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Analyses of recent measurements of the scattering of alpha particREsligt energies of 129 and 240 MeV
have indicated that only about a third of the sum rule limit for isoscalar monopole transitions was found in the
giant resonance region of excitation energigg from 10 to 30 Me\j. Here we examine the theoretical aspects
of these analyses of inelastic scattering, both in the optical potentials obtained from elastic data and in the
models used to represent the inelastic transitions. In particular we introduce the folding model and compare the
use of folded optical and transition potentials with those obtained by deforming phenomenological optical
potentials. We also study the effects of dynamic corrections on the folding interaction when this is density
dependent. Both aspects are shown to have significant effects. We use more extensive elastic data at 139 and
340 MeV to illustrate the need for a density dependence in the folding interaction, as well as a need for
different shapes for the real and imaginary parts of the potentials. Although these various features are shown
to have non-neglible effects on the theoretical cross sections for the excitations at small angles, none of them
is sufficient to account for all the apparently missing strength. We estimate, based upon the most realistic
folding models, that about 50% of the sum rule limit for monopole excitation was observed within the two
components of the spectra centered at 17.42 and 20.76 MeV. The sharing between these two components
depends upon the assumptions made about the distribution of the giant dipole strength which also results in
angular distributions that peak at 0°. Thus about one-half of the sum rule limit appears to have been observed,
rather than the one-third originally inferred from these data using the deformed potential model. These con-
clusions are based, on the one hand, upon the spectral decomposition proposed for the results of the 240 MeV
experiment and, on the other hand, upon assuming that the simple breathing mode form is adequate for the
monopole transition densities. The results may be sensitive to deviations from either assumption. In a similar
way we also infer that at least 55%, and perhaps as much as 70%, of the isoscalar quadrupole sum rule limit
may be present in this giant resonance range of excitation energéNiin S0556-28187)01501-X]

PACS numbe(s): 24.30.Cz, 24.16-i, 25.55.Ci, 27.40tz

[. INTRODUCTION 16.39+0.22 MeV, and a subsidiary peak at an excitation of
20.18+0.23 MeV. The strength of the GMR peak was found
The location and strengttor even the existengeof the  to exhaust only{23+5)% of the isoscalar-monopole energy-
giant isoscalar monopole resonafi@MR) in the lighter nu-  weighted sum rule, while the GQR peak was assig(ssi
clei (A< 90, say remain a somewhat controversial question.=8)% of its EWSR.
Studies of the inelastic scattering of alpha particles by An additional experiment with 129.5 MeV alphas was
2%Mg and 28Si have indicated that its strength is strongly performed[8], followed more recently by measurements us-
fragmented in these two nuclei and distributed over a ranging alpha particles of 240 MeY®]. Again the spectra were
of excitation energies of at least 8—9 M¢Y,2]. About 30% decomposed into three main Gaussian peaks, supplemented
of the monopole energy-weighted sum r{EWSR was by two weaker and narrower ones to accommodate the struc-
identified in 845%n using alpha particles of 129 Mej3]. ture seen on the low excitation energy side of the giant reso-
Measurements orP®Ni have also been made by two nance region. The excitation energies and strengths found for
groups using 152 MeV alpha particlg$,5]. The first group the three main peaks seen in these two experiments were in
[4], following an earlier analysis of some,(p’) data[6], general agreement with each other and with those extracted
assumed a GMR peak at an excitation energy of 206 by Duhamelet al. [5]. The experiment at the highest energy
MeV. This interpretation was challenged by Gagal. [7],  of 240 MeV[9] yielded the greatest peak-to-background ra-
who showed that the angular distribution for the purportedio at small scattering angles, as well as removing the broad
GMR peak was consistent with a quadrupole excitation. Apickup-breakup contributions, due to the formation and de-
reanalysis of their own data taken with 129 MeV alpha par<cay of °Li and °He, to excitation energies above 40 MeV.
ticles[3] led to the same conclusion. The second group usindPeak fitting of the resulting spectra in the giant resonance
152 MeV alpha particle$5] concluded that the best fit to region ofE,< 30 MeV was interpreted as evidence for 44%
their spectra in the giant resonance region was obtained witbf the quadrupole EWSR &, = 16.08 MeV and 22% of the
three Gaussian peaks, with the GMR peak at 1Z@20 monopole EWSR dE, = 17.42 MeV, mixed with 7% of the
MeV, very close to a giant quadrupole resonaf@§R) at  quadrupole. A peak at higher excitatida, = 20.76 MeV,
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was fitted with 10% of the monopole EWSR, 7% of the relativistically correct center-of-mass momentum and Som-
guadrupole, and 100% of the isovector giant dipole resomerfeld parameter.
nance.

An important feature of measurements of monopole exci- A. Deformed potential model

tations by alpha particles is to approach as closely as pos- . ) , . '
sible to 0°, where the monopole angular distribution has its !t remains for the interaction potentials to be defined. The
maximum. Furthermore, the monopole distribution is pre_results referred to in the Introduction were obtained using the

dicted to exhibit a deep, narrow minimum following the o° deformed potentialDP) model. In this approach, a complex

maximum. These two features most easily distinguish it fronPPtical potential U(r) (usually having a Woods-Saxon
the distributions for other multipolaritieS]. The measure- shapg is found by fitting the observed elastic scattering. This

ments reported ifd] were for angles greater than 5°, beyond potential is then deformed to provide parts which model the

the first minimum for monopole excitations, while those re_transition potentials needed to describe the inelastic scatter-

ported in[5] extended into 1.3°, thus covering the minimum N9 T_he transition _potentia_ll for _excitation of a on(_a-phonon

and a substantial part of the forward peak. The data from thg!bratlonal state with mult!polarltyz 2 hf.is a radial part

Texas A & M cyclotron include scattering to 43,79, and ~ 91Ven by (we use the notation and normalization[&8])

tsr;:JesngptLowde the most stringent limits on the monopole Gl[)P:_gludU(r)/dr' (2.1)
This brief review of measurements ofiNi indicates a

consensus that a substantial porti@bout one-hajf of the

guadrupole EWSR is located around an excitation energy

; 0 4

16 Me\/, while or_1|y about 30% of the monopole EWSR is potentialU have the same deformation IengiH.

found in the regionE,~10-30 MeV. However, there are A breathing mode is assumed for monopalle 0) exci-

uncertainties associated with these conclusions which mig%tions[m 1ﬂgwith 4 transition potential P

be classified as “experimental” or “theoretical.” The “ex- ' P

perimental” uncertainties include those arising from the de- DP v _ U

composition of the peaks observed in the giant resonance Go'(r) ap[3U(r)+rdU(r)/dr]. 22

region of the spectréincluding the subtraction of the “back- . . U
ground”). For example, the use of symmetric GaussianAgam the amplituder; is assumed to be the same for the

shapes may be questioned when only 20% or so of thE:eaI and imaginary p_arts dd. It is adjusted to match thg
EWSR is observed. This implies considerable fragmentatioﬁn?e,:sut:]ed cr(?[sst_selzctlorﬁ. ('jl'hetprt(r)]blem I:_hatl then ans:zs |fs to
of the resonance. Theoretical calculations using the randoff arc thes@otentialampiitudes to the multipole moments o

phase approximatiofRPA) [10] support this fragmentation, the '::odrrtla:spondmt? t;ﬁps!n%densglesof the_ nutcrlel{l?hbelngl
but with a distribution in excitation energy of the fragmentsexCI ed. mrequently, this 1S don€ by assuming that tn€ huclear
that is not symmetric. density is deformed in the same way as the optical potential

The “theoretical” uncertainties include the theoretical ani with tf]lethsarge diformgtlarlrlleng[tttﬁ].t_lnl this \(/jv_ay,l thed b
models used to analyze the experimental results and extraﬁiﬂr aces of the density and of tne potential aré displaced by

The amplitude(“deformation length”) 5|U is adjusted to
atch the observed inelastic cross sections. As written here,
e have assumed that the real and imaginary parts of the

from them a measure of how much the EWSR has beel'€ same distance. Although perhaps intuitively appealing,

exhausted. In particular one may question the use of the dé_erg is no theoretical justification fo'r this proced((&,18,
formed potential model. These concerns are the principal?‘r’“t'cu.Iarly.for the monopole bre‘.ﬁh'ng ”?Ode- T_he treatment
motivation of the present paper. We concentrate on alph8f the_lmaglnary part of the c_oupll_ng in this way'1s espemally
particles with 240 MeV bombarding energy because it is forquetstlon.?r?le..A[thoug;lh _ttf:le imaginary coupling is not domi-
these that the most precise and extensive data are availalgt: neither is it negligible.

[9].
B. Folded potential models

It has been reemphasized recefil$,18,19 that the fold-
ing model approach to the potentials is more basic and pro-

Before accepting that a majority of the monopole strengthvides a direct and unambiguous link between the potentials
in ®8Ni is “missing” from the expected giant resonance re- and the underlying nuclear densities. It can also lead to re-
gion of excitation energies, it is important to know to what sults that differ significantly from those obtained using the
extent this result depends upon the theoretical assumptiod3P model. A recent example used this fact to explain an
made when interpreting the data. It is assumed, of cours@pparent “hindrance” of 3 excitations(by factors of 2—3
that the inelastic scattering is a direct reac{ib], and it has by the scattering oft’O ions[20].
been confirmed that the distorted-wave Born approximation, In this approach, the potentialsptical and transitionare
which treats the coupling interaction to first order, gives re-generated by folding an effective nucleon-nucleon interac-
sults almost identical to a full solution of the coupled- tion v over the density distributions of the target and projec-
channelgCC) problem, showing that higher-order effects aretile [19]. The ground-state densities needed for generating
either not important or are adequately represented by thihe optical potential are usually known well enough, but, of
optical potentials usedIn practice, we find it more conve- course, the folding approach for the transition potential de-
nient to use the CC approach and this was done for the rggends upon having a reliable model for the transition density
sults reported here. An effective bombarding energy and efef the nucleus being excited. Other analy$fes example,
fective masses were used at each en¢i@} to ensure the [21]) have provided support for the use of the collective

II. THEORETICAL MODELS
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Bohr-Mottelson(BM) form of the transition density for the C. Effective interaction and density dependence
excitation of low-lying “vibrational” states with =2, The other important ingredient of the folding model is the
effective nucleon-nucleon interaction. The simplest ap-
aPM(r)=— dMdp,(r)/dr, (2.3 P P

proach, known as single folding and used primarily for alpha

h is th d-state densitv of th | bei particles at lower energiess(100 MeV, say, is to average
w e_rept(r) '35m € ground-state densily ot In€ nucleus beiNGy,;q jnteraction over the density distribution of the alpha par-
excited andg,” is the corresponding matter deformation yicie and represent the result by a simple functional form

length. By extension, one would expect this to be a good;(s) The most popular form is a Gaussian with a complex

choice also for the giant multipole resonances Wit?. strength[4,23]
The breathing mode form for the GMR transition density T
is ve(s)=—(v+iw)exp —s?/t?), (2.5
go(r)=—ag[3p(r)+rdpy(r)/dr]. (24  wheres=|r—r'| is the distance between the center of mass

of the alpha particle and a target nucleon. The rahge

Although a plausible choice, there is unfortunately no inde-about 2 fm; we adopt the value= 1.94 fm from a study of
pendent experimental support for this form. Theoreticalelastic data at forward angles for 140 MeV alpha particles
structure calculations using the RPA tend to give transitiorf4]. The strengthsy and w are adjusted to optimize the
densities similar to this; on the other hand, when fragmentaagreement with elastic measurements at each energy.
tion of the GMR is present, the various fragments may be While the simple mode(2.5) will reproduce the measured
associated with different forms. For example, theoreticakcattering at forward angles, even at 240 MeV where the data
RPA transition densities and their associated folded poterextend only to 17924], it has long been known to be inad-
tials for two GMR fragments irf°Ni are shown if10]. One  equate at energies 100 MeV when data are available for a
fragment yields results close to EqR.4) and(2.2), respec- more extended angular range that displays rainbow scattering
tively, while the shapes for the other fragment are signifi-{25]. The model(2.5) is deficient in two ways. First, it as-
cantly different. sumes that the real and imaginary parts of the optical poten-

This kind of uncertainty can be critical for the scatteringtial have the same radial shape. This results in much too
of projectiles that are relatively strongly absorbed, for thesestrong absorption in the interior. We avoid this by a hybrid
are strongly dependent upon the tails of the transition potermodel in which the imaginary potential is represented by a
tials in the vicinity of the strong absorption radiihe strong Woods-Saxon shape or its square, which differs from the
absorption radius for 240 MeV alphas 6fNi is between 6 shape of the real folded potential. Second, the strengih
and 7 fm) Referencé10], which examines the GMR in four the real interaction which gives the peripheral potential re-
targets excited by 152 MeV alpha particles, suggests that thguired to fit the small-angle diffractive scattering results in a
use of the mode(2.4) could lead to estimates of the total potential that is too deep in the interior to reproduce cor-
monopole strength which a(@0—-30% larger than would be rectly the rainbow features at large angles. This can be cor-
given by using the RPA transition densities. However, in therected by making the interaction between the alpha particle
absence of a suitable alternative fSNi, we continue to use and target nucleon depend upon the density of the nuclear
the form(2.4) in this paper. matter in which they are immersed. The requirement that

The representation of the imaginary coupling also prenuclear matter saturate ensures that this density dependence
sents a problem in the folding approach. Simply assumingDD) reduces the strength of the interaction as the density
that the nucleon-nucleon interaction has a complex strengtlincreases, weakening the folded potential in the interior
determined by the elastic scattering, provides a straightforwhile leaving the peripheral values largely unchanged. We
ward procedure which results in the real and imaginary tranused a popular form of DD,
sition potentials having the same radial shape. This appears
to have had some succe{;ls@,zq _in some circumstances,_ Vppa(S,p)=vs(S)f(p), (2.6a
despite the lack of theoretical justification. However, in
many casegincluding alpha-particle scattering at=H00
MeV), this assumption is known to be unrealistic for the
elastic scattering and prevents one from obtaining satisfac-
tory fits to measurements taken at angles beyond the Fraun-
hofer diffraction region. An example far+ >®Ni scattering ) )
is provided in[22]. [Our own work, described in Sec. Il A Wherep(r’) is the gound-state density of the target nucleus
and shown in Fig. @) below, provides another example. at the positiorr” of the target nucleon. A2 good fl_t to ela_stlc
Then an alternative solution frequently used is a hybrigdata was foundsee belowwith «=1.9 fm", associated with
model in which the real interaction is folded and the imagi-2 Gaussiawg with a ranget=1.88 fm. .
nary part is treated phenomenologically such as by a Woods- An additional consistency feature arises when a density-
Saxon potential. The imaginary inelastic coupling is thendependent interaction like Egs. 2.6 is applied to inelastic
generated by deforming this potential, as in the DP modelScattering[26,27. A deformation of the densitp— p+ op
This leaves the corresponding deformation length undefinedso affects the interaction(p) —v(p+ dp). To lowest or-
Forl=2 it is frequently set equal to the density deformationder this is included by using the modified interaction
length, and we do that here. The best choice for the mono-
pole breathing mode is much less obvious. v'(p)=v(p)+pdv(p)lip; (2.79

f(p)=1—ap(r')?, B=2I3, (2.6b
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1.0 a=1.7452 fn?. It yields an incompressibility for nuclear
- (a) DDG ] matter ofK=270 MeV. This interaction incorporates an ac-

\ T curate local approximation to knock-on exchange effects, an
\ ] important consideration because these exchange contribu-

N | tions dominate over the direct ones for the Paris potential

| N | [28]. The single-folding approach, using alpha-nucleon inter-

. N i actions such as Ed2.5) or Egs.(2.6), does not consider

L _ knock-on exchange explicitly. It is assumed that exchange

- N ] effects are taken into account implicitly when adjusting the

0.0 |- interaction to reproduce the observed elastic scattering. This

N : may be adequate for monopole inelastic scattering, since

i — ! \\ 1 elastic scattering itself is a monopole transition, but it ig-

I ~ nores the possibility for higher multipoles that the effective

0.5 L L] interaction should be multipole dependent because of ex-
o 0.5 1 1.5 2 2.5 change effects.

density A Gaussian form was chosen for the alpha-particle den-

sity distribution[28],

density dependent factor
/

1-0 T T T T T T T T ] T T T T | T T T T | T T T T
(b) BDM3Y1 p.(r)=0.4229exp—0.70242), (2.8

which has a rms radius of 1.461 fm, consistent with electron
scattering measurements of the charge raf2®%. The ex-
plicit form of the BDM3Y1 interaction and its parameter
values are given in[28]. The density dependence of
L ~ 7 BDM3Y1 is also shown in Fig. 1; again, the dynamical cor-
- ~ - rection(2.7) further suppresses the interaction at small radii.
0.0 - The density dependence of BDM3Y1 is less severe than that
~ for the single-folding interaction DDG because the latter al-
r — £ ~ “ 7 ready implicitly contains in an average way the effects of the
| AN density of the projectile alpha particle.
,0‘5....|....|..‘.|....|...\.
0 0.5 1 1.5 2 2.5
density

density dependent factor

D. Sum rule limits

Certain linearly energy-weighted sum rul&N SR’ for
FIG. 1. The density-dependent facthfp) associated wita)  the operators'Y["(8,¢) (for 1=2) andr? (for I =0) acting
the Gaussian single-folding interaction DDG afi the M3Y  on the target nucleus ground state, expressions for which are
double-folding interaction BDM3Y1. Also showfdashed curvegs given in Ref[lG], for examp]e, provide convenient measures
are thef’(p) factors when the dynamical correcti¢d.7) for in-  of the strength of transitions exciting giant resonances. For
elastic scattering is included. The density is given in ratio to theexample, if the Tassie transition densiB/4) is appropriate
densityp=0.17 fm"> of normal nuclear matter. for all monopole excitations, the sum rule provides a limita-

, o o tion on their amplitudesy;
indeed, this is exact for the excitation of one phonon of a

harmonic shape vibratidi27]. In the case of Eq2.6b), this zi(ag‘i)ZExi:4A(ﬁ2/2m)<r2>m, (2.9
corresponds to replacing by o' = a(1+ 8) =(5/3)«, so that
f(p) is replaced by where o is the amplitude for the monopole state with ex-
citation energyE,; and(r?),, is the mean square radius of
f'(p)=1—a(1+B)p(r")~. (27D the ground stategWe use?/2m = 20.735 MeV fnf.) The

operators involved here are similar to those for the electric

The correction(2.7) further reduces the interaction strength excitation of the target protons in the long-wavelength limit.
inside the target nucleus, as indicated in Fig. 1. However, it is appropriate to point out that excitation by the

Finally, we return to double folding, namely, the explicit inelastic scattering of hadrons is associated with a radial de-
use of a realistic density-dependent nucleon-nucleon interagendence different from (or r? for | = 0), although in both
tion folded over the density distributions of both the targetcases the operators emphasize contributions from the target
nucleus and the alpha particle. For our purpose we adopt mucleus surfacésee Chap. 14 of Refll]). Thus the sum
very recent interaction called BDM3Y(Pari9 which has rule expressions may be expected to provide only a qualita-
already been shown to give a good account of refractiveively reliable guide to hadronic cross sections. Hence it
alpha-particle scattering at energies ranging from 59 to 178hould be borne in mind that, for example, two transition
MeV [28]. It is based upon & matrix derived from the Paris densities that have the samieor r? for | = 0) moment(and
nucleon-nucleon potential. It has a linear dependence on dethus the same fraction of the corresponding EW 3y
sity [corresponding té(p)=1—ap, or B=1,in Eq.(2.6b],  give rise to significantly different hadronic cross sections,
adjusted to give saturation of nuclear matter at the corregparticularly when the hadron is susceptible to strong absorp-
density and binding energy[28,30. This required tion and thus is sensitive to thail of the transition potential.
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Resolution of this problem requires independent information\Woods-Saxon one&ee Fig. 4 in24]), single-folded ones,
experimental or theoretical, about the appropriate transitior (see belowobtained from double folding. The data at 240
density. Unfortunately, this is especially difficult to obtain MeV extend only to 17° in angle, covering the forward-angle

for monopole excitations. diffractive region of the angular distribution. This indicates
that theobservedscattering is primarily sensitive to the po-
IIl. APPLICATIONS TO ELASTIC SCATTERING tential in the surface and that the interpolated potentials are

too strong in this region. They yield a diffractive pattern that
We use the ability of a given interaction to reproduce thejs slightly shifted forward in angle, compared to that ob-
observed elastic scattering as a criterion of its validity and ta&erved.
determine the optimum values of its parameters. The real |t is easy to obtain a good fit to the more limited elastic
part of the optical potential was generated using the foldingiata at 240 MeV. That shown in Fig. 3 is a typical example
model. A two-parameter Fermi distribution was used for thewhich uses the DDG interaction for the folded real potential
ground state of®Ni, with a radius of 4.08 fm and surface with a strength ofv=36.15 MeV (compared with the
diffuseness of 0.515 fm. This has a rms radius of 3.695 fmy ~46.8 MeV, which is suggested by linear interpolation be-
very close to that deduced from high energy proton scattefween the values obtained at 139 and 340 Mekhe opti-
ing [31]. mum Woods-Saxon imaginary part ha¥=35.25 MeV,
Rw=4.810 fm, anda,=0.926 fm (whereas interpolation
A. Single folding and density dependence would suggestWW~17 MeV, Ry~6.25 fm, anday~0.70
E;m). It is possible to obtain an acceptable fit with the ex-
pectedv =46.8 MeV (albeit with a x? almost 3 times as
large, but only by introducing a very strongly absorptive
imaginary potential (¥~ 150 MeV). It would not be possible
o reproduce the 139 and 340 MeV large-angle data with

(2.6) with a complex strength, so that the real and imaginarygUCh a.potentlal. Later we shal_l examine \(vhat e.ffect this
potentials have the same radial shape. Both fits are unacce ncertainty has upon the predictions for the inelastic scatter-
able. However, excellent agreement, shown in Fig),2is g atE=240 MeV.

obtained by including both density dependence and an

imaginary potential with a different shape. The density- B. Double folding

dependent GaussidbDG) forms (2.5) and(2.6) were used ] )
for the real potential, withy=53.95 MeV,w=0, & = 1.9 Double-folded potentials were also constructed using the

fm?2, andt=1.88 fm. The imaginary potential was taken to BDM3Y1 (Pari9 inte'raction described earlier.'These are en-
have a Woods-Saxon shape, ergy dependent. This energy dependence arises mostly from
the explicit treatment of the knock-on exchange contribu-
ImU(r)=—W/(e*+1), x=(r—Ry)/ay, (3.1) tions but includes a weak phenomenological linear depen-
dence [28]. Thus the real potential is fully determined
with W = 17.3 MeV, Ry, = 6.238 fm, anda,, = 0.646 fm.  a priori, although we include an overall renormalization fac-
(An almost indistinguishable fit is obtained by using thetor N which is adjusted to optimize the fit to the measure-
square of the Woods-Saxon shape. ments.N should be close to unity in order for this procedure
Extensive data displaying refractive features are alsdo be meaningful. Again we use the Woods-Saxon model
available at the higher energy of 340 M¢®3]. These were (3.1) for the imaginary potential, adjusting the parameter val-
studied to provide some indication of the variation of theues for best agreement.
interaction with bombarding energy so that interpolation to  Excellent fits to the 139- and 340-MeV data were ob-
240 MeV or extrapolation to 129.5 MeV could be performed.tained, very similar to those shown in FiggbRand Zc).
An optimum fit[Fig. 2(c)] was obtained with the same DDG Renormalization factors a little larger than unity were re-
interaction used at 139 MeV, except for a reduction inquired (N=1.18 atE=139 MeV andN=1.23 atE=340
strength tov =39.8 MeV. The accompanying Woods-Saxon MeV), as is typical for alpha particle scatterif2g,34]. The
imaginary potential was similar except for a somewhat moreoptimum imaginary potential at 139 MeV had/=22.9
diffuse surface W=16.8 MeV, Ry=6.269 fm, and MeV, Ry=5.672 fm, ancay=0.797 fm. The corresponding
ayw=0.765 fm). values at 340 MeV wer&vV=34.6 MeV,Ry,=5.358 fm, and
The volume integrals per interacting pair of nucleons foray,=0.691 fm. The real volume integrals wetkk=267
the real potentials)z=282 MeV fm® (E=139 MeV) and MeV fm? (E=139 MeV) and Jz=195 MeV fm® (E=340
Jr=208 MeV fm? (E=340 MeV), are consistent with those MeV).
obtained from a global study4] which included these data, A discrepancy similar to that described above was en-
as well as others taken Et=104 and 288 MeV. The results countered when this double-folded potential was applied to
indicate a dependence on energy that is close to linear ovéne measurements at 240 MeV. The optimum fit is indicated
this range(albeit a little curvature is to be expected from by the dashed curve in Fig. 3. A renormalization fadess
dispersion relation consideratiof34]). Hence it is surpris- than unity,N=0.96, was required in order to match the ob-
ing that fits to the 240-MeV daf®4] result in real potentials served diffraction pattern, rather than the vaNie-1.2 ex-
that are approximately 20% or more weaker than expectefdected by interpolation between the other two energies. The
from interpolation between the other two energies. This ocaccompanying imaginary Woods-Saxon potential had
curs whether the potentials used are phenomenologicW=45.6 MeV, R,=4.361 fm, anda,,=0.995 fm. Just as

There are elastic data for the scattering of 139 MeV alph
particles from®®Ni which extend out to 80° and display a
well-developed rainbowW32]. Figure Za) shows the best fit
to these data that could be obtained using either the densit
independent interactio(2.5) or the density-dependent form
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FIG. 2. (a) The best fits to elastic data for 139 MeV alpha
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FIG. 3. Fits to the elastic data for 240 MeV alpha particles on
8Ni [24] using a single-folded real potential with a density-
dependent Gaussian interacti@DG) or a double-folded real po-
tential with an M3Y-type interactiofBDM3Y1), both accompa-
nied by a Woods-Saxon imaginary potential.

with single folding, an acceptable fibut with x? twice as
large could be obtained wittN=1.2 but accompanied by a
very strongly absorptive imaginary potential.

IV. APPLICATIONS TO INELASTIC SCATTERING
A. Low excited 2* and 3~ states of *®Ni

For calibration purposes, we study here the 240-MeV data
[24] for exciting the lowest 2 and 3~ bound states of
°8Ni. First we compare folding with the use of the deformed
(Woods-Saxon potential to generate the transition poten-
tials. Then, within the folding model we compare the use of
density-dependent and density-independent interactions, and
study the effects of the dynamical correctid@s?). In each
case the models used are required to give equivalent fits to
the elastic data.

The “adopted” experimental valug85,36 for the elec-
tric transition rates ar@®(E2) = 0.070e? b2 and B(E3)
=0.017¢€? b3. We may extract matter deformation lengths if
we use the BM mode(2.3) for the transition densities and
simply assume that the neutron and proton densities are in
the ratio ofN/Z and have equal deformation lengths. Then
we find 55'=0.847 fm ands§'=0.857 fm. We further assume
that these equal the potential deformation lengtiiss 6,
when we compare folding with the DP mod@l1), or in the
hybrid model where the real potential is obtained by folding
and a Woods-Saxon form is used for the imaginary potential.

In each case, Coulomb excitation was included using the
B(EI) values mentioned above.

We adopted the Woods-Saxon potential fri@d] for the

particles on%8Ni [32] that are obtainable using folded potentials PP calculations. The various single-folding models gave

with a Gaussian(G194 or a density-dependent GaussiddDG)

peak cross sections for the quadrupole excitation that were

interactions with complex strengths, so the real and imaginary partg@bout 20% smaller than those obtained using the DP model
have the same shap) The same data fitted by density-dependentWith the same deformation length. Figure 4 compares the DP
interactions for the real potentials and Woods-Saxon shapes for tHeredictions to those of the folding model using the real DDG
imaginary potentials(c) As in (b), applied to data taken at 340 interaction described in the preceding sectidwith

MeV [33].

v=36.15 MeV}, and including the correctiof2.7) for the
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1000 e r———————— increasing a$ increases when it is assumed that the matter
and potential deformation lengths are equi].)

This deficiency of the DP model raises an interesting
guestion when we use the hybrid folding modelided real
potential plus Woods-Saxon imaginary potentiavhich is
needed when data at large angles are to be fitted. We have
used the DP model to estimate the contribution from the
imaginary potential to the inelastic scattering. Now there is
reason to suspect that this provides an overestimate by an
amount that depends upon the multipolarity of the transition.
The imaginary contribution is not negligible, and typically
increases the cross sections by about 50% compared to using
the real interaction alone. Fortunately, the various versions
of the folding modelsthybrid or folded imaginary predict
cross sections at forward angles that are within a few percent
10— of each other, implying that this uncertainty is not a large
c.m. angle (deg) source of error in the present case. This similarity at forward
angles also holds whether or not one includes a density de-
E pendence in the interaction. However, this need no longer be
(b) 3 3 true if one were attempting to fit data over a larger range of

] scattering angles.

The dynamic correctiori2.7), needed when the interac-
tion is dependent on the density, reduces even further the
strength of the transition potential in the interior of the target,
as indicated in Fig. 1. Its effect on the inelastic scattering can
be large. In the present case, omitting it increases the pre-
dicted inelastic cross sections by about 35% without chang-
ing the angular distributions significantlyThe increase is
found to be somewhat less for 139 MeV alpha particles,
being about 25%.

Furthermore, there is a general rule for small-angle scat-
tering, that two interactions that give the same elastic scat-
tering will also give very similar inelastic scattering. This

1.0 ——— P 1'5 S rule is only obeyed when comparing density-dependent and
c.m. angle (deg) density-independent interactions if the dynamic correction
(2.7 is included for the former.

FIG. 4. Comparison of folding model predictions, using the It was reported in the preceding Section that interpolation
density-dependent interaction DDG, for exciting the lowest excitedoetween the fits to the elastic data at 139 and 340 MeV
states in®Ni by 240 MeV alpha particles, with those using the implies that the real interaction should be ab¢2®-30%
deformed potentialDP) model based upon the Woods-Saxon po- stronger than was used for the results illustrated in Fig. 4.
tential of [24]. (a) The 2” state atE,=1.454 MeV withB(E2)  We checked the possible effects of this by repeating the cal-
=0.070 e*b? corresponding to a deformation length of culations with the interpolated potentials. The cross sections
9,=0.847 fm.(b) The 3~ state at 4.475 MeV witlB(E3)=0.017  do not simply increase as the square of the interaction
e” b®, corresponding to a deformation length &f=0.857 fm. strength, partly because the imaginary interaction also
changes, and partly because the elastic scattéttmey dis-
Yorted waves’) are affected as well as the inelastic coupling.
4ne find that the peak cross sections for both@hd 3~ are
increased by about 10%, with small changes in the angular
distributions(mainly a slight shift of a few percent to smaller
IAngles in a way analogous to that seen for the elastic scatter-
ing) which worsen the agreement with the data seen in Fig.

cross section (mb/sr)

1000 ————— 1

cross section (mb/sr)

inelastic coupling. The deformed Woods-Saxon model wa
used for the imaginary interaction. The DP model gives
good fit to the measuremenitg4], while the folding model
fit is improved if its deformation length is increased by about
10%. This may be an indication that the appropriate neutro
deformation length is a little larger than that for the protons
or it may reflect an uncertainty in tH&(E2) value. 4
The situation is different for the octupole excitation,
where the DP model predicts cross sections that are 50%
larger than the folding models for a given deformation
length. Figure 4 shows that folding, with the deformation Here we examine the effects of the various models on
length deduced from thB(E3) value, gives good agreement |1 =0 isoscalar monopole excitations. We assume the breath-
with the measuremen{®4], while the DP model predicts ing mode form(2.4) for the transition density. The Fermi
cross sections that are too larg€his is similar to a previous ground state density that was used to generate the folded
finding for octupole excitations by heavy iof20]. Such optical potentials has a rms radius of 3.695 fm. If an excita-
discrepancies are strongly dependent on the multipoléyity tion energy of 17.42 MeV is assumed for the giant monopole

B. Giant monopole excitations
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resonanc GMR), 100% of the energy-weighted sum rule 1000
limit is exhausted by an amplitude @f{'=0.1374, corre-
sponding to a reduced transition rate Bfl S, =0)=0.377
b? [20].

In order to apply the DP model we use the fofgn2) for
the transition potential, as was doneg[8]. It is not obvious
how to relate the potential amplitude‘d to the amplitude
(' of the underlying matter oscillation to which the sum rule
limit applies. This relation needs to be defined before we can
make a meaningful comparison of the the folding and DP
models. Earlier, when making this comparison for higher
multipole excitations, we assumed that the matter and poten-
tial deformation lengths were equal. In the same spirit, it is
plausible to equate the displacements at the corresponding
matter and real potential radi20], giving

GMR Ex = 17.42 MeV

100

cross section (mb/sr)

-——— BDM3Y1/WS \

\
—— DDG/WS \
---- DP

4 5 6 7 8

0] _.m
¢.m. angle (deg)

whereRy is the radius of the real part of the Woods-Saxon g, 5. pifferential cross sections at forward angles for 240

potential anct is the matter radius of the target ground state ey alpha particles exciting a giant monopole resonance at 17.42
Here, c=4.08 fm, while Ry=4.75 fm for the DP model. MeV in 58Ni that exhausts 100% of the energy-weighted sum rule.
Nonetheless, this remains a particular source of uncertaintyhe predictions of the deformed potenti@lP) model, based upon
for the application of the DP model to breathing mode exci-the Woods-Saxon potential ¢24], are compared to predictions
tations; note, for example, that the DP crossections are prassing folding models for the real parts of the transition potentials
portional to the square crfg. and deformed Woods-Saxon potentials for the imaginary parts.

An analogous prescription is used for the imaginary inter-DDG is the density-dependent single-folding Gaussian interaction,
action in the hybrid mode(folded real interaction, Woods- and BDM3Y1 is the density-dependent double-folding M3Y-type
Saxon imaginary part namely, Eq.(4.1), with R, replaced nteraction.
by Ry .

First we compare the predictions of the DP md@lwith see immediately that there is little opportunity for the use of
those obtained from the most sophisticated folding modelshe folding model, as defined here, resulting in a measure of
considered here, namely, those using the density-dependetfie sum rule depletion by the monopole excitation that is
DDG (single-folding and BDM3Y1(Parig (double-folding  very much larger than that arrived at original§].
interactions for the real potentials and phenomenological Other choices for the effective interaction, which fit the
Woods-Saxon forms for the imaginary potentials. The cros40 MeV elastic data but ignore the constraints implied by
sections are shown in Fig. 5 for excitation of a monopolethe wide-angle data at 139 and 340 Mé&émely, the need
state at 17.42 MeV which exhausts 100% of the sum ruldor density dependence and a different shape for the imagi-
limit (2.9). [It should also be remembered that these result®ary potential, may result in monopole cross sections that
depend upon assuming the relati@hl) and its counterpart differ by larger amounts. For example, we may take the
in the folding model, not to mention the dependence uporsimple Gaussian of Eq2.5 with a complex strength and
using the ansatf2.2) for the transition potential in the DP ranget=1.94 fm, as was used earligt]. This gives a good
model and Eq(2.4) for the transition density in the folding fit to the 240 MeV elastic scattering with=24.9 MeV and
approachl. Values of the cross sections are also given inw=14.95 MeV. The corresponding monopole transition po-
Table | for representative angles; 1° is the smallagerage  tential is included in Fig. 6. The theoretical monopole inelas-
angle for which measurements are availdlflewhile 5° is  tic cross sections given by using ttiigable |) are then about
the location of the second peak in the monopole angulaB0% smaller than those obtained using the more realistic
distribution. The entries in this table also give some indica-density-dependent Gaussian with a Woods-Saxon imaginary
tion of the dependence upd value. part that we have denoted DDG, and hence would imply a

The two folding models give cross sections that differ bydepletion of the sum rule limit that is nearly 40% greater.
only a few percent. The results from the DP model, using the Attention was drawn earlier to a discrepancy between the
Woods-Saxon potential frofi24], fall between those for the optimum potential fits to the elastic data at 240 MeV and the
folding model at the most forward angles, but rise abovepotentials expected by interpolation between fits to data at
both of them at larger angldby about 20% on the second 139 and 340 MeV. Consequently we repeated the monopole
peak at 5°). The reason for the relative insensitivity of thecalculation using the folding model with the interpolated ver-
monopole cross sections to the model used is clarified bgion of the DDG interaction and its associated imaginary
Fig. 6, which shows the corresponding transition potentialsWoods-Saxon potential. Although significant changes in the
There are dramatic differences in the nuclear interior, but th@ngular distribution appear at large angles, they are rather
various potentials become much closer at the importansmall in the forward direction. Near the important angle of 1
larger distances in the vicinity of the strong absorption radius, the interpolated potential predicts a 20% reduction in cross
(which is about 7 fm in this cageSince the measured cross section(hence a 20% increase in the inferred sum rule deple-
section near 1° is dominated by the monopole excitation, wéion). The only way found to avoid the apparent discrepancy
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TABLE |. Predicted differential cross sections at some represen-
tative forward angles for exciting giant resonancesiNi by 240
MeV alpha particles and exhausting 100% of the EWSR limit. The
potentials used were determined by fitting the 240 MeV elastic
scattering daté24].

400

alpha + 58Ni

g 300 — G194 .
0° 1° 5° Total o —— ppe/c
Model (mb/sp  (mb/sp  (mb/sp  (mb) g 200 ---- DDG/S _
[
GMR, Q=—17.42 MeV H oo DR ]
DP? 385 276 56.6  2.94 § 100 |
DDG/WS 398 295 46.1 3.8 2
BDM3Y1/WS® 355 262 416 279 g . T
G194 286 212 36.0 251 5 :

~ - \ N
G194/WS 350 256 404  2.67 ~ o M

GMR, Q=—-20.76 MeV

DDG/WS 255 190 298  2.02 0 1
GQR,Q=—16.08 MeV r (fm)

DP? 95.4 89.3 147 10.6 . . i .
DDG/WS 68.5 713 133 105 FIG. 6. The real parts of transition potentials for exciting a giant

monopole resonance at 17.42 MeV i, normalized to unit am-
plitude af'. That obtained using the deformed potentiaP) model
(2.2), based upon the Woods-Saxon potential fr@2d], is com-
pared to folded potentials obtained using the transition def@ity

GQR, Q= —17.42 MeV
DDG/WS 67.8 68.9 115 9.4
GOQR,Q=—20.76 MeV

DDG/WS’ 63.6 63.1 80.8 7.3 with single-folding Gaussian interactions. G194 is the density-
GDR! Q=—17.42 MeV independent Gaussian with a rangetef1.94 fm, normalized to
DDG/WS 53.7 44.3 2.56 0.36  reproduce the elastic data at 240 MeV. DDG is the density-
GDR/ Q=-20.76 MeV dependent Gaussian described in the text; ci@véor “consis-
DDG/WS 19.9 16.5 1.16 0.15 tent”) includes the dynamical correctid2.7) while curveS (for

“simple” ) neglects it.
#Deformed potential model, using the Woods-Saxon potential from
[24]. . I
. ) . ) change inQ value, and the contribution to the energy-
®Density-dependent Gaussian real interaction and Woods-Saxon . g Q - moan gy
imadinary oart weighted sum rulg2.9) from a givenag' will increase be-
ginary part .cause of the change iB,. Put another way, 100% of the

‘Density-dependent M3Y real interaction and Woods-Saxon imagi-
nary p;t P 9'sum rule atE, =20.76 MeV would correspond to a smaller

. m_ . .
dDensity-independent Gaussian complex interaction wit.94 amplitude ofag=0.1259. The |ncreasg in thg yalue alone

fm. v =24.9 MeV. w=15.0 MeV. was found to decrease the cross sections uniformly by about
) ’ 23%, while both effects together reduce the cross sections by
one-third(see Table)l

®Density-independent Gaussian real interaction wit#i.94 fm,v
= 23.5 MeV, and Woods-Saxon imaginary part.
fCoulomb excitation only.

when fitting the elastic data at 240 MeV was to use the C. Isoscalar giant quadrupole resonance

interpolated value of the DDG interaction but associate it An appreciable fraction of the giant quadrupole resonance
with a very strongly absorbing imaginary potenti@ven (GQR) was identified centered &,=16.08 MeV. A defor-
though this is ruled out by the more extensive elastic meamation length of 0.985 fm would correspond to 100% deple-
surements at 139 and 340 MgWowever, the monopole tion of the sum rule limit at this energy. We find that the DP
predictions using this unrealistically strongly absorbing in-model, using the Woods-Saxon potential 2#], gives cross
teraction differ only by a few percent at the forward angles.sections about 20% larger than those predicted using the
The effect of the dynamic correctidi2.7) on the excita- single-folding model with the DDG interaction and the BM
tions of low 2" and 3~ states was found to be quite large. form (2.3) for the transition density. Representative values of
However, this seems not to be the case for monopole excthe cross sections are included in Table I.
tations, although the transition potential&ig. 6) are The first maximum in the measured angular distribution
changed dramatically in the nuclear interior. Omitting thenear 4° is about 90 mb/sr. This corresponds to a sum rule
correction(2.7) increases the cross sections at forward angleslepletion of 44% in the DP mod¢B], which thus is in-
by only a few percent, less than 10% when the DDG intercreased to about 55% if the folding model is used. A com-
action is used and less than 5% for the BDM3Y1 interactionparison with the measured cross sections is shown in Fig. 7.
The scattering is dominated by contributions from large ra- Fragments of the GQR were also inferred in the spectral
dii, where the correction is small. peaks centered at 17.42 and 20.76 MeV of excitation. Again
Another fragment of the giant monopole resonance washe change i value affects both the theoretically predicted
inferred at a higher excitation energy of 20.76 M. Two  cross sections and one's estimate of the depletion of the
aspects of this must be considered: The theoretical cross sesnergy-weighted sum rule limit. For example the theoretical
tion for a given amplitudexg' will be altered because of the peak cross section for 20.76 MeV of excitation is reduced by
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1000 , T These were used to estimate the Coulomb excitation contri-
butions from the GDR.

E, = 16.08 Mev V. IMPLICATIONS OF THE 240-MEV DATA

100 b i The measured cross sectiof@] at the most forward
i 2T angles for the 17.42 MeV excitation are dominated by any
monopole excitation. Consequently they offer the opportu-
nity to determine quite accurately the depletion of the GMR
sum rule at this energy, given a reliable model and a realistic
assessment of the giant dipole contribution. We believe that
T DR = 4 the folding model, with the interactions described here, sat-
isfies the criterion of reliability, provided the breathing mode
form (2.4) is a good representation of the transition density.
One remaining uncertainty is the amount of GDR excitation
10 | [ ! | I ! ! that is contributing to this component of the spectrum and
6o+ 2z 3 4 5 6 7 8 which also has an angular distribution that peaks at 0°.
c.m. angle (deg) . . . .
Rather than trying to find the “best fit” to the angular dis-
FIG. 7. The predictions of the folding model, with the DDG tribution of the 17.42 MeV component of the spectrum, we
interaction and a Woods-Saxon imaginary part, for exciting a gianfontrast the results of assuming no GDR contribution, as in
quadrupole resonance at 16.08 Me\Pfii, and those given by the [9], with our crude guess of 50% of the sum rule participat-
deformed potential moddDP), using the Woods-Saxon potential ing. Without the GDR, use of the single-folding DDG inter-
from [24], compared with the measured cross sectif@is The  action and its accompanying imaginary Woods-Saxon im-
percentage exhaustion of the energy-weighted sum rule in each capdies a contribution of about 32% of the GMR sum rule limit
is indicated. from this excitation energy. This is compared to the mea-
surements in Fig. @. The double-folding model with the
newer and even more realistic BDM3Y1 interactieee Fig.
5) implies slightly more, about 36%. This is somewhat more
than the 22% claimed i[®], where the DP model was used.
[We find about 35% when using the DP model with the same
optical potential as if9]. We believe that the difference
arises, at least in part, because the authof9ldid not use
The giant dipole resonand&DR) also occurs in this gi- the scaling relatior{4.1). This reduces the theoretical cross
ant resonance region of excitation energies. Within oursection by a factor of 1.355 and consequently raises the im-
model this is excited only by Coulomb excitation. Then in plied sum rule depletion by the same factor.
principle, the GDR cross sections can be inferred from the The measuremeni§ig. 8a)] do not show the deep, sharp
results of photonuclear experimef8] and subtracted from minimum near 3° that is characteristic of a monopole exci-
the observed inelastic alpha particle spectrum. Unfortunatelyation. This can be due, at least in part, to our neglect of any
the photonuclear spectrdominated by §,p), which is finite angular resolution in the detection system. The accep-
nearly 3 times as strong ag,) in >Ni] are far from hav- tance for each bin of data corresponds to a narrow rectangu-
ing a simple Lorentzian shape. The, () spectrum peaks at lar slit perpendicular to the scattering plane, subtending 4°
an energy of about 18 MeV, while they(p) peaks closer to vertically and 0.44° horizontally. When placed at 0° in the
19 MeV. These energies fall between the 17.42 and 20.78cattering plane,this accepts alpha particles scattered through
Gaussian components of the alpha particle spectrum, ab=0° to +2°. The average angle is 1.08°; hence, this is the
though because of the large widths of the photopeaks themallest angle for which data are shown. As the slit moves
GDR excitation can be expected to contribute to both comaway from 0° in the scattering plane, the range of values of
ponents. As a first approximation, we assume these contribwg for which alpha particles are collected, due to the finite
tions to be equal. Furthermore, in order to obtain some inditength of the slit, decreases rapidly. In principle we should
cation of the importance of the GDR excitation, we assumeorrespondingly average the theoretical cross sections over
that the sum of these two contributions exhausts the classicéhe same range of before comparing with the data. How-
sum rule. ever, we estimate that the averaging has rather little effect,
TheE1 Coulomb excitation cross section is very sensitivebeing largely compensated for by the use of average angles
to theQ value and can vary significantly across the width offor the data; consequently, we have not performed this addi-
the GDR.(For an example, see Table I: Reducing the exci-tional task. The deep minimum in the monopole cross sec-
tation energy from 20.76 MeV to 17.42 MeV increases thetion near 3° is filled in somewhat by averaging, but nowhere
cross section at 0° by a factor of 2.¥e ignore this com- near as much as the data show. This is an indication of con-
plication for our present purpose, and simply evaluate théributions from other multipoles, especially the quadrupole.
cross sections at the peak energies of 17.42 and 20.76 Me¥As an example, Fig. (@) shows the effect of adding 10% of
A depletion of 50% of the classical energy-weighted sumthe GQR sum rule, which tends to fill in the minimum al-
rule at these energies itfNi corresponds to reduced transi- though it overshoots at the larger angles. Clearly, determin-
tion rates of B(E1)=0.062 and 0.052? b, respectively. ing the precise amount of quadrupole excitation would re-

—— DDG/WS 53%

cross section (mb/sr)

nearly 20% due to the change @ value alone, while both
effects together reduce it by one-thitgsee Table)lL There is
also some change in the shape of the angular distribution.

D. Isovector giant dipole resonance
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FIG. 8. Examples of fits to the differential cross sections for the FIG. 9. As for Fig. 8, except for the 20.76 MeV gro{|. (a)
17.42 MeV group excited by 240 MeV alpha particles ¥Ni [9]. Assuming that 100% of the isovector dipole sum rule contributes.
The theoretical results were obtained by using folding with the(b) Including only 50% of the dipole sum rule. The sum rule per-
DDG interaction for the real interaction and a deformed Woods-centages for the other multipoles are as indicated. Note that no
Saxon for the imaginary parfa) A fit without any contribution  angle averaging has been applied to the theoretical cross sections to
from the giant dipole resonanad) A fit obtained assuming 50% of correct for the finite acceptance of the detectors.

the EWSR for the dipole also participates. The percentage exhaus- . -
tion of the corresponding monopole and quadrupole sum rules igs we stressed earlier, the photonuclear measurements indi-

indicated. Note that no angle averaging has been applied to thgate that this is an overestimate of the GDR contribution at

theoretical cross sections to correct for the finite acceptance of thgiS €xcitation energy. If we make our rough guess that 50%
detectors. is a more realistic figure, we need to increase the monopole

estimate to compensate at the most forward angles to about
25%, as shown in Fig. (B). There is now a discrepancy
between theory and experiment in the region of 3°, similar to
that seen for the lower energy component; again, this may be
due in part to our neglect of angular averaging to account for
Hnite detector size.

In summary, either assumption about the GDR contribu-
éions results in concluding that about one-half of the mono-
pole sum rule limit has been observed in this region of exci-
tation in %®Ni.

quire careful attention to this averaging.

When we allow 50% of the dipole sum rule to contribute
to this 17.42 MeV component, we need less monopole exci
tation, only about 25% of the sum rule limit, as shown in Fig.
8(b). The quadrupole contribution has also been reduce
slightly.

A third peak in the spectral decomposition was obtained
few MeV higher, atE,=20.76 MeV. If we assign 100% of
the classical dipole sum to this compondat in[9]), we
obtain a nice fit[Figure 9a)] to the angular distribution
within the folding model by adding about 15% of the mono-
pole sum(rather than the 10% found if®] when using the We have studied the application of folded potentials to the
DP mode] and about 10% of the quadrupole sum. However elastic and inelastic scattering of 240 MeV alpha particles

VI. SUMMARY AND DISCUSSION
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from °8Ni and compared the results to those obtained using The interesting feature is that while the individual
phenomenological Woods-Saxon potentials and the deamounts of monopole excitation inferred are sensitive to the
formed potential model. The elastic scattering at 139 and 34@istribution assumed for the giant dipole resonance, their
MeV was used to indicate acceptable forms for the potensum is not. Consequently, based upon the cross sections
tials.This confirmed the need for a density dependence in thmeasured at the smallest angles, we can assert with some
folding interaction and for real and imaginary parts with dif- confidence that about one-half of the monopole sum rule
ferent radial shapes. We used both single folding with dimit has been observed in this region of excitation®fiNi.
density-dependent Gaussian nucleon-alpha interaction ar@n the other hand, it is clear that we cannot deduce the
double folding with a recent density-dependent nucleongquadrupole contributions with any precision, except to say
nucleon interaction which has been carefully tailored to rethat these two components probably contain between 10%
produce the density and binding energy of normal nucleaand 20% of the quadrupole sum rule limit. Together with the
matter. We noted a discrepancy between the elastic measurs5% already assigned to the 16.08 MeV component, this
ments made at 240 MeV and cross sections predicted biynplies that between 65% and 75% of the quadrupole sum
interpolating between the data taken at 139 and 340 MeV. has been observed in this region of excitation energies.
Comparison of the inelastic scattering predicted by theThese conclusions may be compared to the approximately
deformed potential and folding models requires some as329 of monopole and about 58% of quadrupole inferred
sumption about the relation between the potential and matt§fom the original analysis using the deformed potential
deformation lengths. If we assume these to be equal, we finghodel [9]. Our results, although somewhat larger, do not
that the DP model predicts cross sections that are about 20¥iffer dramatically. The differences arise from our use of the
larger than those given by folding, for quadrupole excita-more realistic folding model and, in the monopole case, from
tions. This figure increases to about 50% for octupole tranthe authors of9] not using the scaling relatiof.1).
sitions. However, the two models give much closer results e have not attempted to assign any measure of the un-
for monopole excitations at the smallest angles, provided thgertainties in our numbers because we have not included pre-
scaling relation(4.1) is assumed for the amplitudes of the cisely the effects of finite detector size, and because they
breathing mode oscillations. depend upon a number of poorly known features such as the
The dynamical correctiof2.7), which is necessary when precise amount of dipole excitation present. We do not ex-
the folding interaction depends upon the density, can havgect these uncertainties to be large. However, we must stress
significant effects on the cross section magnitudes withougne particular theoretical uncertainty, namely, the assump-
much change in the angular distributions. It reduces the crosgon of the BM form(2.3) for the quadrupole transition den-
sections by about 25% fdr=2 and 3, and about 10% for sity and the breathing mode forf@.4) for the monopole one.
| =0. Some experience with the BM transition density has been
The measured alpha particle spectrum in the giant resqeassuringsee, for examplg,21]), but the breathing mode
nance region i, from 10 to 30 MeV has been decomposed version has a much less secure basis. One study, comparing
[9] into three main components centered at excitation eneiit to the results of RPA structure calculatior], concluded
gies of 16.08, 17.42, and 20.76 MeV. The component athat it could lead to an underestimate of monopole cross
16.08 MeV has an angular distribution in good agreemengections(and hence an overestimate of the sum rule deple-
with folding model predictions for quadrupole excitations tion).
and a strength corresponding to about 55% of the corre- |n contrast to the present results, there are some indica-
sponding energy-weighted sum rule limit. The other twotjons that the excitation of the giant monopole resonance in
components peak at the smallest angles, consistent with eavytargets by alpha particles, when interpreted in ways
mixture of dipole and monopole excitations. Although pho-similar to those used here, seems to require the exhaustion of
tonuclear experiments show that the giant dipole resonanagore than 100% of the EWSR. This is particularly marked
appears in this region of excitation, and indicate that itwhen the folding model is usef4]; for example, 208p,
should contribute to both components inferred from the alseems to require at least twice the sum rule limit when ex-
pha particle spectrum, the precise distribution is not clear. Agited by 129 MeV alpha particld88].

an illustration, we assume that the summed dipole contribu- Finally, we also draw attention to a study of the excitation
tion exhausts 100% of the classical sum rule. Two alternaof giant resonances if’Ni by 'O ions[16]. A simple fold-
tives were tried. One assigned all the strength to the 20.7fhg model was used. A satisfactory fit to the dga] for the
MeV component(as assumed in the original analy$8)).  giant quadrupole resonance &t=16.0 MeV was obtained,
Then the data could be matched by adding 15% of the monawith about 80% of the sum rule. However, the data for the
pole sum rule and about 10% of the quadrupole one, usinghonopole excitations by’O ions(in other targets, as well as
the folding model predictions; this is shown in FigaR The  60\jj) gppeared to require in excess of 100% of the monopole

17.42 MeV component, shown in Fig(e8, could then be  sum rule. Possible reasons for this apparent discrepancy are
matched by assuming 32% of the monopole sum rule acconeing investigated currently.

panied by up to about 10% of the quadrupole sum rule.
The other alternative considered assigned 50% of the di-
pole sum to each compondrsee Figs. &) and 9b)]. Then
fitting the small-angle data required about 25% of the mono-
pole sum in each component, together with small amounts We are indebted to Y.-W. Lui and D. H. Youngblood for
(somewhat less than 10% of the sum juté quadrupole important communications concerning their data and for pro-
excitation. viding us with the numerical values. We also thank J. R.
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