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Thomas-Fermi theory of the breathing mode and nuclear incompressibility

C. S. Wang,* K. C. Chung, and A. J. Santiago
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~Received 29 April 1996; revised manuscript received 2 December 1996!

A Thomas-Fermi theory with a linear scaling assumption is proposed for the breathing mode of nuclear
collective motion. It leads to a general resultKA5^K(r,d)&1KGD22EC /A which states that the incompress-
ibility KA of a finite nucleusA mainly equals the nuclear matter incompressibilityK(r,d) averaged over the
nucleon density distributionr(r ) of nucleusA, added to a termKGD contributed from the gradients of nucleon
densities, with twice the Coulomb energy per nucleonEC /A subtracted. The nuclear matter equation of state
given by the Thomas-Fermi statistical model with a Seyler-Blanchard-type interaction is employed to calculate
the nuclear matter incompressibilityK(r,d) and a localized approximation of the Seyler-Blanchard-type in-
teraction, which is shown to be similar to the Skyrme-type interaction, is developed to calculate the value of
KGD . KGD and22EC /A contribute about 20–10 % and 1–5 %, respectively, to the nuclear incompressibility
KA , from the light to the heavy nuclei. The shell and the even-odd effects are discussed by a scaling model
which shows that these effects can be neglected for medium and heavy nuclei. The anharmonic effect is shown
to be significant only for light nuclei. The leptodermous expansion ofKA is obtained and the contribution from
the curvature term proportional toA22/3 is discussed. The calculated isoscalar giant monopole resonance
energy EM for a variety of nuclei are shown to be in agreement with experimental measurements.
@S0556-2813~97!01406-4#

PACS number~s!: 21.65.1f, 21.60.2n, 24.30.Cz
e
on
o
an

r
le
a
w

la
e

th
ed
p
e
s-
e
d
un
le
rg
ou
e
d
t
en

the
d
r the
is

l of

-

and

rd

ion

ters
y
r
overki
I. INTRODUCTION

The isoscalar giant monopole resonance of nuclei, w
known as the breathing mode of nuclear collective moti
has been studied extensively in the context of various m
els, since it is expected to be able to provide very import
information for the incompressibilityK of nuclear matter,
especially for the incompressibilityK0 of standard nuclea
matter. By nuclear matter we mean the uncharged nuc
system distributed uniformly in the space, and by stand
nuclear matter we mean the ground-state nuclear matter
equal neutron and proton numbers@1#. Theoretically, there
are two separate problems. The first problem is how to re
the measured isoscalar giant monopole resonance en
EM to the incompressibilityKA of a finite nucleus. This is a
dynamic problem, and its solution requires a model on
breathing mode of nuclear collective motion. It is believ
that the model based on the scaling assumption is an ap
priate candidate@2#. The second problem is how to relate th
incompressibilityKA of a finite nucleus to the incompres
ibility K of nuclear matter. This is a static problem in th
adiabatic approximation, its solution depends on the mo
of nuclei and the model of the breathing mode, and the f
damental argument here is that the matter in a finite nuc
is different from the nuclear matter due to the electric cha
and the finite size of nuclei. Therefore, the information ab
the incompressibilityK of nuclear matter extracted from th
isoscalar giant monopole resonance of nuclei is model
pendent and even interaction dependent, since both
model of nuclei and the model of the breathing mode dep
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on the choice of nuclear interaction in general.
Serious attempts in order to minimize the model and

interaction dependence of theK extracted from the measure
EM have been made. One of these attempts is to conside
nuclear matter as a limit of the matter in finite nuclei. In th
case, one is justified in expanding the incompressibilityKA
of finite nuclei in a series of power ofA21/3 @2#, similar to
the leptodermous expansion used in the droplet mode
nuclei @3#, i.e.,

KA5K02kSA
21/31kcSA

22/31@ksB1ksSA
21/3#SN2Z

A D 2
2kC

EC

A
, ~1!

whereK0 , kS , kcS, ksB , ksS, andkC are adjustable pa
rameters fitted to measuredEM , A5N1Z, N and Z are
the neutron number and the proton number, respectively,
EC is the Coulomb energy. The parameterK0 in the expan-
sion ~1! can be identified as the incompressibility of standa
nuclear matter in the scaling model@4,5#, its value
K05220620 MeV obtained in this way@2# was accepted for
a long time.

However, a reanalysis of the experimental data ofEM by
a least-squares fit of the above semiempirical expans
givesK0 ranging from 200 to 350 MeV@6,7#. It is shown
that these adjustable parameters in the expansion~1! are not
completely free and the physics involved in these parame
is important in this analysis@8#. This is emphasized also b
the fact that the value ofK0 obtained from different nuclea
measurements and astrophysical observations are spread
a large range from 180 to 800 MeV@9#. Therefore, theoret-
ng
2844 © 1997 The American Physical Society
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55 2845THOMAS-FERMI THEORY OF THE BREATHING MODE AND . . .
ical attempts in order to clarify the model and the interact
dependence of the relationship betweenKA and K are re-
quired @10#.

In this regard, a general relationship betweenKA andK0
has been proposed recently@11#:

KA5
EN

2a1A
K02S 7230

a1
K0

DEC

A
, ~2!

where a1 is the binding energy coefficient andEN the
nuclear energy of the nucleus. This result depends only
the nuclear equation of state in the sense that only the
eral functional form of the equation of state given by t
nuclear Thomas-Fermi~TF! model with a generalized
Seyler-Blanchard interaction@12# has been used. In addition
it is interesting to note that Eq.~2! is also a nonperturbative
formula, as no expansion in power ofA21/3 has been used.

Therefore, a general relationship betweenKA andK ~not
only K0) is to be worked out, which is expected to depe
mainly on the nuclear equation of state, within the TF mo
of nuclei and the scaling model of the breathing mode.
addition, an approximate expansion similar to Eq.~1! is ex-
pected to be derived from this general relation. This exp
tation is supported also by the numerical result based
microscopically constrained Hartree-Fock and random-ph
approximation~RPA! sum rule calculations. As a matter o
fact, independent of the chosen interactio
KA'0.64K023.5 for 208Pb and a similar relationship fo
116Sn are obtained@8#. The reason why we use the TF mod
of nuclei is that the incompressibility is essentially a mac
scopic concept and the TF model is appropriate to desc
the macroscopic properties of nuclei.

The purpose of the present paper is to derive this gen
relationship between the incompressibilityKA of finite nuclei
and the incompressibilityK of nuclear matter, by using th
nuclear TF model and the linear scaling assumption, an
show that the expansion~1! holds approximately, indepen
dent of the choice of interaction. Section II describes
main model assumption and the general TF model treatm
where the TF nuclear energy is separated into two parts,
of which depends only on the local nucleon densities and
other on the gradients of densities. The result given in
section is interaction independent, since only the general
mulation of the TF model and the linear scaling assumpt
are used. The specific interaction and model of nuclei
needed only when practical calculation is performed. In t
context, the localized approximation of the generaliz
Seyler-Blanchard interaction is given in Sec. III. In applyi
the above theory to calculate the isoscalar giant monop
resonance energyEM of nuclei, the constrained TF mode
calculation is given in Sec. IV. Section V discusses the l
todermous expansion of the incompressibilityKA of finite
nuclei which gives a theoretical justification for the expa
sion ~1!. In Sec. VI a short discussion and summary a
presented. The theoretical foundation of the scaling assu
tion based on a quantum mechanical model is discusse
Appendix A, the specific expressions of the quantities
peared in the numerical calculation of Secs. III and IV a
collected in Appendix B, while some formulas for integra
involving Fermi function which appeared in the leptode
mous expansion are given in Appendix C.
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II. MODEL AND THEORY

The fact that there is only one isoscalar giant monop
resonance energyEM for each nucleus experimentally pro
vides a strong evidence that this resonance is a kind
simple collective harmonic oscillation with only one degr
of freedom. This collective motion of nuclei corresponds
the breathing mode of radial oscillation. The most intuiti
choice of the variable for the breathing mode is the radius
the nuclei@8,11#. But there are at least three characteris
radii for a spherically symmetric leptodermous distributi
of nucleons: the central radiusC, the equivalent sharp radiu
R, and the equivalent root mean square radiusQ @13#. In
order to avoid an obvious dependence of the theory on
specific choice of the radius, the scaling factorh in the radial
linear scaling transformation

r→r s5hr ~3!

is chosen as the dimensionless collective coordinate for
breathing mode in the present work.

In a TF model of nuclei, one of the basic quantities is t
nucleon densityr(r ) which can be normalized to the numb
of nucleonsA. Under the scaling transformation~3!, the
scaled densityrs(r ) is given by

r~r !→rs~r !5h3r~hr !. ~4!

Similar relations hold for the neutron densityrn(r ) and the
proton densityrp(r ).

The kinetic energy of the breathing mode oscillation c
be written as

Ek5
1

2
mNE d3rrs~r !@v„r …#

25
1

2
mNA^r 2&sS ḣ

h
D 2, ~5!

wheremN is the nucleon mass,

^r 2&s5
1

AE d3rrs~r !r
25

1

h2

1

AE d3rr~r !r 25
1

h2 ^r 2&,

~6!

andv„r …52r ḣ/h is the velocity field of the breathing mod
defined by the equation of continuity]rs /]t1¹•(rsv)50.
By introducing@14# s5(h21)/h, the kinetic energy can be
rewritten as

Ek5
1

2
mNA^r 2&~ ṡ!2. ~7!

The ground-state energyEA of nucleus (A,Z) can be writ-
ten in the TF model as

EA5EN1EC1Eres, ~8!

whereEN is the nuclear energy,EC the Coulomb energy, and
Eres the residual energy which includes mainly the shell c
rection and the even-odd energy@15#. Furthermore, the
nuclear energyEN can be separated generally into a te
ELD depending on the local densities and a termEGD depend-
ing on the gradients of densities,

EN5ELD1EGD. ~9!
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Specifically, the local density dependent termELD can be
written generally as

ELD5E d3rr~r !e~r,d!, ~10!

wheree(r,d), the energy per nucleon, is the nuclear mat
equation of state, and the relative neutron excessd of nuclear
matter is

d5
rn2rp

r
. ~11!

The Coulomb energyEC can be divided into Coulomb
direct energyECoul and Coulomb exchange energyEex @16#,
i.e.,EC5ECoul1Eex, where

ECoul5
1

2E d3rd3r 8e2rp~r !rp~r 8!

ur2r 8u
,

Eex52e2
3

4S 3p D 1/3E d3rrp
4/3~r !. ~12!

The potential energy of the breathing mode can be
sumed, except by a constant, to be the scaling transfor
energyEA(h) of nuclei, in an adiabatic approximation,

EA~h!5EN~h!1EC~h!1Eres~h!, ~13!

whereEN(h)5ELD(h)1EGD(h),

ELD~h!5E d3rrs~r !e~rs ,ds!5E d3rr~r !e~h3r,d!,

~14!

EC~h!5
1

2E d3rd3r 8e2rp
s~r !rp

s~r 8!

ur2r 8u

2e2
3

4S 3p D 1/3E d3rrp
s4/3~r !5hEC , ~15!

and

Eres~h!5Eshell~h!1Eeven-odd~h!, ~16!

whereEshell(h) andEeven-odd(h) are the scaled shell correc
tion and even-odd energy, respectively.

For a small vibration of the breathing mode, the scal
variable h oscillates around its stable valueh51 with a
small amplitude usu!1, EA(h) can be written approxi-
mately as

EA~h!5EA1
1

2
AKAs

21
1

6
AK3s

31
1

24
AK4s

4, ~17!

where

KA5
1

A

d2EA~h!

dh2 U
h51

~18!

is the incompressibility of the finite nucleusA @4#, while
r

s-
ed

g

K35
1

AFd3EA~h!

dh3 16
d2EA~h!

dh2 G
h51

,

K45
1

AFd4EA~h!

dh4 112
d3EA~h!

dh3 136
d2EA~h!

dh2 G
h51

.

~19!

In writing Eq. ~17!, the stability condition of the breathing
mode vibration @dEA(h)/dh#h5150 has been applied
From Eqs.~14! and ~15!, this condition can be written ex
plicitly as

E d3rr~r !3r~r !
]e

]r
1
dEGD~h!

dh U
h51

1EC1
dEres~h!

dh U
h51

50. ~20!

In an harmonic approximation, Eq.~17! is reduced to

EA~h!'EA1
1

2
AKAs

2, ~21!

the isoscalar giant monopole resonance energyEM is given
as the harmonic oscillator energyEM'\v, and from Eqs.
~7! and ~21!,

\v5A \2KA

mN^r 2&
. ~22!

From Eq.~13!, the incompressibilityKA can be divided
into three partsKN , KC , andK res,

KA5KN1KC1K res, ~23!

where

KN5
1

A

d2EN~h!

dh2 U
h51

, KC5
1

A

d2EC~h!

dh2 U
h51

,

K res5
1

A

d2Eres~h!

dh2 h51 . ~24!

The main contribution to the incompressibilityKA comes
from the nuclear energyEN . From Eq.~14!, the following
expression can be derived,

KN5
1

AE d3rr~r !FK~r,d!16r~r !
]e

]r G1
1

A

d2EGD~h!

dh2 U
h51

,

~25!

where

K~r,d!59r2
]2e

]r2
~26!

is the incompressibility of nuclear matter. Applying the st
bility condition ~20!, the following expression ofKN results:

KN5^K~r,d!&1KGD22
EC

A
22

dEres~h!

A dh U
h51

, ~27!

where
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^K~r,d!&5
1

AE d3rr~r !K~r,d! ~28!

is the nuclear matter incompressibility averaged over
nucleon distributionr(r ) of nuclei, and

KGD5
1

AFd2EGD~h!

dh2 22
dEGD~h!

dh G
h51

~29!

is the contribution from the gradients of densities.
Due to the scaling property~15! of the Coulomb energy

there is no contribution from the Coulomb energy directly
the incompressibility of finite nuclei, i.e.,KC50, and due to
the scaling assumption~16! of the residual energy, the con
tribution from the residual energy can be divided into tw
distinct parts, i.e.,K res5Kshell1Keven-odd, where

Kshell5
1

A

d2Eshell~h!

dh2 U
h51

,

Keven-odd5
1

A

d2Eeven-odd~h!

dh2 U
h51

. ~30!

In a quantum mechanical model discussed in Appendix
the following scaling properties are obtained:

Eshell~h!5h2Eshell, Eeven-odd~h!5h2Eeven-odd, ~31!

so we have

Eres~h!5h2Eres, K res52
Eres

A
. ~32!

Substituting Eqs.~27!, ~32!, andKC50 into Eq.~23!, the
following expression forKA results:

KA5^K~r,d!&1KGD22
EC1Eres

A
. ~33!

Numerically, the residual energy term22Eres/A can be ne-
glected within an error of less than 1%, so we have final

KA5^K~r,d!&1KGD22
EC

A
. ~34!

The formula ~33! or ~34!, similar to the Myers-
Swiatecki’s formula~2!, is our main result. This formula is
general, as only the general expression of the TF model
ergy together with the linear scaling assumption are e
ployed. In the practical application of this formula, the sp
cific nuclear matter equation of statee(r,d), the nucleon
distributionr(r ) of nuclei, the relative neutron excessd of
nuclear matter in the nuclei, the energyEGD depending on
the gradients of nucleon densities, and the specific exp
sion of Coulomb energyEC are needed, and all of them a
model and interaction dependent.

In order to calculate the anharmonic effect given by
terms beyond the second order in Eq.~17!, the following
perturbation result is obtained, by neglecting higher or
terms in the second order correction:
e

,

n-
-
-

s-

e

r

EM5\v1
1

8

K4

A^r 2&2
\4

mN
2

1

~\v!2
2

5

24

K3
2

A^r 2&3
\6

mN
3

1

~\v!4
.

~35!

It can be seen easily that, as the mean square of ra
^r 2& is proportional toA2/3 while K3 andK4 as well as\v
have no serious changes with the nucleon numberA, the
anharmonic effect is significant only for light nuclei.

III. LOCALIZED APPROXIMATION
OF SEYLER-BLANCHARD-TYPE INTERACTION

In the TF or the extended TF theory, the nuclear ene
can be written generally as

EN5E d3rh@rn~r !,rp~r !#, ~36!

where the Hamiltonian densityh@rn(r ),rp(r )# is a func-
tional of nucleon densitiesrn(r ) andrp(r ). For the extended
TF theory or the TF theory with Skyrme-type interactio
@17#, h@rn(r ),rp(r )# depends also on the gradients
rn(r ) and rp(r ), while for the TF theory with the Seyler
Blanchard-type interactionh@rn(r ),rp(r )# is expressed as a
space integral as

h@rn~r !,rp~r !#5E d3r 8Y~r,r 8!F~r,r 8!, ~37!

whereF(r,r 8) is the functional ofrn(r ) andrp(r ) given at
pointsr andr 8, andY(r,r 8) is the Yukawa potential with the
force rangea:

Y~r,r 8!5
1

4pa3
e2ur2r8u/a

ur2r 8u/a
. ~38!

For finite nuclei, the nucleon distribution spreads ove
finite region whose radius is much larger thana and the
integral of Eq.~37! can be calculated approximately, for th
spherically symmetric distribution of nucleons, by using t
Taylor expansion ofF(r ,r 8) at the pointr 85r . It gives

E d3r 8Y~r,r 8!F~r ,r 8!5 (
n50

`
an

n!
I n~r /a!F ~n!~r !, ~39!

where

F ~n!~r !5
dnF~r ,r 8!

dr8n
U
r 85r

, ~40!

I n~x!5
1

x
@Pn~x!2Qn~x!e2x#, ~41!

Pn~x!5 (
k50

n

~k
n!~2x!kP̃m~x!,

Qn~x!5 (
k50

n

~k
n!~2x!km!

1

2
@11~21!m#, ~42!
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P̃m~x!5xm1m~m21!xm221•••1m!x~12cosmp!/2,

m5n2k11. ~43!

As examples which will be used in the present calculati
we have

I 0~x!51, I 1~x!5
2

x
~12e2x!, I 2~x!52 ~112e2x!.

~44!

Substituting Eqs.~37! and ~39! into Eq. ~36!, the nuclear
energyEN can be expressed as an expansion where the
order term corresponds to the local density-dependent
ergy,

ELD5E d3rF ~r ,r !5E d3rr~r !e~r,d!, ~45!

while the higher order terms contribute to the energy depe
ing on the gradients of densities,

EGD5 (
n51

`

EGDn5EGD11EGD21•••, ~46!

where

EGDn5
an

n! E d3rI n~r /a!F ~n!~r !, n51,2,•••. ~47!

For finite nuclei, since the nucleon distribution present
well-established uniform central region and a falloff surfa
region and theF (n)(r ) is a function ofr with sharp peaks
located around the central radiusC, the above expansion
converges as a series of power ofa/C. In this case, keeping
the first few terms is enough for most purposes. We call
the localized approximation of the Seyler-Blanchard-type
teraction. In this sense, the local density approximation is
special case of the localized approximation when keep
only the leading termELD in the expansion. In the presen
work we keep the terms up ton52.

The specific form of the functionalF(r ,r 8) depends on
the type of interaction. As an example, we will use in t
present work the generalized Seyler-Blanchard interac
which is introduced by Myers and Swiatecki@12# and thus
will be referred to hereafter as the Myers-Swiatecki inter
tion.

The Myers-Swiatecki effective nuclear interactio
V(r,r 8) is written as

V~r,r 8!5
T0

r̂0
Y~r,r 8!F2a1bS pp0D

2

2g
p0
p

1sS r̄

r̂0
D 2/3G ,

~48!

wherep is the relative momentum of two nucleons situat
at r andr 8, respectively,r̄ is the average density defined
r̄ 2/35@r2/3(r )1r2/3(r 8)#/2, and r̂05r0/2. The quantities
T0 , p0, andr0 are the Fermi energy, the Fermi momentu
and the standard nuclear matter density. The dimension
interaction strength parametersa, b, g, s may be differ-
,

ro
n-

d-

a

is
-
e
g

n

-

,
ss

ent for interactions between like and unlike nucleons. T
difference is described by a parameterj for the leading part
of the interaction

a l ,u5
1

2
~17j! a ~49!

and byz for the remaining parts of the interaction

b l ,u5
1

2
~17z! b, g l ,u5

1

2
~17z! g,

s l ,u5
1

2
~17z! s, ~50!

wherel ,u refer to ‘‘like’’ and ‘‘unlike,’’ and are associated
with the minus and plus signs, respectively.

The first two terms in the square bracket of Eq.~48!, with
j5z, are the original Seyler-Blanchard attractions w
momentum-dependent repulsion@18#. The third term is an
additional attraction, while the fourth term is an addition
repulsion.

Calculating the potential energy with the above intera
tion ~48!, together with the kinetic energy calculated by t
TF model, theF(r ,r 8) can be obtained@12,15#. From this
F(r ,r 8), the nuclear equation of statee(r,d) can be obtained
as

e~r,d!5T0FB~d!S r

r0
D 2/32C~d!S r

r0
D 3/31D~d!S r

r0
D 5/3G ,

~51!

where

B~d!5
3

10
~12g l !@~11d!5/31~12d!5/3#

2
3

20
guH 5~11d!2/3~12d!2~12d!5/3, for d>0,

5~11d!~12d!2/32~11d!5/3, for d<0,

~52!

C~d!5
1

2
a~12jd2!, ~53!

D~d!5
3

10
$Bl@~11d!8/31~12d!8/3#

1Bu~12d2!@~11d!2/31~12d!2/3#%, ~54!

where

Bl ,u5
1

2
~17z!B, B5b1

5

6
s. ~55!

The term inr2/3 in the equation of state~51! is related to the
Fermi gas kinetic energy with an extra contribution from t
1/p attraction, the term inr is related to the normal Yukawa
attraction, and the term inr5/3 is due to the momentum
dependent repulsion with an additional contribution from t
r̄ 2/3 repulsion.
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The parametersa, b, g, s, j, z, anda can be deter-
mined by fitting to the nuclear masses, the nuclear fiss
barriers as well as the nuclear optical potential, when
radius constantr 0 of standard nuclear matter and the Su¨ss-
mann widthb @13# are kept as two geometrical constrain
giving @15#

a51.94684, b50.15311, g51.13672,

s51.05, j50.27976, z50.55665,

a50.59294 fm, r 051.14 fm, b51.0 fm. ~56!

A relation between parametersa, b, g, ands can be
obtained from the stability of standard nuclear matter ba
on the above equation of state as@12#

10B25a14~12g!50. ~57!

This means that only six of the seven paramet
a, b, g, s, j, z, and a are free. Furthermore, the fo
lowing relationship between the incompressibilityK0 of
standard nuclear matter and the volume binding coeffic
a1 as well as the Fermi energyT0 can be derived from the
above equation of state@12#:

K0515a11
9

5
~12g!T0 . ~58!

As a1'1660.5 MeV is well established, andT0 is about
36.463.2 MeV whenr 0'1.1560.05 fm, it can be seen from
the above relationship withg50 thatK0 is in the range of
306613 MeV for the original Seyler-Blanchard interactio
However, this range ofK0 is too narrow for the adjustmen
of parameters, so the original Seyler-Blanchard interactio
not able to give a value ofK0 as low as around 220 MeV.

The higher order termEGD contributes to the nuclear en
ergy as the correction due to the gradients of nucleon de
ties. For the interaction~48!, the first two terms inEGD can
be derived as

F ~1!~r !5T0Fe1n drn
dr

1e1p
drp

dr G , ~59!

F ~2!~r !5T0F e1n
d2rn
dr2

1e1p
d2rp

dr2
1

e2n

r̂0
S drn
dr D 2

1
e2p

r̂0
S drp

dr D 2G , ~60!

where e1n , e1p , e2n , and e2p are the functionals of
nucleon densitiesrn(r ) and rp(r ) whose specific expres
sions are given in Appendix B.

EGD1 depends on the first order derivatives of nucle
densities, whileEGD2 depends on the second order deriv
tives as well as on the square of the first order derivative
nucleon densities. Therefore, the localized approximation
the Seyler-Blanchard-type interaction, including the lo
density approximation termELD together with the two cor-
rection termsEGD1 andEGD2, is shown to be similar to the
Skyrme-type interaction with the gradient-dependent ter
n
e

,

d

s

nt

is

si-

-
of
of
l
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This is the reason why the Seyler-Blanchard-type interac
can reproduce the nuclear measurement data so well, ev
it has no gradient-dependent term explicitly.

For simplifying the analytical derivation of the leptode
mous expansion given in Sec. V, the simplified Mye
Swiatecki interaction will be used in what follows. In th
simplified Myers-Swiatecki interaction, the Yukawa pote
tial ~38! is applied only to the leading part of the interactio
~with the interaction parametera), while the Dirac delta
function d(r2r 8) is employed for the remaining part of th
interaction ~with the interaction parametersb, g, and s)
@19#. In this case, only the leading part of the interaction
the Seyler-Blanchard-type one, for which the above localiz
approximation is applied, while the remaining part is reduc
to the usual local interaction, which contributes only to t
local-density dependent term. Therefore, in the simplified
teraction, the terms with the parametersb, g, ands disap-
pear inF (n)(r ); Eq. ~59! keeps the same form but Eq.~60! is
reduced to

F ~2!~r !5T0Fe1n d2rndr2
1e1p

d2rp

dr2 G ~61!

ande1n as well ase1p are simplified to

e1n52e1na52
1

2Fa l

rn

r̂0
1au

rp

r̂0
G ,

e1p52e1pa52
1

2Fa l

rp

r̂0
1au

rn

r̂0
G . ~62!

In the TF theory, the total binding energyETF is the sum
of the nuclear energyEN and the Coulomb energyEC :

ETF5EN1EC ~63!

and the nucleon densitiesrn(r ) andrp(r ) are determined by
the minimization ofETF with respect to their variations
drn(r ) anddrp(r ). In the present work, the following two
parameter Fermi distribution is taken forrn(r ) andrp(r ):

rq~r !5
rqc

11exp@~r2Cq!/d#
, ~64!

whereq5n or p. Therqc can be determined by normalizin
rn(r ) and rp(r ) to N andZ, respectively. The surface dif
fusenessd can be related to the Su¨ssmann widthb as @13#
d5A3b/p. The central radiusCn andCp are left as the free
parameters to be determined by minimizingETF . As the den-
sities are constrained to be Fermi distributions, the pres
calculation is similar to the constrained extended TF mo
calculation given in Ref.@5#, where the densities are con
strained to be generalized Fermi distributions.

In expressing the densities as the Fermi distribution~64!,
the Coulomb energyECoul andEex can be written, respec
tively, as@20#

ECoul'
3

5

Z2e2

Cp
F12

7p2

6 S d

Cp
D 2118.031S d

Cp
D 3G ,
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Eex'2
3

4S 3

2p D 2/3e2Z4/3Cp
F121.3355

d

Cp
G . ~65!

Figure 1 plots the calculated TF binding energyETF of
nuclei along theb-stability line. The solid curve is calculate
by the present localized approximation and the full dots
taken from the exact numerical calculation given in R
@21#. It can be seen that the present localized approxima
is good enough, as the deviation from the exact TF calc
tion is within 1% for medium and heavy nuclei and less th
5% for light nuclei.

Since the inclusion of the gradient density dependent t
EGD represents an improvement to the local density appr
mation termELD , it is interesting to evaluate its contribution
In order to do that, we anticipate that the surface ene
ES , which will be defined in Sec. V, is just given by the su
of this new termEGD and the termES0 depending on the
local density. In Fig. 2, we displayES ~solid curve!, ES0 ~full
dots!, EGD ~crosses!, and the droplet model surface ener
ES ~DLM ! @15# ~triangles!. The Coulomb energyEC is plot-
ted also for comparison~dashed curve!. All of these curves
are for nuclei along theb-stability line. It can be seen tha
the energyEGD depending on the gradients of densities co
tributes about 34–38 % of the total surface energy. T
means thatEGD cannot be neglected at all in a realistic ca
culation.

IV. ISOSCALAR GIANT MONOPOLE RESONANCE
ENERGY

In applying the general formula~33! to calculate the isos
calar giant monopole resonance energyEM of nuclei, the
constrained TF model calculation is given as an exampl
this section. The nuclear matter incompressibilityK(r,d)
corresponding to the equation of state~51! is

FIG. 1. The TF binding energyETF of the nuclei along the
b-stability line. The solid curve is calculated by the present loc
ized approximation and the full dots are taken from the exact
merical calculation given in Ref.@21#. The difference between them
is within 1% for medium and heavy nuclei while less than 5%
light nuclei.
e
.
n
a-
n

m
i-

y

-
is

in

K~r,d!5T0F22B~d!S r

r0
D 2/3110D~d!S r

r0
D 5/3G . ~66!

Corresponding to the expansion~46!, the second term in the
general formula~33! can be written as

KGD5 (
n51

`

KGDn5 (
n51

`
1

AFd2EGDn~h!

dh2 22
dEGDn~h!

dh G
h51

.

~67!

In the simplified interaction, substituting Eqs.~59! and ~61!
into Eq. ~47!, the first two terms of the above expansion c
be obtained as

KGD15
aT0
A E d3r H 210@ I 1~r /a!2 f ~r /a!#

3Fe1na

drn
dr

1e1pa

drp

dr G J , ~68!

KGD25
a2T0
2A E d3r H 210F I 2~r /a!12

r

a
f ~r /a!G

3Fe1na

d2rn
dr2

1e1pa

d2rp

dr2 G J , ~69!

where

f ~x!5
1

5
~x16! e2x. ~70!

In the calculation of residual energy effects, the tab
given in Ref. @21# is used for the shell correction and th

-
-

r

FIG. 2. The contributions to the TF surface energyES of finite
nuclei along theb-stability line, calculated by the present localize
approximation. The full dots are the energyES0 of the local density
approximation, the crosses are the density-gradient-dependen
ergyEGD , the solid curve is the total TF surface energyES , and the
triangles are the droplet model surface energyES ~DLM ! @15#. The
Coulomb energyEC is plotted also as the dashed curve for co
parison. It can be seen thatEGD contributes about 34–38 % of th
total surface energy.
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TABLE I. The relevant quantities calculated for some nuclei, all in MeV exceptd andrC ~in fm23).

d rC KA ^K(r,d)& KGD 2EC /A Kres \v EM EM exp

16O 0.0042 0.1385 101.191 72.808 28.446 1.369 1.306 22.196 19.559
40Ca 0.0176 0.1471 125.508 103.804 24.608 3.319 0.414 20.225 19.501 1
58Ni 0.0371 0.1487 133.307 114.938 22.242 4.227 0.353 18.974 18.558 1
90Zr 0.0825 0.1488 139.222 124.874 19.264 5.091 0.176 17.187 16.976 1
112Sn 0.0866 0.1483 141.168 129.216 17.893 6.050 0.107 16.247 16.097 1
114Sn 0.0952 0.1481 141.069 129.161 17.744 5.926 0.091 16.154 16.008 1
140Ce 0.1277 0.1470 141.074 130.796 16.331 6.178 0.125 15.180 15.075 1
208Pb 0.1649 0.1444 140.059 133.376 13.965 7.445 0.163 13.369 13.313 1
238U 0.1791 0.1433 138.854 133.485 13.199 7.873 0.043 12.746 12.702 1
ffi
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even-odd energy. The formulas for the anharmonic coe
cientsK3 andK4 are given in Appendix B.

The relevant quantities calculated for some nuclei
shown in Table I. First, it can be seen that the central den
rC is almost a constant near the standard nuclear matter
sity r0, while the relative neutron excessd is close to zero,
i.e., rC'r0 , 0,d,0.18. Secondly, the average incom
pressibility ^K(r,d)& increases slowly from about 73 t
about 133 MeV, the gradient density dependent termKGD
decreases from about 28 to 13 MeV, the Coulomb ene
term 22EC /A decreases from21.4 to 27.9 MeV, while
the residual energy termK res decreases from 1.3 to 0.0
MeV, as the incompressibilityKA of the nuclei increase
slowly from 101 to 140 MeV when the nucleon number i
creases from16O to 238U. As the Coulomb energy contrib
utes toKA by less than 5%, while the residual energy co
tributes by less than 1%, the main contribution ofKA comes
from the average incompressibility^K(r,d)& and the gradi-
ent density-dependent termKGD which contributes with
about 10–20 %. At last, it can be seen also that the an
monic effect, as given by the difference betweenEM and
\v, is about 6% for light nuclei while it is less than 0.5% f
heavy nuclei. As the contribution22Eres/A of the residual
energy is very small for most of the nuclei, this term can
safely neglected in the practical calculation.

The contributions to the incompressibilityKA of finite nu-
clei along theb-stability line, calculated by the present co
strained TF minimization, are shown in Fig. 3. The full do
are the average incompressibility^K(r,d)&, the crosses are
the gradient density-dependent termKGD, the triangles are
the Coulomb energy term22EC /A, and the solid curve is
the total incompressibilityKA .

Figure 4 shows the isoscalar giant monopole resona
energyEM timesA1/3 calculated along theb-stability line in
comparison with the measured data. The lower solid curv
calculated by the present calculation with the simplifi
Myers-Swiatecki interaction, the dashed curve by the
proximate calculation which will be explained in the ne
section, the upper solid curve by Myers and Swiatecki’s f
mula ~2! with their parameters@11#, the triangles by Nayak
et al.’s leptodermous expansion ofKA with their parameters
for the SkM* interaction @5#, while the experimental data
~full dots! are taken from the compilation of Shlomo an
Youngblood @7# with the prescription @2,6,7,10#
EM
2 5E0

213(G/2.35)2, whereE0 is the measured centroi
energy andG the experimental width. It can be seen fro
-

e
ty
n-

y

-

r-

e

ce

is

-

-

this figure that the agreement between the two calcula
curves~the lower solid and the dashed curves! and the ex-
perimental data is satisfactory, since there is no param
being adjusted in the present work.

In calculatingEM by Myers and Swiatecki’s and Naya
et al.’s expression ofKA , the harmonic approximation~22!
is applied, wherêr 2& is the same as that used in our calc
lation. However, as the anharmonic effect is included in o
EM , the comparison between ourEM and that of Myers and
Swiatecki as well as that of Nayaket al. is not fully in the
same base.

The calculated energyEM for some spherical nuclei is
given in Table II in comparison with other calculations. M
is the present result using the simplified Myers-Swiate
interaction, JJ the result of Jennings and Jackson by using
hydrodynamic model@4#, GBMQ the TF model calculation
given by Gleisslet al. @22# with the Skyrme force, and BMS
the relativistic mean-field calculation by Boersmaet al. @14#.

As our calculation is a constrained minimization, it wou
be interesting to make a comparison with the result based
an absolute minimization, where the nucleon density dis
bution is not restricted to assume a specific form but is

FIG. 3. The contributions to the incompressibilityKA of finite
nuclei along theb-stability line, calculated by the present con
strained TF minimization. The full dots are the average incompre
ibility ^K(r,d)&, the crosses are the gradient-density-depend
term KGD , the triangles are the Coulomb energy term22EC /A,
and the solid curve is the total incompressibilityKA . It can be seen
that the main contribution ofKA comes from the average incom
pressibility ^K(r,d)&, the gradient-density-dependent termKGD

contributes with about 10–20 %, while the Coulomb energy te
22EC /A contributes by less than 5%.
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tained by a numerical procedure. However, this is out of
scope of the present work and we leave it as a future stu

V. LEPTODERMOUS EXPANSION

We will derive in this section Eq.~1! from our general
formula ~34!, by its leptodermous expansion similar to th
used in the droplet model of nuclei where the nuclear ene
EN(A,Z) of the nucleus (A,Z) can be written as

EN~A,Z!5EB1ES , ~71!

where

EB5E d3rr~r !e~rb ,db!5e~rb ,db! A ~72!

is the bulk energy, and

ES5ES01EGD5E d3rr~r !@e~r,d!2e~rb ,db!#1EGD

~73!

FIG. 4. Isoscalar giant monopole resonance energyEM times
A1/3 versusA along theb-stability line. The lower solid curve is
calculated by the present constrained TF minimization, the das
curve by the approximate calculation based on the droplet-mo
like formulas ~94! and ~95!, the upper solid curve by Myers an
Swiatecki’s formula~2! with their parameters@11#, the triangles by
the Nayaket al.’s leptodermous expansion ofKA with their param-
eters for the SkM* interaction@5#, while the full dots are the ex-
perimental data taken from the compilation of Shlomo and You
blood with their prescription@7#.

TABLE II. Isoscalar giant monopole resonance energyEM ~in
MeV! for some spherical nuclei.

Nucleus E0 G MS JJ GBMQ BMS

16O 19.56 22.4 18.6 18.0
40Ca 14.11 19.50 18.2 18.6 19.0
58Ni 17.06 3.28 18.56 18.9
90Zr 15.95 3.29 16.98 15.0 17.7 22.7
112Sn 15.64 3.67 16.10 16.7
114Sn 15.51 3.52 16.01 22.5
140Ce 14.95 3.00 15.08 15.6
208Pb 13.73 2.58 13.31 11.7 13.5 21.0
e
y.

t
y

is the surface energy@23#.
For a leptodermous distributionr(r ) of nucleons, the bulk

densityrb equals approximately the central densityrC which
is close tor0. For nuclei not far from theb-stability line, the
bulk neutron excessdb is small. Therefore, the equation o
statee(rb ,db) in Eq. ~72! can be expanded at the poin
(r0 ,0) as

e~rb ,db!52a11
1

2
K0e

21Jdb
22Ledb

21
1

2
Mdb

41•••,

~74!

wheree is the density variance

e52
rb2r0
3r0

, ~75!

while a1 , K0 , J, L, andM are the droplet model param
eters

a152e~r0 ,0!, K05K~r0 ,0!, J5
1

2

]2e

]d2 U
0

,

L5
3

2
r0

]3e

]r]d2U
0

, M5
1

12

]4e

]d4U
0

. ~76!

The subscript 0 here stands for the standard nuclear m
r5r0 , d50. As (r0 ,0) is the stable point of nuclear ma
ter, the condition]e/]ru050 has been applied in the expa
sion ~74!. As the nuclear force is symmetric in the proto
and neutron, the equation of statee(r,d) is an even function
of d, there is no odd order terms indb .

For the surface energyES , we can expand the equation o
statee(r,d) at (rb ,db):

ES'rb
]e

]rU
b
E d3rr~r !

r2rb
rb

1
1

18
K~rb ,d!E d3rr~r !

3S r2rb
rb

D 21 1

2

]2e

]d2U
b
E d3rr~r !@d~r !2db#

21EGD,

~77!

where the subscriptb stands for the bulk point (rb ,db).
Since the integrals in the above expansion as well as th
involved in the expression ofEGD depend on the characte
istic radiusR of the nuclei and the relative neutron exce
db ; ES is generally a function ofA1/3 anddb . For a lepto-
dermous distributionr(r ), these integrals will essentially b
performed around the surface area, and the surface en
can be expressed as

ES54pR2F 1

4pr 0
2 ~a21Fe1Ht212Ptdb2Gdb

2!G
18pRF a3

8pr 0
G1•••, ~78!

wherea2 , a3 , F, H, P, andG are the droplet model pa
rameters andt5(Cn2Cp)/r 0 is the reduced neutron ski
thickness.R is defined as 4pR3rb/35A.

ed
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If the Fermi distribution~64! is assumed for the nucleo
densityrq(r ), the above integrals can be performed analy
cally. Dropping higher order terms, the result is

E d3rr~r !
r2rb

rb
524pR2drbF11

r 0
2

24d2
t2G , ~79!

E d3rr~r !S r2rb
rb

D 254pR2drbF121
r 0
2

48d2
t2G

18pRd2rbF121
r 0
2

32d2
t2G ,

~80!

E d3rr~r !@d~r !2db#
258pRd2 rb

1

8

r 0
2

d2
t2, ~81!

EGD15
2pRa2rb

2T0
r0

a~12jdb
2!, ~82!

EGD25
pR2drb

2T0
3r0

a2

d2Fa2jadb
22

r 0
2

20d2
~11j!at2G

2
2pRa2rb

2T0
r0

Fa2jadb
21

r 0
6d

jatdbG . ~83!

In performing the integrals ofEGD1 andEGD2, the approxi-
mation of I 1(x)'2/x and I 2(x)'2 is employed as the inte
grals are mainly in the surface area where exp(2x)!1. Here
we omit the details of the derivation of the above formul
and give only some formulas used in this derivation in A
pendix C.

Substituting the above result into the Eq.~77!, the follow-
ing formulas can be obtained:

a25
1

12

d

r 0
K0S 113a

a2

d2
T0
K0

D , ~84!

a35
1

6

d2

r 0
2 K0 , ~85!

F5
3

4

d

r 0
K0S 12

1

3
k1022a

a2

d2
T0
K0

D , ~86!

G5
d

r 0
K0S LK0

2
1

24
k021

1

4
ja

a2

d2
T0
K0

D , ~87!

H5
1

288

r 0
d
K0F12

18

5
~11j!a

a2

d2
T0
K0

G , ~88!

P50, ~89!

where

kmn5
r0

m

K0

]m1nK

]rm]dn U
0

, m,n50,1,2,. . . . ~90!

In these formulas, the terms involving the Yukawa rangea
come from the gradient dependent part of energyEGD, while
-

,
-

the others come from the local density approximation. Es
cially, it is worthwhile to note that the surface energy coe
ficient a2 involves the contributions both from the local de
sity dependent energyELD as well as the gradient density
dependent energyEGD. Numerically, each of them
contributes about halfa2 if the parameters~56! are used. On
the other hand, the curvature energy coefficienta3 comes
only from ELD in the present model.

We have to note also that, different than the usual drop
model result,F is not 0 butP is 0. This is so because in th
present case the nucleon density is restricted to be the F
distribution ~64!, similar to the case of Nayaket al.’s work
where the nucleon density is restricted to be the general
Fermi distribution and theF term is not 0@5#. This situation
means that the Fermi distribution and even the general
Fermi distribution are not very appropriate for expressing
nucleon distribution in a calculation with high accurac
However, keeping this in mind, we can still expect to g
some general ideas from the simplified analytical derivat
by using these distributions.

Thus we have the leptodermous expansion of the t
energyETF as

ETF~A,Z!5F2a11
1

2
K0e

21Jdb
22Ledb

21
1

2
Mdb

4GA
1@a21~2a21F !e1Ht212Ptdb2Gdb

2#A2/3

1a3 A
1/31c1

Z2

A1/3F12e1
t

2A1/3G , ~91!

where the first term is the volume energy, the next two ter
the surface energy, and the last term the Coulomb energ
obtaining the above expression of Coulomb energy, the g
metrical relation@23#

t5
2

3
~ I2db!A

1/3 ~92!

and the approximation

EC'
3

5

Z2e2

Rp
~93!

are employed, whereI5(N2Z)/A, Rp5(3Z/4prpb)
1/3 is

the equivalent sharp charge radius, andrpb5(12db)rb/2.
Minimizing the total energy with respect toe anddb , the

following droplet-model-like relations can be obtained:

e5
Ldb

22~2a21F !A21/31c1Z
2A24/3

K0
, ~94!

db5
I1~3/8!~c1 /H !Z2A25/3

11~9/4!~J/H !A21/32~9/4!~G/H !A22/3. ~95!

As the above formulas can be used to calculate the nuc
densitiesrq(r ) approximately, when the Fermi distributio
~64! is assumed, we can also perform the calculation
plained in the last section by using therq(r ) obtained in this
way. The calculatedEMA

1/3 andKA are shown in Figs. 4 and
5, respectively, by the dashed curves.
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Let us now consider the leptodermous expansion of
incompressibilityKA . Similarly, the nuclear partKN of the
finite nuclei incompressibility can be written as

KN5
1

AE d3rr~r !K~r,d!1KGD5
1

AE d3rr~r !@K~rb ,db!

1K~r,d!2K~rb ,db!#1KGD5KB1KS , ~96!

whereKB andKS are the bulk and surface incompressibilit
respectively:

KB5
1

AE d3rr~r !K~rb ,db!5K~rb ,db!, ~97!

KS5
1

AE d3rr~r !@K~r,d!2K~rb ,db!#1KGD

5^K~r,d!&2K~rb ,db!1KGD. ~98!

The bulk incompressibilityKB can be expanded also a
the point (r0 ,0). As the bulk point (rb ,db) is close to
(r0 ,0), thevariation ofKB is very small aroundK0. There-
fore, it is a good approximation to keep only the followin
five terms in the expansion:

KB'K0S 123k10e1
1

2
k02db

22
3

2
k12edb

21
1

24
k04db

4D .
~99!

Substituting the formula~94! anddb'I into the above equa
tion, we have

FIG. 5. The calculated incompressibilityKA of finite nuclei
along theb-stability line by different methods. The lower soli
curve is calculated by the present constrained TF minimization,
dashed curve by the approximate calculation based on the dro
model-like formulas~94! and ~95!, the crosses by the present le
todermous expansion~110!, the upper solid curve by Myers an
Swiatecki’s formula~2! with their parameters@11#, and the triangles
by Nayaket al.’s leptodermous expansion with their parameters
the SkM* interaction@5#.
e

KB'K013k10~2a21F !A21/31S 12 k02K023k10L D
3SN2Z

A D 223k10c1Z
2A24/31

3

2
k12~2a21F !

3SN2Z

A D 2A21/31S 124k04K02
3

2
k12L D SN2Z

A D 4,
~100!

where the last two terms come from the last two terms in
expansion~99! and will be shown to be negligibly small.

For the surface incompressibilityKS , we can expand the
incompressibilityK(r,d) at (rb ,db):

KS5rb
]K

]r U
b

1

AE d3rr~r !
r2rb

rb
1
1

2
rb
2 ]2K

]r2U
b

1

AE d3rr~r !

3S r2rb
rb

D 21 1

2

]2K

]d2U
b
E d3rr~r !@d~r !2db#

21KGD.

~101!

As the integrals are exactly the same as those in Eq.~77!, we
can use the results given in the Eqs.~79!–~81!. Besides,
similar to the approximation used in performing the integr
of EGD, the term involvingf (x) in KGD @Eqs.~68! and~69!#
can be neglected and the following relations are obtaine

KGD1'
10

A
EGD1, KGD2'

10

A
EGD2, KGD'

10

A
EGD.

~102!

Therefore, we can have

KS52kS
0A21/31kcSA

22/31ksS
0 SN2Z

A D 2A21/31•••,

~103!

where kS
0 , kcS, and ksS

0 can be expressed in the prese
model as

kS
05

d

r 0
K0F3k102

3

4
k202

5

2
a
a2

d2
T0
K0

G , ~104!

kcS52
d

r 0
K0F3k1016k202

9

4
k30215a

a2

d2
T0
K0

G2a21F

K0

1
3

2

d2

r 0
2 k20K0 , ~105!

ksS
0 5

d

r 0
K0H F38 k222

3

2
k121S 3k1016k202

9

4
k30D LK0

G
2F15LK0

1
5

2
j Ga a2

d2
T0
K0

J . ~106!

Thus, we have the following leptodermous expansion
the incompressibilityKA :

e
et-

r
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KA'K02@kS
023k10~2a21F !#A21/31kcSA

22/3

1S 12 k02K023k10L D SN2Z

A D 2
1FksS0 1

3

2
k12~2a21F !G SN2Z

A D 2A21/3

2~213k10!c1Z
2A24/31S 124k04K02

3

2
k12L D

3SN2Z

A D 4. ~107!

The expansion~107!, except the term inI 4, is exactly the
same as Eq.~1! formally. It is worthwhile to note that the
coefficient 213k10 of the Coulomb energy termc1Z

2A24/3

and the coefficient (1/2)k02K023k10L of the asymmetry
term @(N2Z)/A#2 in the above equation are identical
Blaizot’s formulas@24,25#. It is worthwhile also to note that
as the variation of the incompressibilityKA comes essen
tially from the surface incompressibilityKS , the contribution
from the terms involvingkcS andksS

0 are as important as tha
from the term involvingkS

0 only, so the term proportional to
A22/3 should be taken into account in the data fitting.

The coefficientskmn can be easily calculated with th
help of Eqs. ~52!, ~54!, and ~66!, based on the Myers
Swiatecki interaction, and the use of the corresponding
rameters~56!. In particular, our value 3k1054.92 is in the
range 3;5 given by Blaizotet al. @8# where the symbol
S/Knm is used. This stresses the point that the Sey
Blanchard-like nonlocal interaction is similar to the Skyrm
type interaction in the description of nuclear matter equat
of state.

Finally, we have

KB'234.422184.206A21/32392.62SN2Z

A D 2
23.7305Z2A24/3240.08A21/3SN2Z

A D 2
1124.67SN2Z

A D 4, ~108!

KS'2365.725A21/3131.930A22/31373.21A21/3SN2Z

A D 2,
~109!

KA'234.4222281.518A21/3131.930A22/3

2392.62SN2Z

A D 21333.13A21/3SN2Z

A D 2
25.2462Z2A24/31124.67SN2Z

A D 4. ~110!

The last two terms in Eq.~108! come from the last two term
in the expansion~99!. Numerically, it can be seen that th
contributions of these two terms are negligible in compar
a-

r-
-
n

g

with the other terms. This means that at least the term inI 4

can be omitted in the final result@5#.
Figure 5 gives the comparison between the incompre

ibility KA obtained by different methods. The lower sol
curve is calculated by the present constrained TF minim
tion, the dashed curve by the approximate calculation ba
on the droplet-model-like formulas~94! and~95!, the crosses
by the present leptodermous expansion~110!, the upper solid
curve by Myers and Swiatecki’s formula~2! with their pa-
rameters@11#, and the triangles by the Nayaket al.’s lepto-
dermous expansion with their parameters for the SkM* in-
teraction@5#. The calculations are along theb-stability line
nuclei. The relatively big deviation of the present leptod
mous expansion from the exact result is due to the defec
the Fermi distribution discussed in the second paragraph
ter Eq.~90!.

VI. DISCUSSION AND SUMMARY

In the present work, the calculation is made under
spherical symmetry approximation only. However, it can
seen from Fig. 4 that there are ‘‘bumps’’ in the regions
deformed nuclei where the spherical symmetry distribution
obviously not a good approximation. Therefore, it would
interesting to work out a more realistic theory for deform
nuclei, to see if this kind of bump is due to the effect
deformation or not.

As the trend of the experimental data shown in Fig. 4 c
be well reproduced by the present calculation without adju
ment of any existing parameter, the nuclear TF model w
the simplified Myers-Swiatecki interaction is shown to
able to give a consistent description for the isoscalar g
monopole resonance, besides the nuclear masses an
other properties of nuclei. This suggests that the meas
ment data of the isoscalar giant monopole resonance en
EM should be included in the fitting of the model paramet
when the calculation for deformed nuclei is included.

Experimentally, it is well known that the measurements
the nuclear masses and the fission barriers can provide in
mation about the nuclear matter equation of statee(r,d),
such as that given by the droplet model paramet
a1 , K0 , J, L, andM . Now the present work shows tha
the measurement of the energyEM can provide information
about the nuclear matter incompressibilityK(r,d), such as
that given by the coefficientsK0 and kmn in the leptoder-
mous expansion ofKA . However, in order to extract this
information of nuclear matter, high precision measureme
for closed shell nuclei and new data for nuclei away from
b-stability line are needed. Even our purpose in the pres
work is not to extract this information of nuclear matter; w
can say that the value of the standard nuclear matter inc
pressibility K05234 MeV, given by Myers and Swiateck
@15#, is supported by the present calculation, and this valu
close to that given by Blaizotet al. recently@8#.

In summary, the main results and conclusions of
present work are as follows.

~1! The finite nucleus incompressibilityKA is essentially
the nuclear matter incompressibilityK(r,d) averaged over
its nucleon distributionr(r ), added to a termKGD contrib-
uted from the gradients of nucleon densities, and with tw
the Coulomb energy per nucleonEC /A subtracted.KGD and
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22EC /A contribute about 20–10 % and 1–5 %, respe
tively, to the nuclear incompressibilityKA , from the light to
the heavy nuclei, in this order, whereas the shell and
even-odd energy corrections are negligibly small. It is int
esting to note that the relation~34! is interaction indepen-
dent, and interaction-independent information of nucl
matter incompressibility is expected to be extracted by us
this relation.

~2! The leptodermous expansion~1! used in the data fit-
ting is justified again and is shown to be an approximation
the exact result by the present TF theory with the lin
scaling assumption. The approximation is good for hea
nuclei but not for light ones. It is shown also by the pres
work that the curvature termkcSA

22/3 cannot be neglected
as it is very important in the description of the surface
compressibilityKS . All of these results are also interactio
independent. The reason why the curvature term has
been included in some data fitting should be carefully inv
tigated further.

~3! The anharmonic effect of the breathing mode contr
utes to the isoscalar giant monopole resonance energyEM in
about 6% of light nuclei and less than 0.5% of heavy nuc
However, as this effect depends on the anharmonic te
K3 andK4, and the latter depends on the choice of inter
tion as well as the values of the model parameters, the ev
ation of the anharmonic effect is both model and interact
dependent.

~4! In developing a localized approximation, the Seyle
Blanchard-type interaction is shown to be similar to t
Skyrme-type interaction, in the sense that the dens
gradient-dependent terms appear in the Hamiltonian fu
tional.
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APPENDIX A: A QUANTUM MECHANICAL MODEL
FOR SCALING

The Schro¨dinger equation for a nucleon with massmN
moving in the potentialV(r ) is

2
\2

2mN
S ]2

]x2
1

]2

]y2
1

]2

]z2Dwk~r !1V~r !wk~r !5«kwk~r !,

~A1!

wherewk(r ) is the single-particle wave function and«k the
single-particle energy of nucleon. If the potentialV(r ) is
changed intoVs(r ), the wave functionwk(r ) and the energy
«k will be changed intowk

s(r ) and«k
s , respectively, accord

ing to the changed equation

2
\2

2mN
S ]2

]x2
1

]2

]y2
1

]2

]z2Dwk
s~r !1Vs~r !wk

s~r !5«k
swk

s~r !.

~A2!
-

e
-

r
g

o
r
y
t

-

ot
-

-

i.
s
-
lu-
n

-

-
c-

ed.

f

If the potential obeys a two-dimensional scaling

V~r !→Vs~r !5h2V~hr !, ~A3!

whereh is the scaling parameter, Eq.~A2! can be rewritten
as

2
\2

2mN
S ]2

]xs
2 1

]2

]ys
2 1

]2

]zs
2Dwk

s~r !1V~r s!wk
s~r !

5
1

h2 «k
swk

s~r !, ~A4!

wherer s5hr . Comparing the above equation to the origin
one ~A1!, it can be seen that

wk
s~r !}wk~hr ! ~A5!

and

«k
s5h2«k . ~A6!

Up to an arbitrary phase factor, the proportional constan
Eq. ~A5! can be determined by the normalization of wa
functionswk(r ) andwk

s(r ). It gives

wk
s~r !5h3/2wk~hr !. ~A7!

Therefore, we have the three-dimensional scaling of den

r~r !→rs~r !5h3r~hr !. ~A8!

The spherical harmonic potentialV(r )5 1
2mNv2r 2 is an

example for this scaling transformation. If the potential p
rameterv has a change as

v→vs5h2v, ~A9!

it can be shown easily that the potential and the energy
genvalues have the two-dimensional scaling property~A3!
and ~A6!, i.e.,

V~r !→Vs~r !5
1

2
mNvs

2r 25h2
1

2
mNv2~hr !25h2V~hr !,

~A10!

«k→«k
s5\vsS nk1 1

2D5h2\vS nk1 1

2D5h2«k .

~A11!

The change of the potential parameterv ~A9! means a
squeezing~for h.1) or an extension~for h,1) of the po-
tential radially, so it results in a squeezing~for h.1) or an
extension ~for h,1) of the nuclear density radially, a
shown by Eq.~A8!. In this way, the scaling assumption a
sumed in the text is suitable to describe the breathing mo

The scaling of the shell correctionEshell and the even-odd
energyEeven-oddcan be determined by the scaling~A6! of the
single-particle energy of nucleons. The shell correct
Eshell can be defined, according to the Strutinsky meth
@26#, as@1#

Eshell5E2Ẽ, ~A12!
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whereE5( i51
A «ki , and Ẽ is the smooth part of the abov

summationE after some arithmetic smoothing procedure.
both E and Ẽ are linear in«k , the summations as well a
their difference~A12! will have the same scaling as«k ~A6!,
i.e.,

Eshell→Eshell~h!5h2Eshell, ~A13!

whereEshell(h) is the scaled shell correction.
The even-odd energyEeven-oddis the double of the energ

gapD which is determined according to BCS theory@27# by
the following gap equation@1#:

2

G
5E

«F2S

«F1S1

2

g~«!d«

A~«2«F!21D2
, ~A14!

whereG is the interaction constant,g(«) the single-particle
energy level density,«F the Fermi energy of energy leve
andS is the energy interval around the Fermi energy wh
is relevant for the pair correlation of nucleons. In case
single-particle potential of the mean field has the tw
dimensional scaling~A3!, it is consistent to assume that th
residual interaction between the nucleons also has the
dimensional scaling

G→Gs5h2G. ~A15!

In addition, as the single-particle energy«k has the two-
dimensional scaling~A6!, it can be seen easily that the Ferm
energy «F and the energy intervalS also have the two-
dimensional scaling

«F→«F
s5h2«F , S→Ss5h2S, ~A16!

whereas the energy level densityg(«) has the following in-
verse two-dimensional scaling:

g~«!→gs~«s!5
f

D«s
5

f

h2D«
5

1

h2g~«!, ~A17!

wheref is the degeneracy of the single-particle energy lev
Therefore, it can be shown from Eq.~A14! that the energy
gap has two-dimensional scaling

D→Ds5D~h!5h2D. ~A18!

Accordingly, the even-odd energyEeven-oddalso has the two-
dimensional scaling

Eeven-odd
s 5Eeven-odd~h!5h2Eeven-odd ~A19!

whereEeven-odd(h) is the scaled even-odd energy. All of th
results given above are based on the model assumption~A3!.

APPENDIX B: SOME FORMULAS FOR EGD , K3, AND K4

The following are the functionalse1n ande1p that appear
in theEGD:

e1n52e1ng2e1na1e1nb , ~B1!

e1p52e1pg2e1pa1e1pb , ~B2!
e
-

o-

l.

where

e1ng5
1

2
g lS rn

r̂0
D 2/3

1
1

4
gu5 3S

rp

r̂0
D 2/32S rn

r̂0
D 2/3, for rn,rp

2
rp

r̂0
S rn

r̂0
D 21/3

, for rn.rp ,

~B3!

e1na5
1

2Fa l

rn

r̂0
1au

rp

r̂0
G , ~B4!

e1nb5
3

5FBlS rn

r̂0
D 5/31BuS rp

r̂0
D 5/3G ; ~B5!

the expressions ofe1pg , e1pa , and e1pb can be obtained
from Eqs.~B3!, ~B4!, and~B5!, respectively, by interchang
ing the subscriptn andp.

The following is the functionale2n that appears in the
EGD:

e2n5
1

6S rn

r̂0
D 21/3F g l1guH 1, for rn,rp

rp

rn
, for rn.rp

G .
~B6!

The expression ofe2p can be obtained by interchanging th
subscriptn andp.

The following formulas are used for calculating the a
harmonic coefficientsK3 andK4:

1

A

d3EA~h!

dh3 U
h51

5
r0T0
A E d3r F26C~d!S r

r0
D 6/3160D~d!

3S r

r0
D 8/3G1

1

A

d3EGD~h!

dh3 U
h51

, ~B7!

1

A

d4EA~h!

dh4 U
h51

5
r0T0
A E d3r F120D~d!S r

r0
D 8/3G

1
1

A

d4EGD~h!

dh4 U
h51

, ~B8!

where @d3EGD(h)/dh3#h51 and @d4EGD(h)/dh4#h51 can
be obtained by the standard scaling calculation.

APPENDIX C: SOME FORMULAS FOR INTEGRALS
INVOLVING FERMI FUNCTION

Let us consider the integral

Gm~c!5E
0

`

dx fm~x,c!g~x!, m.0, ~C1!

where f (x,c) is the Fermi function



h

e
-
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f ~x,c!5
1

11ex2c , 0<x,`, 0<c,`, ~C2!

which has the following symmetry properties:

f ~2x,2c!5 f ~c,x!, f ~x,c!1 f ~c,x!51, ~C3!

]nf

]xn
5~21!n

]nf

]cn
. ~C4!

The nth order derivative off can be expressed as an11
order polynomial off as

] f

]x
5 f 22 f ,

]2f

]x2
52 f 323 f 21 f , ~C5!

and so on. For a well behaved functiong(x), the following
formulas can be obtained by using Eqs.~C4! and ~C5!:

Gm11~c!5Gm~c!2
1

m

dGm~c!

dc
, ~C6!

E
0

`

dx
] f m~x,c!

]x
f n~x,c!g~x!5m@Gm1n11~c!2Gm1n~c!#,

~C7!

E
0

`

dx
]2f m~x,c!

]x2
f n~x,c!g~x!5m~m11!Gm1n12~c!

2m~2m11!Gm1n11~c!

1m2Gm1n~c!. ~C8!

Applying Eq. ~C6!, the above Eqs.~C7! and ~C8! can be
rewritten as

E
0

`

dx
] f m~x,c!

]x
f n~x,c!g~x!52

m

m1n

dGm1n~c!

dc
,

~C9!

E
0

`

dx
]2f m~x,c!

]x2
f n~x,c!g~x!52

m~m11!

m1n11

dGm1n11~c!

dc

1
m2

m1n

dGm1n~c!

dc
.

~C10!

Furthermore, if g(0)50, h(x)5dg(x)/dx, and
limx→` f

m(x,c)g(x)50, it can be shown that

dGm~c!

dc
5Hm~c!, Gm~c!5Gm~0!1E

0

c

dc Hm~c!,

~C11!

where

Hm~c!5E
0

`

dx fm~x,c!h~x!. ~C12!

Similarly, we also have
E
0

`

dx
] f m~x,c!

]x
f n~x,c!g~x!52

m

m1n
Hm1n~c!.

~C13!

Using Eq.~C7!, we can obtain another recursion relation

Gm11~c!2Gm~c!52
1

m
Hm~c!. ~C14!

In the present application, the following integral wit
g(x)5xn is needed:

Imn~c!5E
0

`

dx fm~x,c!xn, m.0, n.21. ~C15!

According to Eqs.~C6!, ~C11!, and~C14!, the following re-
cursion relations ofImn(c) can be obtained, respectively:

Imn~c!5Im21,n~c!2
1

m21

dIm21,n~c!

dc
, ~C16!

dImn~c!

dc
5nImn21~c!, Imn~c!5Imn~0!1nE

0

c

dcImn21~c!,

~C17!

Im11,n~c!5Imn~c!2
n

m
Im,n21~c!. ~C18!

The general expression ofImn(c) for integern>0 can be
found in Refs.@28–30#. We will give some simple relations
here for bothm5m andn5n being integers. In this case, th
specific expression ofI mn(c) can be obtained from the sim
plest I 10(c) and the value ofI 1n(0):

I 10~c!5E
0

` dx

11ex2c 5c1v10~c!,

v10~c!52 (
k51

`
~21!k

k
e2kc, ~C19!

I 1n~0!5E
0

` xndx

11ex
5G~n11!S 12

1

2nD z~n11!, n.21,

~C20!

whereG(p) is the gamma function, andz(p) is the Riemann
function.

The expression ofI 1n(c) can be obtained fromI 10(c) and
I 1n(0) by Eq.~C17!:

I 1n~c!5I 1n~0!1nE
0

c

dcI1n21~c!5P1n~c!1v1n~c!,

~C21!

where

P1n~c!5nE
0

c

dcP1n21~c!1P1n~0! ~C22!

is an11 order polynominal ofc and
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v1n~c!52nE
c

`

dc v1n21~c!

5~21!n21n!(
k51

`

~21!k
1

kn11e
2kc. ~C23!

The integral constantP1n(0) in Eq. ~C22! can be calculated
as

P1n~0!5I 1n~0!2v1n~0!

5@12~21!n#~1222n! n! z~n11!. ~C24!

The expression ofI mn(c) can be obtained fromI 1n(c) by
Eq. ~C16!:
l.

M

cl.

c

f

I mn~c!5I m21,n~c!2
1

m21

dIm21,n~c!

dc
5Pmn~c!1vmn~c!,

~C25!

where

Pmn~c!5Pm21,n~c!2
1

m21

dPm21,n~c!

dc
~C26!

is an11 order polynominal ofc and

vmn~c!5vm21,n~c!2
1

m21

dvm21,n~c!

dc
~C27!

is an infinite series in power of exp(2c).
o-
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