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Opposite deformations between protons and neutrons in proton-rich C isotopes
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Structures of C isotopes from the proton drip line to the neutron drip line are investigated in the framework
of the antisymmetrized molecular dynami@MD). In particular, opposite deformations between protons and
neutrons near the proton drip line are discussed in detail. We make certain of this new phenomenon suggested
in the AMD results by analyzing the ratios of electric moments or transifigher B(E2)] in 1°C and*'C to
those in the mirror nuclet®Be and*'B. [S0556-281@7)02206-1

PACS numbsgps): 21.60—n, 02.70.Ns, 21.10.Ky, 27.26n

[. INTRODUCTION plained. In Sec. lll, results of calculations with the AMD for
C isotopes are displayed and compared to the experimental

Unstable nuclei are expected to exhibit new phenomengdata. Discussions of the intrinsic deformations are presented
which are not familiar in the stable nucleus region. Somen Sec. IV. The proton deformations and the neutron defor-
properties of unstable nuclei are concerned with differencegations of the isotopes are analyzed as a function of the
between proton and neutron densities, for instance the neeutron numbeN. Opposite deformations between the pro-
tron halo and the neutron skin structure. Another problem ofons and the neutrons are found in the proton-rich C isotopes.
great interest is the difference between proton and neutroA detailed discussion of deformations tC and*°C is pre-
deformations. In this paper we suggest an opposite deform&ented by analyzing the electric quadrupole moments and
tion between protons and neutrons in proton-rich C isotopeE2 transitions, respectively. Finally, in Sec. V, a summary is
based on calculations within the framework of the antisym-given.
metrized molecular dynamid®\MD) [1—4]. While we usu-
ally know proton densities by the data of electric .p.roperties, Il. FORMULATION OF AMD AND ADOPTED EORCE
there are few data that tell us about neutron densities. There-
fore we get the information on neutron densities from the Here we give a brief explanation of the AMD framework.
data of electric properties of the mirror nuclei assuming mir-For a more detailed explanation the reader is referred to
ror symmetry. Refs.[1,2].

AMD has been already proved to be a very useful theo- Inthe AMD the wave function of thé&-nucleon system is
retical approach for investigations on nuclear structures inwritten by a parity-projected Slater determinant:
the light unstable nucleus region as well as the stable nucleus
region. In the previous works on Li, Be, and B isotop2s3], 1
it has been found that the intrinsic deformations of proton |®5(2))=(1=P)—def¢i(i)], ¢i=dz X0, D
and neutron density distributions change rapidly as a func- W s
tion of the neutron and proton numbers. The experimental
data of electric and magnetic properties of these unstablaherey,, is a spin isospin function ang;. is a spatial wave
nuclei have been well reproduced without effective chargesnction with Gaussian form: '
andg factors, but using only bare charges anfhctors. This

success is due to the flexible nature of the AMD wave func- 5\ 34 2
tion which can describe drastic changes of proton and neu- |z )= _”) exd — vl r— 2| +222. (2
tron structures without any model assumptions such as the i ™ Jv 2™

existence of clusters and axial symmetry.

_ The purpose of this paper is to investigate structures of Gn order to construct the ground state, we make an energy
isotopes focusing on the deformations of protons and neWgyiational calculation for the trial functiod = (Z) by intro-

rons with the AMD method. We try to confirm a suggestedqycing the frictional cooling equations to the complex pa-
problem of the opposite deformations between protons a”Pameters{Z} as follows:

neutrons by the help of the experimental data of electric mo-
ments and transitions in C and those in the mirror nuclei. + +
J (PZ(2)H[®(2))

In Sec. I, the formulation of the AMD is briefly ex- Zj=(7\+iﬂ)%az* @)@ (2) @ ©
i

*Present address: Institute of Particle and Nuclear Studies, 3-2-ith arbitrary real numberd and u<O0. It is easily proved
Midori-cho, Tanashi, Tokyo 188, Japan. that the energy of the system decreases with time:
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FIG. 1. Binding energies of C isotopes. The lines are AMD

) ; FIG. 2. Electric quadrupole moments of ground states of light
calculations with the MV1 force and the Volkov No. 1 force.

nuclei. Only the'?C, Q moment of the first 2 state is displayed.
. . Results with MV1 force in=0.576) are compared with the experi-
d (®(2)|H[®*(2)) mental data.

&t (@) (2) @

o . ) between theory and experiments in Figs. 2 and 3, respec-
We regard the energy minimu=(Z)) obtained after a yely. Here the comparisons are made for C isotopes and

long enough cooling time as the intrinsic state. Then th&neir mirror nuclei and also for a neighboring nuclelBe.
intrinsic state is projected on total angular momentum eigenype experimental data are seen to be well reproduced with-

spin J, a K quantum number is chosen so as to make the

projected energy minimum. Only in calculations of energy
levels do we perform diagonalization of the Hamiltonian ma-  |v. DEFORMATIONS OF PROTON AND NEUTRON
trix with respect to th&k quantum number, which shows that DISTRIBUTIONS
in the usual cas& mixing is small and energies of the low-
est levels hardly change witk mixing. The optimum width
parameten of the Gaussian wave packets is determined for In order to discuss intrinsic deformations of the proton
each parity state of each nucleus so as to get the minimumand the neutron density distributions in C isotopes, we dis-
energy. play in Fig. 4 the deformation parameterB, ) defined by
The adopted interaction in the present calculations of Ghe moment¢x?), (y?), and(z?) of the intrinsic AMD states
isotopes is almost the same as that in R&f.on B isotopes. as
The interaction is composed of the Volkov No. 1 foféé as .
the two-body central force, the G3RS force with A B | 5 2m
u=u,=—u,; =900 MeV as the two-body LS forcg], the (<X2><y2><22>)1;6=exp(51)—ex E'BCO vt 3
density-dependent forcgg], and the Coulomb force. The

A. Intrinsic deformations

strength of the repulsive part of the Volkov No. 1 force is (5)
weakened because of the use of the repulsive density- (y?)12 5 27\ ]
dependent forc¢6]. The modified Volkov No. 1 force to- OO =exp(d,) =ex \/EBCOS( - ?) :
gether with the density-dependent force of Réi.is called
the MV1 force[6].

lll. BINDING ENERGIES AND ELECTRIC PROPERTIES | ' ' |

Before treating our main subject, the study of the defor- 11B() :53//%:1‘?//3 L A 40 i

mation of C isotopes, we first give some results which dem- 7/2—>3/2 | & .
onstrate the reliability of obtained AMD wave functions of C 5/2->3/2 &1 .
isotopes. Namely we show that the AMD can reproduce well 106(+) 2—>0 4 O 1
the data of binding energies and electric properties of C iso- }ggg 3/22‘_2%/2 [ Ef' )
topes. In Fig. 1 we compare the experimental binding ener- 5/2->1/2 | & O exp
gies with theoretical values calculated with MV1 force with 14C(+) 2—>0  Oa a AN?D’
the Majorana exchange mixture=0.576 andn=0.63 and 15C(+) 5/2—>1/2 + -
also with those calculated with Volkov No. 1 force with [, . . ]
m=0.60. We see that the MV1 force with=0.576 gives us 0 10 20 30
a good fitting to the data over the whole C isotope. The E2 transition strength (e*im*)

theoretical energy fof°C is the one for the 5/2 state which
is the lowest level in the present calculation. Electric quad- FIG. 3. E2 transition strength calculated with MV1
rupole moments an@?2 transition strengths are compared (m=0.576) are displayed with the experimental data.
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C isotopes /L isotopes

proton neutron C

FIG. 5. Deformation parameterg(y) for proton and neutron
densities in the intrinsic states of proton-rich C isotopes with
A=9-11 are given by triangles and squares, respectively. The
mass numbeA is indicated beside each point in the figure.

0 0.3 0.6

lowing subsections we study in detail the opposite shapes

FIG. 4. Deformation parameter: of the intrinsic states of
P B) between the protons and the neutronsi@ and 1°C.

AMD for B and C isotopes. Squares and triangles indicgeyj
for proton and neutron densities, respectively. Calculations are with _ _
the MV1 force. The neutron numbét is written beside each point B. Deformations in 'C

in the figures. Our purpose here is to confirm the disagreement of the

proton and the neutron deformations in proton-rich C iso-

topes by the help of the electric quadrupole moments and
: transitions in C and in the mirror nuclei. First we discuss
Q moments of'C and the mirror nucleus'B. From the
data of the electri€ moment of'C we get information on
the intrinsic deformation of the proton density fC while

2\ 1/2 5
‘<<xz>§§’2>><z?>>mgex“ 53):“‘{ \/;BCOSV

Here thex, y, andz directions are chosen so as to satisfy

(x?y<(y?)=<(z?). Results shown in Fig. 4 are those calcu- _ : S
lated with Majorana parameten=0.576 for C nuclei. In W€ €an get information on the neutron deformation'dt
case of Majorana parametars=0.60 and 0.63, the behavior flri)m the data of the eI(_actrlQ m_oment of the mirror nu_clel

B under the assumption of mirror symmetry. According to

of the deformation parameters is very similar to the results . . .
P y he experimental dat& moment of'B with Z=5 is larger

with m=0.576. We also display deformation parameters fort 1 ) 2 . . -
B isotopes of AMD calculations with mass-dependent Majo-th_an that of 'C with Z=6, Wh'ch seems to l_)e Inconsistent
ith the charges of these nuclei. The seeming inconsistency

rana parameters which were already found to reproduce th¥ . .
radii andQ moments of B isotopes in the previous paf&r in the Q moments of*C and '8 can be explained with the

We see in Fig. 4 the drastic change of the neutron deformgifierence between proton and neutron deformations in

tion parameters@= 3, y= v,) as a function of the neutron 11C. In other words, the opposite deformations of protons
number N. Neutron :jeformar;tions vary as prolate, oblate and neutrons are reflected by the electric moments of the

; i1 11, ; ; ;
spherical, prolate, and oblate l[dsncreases from 4 to 16. On mirror nuclei *C and '8 and are consistent with the experi-

the other hand, the deformation parametess,(y,) for the megtal ((jjata. . try f i d tron def
proton density remain in a compact region near the oblate ased on mirror Symmetry for proton and neutron defor-

line for all C isotopes in spite of the variety of neutron de_matlons, We compare below qgantﬂaﬂvely the proton ar)d
formation as a function of neutron numb¥ér The stability of neutron deformat|ons_bylanalyzmg f[he ratlo_ of the electric
the proton deformation is a unique point of C isotopes incgijadrupqle momer in C to that in thg mirror nupleus
contrast to the situation in Li, Be, and B isotopes which, B. We introduce the well-known approximate relation be-
according to AMD calculations, hav8 or y soft proton tween the electric quadrupole mome@tin the laboratory

densities. In the case of B isotopes wifl+=5 the proton frame and the intrinsic quadrupole momepy:
shape changes & increases by the influence of the mean 3K2—J(J+1)

field given by the deformed neutron dendi8}. On the other Q=Qp ="~ (6)
hand, the proton deformation in C isotopes is oblate and (2J+3)(3+1)

invariable for any neutron numbers. By using Eq.(5) we can express the intrinsic electric quad-

It tl)s npta}ble t:‘hat '”6pr°:\‘|32';'Ch Cfnuclel ln;autror][s' W,hcl)serupole momen®, as follows in the first order of the defor-
number is less than 6 @N=5) prefer prolate or triaxia mation parameteg, :

deformations rather than oblate shape. As a result, a dis-
agreement between the proton and the neutron deformations _|167 3 2
is found in proton-rich C isotopes. The detailed behavior of Qo= TEZG'BPCOS}'PRG’
deformation parameters of proton-rich C isotopes is illus-

trated in Fig. 5. Squares and triangles correspondBa  where 8, and vy, are the deformation parameters for the
for proton and neutron deformations, respectively. In the fol-proton density, and andR, are the proton number and the

)
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A density becomes ftriaxial in shape in'!C. Since

z Bocosyy('C) is smaller thang,cosy,(*'C), the second term

in Eq. (8) becomes less than unity, which cancels the effect
of the first term of the&Z ratio.

It should be pointed out that if the third term of charge
radii in Eq. (8) is taken into account our argument is even
more strongly supported. It is natural to expect that the ratio
of charge radiiR3(*'C)/R2(*'B) is larger than unity. Then
the experimental ratio 0.88 d@ moments is inconsistent

ith not only the first term of charge ratio but also the third
erm of squared charge radius ratio in E8). both of which
are larger than unity. This inconsistency should be resolved
by the second term. Namely a difference between proton and
neutron shapes should be existent'€ in such a way that

oblate

FIG. 6. Schematic figures of the nucleus with oblate proton an
prolate neutron deformations. In the body-fixed flaxg,z is cho-
sen so that moments of inertia obey the relatipp<7,,<7,,.

charge radius, respectively. Equatigh has a form which is B.COSy,< B.CO
obtained by replacing the deformation parameggrin the pCOSYp=PnCOSYn - h furth o . . f th
usual equatiorQ,= 1677/5(3/477)ZeﬁpR§ with an_ effec- We proceed with further quantitative discussion of the

ive def : : W d theoretical values of deformation parameters in the intrinsic
tive € ormation par'ametei"pc'OSyp or er’tO”S- eneedto giates obtained with AMD. In the present results, the ground
explain the appropriate principal axes in the nucleus wher

i <t different orof A neut h h State of 1IC with J=3/2 is obtained by a total-angular-
ere coexist different proton and neutron shapes as s OWnOLHomentum projection on a stald=3/2,K=3/2) with re-

F'g'l ? For (taxamgle} In tht(_a nucktahus with ob_latet proton ar: pects to the principa axis chosen so as to make the mo-
prolate neutron delormations, the approximate Symmelry,q ot jnertia minimum. Using the theoretical values of

amix for.pro;{ons ustually differs Irom tEe ?hpprom:natz Sy”?t' cosy shown in Fig. 5 we can estimate the ratio @fmo-
MELry axisz 1or neutrons so as to make the proton density a5 \ith the first and the second terms in ). The

overlap Iarge_ly with the neutron density. In many Cases, ggtimated ratio is found to be 0.87 which is as small as the
symmetry axisz f'or _the pm"'?“e neutroq de_nsyty is better to value of 0.88 deduced from the experimental data. In fact the
choose as the principal axsin the_tOt"’_‘l intrinsic system for theoretical results of electriQ moments for total-angular
the total-angular momentum projection. In such cases, thfenomentum projected states are @b for YC and 34
usual formula forQ, is modified by using the effective de- emb for XB. which are consistent with the data of
formation to thez axis B,cosy, instead of3,. In other Q(11C)<Q(“I§) (Table )

words, an oblate deformation gives a smaller contribution to X
the intrinsic quadrupole moment with the principal axis Cho'mation of the proton density if'C from that in 1B (an

sen so as to have the minimum moment of inertia. oblate shape irt'C and a triaxial shape if'B) significantly
Assuming these simple approximations the ratio of the

) et fihas effects the ratio of @ moment in!C to that in !B. With
Q moment in*'C to th’c.lt in"'B is represented by the product the help of mirror symmetry, the theoretical suggestion of a
O.f three terms, the ratios of proton numbers, proton deform"’.‘disagreement between proton and neutron deformations in
tion parameters, and charge r_adu. When we assume the M1 s supported by the experimental fact that the ratio of
ror symmetry for the deformation parameters and replace thglectricQ moments of!lC to 1B is less than unit
deformation parametaBpCOSyp(“B) for the proton density Y
in 1B by B,cosy,(*'C) for the neutron density int'C, the
ratio of Q is written as

It is concluded that the difference in the intrinsic defor-

C. Deformations in 1°C

We make a similar analysis of deformations f3€. We
/gpcogyp(llc) Re(1C)\ 2 find that the difference between proton and neutron deforma-
(,3 cosy (11C)> (R (“B)) . (8  tions in 1°%C is important in order to understand the ratio of
" " © the electric quadrupole transition strend(E2;2"—0%)
in 10C to that in the mirror nucleu$’Be. Assuming a mirror

We take the third term of charge radii to be unity since . . : )
¢ and B are the nuclei close to the stability line. If the fﬁ’;?g&e;g similar to Eq(8), the ratio ofB(E2) is approxi-

neutron deformation agrees with the proton deformation in
e as has been often considered, the second term gives ng(g2:1c) (z=6)2 Bocosy,(1°0) |2 [ R(*C) |*
contribution to the ratio o) moments and the ratio can be B(E2:Be) =\7z=2 B,cosy(°C) R.(Be) -
explained only by the charge ratio 1.2. However, the experi- ' n n € )
mental data of)(*'C) is smaller tharQ(*!B); Q(*'C) is 34.8

emb andQ(*!B) is 40.7emb. The ratio 0.88 deduced from The first term of charge ratio (6/24¥2.25 is much larger
the experimental data is less than a unity and is inconsistethan the ratio of experimental values 123)

with the Z ratio. According to AMD calculations, this prob- e?fm*#10.51.00 e?fm*=1.2(0.3). The reason why the
lem can be resolved by taking into account the differencesquare of the charge ratio fails to reproduce the ratio of
between the intrinsic deformations of proton and neutrorB(E2) in the mirror nuclei'®C and '%Be is because of the
densities in!lC. Through the second term in E(B), the  disagreement between proton and neutron deformations in
ratio of Q moments reflects the difference of intrinsic shapes'°C.

between proton and neutron densities. As shown above in In the intrinsic state of\°C, the proton density deforms
Fig. 5 the proton deformation is oblate while the neutronoblately with 8,cosy,=0.28 while the neutron deformation

Q(*c) _(Z=6
Q(*'B) \z=5
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TABLE I. Electric quadrupole moments and transitions of proton-rich C isotopes and the mirror nuclei.
Calculations are with MV1 forcenj=0.576) and the experimental data are taken ff8in

Electric Q moments

Nucleus Level exp. theory
Uc 312 34.3emb 20emb

g 3/2” 40.73) emb 34emb

100 o+ —38emb
108¢ o+ —65emb
°c 312 —28emb
SLi 3/2~ —27.8emb —27emb

E2 transition strength

nucleus level exp. theory
1c 5/2°—3/2" 6.8 e*fm*
11 5/2-—3/2” 13.93.4) e fm* 11.3e?fm*
¢ 2t—o" 12.32.0) e fm* 5.3 e?fm*
10ge 2" 0% 10.51.0) €% fm* 9.5e?fm*
°C 12 —3/2° 5.7 €*fm*
OLi 1/2-—3/2° 7.2e*fm*

is prolate with a larger value of the effective deformationby investigating deformation parametg8sand y. We ana-
parameterB,,cosy,=0.49 (Fig. 5, which makes the second lyze below quadrupole moments from another viewpoint
term in Eq.(9) less than unity. Thus the ratio is roughly by studying the angular momentum components of pro-

estimated as tons and neutrons contained in the intrinsic wave function
B(E2;'°C) of the AMD. Roughly speaking the AMD tells us that
m=2-25><(0-28/0-492~0-75- (100 the '°C nucleus consists of twa and two valence protons

) _(Fig. 7. In order to analyze this AMD wave function we
The reason for a smaller theoretical value of the ratiogonsider the shell model limit of the AMD wave function

tha_n t_he experim_ental one is considered to_be dL_Je_to th&nich is constructed by making the-a and a-p distances
omission of the third term from the charge radius ratio in EQ-smgajl, In this shell model limit, the intrinsic state is roughly

i 10~ .y
(9). Since ™"C is a nucleus near the proton dripline, effects of ey resented by a simple configuration with four neutrons in
the charge radii are expected to be also significant ang 02(0,0,)2 and six protons in(0,0,02(0,0,12(0,1,02
should be taken into consideration as well as the ratio of, terms of harmonic-oscillator orbitsig,n, ,n,), where we
deformation parameters. It is to be noted that though thep,qse the axis as the axis with the minimum moment of
dpnsny tail of the prqton IS S‘ﬂppfessed bY the Cou_lomb barfhertia and thex axis as the axis with the maximum moment
rier, the charge radii may give effects sinB¢E2) is af- it inertia. It is to be noted that since the intrinsic spins of a
fected py charge radii to the fo_rth power. We think it natural pair of two nucleons in the same orbit almost couple off to
to consider that the third term in E(®) may beconﬂ:&hlarger the singlet 0, only the orbital angular momenta of the four
than unity because the charge radﬁ In proton-fi&h can 516915 and two neutrons in the outer major shell should be
be expected to be larger than that'iiBe. We should point  {axen into consideration in the discussion @f moments.
out that the consideration of the charge radius ritie third 11 |owest state with spid=2 in °%C is found to be a state

term of Eq.(9)] strongly supports our argument that a differ- HK>:|2’O> projected on a total angular momentum eigen-
ence between proton and neutron shapes should be con-

cluded in*°%C in order to explain the observed reduced value
of the ratioB(E2;'°C)/B(E2;'Be).

The theoretical results with AMD calculations are shown
in Table | and are compared with the experimental data. The
calculations underestimate the value BE2;°C), there-
fore, the ratio B(E2;°C)/B(E2;%Be) is underestimated.
This is probably because the AMD wave function does not
describe the precise behavior of long tails of valence nucle-
ons as mentioned in our previous papet regarding halo
structures of neutron-rich nuclei. A detailed analysis of the
wave functions for valence protons is required. FIG. 7. A schematic figure for the intrinsic structure HiC

In the above arguments we analyzed quadrupole momentailculated with AMD. *°C approximately consists of a2 sur-
of the protons and the neutrons in the ground staté%f  rounded by p in a (0,1,0 orbit.

y
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state with respect to the principal axis. In the projected momentum of the protons is found to be rather smaller com-
state|2,0) from the intrinsic state, the total spin=2 mainly ~ pared to that of the neutrons. Therefore we can say that the
consists of the angular momentum of the relative coordidast two protons in &0,1,0 orbital reduce the component
nate R between a clusters (Fig. 7), while the angular with Ly#0 in [2,0) which results in a decrease of ti@
momenta of the two protons if0,1,02 orbits which are moment of the proton density. This is quite consistent with
equivalent to the linear combination ffm)=|1,+1) con-  the situation thaty?) reducesQ moments in a system with
tribute to|JK)=|2,+ 2). Here|l,m) is a state in terms of the an oblate deformation because we know that protons in the
Im scheme with respect to the axis in Fig. 7. It means (0,1,0 orbital enlarge the expectation value @f) of the

that the two valence protons give no sizable contributiorproton density and make an oblate shape of the total proton
to the quadrupole moment of protor@. moments are not density, that is to say decreas@dmoments of protons.

as what is simply expected with the proton number. More Of course we should remind the reader that the realistic
strictly speaking, because of the occupatiori@f,03,, in  wave function of*0C is not explained by such a simple con-
the intrinsic system the&) moment of protons decreases figuration in terms of the shell model limit but it must con-
in the total angular momentum projected stat&) =|2,0). A tain a rich variety of more complex configurations and com-
reduction mechanism ofQ moment by protons in Ponents with higher angular momentum due to the existence
(0,1,0¥ can be easily described by just the composition ofof a clusters and valence protons, and also due to the spin-
the orbital angular momenta of four protons and two protongrbit force.

in the p shell. We consider a configuration in the shell model

limit (0,0,1)3,,, (0,1,0%,,, and (0,0,1§,,, . As to the or- V. SUMMARY

bital angular momenta of neutrons, two neutrons in orbits

(O,O,lﬁTnl construct total orbital angular momentum eigen-
states for neutronf_,,,K,)=|0,0) and|2,0) with the ratio
1:2 of amplitudes. In the case of the angular momenta o
protons, an antisymmetrized state of (0,§,1) (01,08,
which is the two-hole state{l,o,()‘;ﬁpl constructs total
orbital angular momentum eigenstates of proton
ILp.Kp)=[0,0), 2,0, [2,4+2), [2,—2) with the ratio2:1:3:3.
Here one should note that tkE,0,0 state can be rewritten as
(1\2)(11,+|1,—1)) by using the statdl,,m,) in the

In summary, C isotopes up to the proton drip line were
studied with AMD. The intrinsic deformation of the protons
in C isotopes is usually oblate while the neutron structure
changes rapidly as a function of neutron numberThus,
one of the interesting results is the opposite deformations
between protons and neutrons in proton-rich C isotopes.
SThese unfamiliar results suggested with AMD were con-
firmed by analyzing the ratios of electric quadrupole mo-
ments and transitionsQ and B(E2)] in °C and 'C to
. those in the mirror nuclet®8e and'B. The significant ef-

Im scheme. '.A‘S far as states witk=0, the State  fact of the difference of the proton and the neutron shapes to
|LD’KD>:|0’O>_ is found to have a larger amplitude than the ratios of electric quadrupole moments and transitions of
the stat_e|2,0> in the case of (O_,O,:E}m (0_,1,0),2)T |- The  the mirror nuclei was disclosed with the help of deformation

reason is that the protons in single particle stgtgsmr) parameters in the intrinsic states. Oblate proton deformations
=|1,+1) and|1,~1) which originate in (0,1,(),,, tend in proton-rich C isotopes were shown to decrease electric

to couple their angular momenta so as to be totblly=0  quadrupole moments and transitiof® and B(E2)] com-
rather thanL,=2 under a constraint ok quantumK,=0.  pared with those of the mirror nuclei.

The point is that the neutrons in (0,02,,;,,)l construct the
total orbital angular momentuniL,M,}=|0,00 and |2,0)
with the ratio 1:2, while in the case of the protons in
(0,0,1¢(0,1,0¢ the amplitude of the state with  The authors would like to thank Dr. A. Ono for many
ILpKp)=|0,0) is larger than that of2,0) with the ratio of 2:1.  discussions and helpful technical advice on the numerical
As a result, in the total system of protons and neutrons thealculations. They are also thankful to Professor W. von
total angular momentum projected state [dfK)=|2,0) Oertzen for helpful discussions and encouragement. The
which consists mainly ofL,,M,=2,0L,,M,=0,0) and  valuable comments of Professor I. Tanihata and other experi-
ILn,M,=0,0|L,,M,=2,0) contains less components of the mentalists are also gratefully acknowledged. The computa-
state withL,=2 than the state with ,=2. In fact, in the tional calculations in this work was financially supported by
state|2,0) of 1°C obtained by AMD, the total orbital angular the Research Center for Nuclear Physics, Osaka University.
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