(E*=< 200 MeV). The exclusive measurements in Ref3] excited states in nuclear systems, therefore, one has to exam-
have shown a small increase of the total GDR widlly  ine thedynamicaleffects of temperature by goirgeyondthe
roughly 1.2 MeV} with increasing the angular momentum FTRPA.
from spin 43 to spin 51 aT= 2 MeV in Sn isotopes. This Important efforts in this direction have been undertaken in
conclusion is reconfirmed in the recent measurements bRefs.[26,27]. Vinh Mau[26] has demonstrated that the cou-
Mattiuzziet al.[14], where it has been shown clearly that the pling to the subspace formed by the new configurations leads
GDR width does not change when the angular momentum it the effect of the change of the Fermi sea on the GDR
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width. The GDR width has been evaluated in a schematiph andpp (hh) components on an equal footing.
model at the energy equal to the GDR energy. It has been The formalism is presented in Sec. Il, where a micro-
shown that the Landau damping width of the single GDRscopic evaluation of thermal damping is developed using the
mode increases sharply from 0 &t=0 up to 4 MeV and two-time Green’s function methd@®0]. Here, for the sake of
saturates at a temperature arouhd6 MeV. Braghin and generality, the formalism will be derived in the quasiparticle
Vautherin [27] reexamined the effects due fp and hnh  representation including superfluid pairing interaction. We
configurations within the SC-FTRPA. Their calculations of first construct theéhermal ph (phonon) operatarsiescribing
the response function of nuclear matter using a schematit'® GDR excitations, within the framework of the standard
Skyrme force have shown that the GDR width is also senduasiparticle RPA at finite temperature. We next couple
sible to the change of the residual interaction. Although therdh®m in an irreversible way to the thermap andhh con-
have been several studies on the temperature dependencefigfirations. We obtain a set of equations for two-time
the residual forces in hot nuclégf. [24,28), it should be Green’s functions associated with the evolution of thg thgr—
mentioned that so far most of microscopic calculations of thénal phonon thr_OUQh the heat bath. From the polan;atmn
hot GDR characteristics up ©=5-6 MeV has been per- operator we derive an analytic expression for the damping of
formed using the interaction defined at zero temperature. e thermal phonon due to the interaction with the heath

The choice of an appropriate decoupling scheme is dec?@th- The physical meaning of the real and imaginary parts
sive in the treatment of damping of the hot GDR. One know<2f the polarization operator as the energy shift and thermal
that the absence of damping in the mean-field theory and if2MPing, respectively, is shown in the Appendix, consider-
the standard RPA is an artifact of approximated decoupling?d @n example of damped harmonic oscillator. A semi-
schemes due to their incomplete treatment of the residudlNicroscopic unification of this thermal damping and the
interaction. If the poles of the Green’s function, correspond4sual quantal spreading due to the couplingaf configu-
ing to the propagation of collective modes, will be all on theations to $2h ones is carried out in Sec. I1l. The formalism
real axis(or slightly below, if one cares about the preciseiS t€sted by using a simple model with equally degenerate
analytical properties of the response funclicas in the case eqwdlst_ant shells in Sec. IV, \_/vhere the results pf numerical
of the SC-FTRPA mentioned above, there will not be anycalculations are discussed in comparison with the SC-
damping of the collective mode&f. also[29]) except for F TRPA and the experimental systematic. The paper is sum-
some Landau splitting. The essential step of the present p&arized in the last section.
per is to present a decoupling scheme, which allows one to
reveal the mechanism of thermal damping of the hot GDR. Il. MICROSCOPIC EVALUATION OF THE THERMAL
The foundation of this scheme is the following. As the tem- DAMPING WITHIN THE TWO-TIME GREEN'S
perature increases the quantal effects arising from a tremen- FUNCTION FORMALISM
dous number of noncollective degrees of freedom are ex-
pected to diminish, which means they reach the therma&e
equilibrium much faster than a relatively smaller number of
collective (_jegrees of freedom. In the case of the hot GDRSidual interaction in the form of the separable multipole force
the collective degrees of freedom are fhie phonon states, Hy [31]:

. . . . M .
while the pp and hh configurations consist mostly of non-
collective degrees of freedom. The collective degrees of free- H=Hye+Hpairt Hy | (2.1
dom are experimentally relevant, while the noncollective
ones are constituting background to which the collective where
degrees of freedom are coupled. If the background is very
large it can be considered ashaat bathand this coupling
between collective and noncollective degrees of freedom be-
comesirreversible This irreversible coupling is responsible
for the thermal damping of the hot GDR. 1 + ot

The importance of this concept will become clear in the Hpair= — th G(tz). E / AmAndjrm ajrm,
present paper. Namely, it will be shown that, propagating z jmjm
through the heat bath, the collective RpA phonons form- 1
ing the GDR are strongly polarized by the irreversible cou-  Hy=— EE > (kE)”erk(l”)MI#(tZ)MM(Ptz)-
pling to the heat bath via the thermap andhh configura- M tp==1
tions. This phenomenon is characterized by pbéarization 2.2
operator, whose presence in the Green’s function of the ongr, Egs.(2.1) and(2.2) the standard notation from Ré81] is

phonon propagation leads tobmanch cutinstead of poles used. Thusa}rm and a;, denote the single-particle creation

along the real axis. Therefore the Green'’s function has poleg,md destruction operators, respectivelyis thez projection
only at a finite distance from the real axis. This distance is P €SP v Proj

equal to the imaginary part of the polarization operator amg the nucleqn |sosp|nlf_j(t%) are smgle-partlcle.energ.les,
generates the thermal damping, whereas the real part of gives: are chemical potential$3(t;) denote superfluid pairing
the energy shift. Just because of the thermal effects, the eveonstantsk§") andk{" stand, respectively, for the isoscalar
lution of the collective one-phonon excitation acquires aand isovector constants of the separable multipole forces;
definite dampingor a lifetime. This feature cannot be ob- MIH(tZ) are the multipole operators. The tilde denotes the
tained, in principle, within the SC-FTRPA, which treats the time-reversing operatiora;7=(—)'""a;_p,.

We consider the model Hamiltonian consisting of the in-
pendent motion of nucleons in the nuclear mean field
Hwr, the superfluid pairing interactiod ,,,, and the re-

Hw%‘{ [Ej(t) =\ Jalaim.
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In the quasiparticle representatiéty,= andH,; can be  and(---) denoting the thermal average over the grand ca-
unified to describe the independent quasiparticles motion asonical ensemble:

N=Ti[ - e ARYTI e AR 2.1

Hq=Hwe+ Hpair= > €amaim, 2.3 (=T Ve ] 219
im Let us assume that before undergoing the thermal pertur-

bation produced by the coupling to noncollectipe and

hh configurations, the giant resonance, as a superposition of

elementary excitations, is generated by the therfoallec-

tive) phonon operator, which has the samle structure as

that of the RPA phonon at zero temperature:

wherea and aj,, are the Bogoliubov quasiparticle opera-
tors. The quasiparticle energy; is defined by the

temperature-dependent BC(ST-BCS equations. The mul-

tipole operatorMIM(tZ) in Egs.(2.2) has the form31]

))\ " t; (
t _ (+) (i 1 . )
+ e (it
M)\,u(tz) ,—2 N1 2, f 2 ” )\,u(” ) A)\,u.(” )] QI;Ll:% \/F[XJ)\JIIAI#(“ )_y}\jer)\,u(” ).
! (.19
+0i; BLu] ’)), (2.4

In Eqg. (2.11) the renormalization factor

Wheref(”—(J’||iRA(r)||j> are the single-particle reduced Djj=1-n;—n;, (2.12

matrix elements in the separable multipole interaction and
u(+)—u,v,,+v uj, v(_,) U;uj —vju; With u andv being is introduced to preserve the boson natureQdf at finite

the Bogoliubov coeff|C|ents The quasiparticle-pair operatordémperature in such a way that the amplituetGs andy

are defined as are still satisfying the well-known RPA normallzatlon and
closure relations under the expectation valll&y,,A p,h,]>
b S i - in Eq. (2.7.
Anull] )_mEm/ (Imj’m’ [\ p) @jm ey Applying the standard procedure to derive the RPA equa-

tion for the thermal phonon operator with the Hamiltonian in
_ Eqg. (2.1), we end up with the FTRPA equation. Its formal
BIH(jj’):E (jmj’m’|)\M>a;rmaj,m,. (2.5  structure is the same as the structure of the usual zero-
mm’ temperature RPA equation, but withrenormalizedinterac-
tion f},VDj;, instead off};, . The solution of the obtained
ph FTRPA equation completely defines the enekgy as
well as the amplitudesy, andyp, of the collective one-
B (] r):(_)jfj’+)\BI;d(j D). (2.6 phonon excitation generated by the phonon oper@tbnn
Eq. (2.1
We are now goingbeyondthe FTRPA to include the
h ] damping emerged from the coupling of thEh FTRPA
the coefﬁmentu corresponds to theh transition while  phonons to the heat bath. Let us express the Hamiltonian in
(. )is assomates with thep and/orhh ones. Therefore the Eq.(2.1) in terms of the thermal phonon operators, which we
qua5|part|cle pair operators’ andA are responsible for the just defined in the FTRPA above, and quasiparticle-
ph excitations, whereas the quasiparticle-scattering operatogeattering operators. The Hamiltonig2.1) can be decom-
B' andB correspond to th@p and/orhh ones. posed into three partslg, H,, andHg,, which describe the
In extending the RPA theory to the nonzero temperaturenotion of therelevant(collective) {R} andirrelevant (non-
case, the following assumption is adopted for the expectationollective) {1} subsystems and their coupling, respectively:
values of the commutation relations of operatdrsA,BT,

The quasiparticle-scattering operatBﬁM(jj’) satisfies
the following symmetry:

In closed-shell nuclel where; =vjh=1 and ujhzu,-p:o,

andB, respectively[20,21,24: H=Ho+Hg;, Ho=Hg+H,. (2.13
([ALa b)vAIrur(jcjd)D The explicit form ofH, and the couplindiy, is
:5 75 ’ 1_n —n 5
AN MM( Ja Jb)[ Jalc Jde HO_H — E k}\)f()\l)f()\l (Q)\#|+Q)\,u|)(Q}\/“/+Q)\M| )
A
—(—)]a+lb A(Sajdb‘]bj] (27) wii’
_ \) (N) (>\) B (i.i! Y
([Brulialn) Bl (icio)]) 2KV 3 GGl Byulial?)
J1J1]2J2
=88 615 8, (M, — N, (2.8 (2.14
with n; being the quasiparticle occupation number at tem- Hp = — E k“‘)f(“)z g™
peratureT=p3"1 i Il

n=(efi+1)"1, (2.9 X[(me"’Qx;i)B)\M(” )+Hc]. (215
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In Egs.(2.14 and(2.15 we use the following notations for GH ,-,(t,t’):((QT~.(t)'QT, LAY, (22D
the vertex functions: NN Aui N i

' (4) the backward quasiparticle-phonon transition:
FND = 2 D “ F()\ (X)\I +y}\jll), (2.19 N ) N + ,
Lo (6= (B2 D; Q0 (1))

(2.22
1

S FO () : , ,
NN Since we have regarded thpdh phonons as quasibosons in
v2y2n the FTRPA, in the following we will consider
1 [QW B i (J] ’)]':O. Applying the standard method. to
GM= FMy ( ) (2.17)  derive the equations for two-time Green's functions
N NN fii ((A(t);B(t"))) with the Hamiltonian in Egs(2.14 and
o) (2.195, we derive an hierarchy of Green’s functions, which
The vertexGy;/ has a symmetry property contains not only the function§2.19—(2.22 but also the
o) RV higher-order ones, such a$(BQ;Q")), ((QQ;QM),
G/ =(=)71 G (2.18  ((BQQ;QM), etc. In order to close this hierarchy we use Eq.

(2.9 to decouple, e.g.,
The thermal damping of the phonon excitation can be

studied introducing the following two-time Green’s func- (([Byu(iain),Brrpr(icia) 1Qui iQI N
tions, which associate witlfl) the propagation of a free o
phonon through the hot nuclear media, 8 eOivia My~ M) Quui i QL)) (223

G (L) =((Qui(D); Qmu.r(t ), (219 |n this way we obtain a closed set of equations for the two-
time Green’'s functions in Eq92.19—-(2.22. Making the
(2) the coupling of a phonon with the quasiparticle- Fqyrier transformation to the energy variabjewe end up
scattering process, with a complete set of four equations for the Fourier compo-
- , o , nents of the Green'’s functions. They are
L (B =((Bru(5])(0:Q) i (), 4

(2.20 1

Grini(m) +2kNFAS, G
and with their backward processes, namé®y:the backward (7= @) Gini(7) 2 GirLjjnani(m = 27’
free-phonon propagation, (2.29

(7= €+ €T ni ()= 2(nj—n kMG

(2 FN [GM/M(WHGM/MU])H—E G (M +T ] “,w)]) (2.29
<n+wm>6;m<n>—2k”WZ, G (M =0, (2.26

(€= )T [y () +2(n =0y kMG (E FNG, () + Gy, A.<n>]+—2 G (T M,(n)])

=0. (2.27

Using Eqgs.(2.6) and (2.18, andT'j[,,.,;(7)=(=)1"1"" T, ,(#), itis easy to see that Eq2.27) is just Eq.(2.25 with
interchanged indicep— j’. Therefore, one can also expreGéi;M(n) in Eqg. (2.26) in terms ofFj],A;ki(n) as

2K N

Glini (M= E GNT () (2.29

Substituting Eq.(2.28 for Eq. (2.24, we get the final set of two equations for the Green’s functi@s,;(») and
L'jiai(m) in the form

l
(77_w)\i)G)ti;Ai(ﬂ)"_Zk()\)]:(M)Z g()\ Liinai(m= 2’ (229
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(n— 6i+6]’)Fj_j’>\;>\i(77)_2(nj_ni’)k(x)gﬁ\’) [1+§M(7]’w)\i)]12j’ gJ()l\J)irJ'_lJ'iMxi(n)+; FM,)G;’:M’(”) =0.
11
(2.30
The factor{, (7, w,;) in Eqg. (2.30 arises from the backward process of phonon propagation ifZ22fl). It has the form

k™ \i")
1 |
- IE FND, (2.3

OHi(n,wyi)=

The RHS of Eq.(2.31) shows that, for positive energieg and w,;, the contribution of this factor is proportional to
O[(xj(j”,')+yfj”,'))2], which is a second-order effect in terms of the phonon amplituﬁé&andyﬁ‘f).
The set of equation€.29 and(2.30 represents the basic equations for Green’s functions in our formalism, which allow

one to study the damping of the thermal phonon excitations beyond the FTRPA. This can be seen clearly by considering the
propagation of a phonon with numbigr=i and multipolarity\. Eliminating the functiori“]flj,)\_“(n) from Egs.(2.29 and
™

(2.30 by expressing it in terms dB,;,.,;,(#), we obtain the equation

1
[ﬂ_wxi_Pxi(ﬂ)]G;i;m(ﬂ):ﬂ- (2.32

The polarization operatd?,;(#) in Eq. (2.32 has the explicit form as

E”/[QJ(J)\,)]Z(I’IJ—n]r)/(n— 6]"‘6]/)

. 2.3
1-2[1+ £i(7,0,) TkKME [GN 120 =0 ) (9 €+ €)) (233

Pyi(7)=—4[KNFNT2

The quantityn denotes the polarized thermal phonon energy under the thermal effects due to the cdgplimdeq. (2.15.
It is defined from the secular equation:

n—wyi—P\i(7)=0. (2.39

The explicit expression for ththermal dampingy,; of the thermal one-phonon excitation is the imaginary part of the
analytical continuation of the polarizatid?,;( ) into the complex energy plane

Pri(nEie)=Pyi(n)Fini(n). (2.39

Using the symbolical identity
! _pt g S 2.3
n_wiis—rﬂ_w—o—lﬂ (n—w), (2.36

with e — 0, we get the expression for the dampipg(#») in the form

kMLFAMTPRY ()
) = AT L (o) L () P+ 472 L+ L (7 ) IR ()}

(2.37

where thermal one-phonon excitation vanishes in cold nuclei as the
factor (n;—n;/) in Egs.(2.33 and (2.37) becomes zero at
T=0. In the Appendix, we show, by considering the simple
R™M(#)= sz [gj??]z(nj —nj)8(n—etep), example of a dF;F;nped harmonic osgillator, that tghe imagir?ary
I (2.39 part of the analytical continuation of the polarization opera-
' tor into the complex energy plane is indeed the thermal
1 damping, while its real part gives the energy shift.
LM () =kMD [g}jk,)]z(nj—nj,)Pn— The strength function, corresponding to the damping of
i’

TE ey ’(2 39 thermal phonon, has the Lorenzian form as
- L . . 1 i)
and P indicates the principal value of the corresponding in- Sii(n)= P [7— o —Pu(m)]2 7%(77) . (2.40
| I |

tegral. The poles of the polarization operaly;(#) in EqQ.
(2.33 correspond to the@p andhh levels at finite tempera- which provides the information about the evolution of the
ture when theHg, is switched off. The damping,; of the  hot GDR.
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The thermal damping widtl'\'® integrated over the en- damping widthI",/® of the GDR at nonzero temperature,
ergy interval €,,E;), where the GDR s localized is now discussed in the f previous section. For the quantal spreading

calculated using the strength function in ER.40 as width "o, we assume it is given separately within the frame-
i work of some microscopic approach such as in REZS].
o Mi(A) _E? (2.41) The standard theorj32] for evaluating strength functions is
Mo(A\i) ' applied for folding two quantal and thermal distributions of
the GDR in hot nuclei as follows.
where According to the compound nucleus hypothesis, we may
E, assume that the compound nuclear stat&*)) at the exci-
mk()\i):f S.i(7) 7kdy (2.42 tation energyE* is given as a combination of excited mul-
Eq tiquasiparticle stategu(E*))
is thek moment, and
. |C(E*))=20 X[ u(E*)). (3.0)
— my(Xi) (2.43 ©
- mg(\i) '

The dipole-dipole residual interaction beyond the thermal
is the energy centroid. Hereafter we call the Widl’tﬁD the  mean field leads to thB(E1) distribution for each multiqua-
integrated thermal damping width siparticle state u(E*)) over the higher-lying ones. If the

The results obtained above are different from solving themultiquasiparticle states are associated with the collective
conventional SC-FTRPA equation in two steps. The reasothermal phonon ones as within the framework of FTRPA
is the SC-FTRPA considers tipgp andhh configurations at  (i.e., (u'|---|u)=(Q /- T)) this corresponds to the
finite temperature as elementary excitations on the samgistribution of thermal one- phonon excitations
footing with theph ones. Therefore thpp andhh configu-
rations in the SC-FTRPA partly participate to the collective
motion restoring the strength and collectivity. The normal- cy=20 XSl u), (3.2
ization condition within the conventional SC-FTRPA con- K’

ta;? beside the ampl|tude§\ andy“,, also the amplitude where in the case of rotation the staje) in general has

g, and ¢, arising from the operator®;;,(\i) and  three spherical components, i.6u)=|w,k) with k= 1, 2,
Bjjr (M), respectlvely Therefore no thermal dampmg widthand 3. This distribution would represent the GDR built on
for the SC-FTRPA modes can take pldd©—-25. In our  top of the compound levels in E.1) if the description of
formalism, thepp and hh configurations are expressed in the GDR as stationary quantal eigenstdtes, without ther-
terms of noncollective degrees of freedom. Consequentlymal dampingwere valid. In that case the GDR would couple
they do not participate in constructing the collective ex-  only to particular quantal doorway states, containing the low-
citations. Therefore they are treatbdyondthe ph FTRPA.  lying surface vibrations. The GDR acquires themjwantal
Under this treatment they induce an irreversible COUp|Inqspread|ng width FQ In reality, this will not be a general
Hg, of collective ph phonon to the noncollective subspace, situation because the nuclear shape fluctuat[@4$, rota-
constituting the heat bath. This phonon-heat bath couplingional damping 33,35 as well as the irreversible coupling to
leads to the thermal damping of tiph phonon in the col-  pp andhh configurations, proposed in the present work may
lective subspace after projecting out the noncollective decause the variation of the GDR frequencies within the en-
grees of freedorﬁfunctlonFSS, ,(7)]. This situation is very semble of compound states. The result is aaditional
similar to the quantal spread|r(gtT= 0), which occurs in  spreadingwidth of the GDR over compound states under the
the 1p1h subspace, when theh RPA phonons are coupled €ffects of shape fluctuations and/or rotational damping or the
to the 2p2h (two-phonon configurations beyond RPA. The thermal dampinga definite lifetime of the GDR caused by
latter is however reversible because of the limitation of thethe irreversible couplingdg, in Eq. (2.15.
2p2h space. Based on this point of view we apply the system of equa-
As the apparent width of the GDR observed in highly tions for evaluating the strength functions of the GDR within
excited nuclei contains both the quantal spreading witth the motional dampingscheme, given by the standard theory
and the integrated thermal damping width®, it is useful ~ [32] following Refs.[34,35 as
to unify these two mechanisms in one single description of

the total width. This is done in the next section. 1 r
P(E)=5— 5 (3.9
T (E— E— SE)%+ (3 F)

IIl. SEMIMICROSCOPIC UNIFICATION OF QUANTAL
AND THERMAL DAMPINGS

+ 00
A consistent microscopic unification of quantal and ther- F=FQ+[AwO]2J_m P(x+ E)de,
mal dampings requires a systematic derivation of the total (3.4)
width, which contains both quantal spreading and thermal
damping widths in a microscopic way. In the present work o
we restrict ourselves only by combining the quantal spread- 5E:[Awo]2f P(x+E_)
ing width I', existing at zero temperature with the thermal

mdx. (35)
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Here as in Refd.34,35 P(E) is the strength distribution of 3
the GDR, localized at the enerdy=E. The quantityA wg PP

denotes the average deviation of the phonon energy 1
Awo={(7— w)?). Since we are only focusing on the ef- ph £
fects of the couplindHg,, the thermal damping of the GDR f
stateg u) over the compound nucleus statg is character- oh 2
ized by the integrated thermal damping widkh,=T/°

alone, which has been calculated microscopically in the pre- 4

vious section. Finally, the quantily, is the quantal spread-
ing width associated with the coupling to more complicated
states such as (2h) ones(cf. also Ref[36)).

It should be mentioned that at high temperat(above
aroundT= 5 MeV) the disappearance of shell effects turns r+or!™
the energy functional into the one given by the liquid drop [=To+[Awo]? — 5 “1 N
model. In the theory of Fermi liquids the damping of giant (E-E-6E)"+(I'+T',7)7]
resonances is described as the absorption of the nuclear zero 3.7
sound. The absorption coefficieptfor a single GDR mode
with energy » is found analytically from the Landau colli-
sional integral as

FIG. 1. Schematic model under consideration.

e (T-T(E-E)

- 3.8
y=al 7+ (27T)2, (3.6 2(T+T) T 39

where the first termaz? corresponds to the damping of the

GDR in the cold system whereas the second term contains a Before evaluating Eqg3.7) and(3.8) in the next section,

T2 dependence of the damping at finite temperature. W& is worth mentioning how the damping widtfr,, in
note, however, that the effects due to the finiteness of thgqs_(3_4) and (3.5 has been evaluated so far. In RES4]
nucleus were ignored in E@3.6). These effects are known he thermal fluctuations of the nuclear shape have been con-
to be responsible for large thermal fluctuations, which conjjared for a hot nucleus with mags= 110 carrying no
tribute significantly in enlarging the width of the hot GDR. angular momentum. The estimatiorfﬂzl.ﬂs and

Unfortunately, to our best knowledge, a fully mlcrOSCODICAszl.Bﬁ extracted from the Fermi gas model has been

derivation of the parameteyr in hot nuclei is still absent and, ; _
in general, more detailed investigations are called for. In ﬁ_used. The FWHM of the GDR obtained by solving E¢s4)

nite surface dominated systems, for instance, a linear depefind (3.9 with these value of’, and Aw, has shown an
dence ony andT for vy in Eq. (3.6) has been suggested in effect due _to motlonaharrowmg Namely, the FWHM_at
Ref.[22]. However the numerical calculations in realistic hot T=2 MeV is almost equal to its value dt=0. Meanwhile
nuclei [23] have shown that the fragmentation of the hotthe calculations witH",=0 in Egs.(3.4 and (3.5 gave a
GDR does not change much with varying temperature up t"WHM of GDR, which grows almost linearly with increas-
around 3 MeV even with th&? dependence of as in Eq.  ing temperature. Both of these results disagree with the tem-
(3.6) taken into account. Therefore it is unlikely that there perature dependence of the apparent width of the GDR,
will be a significant change in the width of the hot GDR at which has been observed in experimeis8].
T~4-5 MeV after including th@? dependence except that
the fine structure of the GDR distribution is smeared out
[28]. Taking into account these results and also the fact that |v. NUMERICAL CALCULATIONS FOR THE GDR
in the present paper we concentrate the attention only on thgpTH IN HOT NUCLEI WITHIN A SCHEMATIC MODEL
thermal damping mechanism due to the coupling of collec-
tive ph modes to the noncollectivep and hh configura- In this section we apply the proposed approach to a sim-
tions, we do not include th&? dependence here. plest realization for the hot GDR in a system with mass
The exact solution of the system described by E§8)—-  A=112, which is provided by the schematic model in Fig. 1.
(3.5 has been studied in R€f35]. In order to find a good It consists of four{)-generate equidistant shells, which are
starting point for the iteration procedure, it has been sugsymmetrically located at both sides of the Fermi level and
gested to substitute E¢B.3) for Egs.(3.4) and(3.5. When interact via the separable dipole-dipole force with the same
the main contribution to the integrals in Eq8.4) and(3.5  matrix element in the dipole operator in Ed2.4):
comes aroun~E after this substitution, one may set the f,,=f3=f,,=f. Here the subscripts 1 and 3 numerate the
energy shift SE(x)~SE(E) and I'(x)~I'(E) in the inte- two shells above the Fermi level, while 2 and 4 those below
grand. In this case both integrals can be carried out analytit. This model generates one collectigé phonon excitation
cally. The result is the linear equations for the initial values(the transition 2- 1), which is coupled to the thermaplp (the
of I' and SE, which already provide a good approximation to transition 1-3) andhh (the transition 4~ 2) configurations.
the exact solution so that only few iterations are neededThe energies of four shells are, respectively,
With the present form of Eq$3.9—(3.5), we obtain for the e;=—€,=E/2, e3=—€,=3E/2 with a valueE= 6 MeV,
initial values of I' and SE simpler expressions than those chosen as the distant between shell. The FTRPA equation
given in Ref.[35]. They are and Eg. (2.34 have analytical solutions in this model.
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The paramete€=3k(Q2f)? of the dipole interaction is ad- reproduces the empirical energggpor of the GDR at
justed in such a way that the phonon energy T=0: wr_g=Egp= 16 MeV. This value ofC;_q is ex-

(1—2n,) trapolated tol #0.

w=E 1_CT’ n,=(ef1+1)"1 (4.1 The thermal damping in Eq2.37) is given by

eC?E?n(1—-2n;)(n;—n3)r(7,E,e)

YD = 5 (14 2CEA 7,0) /(72— E?) % %(7.E.0) + [4eCEnz(7.0) 2} “.2
where
r(n,E.e)=[(n+E)*+e’][(n—E)*+e?], 4.3
z(n,0)=[1+{(n,w)](ny—n3), (4.9
and the representation
()= 1 / 1 1) 1 e 4
(77)_27Ti\7]—i8_7]+i8 T 7°+e? 4.9
is applied for thes function.
The factor{ in Eq. (2.31) arising from the backward process in E8.21) is
_ CE(1-2ny) .
§(ﬂ.w)—my (4.6)
and the polarization operator in E.33 has the form
B( )= (7+®)C?E?(1—2ny)(n;—Ny) 4
(m)= 4w(n+w)[ 7°—E?+2CE(n;—n3) ]+ C?E%(1-2n,)(n;—ng) “.7

The finite e in Egs. (4.2), (4.3), and(4.5) plays a role of a decreases slightly af=2 MeV, the total strength of the
smearing parameter in calculating the strength function. ItlistributionS(1™,w) also decreases dsincreases. In order
can also account for coupling ofp2h states to even more to keep the EWSR temperature independent, we renormalize
complicated configurations. In numerical calculations in re-the strength functio5(1™, ), dividing it by mg(17). The
alistic nuclei, to avoid spurious resultsjs usually chosen to result is shown at the bottom of Fig. 3. As expected, apart
be sufficiently small(0.1se<1 MeV) such as the lowest from a downward shift of the GDR localization, no change in
moments of the strength function are insensitive to its actuathe GDR shape occurs in the SC-FTRPA. The shift of the
value. In the following we choose=1 MeV and the shell GDR energy takes place since we have fixed the parameter
distanceE=6 MeV. The GDR centroid energy a&=0 has C=C;_y. One could readjust the parametér so as to
been taken from they(,n) reaction data for Sn isotop¢37] reproduce the GDR energy at each temperature within the
asEgpr=16 MeV. FTRPA. This would increase the absolute value ©f

The solutions of Eq(2.34) are presented in Fig. 2 as a (C<0), indicating an increase of the dipole-dipole correla-
function of temperature. The level with energy equal to 16tions at finite temperature. As the study of the temperature
MeV at T=0 corresponds to the GDR energy, while the onedependence of the effective forces is not complete, we prefer
with energyE=6 MeV atT—0 arises from thepp andhh  to keep the paramet& independent of temperature.
configurations. As seen from Fig. 2, the temperature depen- We calculated the damping(7) from Eq. (4.2 and the
dence of the GDR energy becomes weaker by switching-opolarization operatoP(7) from Eq. (4.7) as a function of
the coupling to the thermal quasiparticle-scattering fieldtemperature. The obtained values are used to calculate the
(compare thick and thin curvesThe dashed curves are ob- strength function in Eq(2.40, which describes the damping
tained without the factof in the polarization operator. The of the thermal one-phonon excitation. The results of the cal-
comparison between solid and dashed curves shows that tieelation of the strength function at several temperatures are
effect due to the backward process in E2.21) on the en- displayed in Fig. 4. The high-lying peak of this strength
ergy levels is negligible. function corresponds to the GDR. It has no widthTat:0

The strength function within the conventional SC-FTRPAand becomes broader noticeably with increasing the tempera-
at several temperatures and timg(1~)-moment as a func- ture. At the same time there appears a new peak caused by
tion of T are depicted in Fig. 3. Since thmy(17)-moment  thepp andhh transitions in the low energy region at around
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FIG. 2. Energy levels as a function of temperature. Thin curves 2

correspond to the case when the interaction is switched off. The ..
energiesy from Eqg. (2.34 with and without backward process are

given by the thick solid and dashed curves, respectively.

8 MeV, which arises from the level with energy equal to 6
MeV at T—0 and can be regarded as the oversimplified
influence of the noncollective degrees of freedom in hot nu- 4
clei. A clear transfer of the strength from the region of GDR

to the low-lying peak is observed &t>2 MeV. The strength

of the GDR peak is reduced while the strength concentrated
on the low-lying mode increases with increasing tempera- 0 VASE
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FIG. 3. SC-FTRPA strength functioftop) at several tempera-
turesT=0, 2, 4, and 6 MeV and the momemi,(1~) as a function

n (MeV)

FIG. 4. Strength functior8,(#) in Eq. (2.40 at several tem-
peraturesT.

ture, preserving the total integrated strength in the whole
energy region from 0 up to 20 MeV. Ai=4—-6 MeV the
peak corresponding to the GDR is disappearing as its
strength is almost exhausted by the low-lying mode. The
appearance of this low-lying mode in our schematic model is
interesting in the sense that it leads to a loss of strength of
the GDR peak in hot nuclei and ultimately to its disappear-
ance at high temperature. As this mode is located below 10
MeV its deexcitation must be within the low energy compo-
nent of they spectra, which is mainly coming from the sta-
tistical decay of the final nuclei formed after particle decay
from the compound system. Since in realistic nuclei there are
many pp and hh configurations at finite temperature, the
low-lying states are not concentrated in one single mode, but
strongly fragmented. This makes the observation of these
low-lying modes difficult. In fact, after subtracting the low-
energy component and the high-lying one due to the proton-
neutron bremsstrahluri@—8], the GDR in the energy inter-
val 10s<E,=<20 MeV has been observed and its collectivity
is reduced at high excitation ener¢$8]. A possibility for
the low-lying component around 8 MeV in thespectrum at
high temperature, which absorbs the main strength of the
GDR, has been the subject of recent discussions by the
MEDEA Collaboration at the GANIL facilityf8].

In order to see the detail behavior of the thermal damping

of temperature (middle). The renormalized strength function Of the IGTE)R we calculatgd the integrated thermal damping
S(17,w)Xmy(1") is depicted at the bottom. In the top and bottom Width T", ™ in Eq. (2.41) using the obtained strength function.
parts, a thinner curve represents the result obtained at a highdmhe results are displayed in Fig. 5. It is important to properly

temperature.

define the energy region of the GDR in performing the inte-
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15F . . . model. As discussed above, the irreversible coupling of high-
lying collective mode(representing the GDRto the low-
lying configuration(appearing aff #0) leads to the energy
dissipation of the former to the latter. This dissipation, on the
one hand, increases the damping, on the other hand reduces
the strength of the high-lying peak, conserving the total in-
tegrated dipole strengtlithe energy-weighted sum rule
(EWSRY] in the whole energy intervalQ <20 MeV. The
competition of these two effects leads to the saturation of the
GDR thermal damping width at a certain temperafliréit
T=4-6 MeV the GDR is hard to be seen as its strength is
almost absorbed by the low-lying mode. Obviously the
EWSR is conserved only for the total system<(@<20
MeV), while it decreases as increasifgin the collective
FIG. 5. Integrated thermal damping widkt}® as a function of ~ subspace, corresponding to the GDR peak %120
temperature. Solid curves are obtained with the fa¢towhile the ~ MeV). This feature is a natural consequence whenever a
dashed curves are without this factor. Thick curveslid and  close system is decomposed into tweell-separated and
dashed represent the results, where the lower integration limit inopen-to-each otherrelevant and irrelevant subsystems,
Eqg. (2.42 is chosen as the pole of the polarization operator in EqQyhich in the present case consist of the collecfireexci-
(4.7). Thin curves(solid and dashecare obtained after carrying out tations and the noncollectiyep andhh configurations, con-
the integration within the fixed interval £00<20 MeV. stituting the heat bath, respectively. The irreversible coupling
of relevant subsystertthe hot GDR to the irrelevant one
gration. Irrespectively of the value of the thermal damping(the heat bathleads to an energy flow from the former to the
¥(7), a separation of the GDR and the low-lying pegake later. The loss of collectivity, reported by Gaardhf#é and
Fig. 4) is always possible by the poles of the polarizationthe disappearance of the hot GDR, observed in the experi-
operator in Eq(4.7), at which the strength function in Eq. ments at high temperaturdsee, e.g., Ref[38]), can be
(2.40 becomes zero. The temperature dependence of thigerefore interpreted within our approach as the result of a
pole is illustrated in Fig. 2 by the thin curve, started from 6 complete dissipation of the collectiygh modes to the non-
MeV. This energy provides us with the proper lower limit of collective degrees of freedom in the heat bath. Physically
the integration in Eq(2.42 while the upper limit is fixed at  this means that as the temperature increases, the possibility
20 MeV. As seen in Fig. 5, the integrated thermal dampingor the development of pure quantal collective excitations,
width of the GDR(thick curveg increases strongly with in-  such as the coherent motion all protons againsall neu-
creasing temperature up to arouni~2 MeV. At trons in phase, is reduced to vanish completelff at5—6
T~2-2.5 MeV the GDR integrated thermal damping width MeV because of the increase of stochastic motion of noncol-
FQD clearly reaches a saturated value. In the highdective degrees of freedom constituting the heat bath.
temperature regiom= 6 MeV, where the GDR is disappear- It is exciting that Ref.[28] (see als0[29]), which ap-
ing (Fig. 4), it starts to decrease very slowly. It would not be proached the damping mechanism using the linear response
accurate to carry out the integration over the fixed energyheory, has exposed a quite similar feature. Here one ob-
interval 10<E, <20 MeV since there is an additional con- serves that the strength of the high-lying resonance is trans-
tribution from the tail of the low-lying moddsee Fig. 4  ferred to a pronounced low-lying moder moved gradually
This contribution would lead to an enhancement of the widtho the low energy regiorin such a way that it ceased to exist
at aroundT ~3—4 MeV (thin curve in Fig. 3. The contribu- at aroundT=3 MeV since the low frequency mode has ex-
tion from the low-lying mode should be eliminated in the hausted all the strength. It is worth noticing that the effects
discussion of the GDR width. The strength function and theof the residual interaction was taken into account in Refs.
integrated thermal damping width practically do not changg 28,29 by dressing the particles and holes such as to create
by neglecting the effects due to the backward phonon propaan imaginary part of their self-energies. This scenario can be
gation ((=0) (dashed curves in Figs. 3 andl 5 compatible with the present approach, which leads to the
The numerical calculations clearly show that the couplingpolarization operator, whose imaginary part yields the ther-
Hgr [Eqg. (2.19] of the hot GDR to noncollective degrees of mal damping. Clearly, the imaginary part of the self-energy,
freedom in the heat bath leads to a manifestation of the temwhich was taken as an ansatz in Re&¥8] may contain also
perature dependence for the GDR damping. Moreover thithe effects of p2h configuration mixing as well. Even
thermal damping reproduces quite well the tendency obthough starting from a different approach, Ref28,29
served in the experiments. Namely, the thermal dampingame to a similar conclusion regarding the damping at finite
width of the GDR increases sharply with increasing temperatemperature. Indeed, the damping factor in R2€] is pro-
ture T up to around 2—-2.5 MeV and reaches a saturation gportional to the friction coefficient divided by the square root
higher temperatures. For a comparison, it is worth mentionef the local stiffness, which also reach a plateau at
ing that the temperature at which the thermal damping widthilf~3—-4 MeV. In order to see the correspondence between
of the GDR reaches the saturation as well as the saturatemlir approach and the one in Ref28,29 it is necessary to
value for the damping width itself are consideralibyver  establish a clear relation between the imaginary part in Eq.
than those calculated in R¢26]. The saturation of the GDR (3) of Ref. [28] and the thermal damping and spreading
thermal damping width has a simple interpretation in thiswidths of GDR discussed in the previous sections. There is
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FIG. 6. FWHM of the GDR as a function of the excitation FIG. 7. Th(_a ratio EWSRU/E.WSF{O) as_a functlon_of te_mﬁ)%ra'
ture. The solid curve is obtained by using the width=T",

* A=A T2 i ithi
energy per nucleol™/A=aTt /A._The results o_btalned within our within our formalism, while the dashed curve has been calculated
formalism are shown by the thickaE A/8), thin (a=A/9), and . _ _ %1 r16 .

with I' ,=I'—T'q=4.8(E*/A)*° from Ref.[3] and using the level-
dotted @=A/10) curves. The dashed curve represents B -
density parametesi=A/8.

I'=4.941+(E*/A)*% [3]. Data are from Refd2] (white crosses
[3] (©), [4] (A), [5] (*), [6] (black(D), [7] (@), and[37] (). interaction parametek for pp and hh levels, the saturated
value of the GDR width abov&*/A~1.1-1.2 MeV be-

no doubt that this would be a formidable task, which, oncecomes lower accordingly. Other mechanisms such as shape
completed, would resolve the long-standing discrepancieBuctuations, etc., also contribute to the total width. In the
between several existing approaches to the hot GDR puzzl@resent schematic estimation these effects are effectively in-

The total GDR widthl' (FWHM), which combines both ~cluded owing to a large smearing paramegterl MeV. This
the quantal spreading widtii! and the integrated thermal feature also agrees with the observation in R&f]. The
damping onel''™® | is calculated from Eqs3.4) and (3.5). thermal damp]ng width also depends.on the distant between
Fereafer we Suppose hat the quantl wilky can be de. STE1S, WHICH s Kept e t,6 Mev i he present calcul
2ﬁgﬁe:s \z\:trlgr;fé[h;ﬂfr?rrr?eev&og; ?:] gom'zrgslce?ggnimf%%h’saturation behavior of the GDR width can be understood in

) e . e the present formalism.

approximated by a single collective excitation, whose

. N We finish the present section with a discussion on the
strength has a Lorenzian distribution centered at the GD'ﬁmiting temperature above which the GDR does not exist

energy centroidE with the FWHM equal to the quantal [38]. In this respect our formalism gives a different mecha-
spreading widthT'!. Following the calculations in Refs. nism from the classical approach in R¢89], where the
[22,23, we can puﬂ“Q=Fl= 4.8 MeV [37] independently  conclusion about the disappearance of the GDR came from
of temperature. The initial values for the widfhof the GDR  its exceedingly large width at high temperature. In fact, the
and the energy shiffE [Egs.(3.7) and(3.8)] turn out to be  GDR width in our model remains nearly constant at excita-
very close to the exact ones in the present case. This providéen energyE*>130 MeV. The saturation of the GDR

a convergence of the iteration procedure with a good preciwidth is not the real signature for its disappearance at high
sion (<1 keV) already at the second step in solving Egs.temperatures. In the region with saturated width, the limiting
(3.4 and(3.5). The result for the FWHM of the GDR cen- temperature for the GDR can be discussed by using the in-
tered atE= Eqpg is plotted versus the excitation energy per ©€9rated energy weighted strength. The EWSR of the GDR

nucleon in Fig. 6, where the experimental systematic for gplecreases as increasing temperature at least in the present

isotopeg 2—7] are also collected. In converting temperatureSchématic model because of the existence of the low-lying
to the excitation energlg* =aT?, we used several values for mode (Fig. 4). The ratio EWSRT)/EWSRO) over the en-

; _ ; interval of the GDR localization in the present model is
the level density parameter=A/8—A/10. It is seen from €9y INtEIVa . : .
Fig. 6 that the qualitative behavior of the GDR width ob- SOWn in Fig. 7(solid curve. The EWSR obtained by using

served in the experiments is well reproduced by applying ou]"he width given by the fif’ FO_FO(E*/A) [3] is also
formalism to the simple model. The closest curve to the exSNOWN by the dashed curve. The saturation temperature can
e defined a3 ~3.5 MeV corresponding to the point where

perimental systematic is obtained by using the level-densit :
parametera=A/8 andA/9. The total GDR width increases he two curves start to deviate. However the EWSR becomes
really small <10% of the ground state GDR EW$Rt

strongly as a function of the excitation energy upBbt/A X .
~1.1-1.2 MeV corresponding t&* ~ 120 — 130 MeV higher temperature around5 MeV. Therefore it may be a

ood reason to consider the temperafliraround 5 MeV as
e limiting temperature for the existence of the GDR in hot
clei.

and thereafter becomes approximately constant. We woul
like to emphasize only on the qualitative side of the presenE
schematic calculations. In fact the pretty good agreemerﬁlu
with the experimental systematics shown in Fig. 6 may be
illusory, since one should not forget that we have used the
same matrix element and interaction paramétéor all ph We have presented an approach, which allows to derive
as well aspp and hh configurations. Reducing, e.g., the the thermal damping widtlof the GDR in hot nuclei in a

V. CONCLUSIONS
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microscopic way. We have demonstrated the importance of The two-time Green’s function&(t—t’) andI'(t—t"),

the thermodynamical effects in the noncollectipp and  which describe the motion of the oscillator in the heat bath,
hh configurations, which appear only at nonzero temperaturand the influence of the heat bath respectively, are defined
and can play the role of a background or the heat bathsimilarly to Egs.(2.19 and (2.20. Applying the two-time
Namely, we have pointed out that the irreversible couplingGreen’s function method in the same way as in Sec. Il, we
of the ph GDR to this backgrounéor heat bathleads to the get the corresponding set of equations for these two-time
thermal damping of GDR in hot nuclei. The application of Green’s functions

our approach to a simple schematic model has shown that ;
this thermal damping mechanism can be complementary to . N , , ,

other mechanisms in understanding the behavior of the GDR 15 C(t—t)=d(t=t) T G(t—t)+gl'(t—t"),
width at finite temperature. Finally a semimicroscopic unifi- (A3)
cation of thequantal spreadingand theintegrated thermal

damping widthsshows that the behavior of the total width d , ,

found in this approach is similar to the tendency in the ex- 'ﬁr(t_t )=NgG(t—t"). (A4)
perimental findings in hot Sn isotopes including the region of

width saturation. Our analysis has been performed within an  Their Fourier images satisfy the equations
oversimplified schematic model. A drawback of this model

is, while the GDR can be described by one single collective 1

ph transition, the degeneracy of noncollectipp and hh 1G(7)=5—+wG(n)+9l'(7), (A5)
configurations on only two levels made them too collective

and therefore artificially enhanced intensity of the low lying 7T(7)=NgG(7). (AB)
mode. In realistic situations we expect that a very large num-

ber of noncollectivepp and hh degrees of freedom will  Equation(A4) is derived as a result of decoupling similar

spread out the strength distributed on them. In our opinionyg Eq. (2.23
the difference between the present schematic model and the

reality is the difficulty of separating the low-lying modes out {[B(1),BT(t")]1Q(1);QT(t")))

from the background in realistic situations. Therefore in re- N .

ality high-precision measurements are required in the low- ~([B(1),B (O ){(Q(1);Q'(t")))

energy part of they-decay spectrum of hot nuclei. Nonethe- =([B(),BT(O)])G(t—t)=NG(t—t"). (A7)

less, since the mechanism of the thermal damping arises
from the coupling between collective and noncollective de-  giminating functionT'(7) by expressing it in terms of
grees of freedom, we believe that the qualitative conclusior@;(n) from Eq. (A6) and substituting the result for EGAS)

of our formalism on the behavior of the hot GDR, including fina|ly leads to an equation for the Green’s function of the
the region of width saturation, is model independent. oscillator
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APPENDIX: PHYSICAL MEANING OF POLARIZATION K

OPERATOR IN THE EXAMPLE OF DAMPED

Converting the last term on the RHS of E&3) in term
HARMONIC OSCILLATOR

of its Fourier transforml’(E) (E=#n+ie) and using EQs.
Let us consider a simple example of an ideal harmonidA6) and (A9) to expressl’(E) in terms of G(E) and

oscillatorR coupled to a heat bath The Hamiltonian of the P(E), we get

free oscillator is

Hr=0Q'Q, (A1) i%G(t—t’)=5(t—t’)+wG(t—t’)

where the ideal boson operatd®€ andQ create and anni- "
hilate, respectively, an elementary excitatiguanta of en- +f P(np+ie)G(n+ie)

ergy w in the oscillator. The free heat bath Hamiltonian need o

not be specified in the present example. The oscillator heath , , ,

bath coupling is chosen as X e =) =g, (A10)

Hr=9(QB'+Q'B), (A2) If the main value of the functio?(E) comes around the
pole n of Eq. (A8) we can takeP(E) out of the integral,
with unspecified dimensionless heat bath operaBrsand  approximating P(7+is)=RgP(n+ie)]+Im[P(n+ig)]
B. by its value around the pole. The remaining integral is noth-
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ing but the double-time Green’s functi@(t—t') thanks to N
its analytical property. We end up with A=PREP(E)]e- ,7+i8=7>;g ,
J — —
Ot =[i(w+A)+y]G(t-t"), t#t’ y=IM[P(E)]e- ,+i.=7NG?8(7).

(A11) It is easy to recognize that E¢A11) is nothing but the
equation for the damping of the harmonic oscillator, where
where A is the energy shift ang is the damping coefficient.
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