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Missing monopole strength in 58Ni and uncertainties in the analysis ofa-particle scattering
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Analyses of recent measurements of the scattering of alpha particles by58Ni at energies of 129 and 240 MeV
have indicated that only about a third of the sum rule limit for isoscalar monopole transitions was found in the
giant resonance region of excitation energies (Ex from 10 to 30 MeV!. Here we examine the theoretical aspects
of these analyses of inelastic scattering, both in the optical potentials obtained from elastic data and in the
models used to represent the inelastic transitions. In particular we introduce the folding model and compare the
use of folded optical and transition potentials with those obtained by deforming phenomenological optical
potentials. We also study the effects of dynamic corrections on the folding interaction when this is density
dependent. Both aspects are shown to have significant effects. We use more extensive elastic data at 139 and
340 MeV to illustrate the need for a density dependence in the folding interaction, as well as a need for
different shapes for the real and imaginary parts of the potentials. Although these various features are shown
to have non-neglible effects on the theoretical cross sections for the excitations at small angles, none of them
is sufficient to account for all the apparently missing strength. We estimate, based upon the most realistic
folding models, that about 50% of the sum rule limit for monopole excitation was observed within the two
components of the spectra centered at 17.42 and 20.76 MeV. The sharing between these two components
depends upon the assumptions made about the distribution of the giant dipole strength which also results in
angular distributions that peak at 0°. Thus about one-half of the sum rule limit appears to have been observed,
rather than the one-third originally inferred from these data using the deformed potential model. These con-
clusions are based, on the one hand, upon the spectral decomposition proposed for the results of the 240 MeV
experiment and, on the other hand, upon assuming that the simple breathing mode form is adequate for the
monopole transition densities. The results may be sensitive to deviations from either assumption. In a similar
way we also infer that at least 55%, and perhaps as much as 70%, of the isoscalar quadrupole sum rule limit
may be present in this giant resonance range of excitation energies in58Ni. @S0556-2813~97!01501-X#

PACS number~s!: 24.30.Cz, 24.10.2i, 25.55.Ci, 27.40.1z
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I. INTRODUCTION

The location and strength~or even the existence! of the
giant isoscalar monopole resonance~GMR! in the lighter nu-
clei (A, 90, say! remain a somewhat controversial questio
Studies of the inelastic scattering of alpha particles
24Mg and 28Si have indicated that its strength is strong
fragmented in these two nuclei and distributed over a ra
of excitation energies of at least 8–9 MeV@1,2#. About 30%
of the monopole energy-weighted sum rule~EWSR! was
identified in 64,66Zn using alpha particles of 129 MeV@3#.

Measurements on58Ni have also been made by tw
groups using 152 MeV alpha particles@4,5#. The first group
@4#, following an earlier analysis of some (p,p8) data @6#,
assumed a GMR peak at an excitation energy of 20.060.5
MeV. This interpretation was challenged by Garget al. @7#,
who showed that the angular distribution for the purpor
GMR peak was consistent with a quadrupole excitation
reanalysis of their own data taken with 129 MeV alpha p
ticles@3# led to the same conclusion. The second group us
152 MeV alpha particles@5# concluded that the best fit t
their spectra in the giant resonance region was obtained
three Gaussian peaks, with the GMR peak at 17.3160.20
MeV, very close to a giant quadrupole resonance~GQR! at
550556-2813/97/55~1!/285~13!/$10.00
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16.3960.22 MeV, and a subsidiary peak at an excitation
20.1860.23 MeV. The strength of the GMR peak was fou
to exhaust only~2365!% of the isoscalar-monopole energ
weighted sum rule, while the GQR peak was assigned~38
68!% of its EWSR.

An additional experiment with 129.5 MeV alphas wa
performed@8#, followed more recently by measurements u
ing alpha particles of 240 MeV@9#. Again the spectra were
decomposed into three main Gaussian peaks, suppleme
by two weaker and narrower ones to accommodate the st
ture seen on the low excitation energy side of the giant re
nance region. The excitation energies and strengths found
the three main peaks seen in these two experiments we
general agreement with each other and with those extra
by Duhamelet al. @5#. The experiment at the highest energ
of 240 MeV @9# yielded the greatest peak-to-background
tio at small scattering angles, as well as removing the br
pickup-breakup contributions, due to the formation and
cay of 5Li and 5He, to excitation energies above 40 MeV
Peak fitting of the resulting spectra in the giant resona
region ofEx, 30 MeV was interpreted as evidence for 44
of the quadrupole EWSR atEx 5 16.08 MeV and 22% of the
monopole EWSR atEx 5 17.42 MeV, mixed with 7% of the
quadrupole. A peak at higher excitation,Ex 5 20.76 MeV,
285 © 1997 The American Physical Society
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286 55G. R. SATCHLER AND DAO T. KHOA
was fitted with 10% of the monopole EWSR, 7% of th
quadrupole, and 100% of the isovector giant dipole re
nance.

An important feature of measurements of monopole ex
tations by alpha particles is to approach as closely as
sible to 0°, where the monopole angular distribution has
maximum. Furthermore, the monopole distribution is p
dicted to exhibit a deep, narrow minimum following the 0
maximum. These two features most easily distinguish it fr
the distributions for other multipolarities@3#. The measure-
ments reported in@4# were for angles greater than 5°, beyo
the first minimum for monopole excitations, while those r
ported in@5# extended into 1.3°, thus covering the minimu
and a substantial part of the forward peak. The data from
Texas A & M cyclotron include scattering to 0°@3,7–9#, and
thus provide the most stringent limits on the monop
strength.

This brief review of measurements on58Ni indicates a
consensus that a substantial portion~about one-half! of the
quadrupole EWSR is located around an excitation energ
16 MeV, while only about 30% of the monopole EWSR
found in the regionEx'10–30 MeV. However, there ar
uncertainties associated with these conclusions which m
be classified as ‘‘experimental’’ or ‘‘theoretical.’’ The ‘‘ex
perimental’’ uncertainties include those arising from the d
composition of the peaks observed in the giant resona
region of the spectra~including the subtraction of the ‘‘back
ground’’!. For example, the use of symmetric Gauss
shapes may be questioned when only 20% or so of
EWSR is observed. This implies considerable fragmenta
of the resonance. Theoretical calculations using the rand
phase approximation~RPA! @10# support this fragmentation
but with a distribution in excitation energy of the fragmen
that is not symmetric.

The ‘‘theoretical’’ uncertainties include the theoretic
models used to analyze the experimental results and ex
from them a measure of how much the EWSR has b
exhausted. In particular one may question the use of the
formed potential model. These concerns are the princ
motivation of the present paper. We concentrate on al
particles with 240 MeV bombarding energy because it is
these that the most precise and extensive data are ava
@9#.

II. THEORETICAL MODELS

Before accepting that a majority of the monopole stren
in 58Ni is ‘‘missing’’ from the expected giant resonance r
gion of excitation energies, it is important to know to wh
extent this result depends upon the theoretical assump
made when interpreting the data. It is assumed, of cou
that the inelastic scattering is a direct reaction@11#, and it has
been confirmed that the distorted-wave Born approximat
which treats the coupling interaction to first order, gives
sults almost identical to a full solution of the couple
channels~CC! problem, showing that higher-order effects a
either not important or are adequately represented by
optical potentials used.~In practice, we find it more conve
nient to use the CC approach and this was done for the
sults reported here. An effective bombarding energy and
fective masses were used at each energy@12# to ensure the
-
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relativistically correct center-of-mass momentum and So
merfeld parameter.!

A. Deformed potential model

It remains for the interaction potentials to be defined. T
results referred to in the Introduction were obtained using
deformed potential~DP! model. In this approach, a comple
optical potential U(r ) ~usually having a Woods-Saxo
shape! is found by fitting the observed elastic scattering. Th
potential is then deformed to provide parts which model
transition potentials needed to describe the inelastic sca
ing. The transition potential for excitation of a one-phon
vibrational state with multipolarityl> 2 has a radial part
given by ~we use the notation and normalization of@13#!

Gl
DP52d l

UdU~r !/dr. ~2.1!

The amplitude~‘‘deformation length’’! d l
U is adjusted to

match the observed inelastic cross sections. As written h
we have assumed that the real and imaginary parts of
potentialU have the same deformation lengthd l

U .
A breathing mode is assumed for monopole (l50) exci-

tations@14,15# with a transition potential

G0
DP~r !52a0

U@3U~r !1rdU~r !/dr#. ~2.2!

Again the amplitudea0
U is assumed to be the same for th

real and imaginary parts ofU. It is adjusted to match the
measured cross sections. The problem that then arises
relate thesepotentialamplitudes to the multipole moments o
the corresponding transitiondensitiesof the nucleus being
excited. Frequently, this is done by assuming that the nuc
density is deformed in the same way as the optical poten
and with the same deformation length@16#. In this way, the
surfaces of the density and of the potential are displaced
the same distance. Although perhaps intuitively appeal
there is no theoretical justification for this procedure@17,18#,
particularly for the monopole breathing mode. The treatm
of the imaginary part of the coupling in this way is especia
questionable. Although the imaginary coupling is not dom
nant, neither is it negligible.

B. Folded potential models

It has been reemphasized recently@16,18,19# that the fold-
ing model approach to the potentials is more basic and p
vides a direct and unambiguous link between the potent
and the underlying nuclear densities. It can also lead to
sults that differ significantly from those obtained using t
DP model. A recent example used this fact to explain
apparent ‘‘hindrance’’ of 32 excitations~by factors of 2–3!
by the scattering of17O ions @20#.

In this approach, the potentials~optical and transition! are
generated by folding an effective nucleon-nucleon inter
tion v over the density distributions of the target and proje
tile @19#. The ground-state densities needed for genera
the optical potential are usually known well enough, but,
course, the folding approach for the transition potential
pends upon having a reliable model for the transition den
of the nucleus being excited. Other analyses~for example,
@21#! have provided support for the use of the collecti
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55 287MISSING MONOPOLE STRENGTH IN58Ni AND . . .
Bohr-Mottelson~BM! form of the transition density for the
excitation of low-lying ‘‘vibrational’’ states withl>2,

gl
BM~r !52d l

mdr t~r !/dr, ~2.3!

wherer t(r ) is the ground-state density of the nucleus be
excited andd l

m is the corresponding matter deformatio
length. By extension, one would expect this to be a go
choice also for the giant multipole resonances withl>2.

The breathing mode form for the GMR transition dens
is

g0~r !52a0
m@3r t~r !1rdr t~r !/dr#. ~2.4!

Although a plausible choice, there is unfortunately no ind
pendent experimental support for this form. Theoreti
structure calculations using the RPA tend to give transit
densities similar to this; on the other hand, when fragmen
tion of the GMR is present, the various fragments may
associated with different forms. For example, theoreti
RPA transition densities and their associated folded po
tials for two GMR fragments in60Ni are shown in@10#. One
fragment yields results close to Eqs.~2.4! and ~2.2!, respec-
tively, while the shapes for the other fragment are sign
cantly different.

This kind of uncertainty can be critical for the scatteri
of projectiles that are relatively strongly absorbed, for the
are strongly dependent upon the tails of the transition po
tials in the vicinity of the strong absorption radii.~The strong
absorption radius for 240 MeV alphas on58Ni is between 6
and 7 fm.! Reference@10#, which examines the GMR in fou
targets excited by 152 MeV alpha particles, suggests tha
use of the model~2.4! could lead to estimates of the tot
monopole strength which are~10–30!% larger than would be
given by using the RPA transition densities. However, in
absence of a suitable alternative for58Ni, we continue to use
the form ~2.4! in this paper.

The representation of the imaginary coupling also p
sents a problem in the folding approach. Simply assum
that the nucleon-nucleon interaction has a complex stren
determined by the elastic scattering, provides a straight
ward procedure which results in the real and imaginary tr
sition potentials having the same radial shape. This app
to have had some success@16,20# in some circumstances
despite the lack of theoretical justification. However,
many cases~including alpha-particle scattering at E*100
MeV!, this assumption is known to be unrealistic for t
elastic scattering and prevents one from obtaining satis
tory fits to measurements taken at angles beyond the Fr
hofer diffraction region. An example fora1 58Ni scattering
is provided in@22#. @Our own work, described in Sec. III A
and shown in Fig. 2~a! below, provides another example#
Then an alternative solution frequently used is a hyb
model in which the real interaction is folded and the ima
nary part is treated phenomenologically such as by a Woo
Saxon potential. The imaginary inelastic coupling is th
generated by deforming this potential, as in the DP mo
This leaves the corresponding deformation length undefin
For l>2 it is frequently set equal to the density deformati
length, and we do that here. The best choice for the mo
pole breathing mode is much less obvious.
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C. Effective interaction and density dependence

The other important ingredient of the folding model is t
effective nucleon-nucleon interaction. The simplest a
proach, known as single folding and used primarily for alp
particles at lower energies (&100 MeV, say!, is to average
this interaction over the density distribution of the alpha p
ticle and represent the result by a simple functional fo
v̄(s). The most popular form is a Gaussian with a comp
strength@4,23#,

v̄G~s!52~v1 iw !exp~2s2/t2!, ~2.5!

wheres5ur2r8u is the distance between the center of ma
of the alpha particle and a target nucleon. The ranget is
about 2 fm; we adopt the valuet 5 1.94 fm from a study of
elastic data at forward angles for 140 MeV alpha partic
@4#. The strengthsv and w are adjusted to optimize th
agreement with elastic measurements at each energy.

While the simple model~2.5! will reproduce the measure
scattering at forward angles, even at 240 MeV where the d
extend only to 17°@24#, it has long been known to be inad
equate at energies* 100 MeV when data are available for
more extended angular range that displays rainbow scatte
@25#. The model~2.5! is deficient in two ways. First, it as
sumes that the real and imaginary parts of the optical po
tial have the same radial shape. This results in much
strong absorption in the interior. We avoid this by a hyb
model in which the imaginary potential is represented b
Woods-Saxon shape or its square, which differs from
shape of the real folded potential. Second, the strengthv of
the real interaction which gives the peripheral potential
quired to fit the small-angle diffractive scattering results in
potential that is too deep in the interior to reproduce c
rectly the rainbow features at large angles. This can be
rected by making the interaction between the alpha part
and target nucleon depend upon the density of the nuc
matter in which they are immersed. The requirement t
nuclear matter saturate ensures that this density depend
~DD! reduces the strength of the interaction as the den
increases, weakening the folded potential in the inter
while leaving the peripheral values largely unchanged.
used a popular form of DD,

v̄DDG~s,r!5 v̄G~s! f ~r!, ~2.6a!

with

f ~r!512ar~r 8!b, b52/3, ~2.6b!

wherer(r 8) is the gound-state density of the target nucle
at the positionr 8 of the target nucleon. A good fit to elasti
data was found~see below! with a51.9 fm2, associated with
a Gaussianv̄G with a ranget51.88 fm.

An additional consistency feature arises when a dens
dependent interaction like Eqs. 2.6 is applied to inelas
scattering@26,27#. A deformation of the densityr→r1dr
also affects the interactionv(r)→v(r1dr). To lowest or-
der this is included by using the modified interaction

v8~r!5v~r!1r]v~r!/]r; ~2.7a!
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288 55G. R. SATCHLER AND DAO T. KHOA
indeed, this is exact for the excitation of one phonon o
harmonic shape vibration@27#. In the case of Eq.~2.6b!, this
corresponds to replacinga by a85a(11b)5~5/3!a, so that
f (r) is replaced by

f 8~r!512a~11b!r~r 8!b. ~2.7b!

The correction~2.7! further reduces the interaction streng
inside the target nucleus, as indicated in Fig. 1.

Finally, we return to double folding, namely, the explic
use of a realistic density-dependent nucleon-nucleon inte
tion folded over the density distributions of both the targ
nucleus and the alpha particle. For our purpose we ado
very recent interaction called BDM3Y1~Paris! which has
already been shown to give a good account of refrac
alpha-particle scattering at energies ranging from 59 to
MeV @28#. It is based upon aG matrix derived from the Paris
nucleon-nucleon potential. It has a linear dependence on
sity @corresponding tof (r)512ar, or b51, in Eq.~2.6b!#,
adjusted to give saturation of nuclear matter at the cor
density and binding energy@28,30#. This required

FIG. 1. The density-dependent factorf (r) associated with~a!
the Gaussian single-folding interaction DDG and~b! the M3Y
double-folding interaction BDM3Y1. Also shown~dashed curves!
are thef 8(r) factors when the dynamical correction~2.7! for in-
elastic scattering is included. The density is given in ratio to
densityr050.17 fm23 of normal nuclear matter.
a

c-
t
a

e
2

n-

ct

a51.7452 fm3. It yields an incompressibility for nuclea
matter ofK5270 MeV. This interaction incorporates an a
curate local approximation to knock-on exchange effects
important consideration because these exchange cont
tions dominate over the direct ones for the Paris poten
@28#. The single-folding approach, using alpha-nucleon int
actions such as Eq.~2.5! or Eqs. ~2.6!, does not consider
knock-on exchange explicitly. It is assumed that exchan
effects are taken into account implicitly when adjusting t
interaction to reproduce the observed elastic scattering. T
may be adequate for monopole inelastic scattering, si
elastic scattering itself is a monopole transition, but it
nores the possibility for higher multipoles that the effecti
interaction should be multipole dependent because of
change effects.

A Gaussian form was chosen for the alpha-particle d
sity distribution@28#,

ra~r !50.4229exp~20.7024r 2!, ~2.8!

which has a rms radius of 1.461 fm, consistent with elect
scattering measurements of the charge radius@29#. The ex-
plicit form of the BDM3Y1 interaction and its paramete
values are given in@28#. The density dependence o
BDM3Y1 is also shown in Fig. 1; again, the dynamical co
rection~2.7! further suppresses the interaction at small ra
The density dependence of BDM3Y1 is less severe than
for the single-folding interaction DDG because the latter
ready implicitly contains in an average way the effects of
density of the projectile alpha particle.

D. Sum rule limits

Certain linearly energy-weighted sum rules~EWSR’s! for
the operatorsr lYl

m(u,f) ~for l>2! and r 2 ~for l50! acting
on the target nucleus ground state, expressions for which
given in Ref.@16#, for example, provide convenient measur
of the strength of transitions exciting giant resonances.
example, if the Tassie transition density~2.4! is appropriate
for all monopole excitations, the sum rule provides a limi
tion on their amplitudesa0i

m ,

S i~a0i
m!2Exi54A~\2/2m!^r 2&m , ~2.9!

wherea0i
m is the amplitude for the monopole state with e

citation energyExi and ^r 2&m is the mean square radius o
the ground state.~We use\2/2m 5 20.735 MeV fm2.! The
operators involved here are similar to those for the elec
excitation of the target protons in the long-wavelength lim
However, it is appropriate to point out that excitation by t
inelastic scattering of hadrons is associated with a radial
pendence different fromr l ~or r 2 for l 5 0!, although in both
cases the operators emphasize contributions from the ta
nucleus surface~see Chap. 14 of Ref.@11#!. Thus the sum
rule expressions may be expected to provide only a qua
tively reliable guide to hadronic cross sections. Hence
should be borne in mind that, for example, two transiti
densities that have the samer l ~or r 2 for l 5 0! moment~and
thus the same fraction of the corresponding EWSR! may
give rise to significantly different hadronic cross section
particularly when the hadron is susceptible to strong abso
tion and thus is sensitive to thetail of the transition potential.

e



on
tio
in

th
t

re
in
th
e
fm
te

h
a

si

ar
ce

a
ty

to

he

ls

he
to
d

in
on
or

fo

e
,
s
ov
m

te
oc
ic

0
le
s
-
are
at
b-

tic
le
tial

e-

x-

e

ith
his
ter-

the
n-
from
u-
en-
d
c-
re-
re
del
al-

b-

e-

en-
to

ted

b-

The
ad

55 289MISSING MONOPOLE STRENGTH IN58Ni AND . . .
Resolution of this problem requires independent informati
experimental or theoretical, about the appropriate transi
density. Unfortunately, this is especially difficult to obta
for monopole excitations.

III. APPLICATIONS TO ELASTIC SCATTERING

We use the ability of a given interaction to reproduce
observed elastic scattering as a criterion of its validity and
determine the optimum values of its parameters. The
part of the optical potential was generated using the fold
model. A two-parameter Fermi distribution was used for
ground state of58Ni, with a radius of 4.08 fm and surfac
diffuseness of 0.515 fm. This has a rms radius of 3.695
very close to that deduced from high energy proton scat
ing @31#.

A. Single folding and density dependence

There are elastic data for the scattering of 139 MeV alp
particles from58Ni which extend out to 80° and display
well-developed rainbow@32#. Figure 2~a! shows the best fit
to these data that could be obtained using either the den
independent interaction~2.5! or the density-dependent form
~2.6! with a complex strength, so that the real and imagin
potentials have the same radial shape. Both fits are unac
able. However, excellent agreement, shown in Fig. 2~b!, is
obtained by including both density dependence and
imaginary potential with a different shape. The densi
dependent Gaussian~DDG! forms ~2.5! and ~2.6! were used
for the real potential, withv553.95 MeV,w50, a 5 1.9
fm2, and t51.88 fm. The imaginary potential was taken
have a Woods-Saxon shape,

ImU~r !52W/~ex11!, x5~r2RW!/aW , ~3.1!

with W 5 17.3 MeV,RW 5 6.238 fm, andaW 5 0.646 fm.
~An almost indistinguishable fit is obtained by using t
square of the Woods-Saxon shape.!

Extensive data displaying refractive features are a
available at the higher energy of 340 MeV@33#. These were
studied to provide some indication of the variation of t
interaction with bombarding energy so that interpolation
240 MeV or extrapolation to 129.5 MeV could be performe
An optimum fit @Fig. 2~c!# was obtained with the same DDG
interaction used at 139 MeV, except for a reduction
strength tov539.8 MeV. The accompanying Woods-Sax
imaginary potential was similar except for a somewhat m
diffuse surface (W516.8 MeV, RW56.269 fm, and
aW50.765 fm!.

The volume integrals per interacting pair of nucleons
the real potentials,JR5282 MeV fm3 (E5139 MeV! and
JR5208 MeV fm3 (E5340 MeV!, are consistent with thos
obtained from a global study@34# which included these data
as well as others taken atE5104 and 288 MeV. The result
indicate a dependence on energy that is close to linear
this range~albeit a little curvature is to be expected fro
dispersion relation considerations@34#!. Hence it is surpris-
ing that fits to the 240-MeV data@24# result in real potentials
that are approximately 20% or more weaker than expec
from interpolation between the other two energies. This
curs whether the potentials used are phenomenolog
,
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Woods-Saxon ones~see Fig. 4 in@24#!, single-folded ones,
or ~see below! obtained from double folding. The data at 24
MeV extend only to 17° in angle, covering the forward-ang
diffractive region of the angular distribution. This indicate
that theobservedscattering is primarily sensitive to the po
tential in the surface and that the interpolated potentials
too strong in this region. They yield a diffractive pattern th
is slightly shifted forward in angle, compared to that o
served.

It is easy to obtain a good fit to the more limited elas
data at 240 MeV. That shown in Fig. 3 is a typical examp
which uses the DDG interaction for the folded real poten
with a strength of v536.15 MeV ~compared with the
v'46.8 MeV, which is suggested by linear interpolation b
tween the values obtained at 139 and 340 MeV!. The opti-
mum Woods-Saxon imaginary part hasW535.25 MeV,
RW54.810 fm, andaW50.926 fm ~whereas interpolation
would suggestW'17 MeV, RW'6.25 fm, andaW'0.70
fm!. It is possible to obtain an acceptable fit with the e
pectedv546.8 MeV ~albeit with a x2 almost 3 times as
large!, but only by introducing a very strongly absorptiv
imaginary potential (W'150 MeV!. It would not be possible
to reproduce the 139 and 340 MeV large-angle data w
such a potential. Later we shall examine what effect t
uncertainty has upon the predictions for the inelastic scat
ing atE5240 MeV.

B. Double folding

Double-folded potentials were also constructed using
BDM3Y1 ~Paris! interaction described earlier. These are e
ergy dependent. This energy dependence arises mostly
the explicit treatment of the knock-on exchange contrib
tions but includes a weak phenomenological linear dep
dence @28#. Thus the real potential is fully determine
a priori, although we include an overall renormalization fa
tor N which is adjusted to optimize the fit to the measu
ments.N should be close to unity in order for this procedu
to be meaningful. Again we use the Woods-Saxon mo
~3.1! for the imaginary potential, adjusting the parameter v
ues for best agreement.

Excellent fits to the 139- and 340-MeV data were o
tained, very similar to those shown in Figs. 2~b! and 2~c!.
Renormalization factors a little larger than unity were r
quired (N51.18 atE5139 MeV andN51.23 atE5340
MeV!, as is typical for alpha particle scattering@28,34#. The
optimum imaginary potential at 139 MeV hadW522.9
MeV, RW55.672 fm, andaW50.797 fm. The corresponding
values at 340 MeV wereW534.6 MeV,RW55.358 fm, and
aW50.691 fm. The real volume integrals wereJR5267
MeV fm3 (E5139 MeV! and JR5195 MeV fm3 (E5340
MeV!.

A discrepancy similar to that described above was
countered when this double-folded potential was applied
the measurements at 240 MeV. The optimum fit is indica
by the dashed curve in Fig. 3. A renormalization factorless
than unity,N50.96, was required in order to match the o
served diffraction pattern, rather than the valueN'1.2 ex-
pected by interpolation between the other two energies.
accompanying imaginary Woods-Saxon potential h
W545.6 MeV,RW54.361 fm, andaW50.995 fm. Just as



ata

ed
n-
of
and

s to

if
d
e in
en
e

ng
tial.
the

ve
ere
del
DP
G

a
ls

ar
n
r t
0

on
y-

290 55G. R. SATCHLER AND DAO T. KHOA
FIG. 2. ~a! The best fits to elastic data for 139 MeV alph
particles on58Ni @32# that are obtainable using folded potentia
with a Gaussian~G194! or a density-dependent Gaussian~DDG!
interactions with complex strengths, so the real and imaginary p
have the same shape.~b! The same data fitted by density-depende
interactions for the real potentials and Woods-Saxon shapes fo
imaginary potentials.~c! As in ~b!, applied to data taken at 34
MeV @33#.
with single folding, an acceptable fit~but with x2 twice as
large! could be obtained withN51.2 but accompanied by a
very strongly absorptive imaginary potential.

IV. APPLICATIONS TO INELASTIC SCATTERING

A. Low excited 21 and 32 states of 58Ni

For calibration purposes, we study here the 240-MeV d
@24# for exciting the lowest 21 and 32 bound states of
58Ni. First we compare folding with the use of the deform
~Woods-Saxon! potential to generate the transition pote
tials. Then, within the folding model we compare the use
density-dependent and density-independent interactions,
study the effects of the dynamical corrections~2.7!. In each
case the models used are required to give equivalent fit
the elastic data.

The ‘‘adopted’’ experimental values@35,36# for the elec-
tric transition rates areB(E2) 5 0.070 e2 b2 and B(E3)
50.017e2 b3. We may extract matter deformation lengths
we use the BM model~2.3! for the transition densities an
simply assume that the neutron and proton densities ar
the ratio ofN/Z and have equal deformation lengths. Th
we findd2

m50.847 fm andd3
m50.857 fm. We further assum

that these equal the potential deformation lengths,d l
m5d l

U ,
when we compare folding with the DP model~2.1!, or in the
hybrid model where the real potential is obtained by foldi
and a Woods-Saxon form is used for the imaginary poten

In each case, Coulomb excitation was included using
B(El) values mentioned above.

We adopted the Woods-Saxon potential from@24# for the
DP calculations. The various single-folding models ga
peak cross sections for the quadrupole excitation that w
about 20% smaller than those obtained using the DP mo
with the same deformation length. Figure 4 compares the
predictions to those of the folding model using the real DD
interaction described in the preceding section~with
v536.15 MeV!, and including the correction~2.7! for the

ts
t
he

FIG. 3. Fits to the elastic data for 240 MeV alpha particles
58Ni @24# using a single-folded real potential with a densit
dependent Gaussian interaction~DDG! or a double-folded real po-
tential with an M3Y-type interaction~BDM3Y1!, both accompa-
nied by a Woods-Saxon imaginary potential.
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55 291MISSING MONOPOLE STRENGTH IN58Ni AND . . .
inelastic coupling. The deformed Woods-Saxon model w
used for the imaginary interaction. The DP model gives
good fit to the measurements@24#, while the folding model
fit is improved if its deformation length is increased by abo
10%. This may be an indication that the appropriate neut
deformation length is a little larger than that for the proto
or it may reflect an uncertainty in theB(E2) value.

The situation is different for the octupole excitatio
where the DP model predicts cross sections that are 5
larger than the folding models for a given deformati
length. Figure 4 shows that folding, with the deformati
length deduced from theB(E3) value, gives good agreeme
with the measurements@24#, while the DP model predicts
cross sections that are too large.~This is similar to a previous
finding for octupole excitations by heavy ions@20#. Such
discrepancies are strongly dependent on the multipolaritl ,

FIG. 4. Comparison of folding model predictions, using t
density-dependent interaction DDG, for exciting the lowest exci
states in58Ni by 240 MeV alpha particles, with those using th
deformed potential~DP! model based upon the Woods-Saxon p
tential of @24#. ~a! The 21 state atEx51.454 MeV withB(E2)
50.070 e2 b2, corresponding to a deformation length
d250.847 fm.~b! The 32 state at 4.475 MeV withB(E3)50.017
e2 b3, corresponding to a deformation length ofd350.857 fm.
s
a

t
n
,

%

increasing asl increases when it is assumed that the ma
and potential deformation lengths are equal@19#.!

This deficiency of the DP model raises an interest
question when we use the hybrid folding model~folded real
potential plus Woods-Saxon imaginary potential!, which is
needed when data at large angles are to be fitted. We h
used the DP model to estimate the contribution from
imaginary potential to the inelastic scattering. Now there
reason to suspect that this provides an overestimate b
amount that depends upon the multipolarity of the transiti
The imaginary contribution is not negligible, and typical
increases the cross sections by about 50% compared to u
the real interaction alone. Fortunately, the various versi
of the folding models~hybrid or folded imaginary! predict
cross sections at forward angles that are within a few perc
of each other, implying that this uncertainty is not a lar
source of error in the present case. This similarity at forw
angles also holds whether or not one includes a density
pendence in the interaction. However, this need no longe
true if one were attempting to fit data over a larger range
scattering angles.

The dynamic correction~2.7!, needed when the interac
tion is dependent on the density, reduces even further
strength of the transition potential in the interior of the targ
as indicated in Fig. 1. Its effect on the inelastic scattering
be large. In the present case, omitting it increases the
dicted inelastic cross sections by about 35% without cha
ing the angular distributions significantly.~The increase is
found to be somewhat less for 139 MeV alpha particl
being about 25%.!

Furthermore, there is a general rule for small-angle sc
tering, that two interactions that give the same elastic s
tering will also give very similar inelastic scattering. Th
rule is only obeyed when comparing density-dependent
density-independent interactions if the dynamic correct
~2.7! is included for the former.

It was reported in the preceding Section that interpolat
between the fits to the elastic data at 139 and 340 M
implies that the real interaction should be about~20–30!%
stronger than was used for the results illustrated in Fig
We checked the possible effects of this by repeating the
culations with the interpolated potentials. The cross secti
do not simply increase as the square of the interac
strength, partly because the imaginary interaction a
changes, and partly because the elastic scattering~the ‘‘dis-
torted waves’’! are affected as well as the inelastic couplin
We find that the peak cross sections for both 21 and 32 are
increased by about 10%, with small changes in the ang
distributions~mainly a slight shift of a few percent to smalle
angles in a way analogous to that seen for the elastic sca
ing! which worsen the agreement with the data seen in F
4.

B. Giant monopole excitations

Here we examine the effects of the various models
l50 isoscalar monopole excitations. We assume the bre
ing mode form~2.4! for the transition density. The Ferm
ground state density that was used to generate the fo
optical potentials has a rms radius of 3.695 fm. If an exc
tion energy of 17.42 MeV is assumed for the giant monop

d

-



le

le
ca
DP
e
te
t i
d

on
te

in
ci
pr

er
-

e
d

ic
os
ol
u
ul
t
o

in

ula
ca

by
th

v
d
h
b

al
th
ta
iu
s
w

of
e of
is

e
by

agi-
at
the

o-
s-

stic
ary
y a
.
the
the
at
ole
r-
ary
the
ther
f 1
oss
le-
cy

40
.42
le.

s
als
rts.
ion,
pe

292 55G. R. SATCHLER AND DAO T. KHOA
resonance~GMR!, 100% of the energy-weighted sum ru
limit is exhausted by an amplitude ofa0

m50.1374, corre-
sponding to a reduced transition rate ofB(IS,l50)50.377
b2 @20#.

In order to apply the DP model we use the form~2.2! for
the transition potential, as was done in@8#. It is not obvious
how to relate the potential amplitudea0

U to the amplitude
a0
m of the underlying matter oscillation to which the sum ru

limit applies. This relation needs to be defined before we
make a meaningful comparison of the the folding and
models. Earlier, when making this comparison for high
multipole excitations, we assumed that the matter and po
tial deformation lengths were equal. In the same spirit, i
plausible to equate the displacements at the correspon
matter and real potential radii@20#, giving

a0
URV5a0

mc, ~4.1!

whereRV is the radius of the real part of the Woods-Sax
potential andc is the matter radius of the target ground sta
Here, c54.08 fm, whileRV54.75 fm for the DP model.
Nonetheless, this remains a particular source of uncerta
for the application of the DP model to breathing mode ex
tations; note, for example, that the DP crossections are
portional to the square ofa0

U .
An analogous prescription is used for the imaginary int

action in the hybrid model~folded real interaction, Woods
Saxon imaginary part!, namely, Eq.~4.1!, with RV replaced
by RW .

First we compare the predictions of the DP model@9# with
those obtained from the most sophisticated folding mod
considered here, namely, those using the density-depen
DDG ~single-folding! and BDM3Y1~Paris! ~double-folding!
interactions for the real potentials and phenomenolog
Woods-Saxon forms for the imaginary potentials. The cr
sections are shown in Fig. 5 for excitation of a monop
state at 17.42 MeV which exhausts 100% of the sum r
limit ~2.9!. @It should also be remembered that these res
depend upon assuming the relation~4.1! and its counterpar
in the folding model, not to mention the dependence up
using the ansatz~2.2! for the transition potential in the DP
model and Eq.~2.4! for the transition density in the folding
approach.# Values of the cross sections are also given
Table I for representative angles; 1° is the smallest~average!
angle for which measurements are available@9# while 5° is
the location of the second peak in the monopole ang
distribution. The entries in this table also give some indi
tion of the dependence uponQ value.

The two folding models give cross sections that differ
only a few percent. The results from the DP model, using
Woods-Saxon potential from@24#, fall between those for the
folding model at the most forward angles, but rise abo
both of them at larger angles~by about 20% on the secon
peak at 5°). The reason for the relative insensitivity of t
monopole cross sections to the model used is clarified
Fig. 6, which shows the corresponding transition potenti
There are dramatic differences in the nuclear interior, but
various potentials become much closer at the impor
larger distances in the vicinity of the strong absorption rad
~which is about 7 fm in this case!. Since the measured cros
section near 1° is dominated by the monopole excitation,
n
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see immediately that there is little opportunity for the use
the folding model, as defined here, resulting in a measur
the sum rule depletion by the monopole excitation that
very much larger than that arrived at originally@9#.

Other choices for the effective interaction, which fit th
240 MeV elastic data but ignore the constraints implied
the wide-angle data at 139 and 340 MeV~namely, the need
for density dependence and a different shape for the im
nary potential!, may result in monopole cross sections th
differ by larger amounts. For example, we may take
simple Gaussian of Eq.~2.5! with a complex strength and
ranget51.94 fm, as was used earlier@4#. This gives a good
fit to the 240 MeV elastic scattering withv524.9 MeV and
w514.95 MeV. The corresponding monopole transition p
tential is included in Fig. 6. The theoretical monopole inela
tic cross sections given by using this~Table I! are then about
30% smaller than those obtained using the more reali
density-dependent Gaussian with a Woods-Saxon imagin
part that we have denoted DDG, and hence would impl
depletion of the sum rule limit that is nearly 40% greater

Attention was drawn earlier to a discrepancy between
optimum potential fits to the elastic data at 240 MeV and
potentials expected by interpolation between fits to data
139 and 340 MeV. Consequently we repeated the monop
calculation using the folding model with the interpolated ve
sion of the DDG interaction and its associated imagin
Woods-Saxon potential. Although significant changes in
angular distribution appear at large angles, they are ra
small in the forward direction. Near the important angle o
°, the interpolated potential predicts a 20% reduction in cr
section~hence a 20% increase in the inferred sum rule dep
tion!. The only way found to avoid the apparent discrepan

FIG. 5. Differential cross sections at forward angles for 2
MeV alpha particles exciting a giant monopole resonance at 17
MeV in 58Ni that exhausts 100% of the energy-weighted sum ru
The predictions of the deformed potential~DP! model, based upon
the Woods-Saxon potential of@24#, are compared to prediction
using folding models for the real parts of the transition potenti
and deformed Woods-Saxon potentials for the imaginary pa
DDG is the density-dependent single-folding Gaussian interact
and BDM3Y1 is the density-dependent double-folding M3Y-ty
interaction.
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55 293MISSING MONOPOLE STRENGTH IN58Ni AND . . .
when fitting the elastic data at 240 MeV was to use
interpolated value of the DDG interaction but associate
with a very strongly absorbing imaginary potential~even
though this is ruled out by the more extensive elastic m
surements at 139 and 340 MeV!. However, the monopole
predictions using this unrealistically strongly absorbing
teraction differ only by a few percent at the forward angl

The effect of the dynamic correction~2.7! on the excita-
tions of low 21 and 32 states was found to be quite larg
However, this seems not to be the case for monopole e
tations, although the transition potentials~Fig. 6! are
changed dramatically in the nuclear interior. Omitting t
correction~2.7! increases the cross sections at forward ang
by only a few percent, less than 10% when the DDG int
action is used and less than 5% for the BDM3Y1 interacti
The scattering is dominated by contributions from large
dii, where the correction is small.

Another fragment of the giant monopole resonance w
inferred at a higher excitation energy of 20.76 MeV@9#. Two
aspects of this must be considered: The theoretical cross
tion for a given amplitudea0

m will be altered because of th

TABLE I. Predicted differential cross sections at some repres
tative forward angles for exciting giant resonances in58Ni by 240
MeV alpha particles and exhausting 100% of the EWSR limit. T
potentials used were determined by fitting the 240 MeV ela
scattering date@24#.

0° 1° 5° Total
Model ~mb/sr! ~mb/sr! ~mb/sr! ~mb!

GMR, Q5217.42 MeV
DPa 385 276 56.6 2.94
DDG/WSb 398 295 46.1 3.18
BDM3Y1/WSc 355 262 41.6 2.79
G194d 286 212 36.0 2.51
G194/WSe 350 256 40.4 2.67
GMR, Q5220.76 MeV
DDG/WSb 255 190 29.8 2.02
GQR,Q5216.08 MeV
DPa 95.4 89.3 147 10.6
DDG/WSb 68.5 71.3 133 10.5
GQR,Q5217.42 MeV
DDG/WSb 67.8 68.9 115 9.4
GQR,Q5220.76 MeV
DDG/WSb 63.6 63.1 80.8 7.3
GDR,f Q5217.42 MeV
DDG/WSb 53.7 44.3 2.56 0.36
GDR,f Q5220.76 MeV
DDG/WSb 19.9 16.5 1.16 0.15

aDeformed potential model, using the Woods-Saxon potential fr
@24#.
bDensity-dependent Gaussian real interaction and Woods-S
imaginary part.
cDensity-dependent M3Y real interaction and Woods-Saxon im
nary part.
dDensity-independent Gaussian complex interaction witht51.94
fm, v524.9 MeV,w515.0 MeV.
eDensity-independent Gaussian real interaction witht51.94 fm,v
5 23.5 MeV, and Woods-Saxon imaginary part.
fCoulomb excitation only.
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change inQ value, and the contribution to the energ
weighted sum rule~2.9! from a givena0

m will increase be-
cause of the change inEx . Put another way, 100% of th
sum rule atEx520.76 MeV would correspond to a smalle
amplitude ofa0

m50.1259. The increase in theQ value alone
was found to decrease the cross sections uniformly by ab
23%, while both effects together reduce the cross section
one-third~see Table I!.

C. Isoscalar giant quadrupole resonance

An appreciable fraction of the giant quadrupole resona
~GQR! was identified centered atEx516.08 MeV. A defor-
mation length of 0.985 fm would correspond to 100% dep
tion of the sum rule limit at this energy. We find that the D
model, using the Woods-Saxon potential of@24#, gives cross
sections about 20% larger than those predicted using
single-folding model with the DDG interaction and the B
form ~2.3! for the transition density. Representative values
the cross sections are included in Table I.

The first maximum in the measured angular distributi
near 4° is about 90 mb/sr. This corresponds to a sum
depletion of 44% in the DP model@9#, which thus is in-
creased to about 55% if the folding model is used. A co
parison with the measured cross sections is shown in Fig

Fragments of the GQR were also inferred in the spec
peaks centered at 17.42 and 20.76 MeV of excitation. Ag
the change inQ value affects both the theoretically predicte
cross sections and one’s estimate of the depletion of
energy-weighted sum rule limit. For example the theoreti
peak cross section for 20.76 MeV of excitation is reduced

FIG. 6. The real parts of transition potentials for exciting a gia
monopole resonance at 17.42 MeV in58Ni, normalized to unit am-
plitudea0

m . That obtained using the deformed potential~DP! model
~2.2!, based upon the Woods-Saxon potential from@24#, is com-
pared to folded potentials obtained using the transition density~2.4!
with single-folding Gaussian interactions. G194 is the dens
independent Gaussian with a range oft51.94 fm, normalized to
reproduce the elastic data at 240 MeV. DDG is the dens
dependent Gaussian described in the text; curveC ~for ‘‘consis-
tent’’! includes the dynamical correction~2.7! while curveS ~for
‘‘simple’’ ! neglects it.
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294 55G. R. SATCHLER AND DAO T. KHOA
nearly 20% due to the change inQ value alone, while both
effects together reduce it by one-third~see Table I!. There is
also some change in the shape of the angular distributio

D. Isovector giant dipole resonance

The giant dipole resonance~GDR! also occurs in this gi-
ant resonance region of excitation energies. Within
model this is excited only by Coulomb excitation. Then
principle, the GDR cross sections can be inferred from
results of photonuclear experiments@37# and subtracted from
the observed inelastic alpha particle spectrum. Unfortuna
the photonuclear spectra@dominated by (g,p), which is
nearly 3 times as strong as (g,n) in 58Ni# are far from hav-
ing a simple Lorentzian shape. The (g,n) spectrum peaks a
an energy of about 18 MeV, while the (g,p) peaks closer to
19 MeV. These energies fall between the 17.42 and 20
Gaussian components of the alpha particle spectrum,
though because of the large widths of the photopeaks
GDR excitation can be expected to contribute to both co
ponents. As a first approximation, we assume these contr
tions to be equal. Furthermore, in order to obtain some in
cation of the importance of the GDR excitation, we assu
that the sum of these two contributions exhausts the clas
sum rule.

TheE1 Coulomb excitation cross section is very sensit
to theQ value and can vary significantly across the width
the GDR.~For an example, see Table I: Reducing the ex
tation energy from 20.76 MeV to 17.42 MeV increases
cross section at 0° by a factor of 2.7.! We ignore this com-
plication for our present purpose, and simply evaluate
cross sections at the peak energies of 17.42 and 20.76 M
A depletion of 50% of the classical energy-weighted s
rule at these energies in58Ni corresponds to reduced trans
tion rates ofB(E1)50.062 and 0.052e2 b, respectively.

FIG. 7. The predictions of the folding model, with the DD
interaction and a Woods-Saxon imaginary part, for exciting a g
quadrupole resonance at 16.08 MeV in58Ni, and those given by the
deformed potential model~DP!, using the Woods-Saxon potentia
from @24#, compared with the measured cross sections@9#. The
percentage exhaustion of the energy-weighted sum rule in each
is indicated.
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These were used to estimate the Coulomb excitation co
butions from the GDR.

V. IMPLICATIONS OF THE 240-MEV DATA

The measured cross sections@9# at the most forward
angles for the 17.42 MeV excitation are dominated by a
monopole excitation. Consequently they offer the oppor
nity to determine quite accurately the depletion of the GM
sum rule at this energy, given a reliable model and a reali
assessment of the giant dipole contribution. We believe
the folding model, with the interactions described here, s
isfies the criterion of reliability, provided the breathing mo
form ~2.4! is a good representation of the transition dens
One remaining uncertainty is the amount of GDR excitat
that is contributing to this component of the spectrum a
which also has an angular distribution that peaks at
Rather than trying to find the ‘‘best fit’’ to the angular dis
tribution of the 17.42 MeV component of the spectrum, w
contrast the results of assuming no GDR contribution, as
@9#, with our crude guess of 50% of the sum rule particip
ing. Without the GDR, use of the single-folding DDG inte
action and its accompanying imaginary Woods-Saxon
plies a contribution of about 32% of the GMR sum rule lim
from this excitation energy. This is compared to the me
surements in Fig. 8~a!. The double-folding model with the
newer and even more realistic BDM3Y1 interaction~see Fig.
5! implies slightly more, about 36%. This is somewhat mo
than the 22% claimed in@9#, where the DP model was use
@We find about 35% when using the DP model with the sa
optical potential as in@9#. We believe that the difference
arises, at least in part, because the authors of@9# did not use
the scaling relation~4.1!. This reduces the theoretical cros
section by a factor of 1.355 and consequently raises the
plied sum rule depletion by the same factor.#

The measurements@Fig. 8~a!# do not show the deep, shar
minimum near 3° that is characteristic of a monopole ex
tation. This can be due, at least in part, to our neglect of
finite angular resolution in the detection system. The acc
tance for each bin of data corresponds to a narrow rectan
lar slit perpendicular to the scattering plane, subtending
vertically and 0.44° horizontally. When placed at 0° in t
scattering plane,this accepts alpha particles scattered thr
u50° to62°. The average angle is 1.08°; hence, this is
smallest angle for which data are shown. As the slit mo
away from 0° in the scattering plane, the range of values
u for which alpha particles are collected, due to the fin
length of the slit, decreases rapidly. In principle we sho
correspondingly average the theoretical cross sections
the same range ofu before comparing with the data. How
ever, we estimate that the averaging has rather little eff
being largely compensated for by the use of average an
for the data; consequently, we have not performed this a
tional task. The deep minimum in the monopole cross s
tion near 3° is filled in somewhat by averaging, but nowhe
near as much as the data show. This is an indication of c
tributions from other multipoles, especially the quadrupo
As an example, Fig. 8~a! shows the effect of adding 10% o
the GQR sum rule, which tends to fill in the minimum a
though it overshoots at the larger angles. Clearly, determ
ing the precise amount of quadrupole excitation would

t
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55 295MISSING MONOPOLE STRENGTH IN58Ni AND . . .
quire careful attention to this averaging.
When we allow 50% of the dipole sum rule to contribu

to this 17.42 MeV component, we need less monopole e
tation, only about 25% of the sum rule limit, as shown in F
8~b!. The quadrupole contribution has also been redu
slightly.

A third peak in the spectral decomposition was obtaine
few MeV higher, atEx520.76 MeV. If we assign 100% o
the classical dipole sum to this component~as in @9#!, we
obtain a nice fit@Figure 9~a!# to the angular distribution
within the folding model by adding about 15% of the mon
pole sum~rather than the 10% found in@9# when using the
DP model! and about 10% of the quadrupole sum. Howev

FIG. 8. Examples of fits to the differential cross sections for
17.42 MeV group excited by 240 MeV alpha particles on58Ni @9#.
The theoretical results were obtained by using folding with
DDG interaction for the real interaction and a deformed Woo
Saxon for the imaginary part.~a! A fit without any contribution
from the giant dipole resonance.~b! A fit obtained assuming 50% o
the EWSR for the dipole also participates. The percentage exh
tion of the corresponding monopole and quadrupole sum rule
indicated. Note that no angle averaging has been applied to
theoretical cross sections to correct for the finite acceptance o
detectors.
i-
.
d

a

,

as we stressed earlier, the photonuclear measurements
cate that this is an overestimate of the GDR contribution
this excitation energy. If we make our rough guess that 5
is a more realistic figure, we need to increase the monop
estimate to compensate at the most forward angles to a
25%, as shown in Fig. 9~b!. There is now a discrepanc
between theory and experiment in the region of 3°, simila
that seen for the lower energy component; again, this ma
due in part to our neglect of angular averaging to account
finite detector size.

In summary, either assumption about the GDR contrib
tions results in concluding that about one-half of the mon
pole sum rule limit has been observed in this region of ex
tation in 58Ni.

VI. SUMMARY AND DISCUSSION

We have studied the application of folded potentials to
elastic and inelastic scattering of 240 MeV alpha partic

e

e
-

s-
is
he
he

FIG. 9. As for Fig. 8, except for the 20.76 MeV group@9#. ~a!
Assuming that 100% of the isovector dipole sum rule contribut
~b! Including only 50% of the dipole sum rule. The sum rule pe
centages for the other multipoles are as indicated. Note tha
angle averaging has been applied to the theoretical cross sectio
correct for the finite acceptance of the detectors.
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from 58Ni and compared the results to those obtained us
phenomenological Woods-Saxon potentials and the
formed potential model. The elastic scattering at 139 and
MeV was used to indicate acceptable forms for the pot
tials.This confirmed the need for a density dependence in
folding interaction and for real and imaginary parts with d
ferent radial shapes. We used both single folding with
density-dependent Gaussian nucleon-alpha interaction
double folding with a recent density-dependent nucle
nucleon interaction which has been carefully tailored to
produce the density and binding energy of normal nucl
matter. We noted a discrepancy between the elastic mea
ments made at 240 MeV and cross sections predicted
interpolating between the data taken at 139 and 340 Me

Comparison of the inelastic scattering predicted by
deformed potential and folding models requires some
sumption about the relation between the potential and ma
deformation lengths. If we assume these to be equal, we
that the DP model predicts cross sections that are about
larger than those given by folding, for quadrupole exci
tions. This figure increases to about 50% for octupole tr
sitions. However, the two models give much closer res
for monopole excitations at the smallest angles, provided
scaling relation~4.1! is assumed for the amplitudes of th
breathing mode oscillations.

The dynamical correction~2.7!, which is necessary whe
the folding interaction depends upon the density, can h
significant effects on the cross section magnitudes with
much change in the angular distributions. It reduces the c
sections by about 25% forl52 and 3, and about 10% fo
l50.

The measured alpha particle spectrum in the giant re
nance region (Ex from 10 to 30 MeV! has been decompose
@9# into three main components centered at excitation e
gies of 16.08, 17.42, and 20.76 MeV. The component
16.08 MeV has an angular distribution in good agreem
with folding model predictions for quadrupole excitatio
and a strength corresponding to about 55% of the co
sponding energy-weighted sum rule limit. The other tw
components peak at the smallest angles, consistent w
mixture of dipole and monopole excitations. Although ph
tonuclear experiments show that the giant dipole resona
appears in this region of excitation, and indicate that
should contribute to both components inferred from the
pha particle spectrum, the precise distribution is not clear.
an illustration, we assume that the summed dipole contr
tion exhausts 100% of the classical sum rule. Two alter
tives were tried. One assigned all the strength to the 20
MeV component~as assumed in the original analysis@9#!.
Then the data could be matched by adding 15% of the mo
pole sum rule and about 10% of the quadrupole one, us
the folding model predictions; this is shown in Fig. 9~a!. The
17.42 MeV component, shown in Fig. 8~a!, could then be
matched by assuming 32% of the monopole sum rule acc
panied by up to about 10% of the quadrupole sum rule.

The other alternative considered assigned 50% of the
pole sum to each component@see Figs. 8~b! and 9~b!#. Then
fitting the small-angle data required about 25% of the mo
pole sum in each component, together with small amou
~somewhat less than 10% of the sum rule! of quadrupole
excitation.
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The interesting feature is that while the individu
amounts of monopole excitation inferred are sensitive to
distribution assumed for the giant dipole resonance, th
sum is not. Consequently, based upon the cross sec
measured at the smallest angles, we can assert with s
confidence that about one-half of the monopole sum r
limit has been observed in this region of excitation in58Ni.
On the other hand, it is clear that we cannot deduce
quadrupole contributions with any precision, except to s
that these two components probably contain between 1
and 20% of the quadrupole sum rule limit. Together with t
55% already assigned to the 16.08 MeV component,
implies that between 65% and 75% of the quadrupole s
has been observed in this region of excitation energ
These conclusions may be compared to the approxima
32% of monopole and about 58% of quadrupole inferr
from the original analysis using the deformed potent
model @9#. Our results, although somewhat larger, do n
differ dramatically. The differences arise from our use of t
more realistic folding model and, in the monopole case, fr
the authors of@9# not using the scaling relation~4.1!.

We have not attempted to assign any measure of the
certainties in our numbers because we have not included
cisely the effects of finite detector size, and because t
depend upon a number of poorly known features such as
precise amount of dipole excitation present. We do not
pect these uncertainties to be large. However, we must s
one particular theoretical uncertainty, namely, the assu
tion of the BM form~2.3! for the quadrupole transition den
sity and the breathing mode form~2.4! for the monopole one.
Some experience with the BM transition density has be
reassuring~see, for example,@21#!, but the breathing mode
version has a much less secure basis. One study, comp
it to the results of RPA structure calculations@10#, concluded
that it could lead to an underestimate of monopole cr
sections~and hence an overestimate of the sum rule dep
tion!.

In contrast to the present results, there are some ind
tions that the excitation of the giant monopole resonance
heavy targets by alpha particles, when interpreted in wa
similar to those used here, seems to require the exhaustio
more than 100% of the EWSR. This is particularly mark
when the folding model is used@4#; for example, 208Pb
seems to require at least twice the sum rule limit when
cited by 129 MeV alpha particles@38#.

Finally, we also draw attention to a study of the excitati
of giant resonances in60Ni by 17O ions@16#. A simple fold-
ing model was used. A satisfactory fit to the data@39# for the
giant quadrupole resonance atEx516.0 MeV was obtained
with about 80% of the sum rule. However, the data for t
monopole excitations by17O ions~in other targets, as well a
60Ni! appeared to require in excess of 100% of the monop
sum rule. Possible reasons for this apparent discrepancy
being investigated currently.
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