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Thomas-Fermi theory of the breathing mode and nuclear incompressibility
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A Thomas-Fermi theory with a linear scaling assumption is proposed for the breathing mode of nuclear
collective motion. It leads to a general reskilt=(K(p,8))+ Kgp— 2E /A which states that the incompress-
ibility K, of a finite nucleusA mainly equals the nuclear matter incompressibiktfp, 5) averaged over the
nucleon density distributiop(r) of nucleusA, added to a terrK s contributed from the gradients of nucleon
densities, with twice the Coulomb energy per nucl&yYA subtracted. The nuclear matter equation of state
given by the Thomas-Fermi statistical model with a Seyler-Blanchard-type interaction is employed to calculate
the nuclear matter incompressibili§(p,5) and a localized approximation of the Seyler-Blanchard-type in-
teraction, which is shown to be similar to the Skyrme-type interaction, is developed to calculate the value of
Kgp- Kgp and —2E¢ /A contribute about 20—10 % and 1-5 %, respectively, to the nuclear incompressibility
K, from the light to the heavy nuclei. The shell and the even-odd effects are discussed by a scaling model
which shows that these effects can be neglected for medium and heavy nuclei. The anharmonic effect is shown
to be significant only for light nuclei. The leptodermous expansiol ofs obtained and the contribution from
the curvature term proportional ta~2% is discussed. The calculated isoscalar giant monopole resonance
energy Ey for a variety of nuclei are shown to be in agreement with experimental measurements.
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I. INTRODUCTION on the choice of nuclear interaction in general.
Serious attempts in order to minimize the model and the
The isoscalar giant monopole resonance of nuclei, welinteraction dependence of theextracted from the measured

known as the breathing mode of nuclear collective motionEy have been made. One of these attempts is to consider the
has been studied extensively in the context of various modauclear matter as a limit of the matter in finite nuclei. In this
els, since it is expected to be able to provide very importantase, one is justified in expanding the incompressibKigy
information for the incompressibility< of nuclear matter, of finite nuclei in a series of power &&= 3 [2], similar to
especially for the incompressibiliti, of standard nuclear the leptodermous expansion used in the droplet model of
matter. By nuclear matter we mean the uncharged nucleonuclei[3], i.e.,
system distributed uniformly in the space, and by standard

nuclear matter we mean the ground-state nuclear matter with N—2Z\2
equal neutron and proton numbdds. Theoretically, there  K=Ko—ksA™ ¥+ k A~ 23+ [Kkeg+ kssA‘m](T)
are two separate problems. The first problem is how to relate

the measured isoscalar giant monopole resonance energy Ec

Ey to the incompressibilityK 4 of a finite nucleus. This is a BLCWNE (1)

dynamic problem, and its solution requires a model on the

breathing mode of nuclear collective motion. It is believed

that the model based on the scaling assumption is an apprathereKy, Ksg, Kes, Ksg, Kss, and k¢ are adjustable pa-

priate candidatE2]. The second problem is how to relate the rameters fitted to measurdgl,, A=N+Z, N and Z are

incompressibilityK , of a finite nucleus to the incompress- the neutron number and the proton number, respectively, and

ibility K of nuclear matter. This is a static problem in the E¢ is the Coulomb energy. The paramekgs in the expan-

adiabatic approximation, its solution depends on the modedion (1) can be identified as the incompressibility of standard

of nuclei and the model of the breathing mode, and the funauclear matter in the scaling moddW,5], its value

damental argument here is that the matter in a finite nucleul§ =220+ 20 MeV obtained in this wa}2] was accepted for

is different from the nuclear matter due to the electric charge long time.

and the finite size of nuclei. Therefore, the information about However, a reanalysis of the experimental dat&gf by

the incompressibilityk of nuclear matter extracted from the a least-squares fit of the above semiempirical expansion

isoscalar giant monopole resonance of nuclei is model degives K, ranging from 200 to 350 MeV{6,7]. It is shown

pendent and even interaction dependent, since both thbat these adjustable parameters in the expandipare not

model of nuclei and the model of the breathing mode dependompletely free and the physics involved in these parameters
is important in this analysig3]. This is emphasized also by
the fact that the value df, obtained from different nuclear

*Permanent address: Department of Technical Physics, Pekingieasurements and astrophysical observations are spread over
University, Beijing 100871, China. a large range from 180 to 800 Me@]. Therefore, theoret-
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55 THOMAS-FERMI THEORY OF THE BREATHING MODE AND ... 2845
ical attempts in order to clarify the model and the interaction Il. MODEL AND THEORY
dependence of the relationship betwa€g and K are re-
quired[10].

In this regard, a general relationship betwdenandK,
has been proposed recentlyl]:

The fact that there is only one isoscalar giant monopole
resonance energlf,, for each nucleus experimentally pro-
vides a strong evidence that this resonance is a kind of
simple collective harmonic oscillation with only one degree
E of freedom. This collective motion of nuclei corresponds to
_C, (2)  the breathing mode of radial oscillation. The most intuitive
A choice of the variable for the breathing mode is the radius of
) o o the nuclei[8,11]. But there are at least three characteristic
where a, is the binding energy coefficient anly the  agii for a spherically symmetric leptodermous distribution
nuclear energy of the nucleus. This result depends only 0gf hycleons: the central radi®, the equivalent sharp radius
the nuclear equation of state in the sense that only the 9eiR, and the equivalent root mean square radu$13]. In
eral functional form of the equation of state given by thegrger to avoid an obvious dependence of the theory on the

nuclear Thomas-FermiTF) model with a generalized gpecific choice of the radius, the scaling factoin the radial
Seyler-Blanchard interactidri2] has been used. In addition, |inear scaling transformation

it is interesting to note that E@2) is also a nonperturbative
formula, as no expansion in power Af ® has been used. r—re=gr )

Therefore, a general relationship betwédéenandK (not
only K,) is to be worked out, which is expected to dependis chosen as the dimensionless collective coordinate for the
mainly on the nuclear equation of state, within the TF modelreathing mode in the present work.
of nuclei and the scaling model of the breathing mode. In In a TF model of nuclei, one of the basic quantities is the
addition, an approximate expansion similar to Ep.is ex-  nucleon density(r) which can be normalized to the number
pected to be derived from this general relation. This expecef nucleonsA. Under the scaling transformatiof8), the
tation is supported also by the numerical result based oscaled density4(r) is given by
microscopically constrained Hartree-Fock and random-phase 3
approximation(RPA) sum rule calculations. As a matter of p(r)—=ps(r)=7"p(7r). (4)
fact, independent of the chosen interactions
Ka~0.6&K,—3.5 for 2°%Pb and a similar relationship for
1185 are obtainefB]. The reason why we use the TF model
of nuclei is that the incompressibility is essentially a macro-
scopic concept and the TF model is appropriate to describ
the macroscopic properties of nuclei. S\ 2

The purpose of the present paper is to derive this general g zlm d3r 2_ l 2y [ 7

e pu . IS to derive . =5My | ErpDIVOP=5mAr) | — |, ()

relationship between the incompressibiliy of finite nuclei n
and the incompressibilit)k of nuclear matter, by using the
nuclear TF model and the linear scaling assumption, and t
show that the expansiofl) holds approximately, indepen- 1 11 1
dent of the choice of interaction. Section Il describes the <r2>s=—f d3rps(r)r2=—2—f d3rp(r)ri= =(r?,
main model assumption and the general TF model treatment, A 7 A Y
where the TF nuclear energy is separated into two parts, one ©®
of which depends only on the local nucleon densities and the C N .
other on ths gradient); of densities. The result given in thi ndv(r)=—rx/7 is the velocity field of the breathing mode
section is interaction independent, since only the general fmgef'.ned by .the equation of contmmap_s/atfv-(psv)=0.
mulation of the TF model and the linear scaling assumptiorP? introducing[14] s=(7— 1)/, the kinetic energy can be
are used. The specific interaction and model of nuclei ar&ewritten as
needed only when practical calculation is performed. In this 1
context, the localized approximation of the generalized Ek:—mNA(rZ)(é)z. (7)
Seyler-Blanchard interaction is given in Sec. Ill. In applying 2
the above theory to calculate_ the |soscala_r giant monopole The ground-state enerd, of nucleus A.,Z) can be writ-
resonance energl,, of nuclei, the constrained TF model ten in the TE model as
calculation is given in Sec. IV. Section V discusses the lep-
todermous expansion of the incompressibility of finite Ep=En+Ec+Ees, 8
nuclei which gives a theoretical justification for the expan-
sion (1). In Sec. VI a short discussion and summary arewhereE, is the nuclear energ§ the Coulomb energy, and
presented. The theoretical foundation of the scaling assumg, . the residual energy which includes mainly the shell cor-
tion based on a quantum mechanical model is discussed iction and the even-odd enerdy5]. Furthermore, the
Appendix A, the specific expressions of the quantities apnuclear energyE, can be separated generally into a term
peared in the numerical calculation of Secs. Ill and IV areg, ; depending on the local densities and a t&gp depend-
collected in Appendix B, while some formulas for integrals ing on the gradients of densities,
involving Fermi function which appeared in the leptoder-
mous expansion are given in Appendix C. En=Ep+Ecp. (9

Kom N o~ 7-302%
AT —a, A0 Ko

‘Similar relations hold for the neutron densjiy(r) and the
proton densityp,(r).

The kinetic energy of the breathing mode oscillation can
Be written as

WheremN is the nucleon mass,



2846

Specifically, the local density dependent teEp, can be
written generally as

Lo [ ro(rep,o), (10

wheree(p, ), the energy per nucleon, is the nuclear matter

equation of state, and the relative neutron exéesbnuclear
matter is

Pn~ Pp
—p .

5= (12)

The Coulomb energ¥. can be divided into Coulomb
direct energyE¢,, and Coulomb exchange enerfy, [16],
i.e., Ec=Ecout Eex, Where

1 d¥d3 e?py(r)pp(r’)
ECoulzz |I’—I"|

23 3 1 3, 43
Eo=—€ i fd rpp(r). (12
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_1[d3EA(77) (SEa(n)
3T 3 2 '
Al dyg dzy =1
:E d*Ea(7) ,,dSEA( 7) GdZEA( )
4 A d774 < d7]3 d772 1
(19

In writing Eq. (17), the stability condition of the breathing
mode vibration [dEx(#%)/d7],-1=0 has been applied.
From Egs.(14) and (15), this condition can be written ex-
plicitly as

dEgp(7)

de dE.
f drp(n3p(0) 5+ —g 47)

dn

+Ec+

Il
[

n=1

(20

7
=0.

In an harmonic approximation, E¢L7) is reduced to
1

5 AK,S?,

Ea(7)~Eat (21)

the isoscalar giant monopole resonance ené&gyis given

The potential energy of the breathing mode can be asas the harmonic oscillator enerdy~%», and from Egs.
sumed, except by a constant, to be the scaling transformed) and(21),

energyE,(#) of nuclei, in an adiabatic approximation,
Ea(7)=En(7)+Ec(n) +Ered 1),

whereEn(7) =E_p(7)+Eep(7),

(13

ELD(ﬂ)=f dsrps(f)e(psﬁs):f d®rp(r)e(7°p,5),

(14
1 d%d®re?pp(r)pp(r')
EC(’?)_E lr=r"]
3/3 1/3
2 3 4/3, —
—e Z(;) fd rpp (r)=nEc, (15
and
Ered 7) = Eshei( 7) + Eeven-odé 7) (16)

whereEgo( 7) and Eqenoqd 7) are the scaled shell correc-

tion and even-odd energy, respectively.

For a small vibration of the breathing mode, the scaling

variable 7 oscillates around its stable valug=1 with a
small amplitude|s|<1, Ex(#%) can be written approxi-
mately as

1 ) 1 3 1 4
where
1 dZEA( 7)
ASA A (18)

n=1

is the incompressibility of the finite nucleds[4], while

(22

. [ 72K 5
w= N
mi(r%)
From Eq.(13), the incompressibilityk , can be divided
into three party, K¢, andK,

Ka=KntT Ko+ Kies, (23
where
K _1 d*En(7) _1 d’Ec(7)
NTA do? ”:1’ €A dy? nzl,
1 d%Ed 7)
Kres:K dr—;zn:l- (24)

The main contribution to the incompressibilitg, comes
from the nuclear energfy . From Eq.(14), the following
expression can be derived,

1 de] 1 d’Egp(7n)
== 3 )
Kn Af d fP(f)[K(p.f?)Jer(f)&p +A—d772_ L
(25
where
K(p,8)=9 Vi 26

is the incompressibility of nuclear matter. Applying the sta-
bility condition (20), the following expression dfy results:

E dE
_C_2 red 17)

A A dy 77=l,

Kn=(K(p,8))+Kgp—2 (27

where
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1 K, A% 1 5 KI %% 1
8 A(r9)? mi (hw)? 24AIrY°* md (hw)*’
(35

1
(K(pﬁ)):KJ d®rp(r)K(p,s) (28) Ew=fio+

is the nuclear matter incompressibility averaged over the
nucleon distributiorp(r) of nuclei, and It can be seen easily that, as the mean square of radius
(r?) is proportional toA%® while K; andK, as well ashw

Kot d*Eep(7) , dEgp(n) (29 have no serious changes with the nucleon numbethe
GDTAl dy? dn =1 anharmonic effect is significant only for light nuclei.
is the contribution from the gradients of densities. Ill. LOCALIZED APPROXIMATION
Due to the scaling propert§15) of the Coulomb energy, OF SEYLER-BLANCHARD-TYPE INTERACTION
there is no contribution from the Coulomb energy directly to
the incompressibility of finite nuclei, i.e§ =0, and due to In the TF or the extended TF theory, the nuclear energy
the scaling assumptiofi6) of the residual energy, the con- can be written generally as
tribution from the residual energy can be divided into two
distinct parts, i.e.K o= Ksheit Keven-ods Where EN:f d3rh[pn(r),pp(r)], (36)
. 1 dzEsheI( 7) . ) . )
Kshell_zd—nz : where the Hamiltonian densiti p,(r),p,(r)] is a func-
7=1 tional of nucleon densities, (r) andp(r). For the extended

TF theory or the TF theory with Skyrme-type interaction
(30) [17], h[pn(r),pp(r)] depends also on the gradients of
pn(r) andpy(r), while for the TF theory with the Seyler-
Blanchard-type interactioh[ p,(r),p,(r)] is expressed as a
In a quantum mechanical model discussed in Appendix Aspace integral as
the following scaling properties are obtained:

_ 1 d°Ecven-oaf 7)
Keven-odd™ K d—7]2

n=1

= 37 ’ 12
Esheil 77)=772Eshe||' Eeven-odd "7)2772Eeven-odd (3D h[pn(l’),pp(l')]_f asr'Y(r,r")E(r,r’), (37
s0 we have whereF(r,r’) is the functional ofp,(r) andpp(r) given at
E pointsr andr’, andY(r,r’) is the Yukawa potential with the
Ered 7)=7°Eress  Kies= 2%“_ (3  force rangea:
1 ef|r—r’|/a
Substituting Eqs(27), (32), andK-=0 into Eq.(23), the Y(rr')= 38

following expression folK 4 results: 4ma’ [r—r’|/a

For finite nuclei, the nucleon distribution spreads over a
(33) finite region whose radius is much larger thanand the
integral of Eq.(37) can be calculated approximately, for the
spherically symmetric distribution of nucleons, by using the
Taylor expansion of(r,r’) at the pointr’ =r. It gives

Ec+E
Ka=(K(p,8))+Kgp—2——7—

Numerically, the residual energy term2E,.¢/A can be ne-
glected within an error of less than 1%, so we have finally

= o
KA=(K(p,5))+KGD—Z%. (34) fd3r’Y(r,r’)F(r,r’)=n§0mln(r/a)F(”)(r), (39

The formula (33) or (34), similar to the Myers- Where
Swiatecki’'s formula(2), is our main result. This formula is
general, as only the general expression of the TF model en-
ergy together with the linear scaling assumption are em-
ployed. In the practical application of this formula, the spe-
cific nuclear matter equation of sta&p,s), the nucleon 1
distribution p(r) of nuclei, the relative neutron excegsof [,(X)==[Pn(X)—Qn(x)e™*], (41)
nuclear matter in the nuclei, the enerByp depending on X
the gradients of nucleon densities, and the specific expres- .
sion of Coulomb energ¥ are needed, and all of them are _ n =
model and interaction dependent. Pn(x)—go (1) (=X)"Pm(X),

In order to calculate the anharmonic effect given by the
terms beyond the second order in EG7), the following n
perturpation result is obtained, b_y r?eglecting higher order Qn(X)ZE (E)(—x)km!£[1+(—1)m], (42)
terms in the second order correction: k=0 2

_d"F(r,r’)
~ A |,

r'=r

F™(r) (40)
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B (x)=xM+m(m—1)x""2+ . . . + mix(L-cosnm2 ent for interactions between like and unlike nucleons. The
m ’ difference is described by a paramefeior the leading part
m=n—k+1. (43  Of the interaction

1

As examples which will be used in the present calculation, @ == (178 o (49)
we have 2
2 B B and by¢ for the remaining parts of the interaction
lo()=1, 1,()=7(1-e™), Ix(x)=2(1+2e7).

(44) B =

Substituting Eqs(37) and (39) into Eq. (36), the nuclear
energyEy can be expressed as an expansion where the zero _
order term corresponds to the local density-dependent en- o1u=5 (150 o, (50)

ergy,

1
AFO B Nu=5 170 7,

N[ =

wherel,u refer to “like” and “unlike,” and are associated
ELD:f d3rF(r,r)=f d3rp(r)e(p, d), (45) with the minus and plus signs, respectively.

The first two terms in the square bracket of E4f), with
={, are the original Seyler-Blanchard attractions with
omentum-dependent repulsi¢h8]. The third term is an
additional attraction, while the fourth term is an additional

while the higher order terms contribute to the energy dependz
ing on the gradients of densities,

o repulsion.
Enp= 2 Ecnn=Ecpi+ Egpot - - -, (46) Calculating the potential energy with the above interac-
R =T tion (48), together with the kinetic energy calculated by the

TF model, theF(r,r’) can be obtained12,15. From this

where F(r,r"), the nuclear equation of sta¢€p, 5) can be obtained
an as
EGDn:an dBriy(r/a)F™(r), n=12,--. (47 p |23 p |33 p |53
' e(p,5)=T0[B(5)(—) —C(5)(— +D(5)<—> }
Po Po Po

For finite nuclei, since the nucleon distribution presents a
well-established uniform central region and a falloff surface (51)
region and the=("(r) is a function ofr with sharp peaks
located around the central radi® the above expansion Where
converges as a series of poweradC. In this case, keeping
the first few terms is enough for most purposes. We call thi - i — 5/3 — 5)5/

_ eno NIB(6) = 15(1= L(1+8)**+(1-8)*]
the localized approximation of the Seyler-Blanchard-type in- 10
terac.tion. In this sense, thg local densi.ty approximation is Fhe 3 5(1+ 8)%%(1— 8)— (1—6)%3  for 6=0,
special case of the localized approximation when keeping ——y
only the leading ternE  in the expansion. In the present 2071 5(1+8)(1—8)*P—(1+6)°3  for 5<0,
work we keep the terms up to=2. (52)

The specific form of the functiondf(r,r’) depends on
the type of interaction. As an example, we will use in the 1
present work the generalized Seyler-Blanchard interaction C(5)=Ea(1—§52), (53
which is introduced by Myers and SwiatedKi2] and thus
will be referred to hereafter as the Myers-Swiatecki interac-

) 3
tion. D(8)=75{Bil(1+8)**+(1- 6%
The Myers-Swiatecki effective nuclear interaction 10
V(r,r') is written as +By(1— A)[(1+6)2%+(1— )23},  (54)
T D2 D 2/3
V(r,r’)=TOY(r,r’) —a+p —) —y—0+a AE) , where
Po Po P Po

(48) B|’u=§(lI§)B, B=pg+ 57 (55)
wherep is the relative momentum of two nucleons situatedThe term inp?? in the equation of statés1) is related to the
atr andr’, respectivelyp is the average density defined as Fermi gas kinetic energy with an extra contribution from the
p2R=[p?¥(r)+p?3(r')]12, and py=py/2. The quantities 1/p attraction, the term ip is related to the normal Yukawa
TO! Po, andpo are the Fermi energy, the Fermi momentum,attraction, and the term im5/3 is due to the momentum-
and the standard nuclear matter density. The dimensionlegi&pendent repulsion with an additional contribution from the
interaction strength parametess 8, y, o may be differ-  p?® repulsion.
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The parameters, B, vy, o, & ¢, anda can be deter- This is the reason why the Seyler-Blanchard-type interaction
mined by fitting to the nuclear masses, the nuclear fissioman reproduce the nuclear measurement data so well, even if
barriers as well as the nuclear optical potential, when thdt has no gradient-dependent term explicitly.

radius constant, of standard nuclear matter and thesSu For simplifying the analytical derivation of the leptoder-
mann widthb [13] are kept as two geometrical constraints, mous expansion given in Sec. V, the simplified Myers-
giving [15] Swiatecki interaction will be used in what follows. In the
simplified Myers-Swiatecki interaction, the Yukawa poten-
«=1.94684, B=0.15311, y=1.13672, tial (38) is applied only to the leading part of the interaction

(with the interaction parametex), while the Dirac delta
0=1.05, £=0.27976, (=0.55665, function 8(r—r") is employed for the remaining part of the

interaction (with the interaction parameters, vy, and o)
[19]. In this case, only the leading part of the interaction is
the Seyler-Blanchard-type one, for which the above localized
pproximation is applied, while the remaining part is reduced
the usual local interaction, which contributes only to the
local-density dependent term. Therefore, in the simplified in-
10B—5a+4(1—)=0. (57) teraction, the terms with the paramet@&s vy, ando disap-
pear inF("(r); Eq. (59) keeps the same form but E@O) is
This means that only six of the seven parametergeduced to
a, B, v, o, & (, anda are free. Furthermore, the fol-

a=0.59294 fm, ry=1.14 fm, b=1.0 fm. (56)

A relation between parametets B, vy, ando can be
obtained from the stability of standard nuclear matter base
on the above equation of state [d2]

lowing relationship between the incompressibilik;, of F(1)=T, e %JFE % 61)
standard nuclear matter and the volume binding coefficient O "1 grz " P gr?
a, as well as the Fermi enerdl, can be derived from the
above equation of stafd 2]: ande;, as well ase;, are simplified to
9 1 pn Pp
KO:15a1+g(1_7)TO- (58 Ean—EanZ—E a—+ay—|,
Po Pol
As a;~16*+0.5 MeV is well established, and, is about i ;
36.4+ 3.2 MeV whenr ,~1.15+0.05 fm, it can be seen from B 1 py Pn
the above relationship withy=0 thatK, is in the range of €1p= " €1paT T 3 a';_0+a“;)_o ' (62)

306+ 13 MeV for the original Seyler-Blanchard interaction.

However, this range o, is too narrow for the adjustment In the TF theory, the total binding enerd is the sum

of parameters, so the original Seyler-Blanchard interaction igf the nuclear energfy and the Coulomb energf:
not able to give a value dfy as low as around 220 MeV.

The higher order ternkgp contributes to the nuclear en- Er=En+Ec (63)
ergy as the correction due to the gradients of nucleon densi-

ties. For the interactio48), the first two terms irEgp can  and the nucleon densitigs(r) andp,(r) are determined by

be derived as the minimization of Etx with respect to their variations
dpn(r) and Spy(r). In the present work, the following two-
(1) dpn dpp parameter Fefmi distribution is taken fog(r) andp,(r):
FH(r)=To €n gy "€ gr | (59 pit/
_ Pqc (64)
Ppn  &pp  €anfdpn|’ Pal!) = T exg{(r— Cqrd]’
F(z)(r)=T0 ElnF+€1pF e W 4
po whereq=n or p. Thep,. can be determined by normalizing
€2 dpp) 2 pn(r) andpy(r) to N andZz, respectively. The surface dif-
A—(W) , (600 fuseness can be related to the "Ssmann widthb as[13]
Po

d=\/3b/ar. The central radiu€, andC, are left as the free
parameters to be determined by minimiziag-. As the den-
sities are constrained to be Fermi distributions, the present
calculation is similar to the constrained extended TF model
calculation given in Ref[5], where the densities are con-
strained to be generalized Fermi distributions.

where €;,, €,, €n, and €, are the functionals of
nucleon densitiep,(r) and py(r) whose specific expres-
sions are given in Appendix B.

Egp: depends on the first order derivatives of nucleon
densities, whileEgp, depends on the second order deriva- ; " A
tives as well as oGnthhe quuare of the first order derivatives of In expressing the densities as the Fermi Q|str|bu(©4),
nucleon densities. Therefore, the localized approximation oFe Coulomb energ¥.co and Ee, can be written, respec-
the Seyler-Blanchard-type interaction, including the local ively, as[20]
density approximation terri, 5 together with the two cor- 2 g3
rection termsEgp; andEgp,, is shown to be similar to the + 18.03( —) }
Skyrme-type interaction with the gradient-dependent terms. Cp

3 Z2%e?

Ecour~ 5 C_p 6

1 772 d
611G,
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FIG. 2. The contributions to the TF surface eneEyyof finite
FIG. 1. The TF binding energf¢ of the nuclei along the nuclei along the3-stability line, calculated by the present localized

B-stability line. The solid curve is calculated by the present local-2PProximation. The full dots are the enedy, of the local density

ized approximation and the full dots are taken from the exact nu@Pproximation, the crosses are the density-gradient-dependent en-

merical calculation given in Ref21]. The difference between them e.rgyElsD, the rS]OI'g culrve IS tgel totafl TF surfaceg::ﬂ@lgniﬁwe
is within 1% for medium and heavy nuclei while less than 5% for triangles are the rop et model surface eneiegy ) [15]. The
Coulomb energyE is plotted also as the dashed curve for com-

ront nuctet parison. It can be seen thBgp contributes about 34—38 % of the
3/ 3\ 2327413 d total surface energy.
Eem— Z( E) —Cp {1— 1.335 o) (65) )28 e
K(p,8)=To ~2B(5)| .- +100(3)| =] |. (60
0 0

Figure 1 plots the calculated TF binding energye of
nuclei along thes-stability line. The solid curve is calculated Corresponding to the expansiof6), the second term in the
by the present localized approximation and the full dots argeneral formula33) can be written as
taken from the exact numerical calculation given in Ref.

_[21]. It can be seen that the_ present localized approximation * “ 1[d?Egpn(7) dEgpn(7)
is good enough, as the deviation from the exact TF calcula- Kep= Z Kepn= Z AT dZ dz .
tion is within 1% for medium and heavy nuclei and less than n=1 n=1 7=1

5% for light nuclei. 67)
Since the inclusion of the gradient density dependent term

Ecp represents an improvement to the local density approxitn the simplified interaction, substituting Eq&9) and (61)

mation termEp, it is interesting to evaluate its contribution. into Eq.(47), the first two terms of the above expansion can

In order to do that, we anticipate that the surface energye obtained as

Es, which will be defined in Sec. V, is just given by the sum T

of this new termEgp and the termEg, depending on the _alo 4

local density. In Fig. 2, we displas (solid curve, E, (full Kep1="2~ f d r[ —101a(r/a)=f(r/a)]

dotg, Egp (crosses and the droplet model surface energy

Es (DLM) [15] (triangles. The Coulomb energf is plot-

ted also for comparisofdashed curve All of these curves

are for nuclei along thgg-stability line. It can be seen that

the energyEp depending on the gradients of densities con- a’T, 3 r

tributes about 34-38 % of the total surface energy. This KGDZ:ﬁf d*r) —101x(r/a)+2_1(r/a)

means thaEgp cannot be neglected at all in a realistic cal-

dpn dpp

X €1lna dr +61pa dr

] : (68)

culation. d?p, d’pp
X| €1nq dr2 +61pa er ’ (69)
IV. ISOSCALAR GIANT MONOPOLE RESONANCE
ENERGY where
In applying the general formulg3) to calculate the isos- 1
pplying the g B3 _ f(x)==(x+6) e%. (70)
calar giant monopole resonance enefy of nuclei, the 5

constrained TF model calculation is given as an example in
this section. The nuclear matter incompressibilkyp, 6) In the calculation of residual energy effects, the table
corresponding to the equation of stgfd) is given in Ref.[21] is used for the shell correction and the
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TABLE I. The relevant quantities calculated for some nuclei, all in MeV exéegnd p (in fm ~3).

) Pc Ka <K(P,5)> Kep 2Ec/A Kres fiw Ew Em exp

%0 0.0042 0.1385 101.191 72.808 28.446 1.369 1.306 22.196 19.559

“Ca  0.0176 0.1471 125.508 103.804 24.608 3.319 0.414 20.225 19.501 14.11
S8Ni  0.0371 0.1487 133.307 114.938 22.242 4.227 0.353 18974 18558 17.23
%0Zr  0.0825 0.1488 139.222 124.874 19.264 5.091 0.176 17.187 16.976 16.13
125nh  0.0866 0.1483 141.168 129.216 17.893 6.050 0.107 16.247 16.097 15.87
145n  0.0952 0.1481 141.069 129.161 17.744 5926 0.091 16.154 16.008 15.73
“%Ce 0.1277 0.1470 141.074 130.796 16.331 6.178 0.125 15.180 15.075 15.11
20%p  0.1649 0.1444 140.059 133.376 13.965 7.445 0.163 13.369 13.313 13.86
2%y  0.1791 0.1433 138.854 133.485 13.199 7.873 0.043 12.746 12.702 13.88

even-odd energy. The formulas for the anharmonic coeffithis figure that the agreement between the two calculated
cientsK; andK, are given in Appendix B. curves(the lower solid and the dashed curvesd the ex-

The relevant quantities calculated for some nuclei argerimental data is satisfactory, since there is no parameter
shown in Table I. First, it can be seen that the central densitpeing adjusted in the present work.
pc is almost a constant near the standard nuclear matter den- In calculatingEy by Myers and Swiatecki’'s and Nayak
sity po, while the relative neutron excessis close to zero, et al's expression oK,, the harmonic approximatiot22)

i.e., pc~po, 0<6<0.18. Secondly, the average incom- is applied, wherdr?) is the same as that used in our calcu-
pressibility (K(p,d8)) increases slowly from about 73 to lation. However, as the anharmonic effect is included in our
about 133 MeV, the gradient density dependent t&gs,  Ey, the comparison between oHg, and that of Myers and
decreases from about 28 to 13 MeV, the Coulomb energgpwiatecki as well as that of Naya#t al. is not fully in the
term —2E./A decreases from-1.4 to —7.9 MeV, while  same base.

the residual energy terri . decreases from 1.3 to 0.04  The calculated energf for some spherical nuclei is
MeV, as the incompressibility)K, of the nuclei increase given in Table Il in comparison with other calculations. MS
slowly from 101 to 140 MeV when the nucleon number in-is the present result using the simplified Myers-Swiatecki
creases from'®O to 2%%U. As the Coulomb energy contrib- interaction, JJ the result of Jennings and Jackson by using the
utes toK , by less than 5%, while the residual energy con-hydrodynamic modef4], GBMQ the TF model calculation
tributes by less than 1%, the main contributionkgf comes  given by Gleisskt al.[22] with the Skyrme force, and BMS
from the average incompressibilit (p,8)) and the gradi- the relativistic mean-field calculation by Boersetzal. [14].

ent density-dependent terd{gp which contributes with As our calculation is a constrained minimization, it would
about 10—20 %. At last, it can be seen also that the anhabe interesting to make a comparison with the result based on
monic effect, as given by the difference betweey and an absolute minimization, where the nucleon density distri-
h.w, is about 6% for light nuclei while it is less than 0.5% for bution is not restricted to assume a specific form but is ob-
heavy nuclei. As the contributior 2E.¢/A of the residual

energy is very small for most of the nuclei, this term can be §20n4
safely neglected in the practical calculation.

The contributions to the incompressibilit§), of finite nu-
clei along theB-stability line, calculated by the present con-
strained TF minimization, are shown in Fig. 3. The full dots
are the average incompressibilifi (p, 5)), the crosses are
the gradient density-dependent tekg, the triangles are
the Coulomb energy term-2E/A, and the solid curve is

0 -

Incompressibility (Me

the total incompressibilit) 4 .

Figure 4 shows the isoscalar giant monopole resonance E
energyE,, timesA*? calculated along th@-stability line in =50 Frrrrrer M L
comparison with the measured data. The lower solid curve is 0 50 100 150 200 250
calculated by the present calculation with the simplified A

Myers-Swiatecki interaction, the dashed curve by the ap- I . - -
proximate calculation which will be explained in the next FlG' 3. The contnbL_Jt_lons_ to the incompressibili of finite
section, the upper solid curve by Myers and Swiatecki’s fOr_nuclel along theg-stability line, calculated by the present con-

P . . strained TF minimization. The full dots are the average incompress-
mula (2) with their parameter§l1], the triangles by Nayak

U's | . ith thei ibility (K(p,d)), the crosses are the gradient-density-dependent
etal's eptode_rmous t_expansmn _KfA with t elr_parameters term Kgp, the triangles are the Coulomb energy tern2Ec /A,
for the SkM* interaction[5], while the experimental data anq the solid curve is the total incompressibikty . It can be seen

(full dots) are taken from the compilation of Shlomo and hat the main contribution oK, comes from the average incom-
Youngblood [7] with the prescription [2,6,7,10  pressibility (K(p,8)), the gradient-density-dependent terip
EZ =E5+3(I'/2.35F, where E, is the measured centroid contributes with about 10~20 %, while the Coulomb energy term
energy andl’ the experimental width. It can be seen from —2E./A contributes by less than 5%.
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is the surface energ23].

For a leptodermous distributigs(r) of nucleons, the bulk
densityp,, equals approximately the central dengitywhich
is close topg. For nuclei not far from theg-stability line, the
bulk neutron excess,, is small. Therefore, the equation of
state e(py,d,) in Eq. (72) can be expanded at the point
(pOIO) as

1 1
e(pp,8p)=—a;+ = Koe?+ 85— Lesi+ SM St -,

E 2
40 Frrrerree [T [T T T (74)
0 50 100 150 200 250 . . .
A wheree is the density variance
. . Pb~ Po
FIG. 4. Isoscalar giant monopole resonance endtgytimes €=~ 3 (75
A% versusA along theg-stability line. The lower solid curve is Po

calculated by the present constrained TF minimization, the dashe\gvhile a. Ko J L. andM are the droolet model param-
curve by the approximate calculation based on the droplet-model- 1r B0 e &= P P

like formulas (94) and (95), the upper solid curve by Myers and eters
Swiatecki’'s formula(2) with their parametergl1], the triangles by

the Nayaket al.'s leptodermous expansion &f, with their param-

eters for the SkM interaction[5], while the full dots are the ex-
perimental data taken from the compilation of Shlomo and Young-

1 5%

a;=—¢€(po,0), Ko=K(pg,0), JZEW

0

blood with their prescription7]. 3 e 1 d%
L=spo=—g » M=—=-—g . (76)
. : . 2"%9pas 12 96*
tained by a numerical procedure. However, this is out of the P 0 0

scope of the present work and we leave it as a future StUdyI'he subscript 0 here stands for the standard nuclear matter

p=po, ©6=0.As (pg,0) is the stable point of nuclear mat-

ter, the conditiorve/dp|o=0 has been applied in the expan-
Plo

We will derive in this section Eq(1) from our general sion (74). As the nuclgar force is symmetnc in the proton

formula (34), by its leptodermous expansion similar to that @nd neutron, the equation of stap, 9) is an even function

used in the droplet model of nuclei where the nuclear energ$’ & there is no odd order terms #,

En(A,Z) of the nucleus A,Z) can be written as For the surface enerdys, we can expand the equation of
' ’ statee(p, ) at (pp,,):

V. LEPTODERMOUS EXPANSION

En(A,Z)=Eg+Es, (71)
Eempy s fd3r PPy T 5)fd3r (r)
where STPoy, . RPN P
. p—pp\® 1% [ )
Eg= | d°rp(r)e(pp,Sp) =€(pp,Sp) A (72 X 2982 d°rp(r)[&(r) = 6]+ Ecp,
Pb 967,
is the bulk energy, and (77)

where the subscripb stands for the bulk pointg,,dy).
Es=Eg+ EGD=f d3rp(r)[e(p,8) —e(pp, )1+ Ecp Since the integrals in the above expansion as well as those
(73) involved in the expression dEgp depend on the character-
istic radiusR of the nuclei and the relative neutron excess
, , 5,: Esis generally a function oAY® and é,. For a lepto-
TABLE Il. Isoscalar giant monopole resonance enefgy (in by =S b

MeV) for some spherical nuclei. dermous distributiom(r), these integrals will essentially be
performed around the surface area, and the surface energy

Nucleus  E, r MS J GBMQ BMS  can be expressed as

150 19.56 22.4 18.6 18.0 o 1 5 )

“0cq 14.11 1950 182 186  19.0 Ee=4mR gz (Bt Fet HrH2P76,=Gd;)

BN 17.06 3.28 18.56 18.9

90zy 15.95 329 16.98 15.0 17.7 22.7 as

12sn 1564 3.67 16.10 16.7 +8”R[8Wr0 Feen (78)

145 15,51 3,52 16.01 225

140ce 14.95 3.00 15.08 15.6 wherea,, a;, F, H, P, andG are the droplet model pa-

208pp 13.73 258 1331 117 13.5 21.0 rameters andr=(C,—C,)/r, is the reduced neutron skin

thicknessR is defined as 4R%p,/3=A.
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If the Fermi distribution(64) is assumed for the nucleon the others come from the local density approximation. Espe-
densitypq(r), the above integrals can be performed analyti-cially, it is worthwhile to note that the surface energy coef-
cally. Dropping higher order terms, the result is ficienta, involves the contributions both from the local den-

5 sity dependent energlf,, as well as the gradient density-

3 P—Pp_ 2 o , dependent energyEgp. Numerically, each of them
J drp(r) Pb A4mRdpp| 1+ 24027 | (79) contributes about haH, if the parameterg56) are used. On
the other hand, the curvature energy coefficiagtcomes
3 P—Pp ) r ) only from E_p in the present model.
J d°rp(r) =4mRdpy| 5+ 752 T We have to note also that, different than the usual droplet
model resultF is not O butP is 0. This is so because in the
, |1 rS ) present case the nucleon density is restricted to be the Fermi
+87REpy 5+ 5502 T distribution (64), similar to the case of Nayat al.s work

where the nucleon density is restricted to be the generalized
(800 Fermi distribution and th& term is not 0[5]. This situation
112 means that the Fermi distribution and even the generalized
3 s 12_ ) Fermi distribution are not very appropriate for expressing the
f drp(r[8(r) = "= 87Rek Prg 2™ 8D nucleon distribution in a calculation with high accuracy.
However, keeping this in mind, we can still expect to get
ZWRazpﬁTo 5 some general ideas from the simplified analytical derivation
EGDlzT“ 1-£6p), (82 by using these distributions.
Thus we have the leptodermous expansion of the total
7R?dp2T, a2 energyEq as

2
o
Eeoz=3—po e

a—éady— So2(1+ e’

Ere(A,Z)=

1 1
—a;+ =Koe?+I82—Lesi+ >M %}A

27RapT r 2
- Y s+ %garﬁb . (8
Po +[ay+(2a,+F)e+H7?+2P78,— G5]A?°
In performing the integrals dEgp;, and Egp,, the approxi- 72 r
mation ofl (x)~2/x andl,(x)~2 is employed as the inte- +ag A3+ C12173 l—e+ SALR| 91

grals are mainly in the surface area where exp&1. Here

we omit the details of the derivation_ of t_he ab_ove_ forr_nulas’where the first term is the volume energy, the next two terms
and give only some formulas used in this derivation in Ap-the surface energy, and the last term the Coulomb energy. In

pendix C. obtaining the above expression of Coulomb energy, the geo-
Substituting the above result into the Eg7), the follow- metricalgrelatior[23] P 9 g

ing formulas can be obtained:

2 _ 2 13
a2=1i2rd—oK0(1+3a% Z—Z) (84) =31~ %)A (92)
12 and the approximation
Q=g r—gKo, (85 3 72e2
, Ec~3 R, (93
3d 1 a2 T,
F=7 EKO( 1=3K0 2y K_o) 86 are employed, wheré=(N—2Z2)/A, R,=(3Z/4mp,p)*? is

the equivalent sharp charge radius, apg=(1— d,) pp/2.

d L 1 1 a’T, Minimizing the total energy with respect andé,, the
G= E 0 K_o_ ﬂKoﬁ Zfa@ K_o : (87) following droplet-model-like relations can be obtained:
2 —-1/3 2p—413
e 1 rOK L 18 1. aZ TO - = Léb_(2a2+ F)A +C:|_Z A (94)
=2ga g Ko/ 1-5( §)aazK—o . (88) Ko
P=0, (89) 5 | +(3/8)(cy /H)Z2A™ 53 ©5
b1+ (9/4)(I/H)A~R—(9/4)(GIH)A= 2"
where
B gutw As the above formulas can be used to calculate the nucleon
« _Po K =012 (90) densitiespy(r) approximately, when the Fermi distribution
“Y Ko dptas” 0’ Ko e (64) is assumed, we can also perform the calculation ex-

plained in the last section by using thg(r) obtained in this
In these formulas, the terms involving the Yukawa raage way. The calculate&,AY® andK , are shown in Figs. 4 and
come from the gradient dependent part of endtgy, while 5, respectively, by the dashed curves.
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1
1603 Kg~Ko+ 3Ky 28,5+ F)A~ 13+ EKOZKO—:«;KmL)
A140—5 N-Z\? ona. 3
> 3 X T _3K10C]_Z A +§K12(2a2+|:)
) ]
2,120 N-2Z 1 3 N-2z\*
e ] X l/3+ _ — [
< A ) A T zgodom g [l T2
a 100 (100)
3 where the last two terms come from the last two terms in the
| U — expansion(99) and will be shown to be negligibly small.
0 50 100 150 200 250 For the surface incompressibilitfs, we can expand the
A incompressibilityK (p, ) at (op,,dy):

FIG. 5. The calculated incompressibilitg, of finite nuclei Jdgr r)
along the B-stability line by different methods. The lower solid Pl
curve is calculated by the present constrained TF minimization, the
dashed curve by the approximate calculation based on the droplet- P~ P 2 3 5
model-like formulas(94) and (95), the crosses by the present lep- P + > (952 d*rp(r)[o(r)—,]°+Kgp-

- . b
todermous expansiofl10), the upper solid curve by Myers and

3
Ks= Pb 6’p 2Pb_2‘ fd rp(r)

Swiatecki’s formula2) with their parametergl1], and the triangles (101
by Nayaket al’s leptodermous expansion with their parameters for
the SkM* interaction[5]. As the integrals are exactly the same as those inEf), we

can use the results given in the Eq39)—(81). Besides,
Let us now consider the leptodermous expansion of theimilar to the approximation used in performing the integrals
incompressibilityK 5. Similarly, the nuclear parky of the  0f Egp, the term involvingf(x) in Kgp [EQgs.(68) and(69)]

finite nuclei incompressibility can be written as can be neglected and the following relations are obtained:
1 1 K 10E K 10E K 10E
Kn=% f d*rp(rK(p,8)+Kep=% f drp(N)[K(pp, ) R N R
(102
+K(p,9) —K(pp, )]+ Kep=Kg+Ks, (96)
Therefore, we can have
whereKg andKg are the bulk and surface incompressibility, N—7\2
: . 0Op—1/3 —2/3 0 -1/3
respectively: Kg=—kgA™ "+ k. A “"+kg N Ao
(103
1
—_ 3 —
KB_KJ d*rp(r)K(pp, 8p) =K(pp o), O7  wherek?, k.s, and k% can be expressed in the present
model as
Ke== [ & p(1)[K(p,8)— K(pp 80 +K 0_4d 3.5 aT
s=5 | drp(NIK(p,8)=K(py,dp) ]+ Kep k3= —Ko| 3k10— = Kog— = -3 o, (104)
r 4 2 d°K
=(K(p,8))—K(pp, ) +Kgp- (98)
d 9 a? Ty|2a,+F
) o kCS_ KO 3K10+6K20 4K30 1 az‘ K K
The bulk incompressibilitkg can be expanded also at 0 0
the point (pg,0). As the bulk point (p,,5,) is close to 3 d?
(po,0), thevariation ofKg is very small aroun&,. There- + > EkzoKo, (105

fore, it is a good approximation to keep only the following
five terms in the expansion:

o d 3 3 9 L
L 3 . Kss= o —Ko g K22~ 5 K12t 3K10+6K20_ZK30 Ko
KB%KO 1_3K10€+ EK025§_§K1265§+ ﬂK(Méﬁ . [15L+ 5§ a TO} (106)
(99 K a2 K,
Substituting the formul§94) and 6,~1 into the above equa- Thus, we have the following leptodermous expansion for

tion, we have the incompressibility 5 :



Ka~Ko—[k3— 3k ¢(2a,+F)]A™ Y3+ k A28

N—-2Zz\2

+ EK02K0_3K10L _A

0.3 N-2|° -13
+ kss"‘EKlz(zaz'f'F) T A

25413 1 3

_(2+3K10)Clz A + ZKOAKO_EK:LZL

N-2z\*
X N (107

The expansior(107), except the term in4, is exactly the
same as Eq(l) formally. It is worthwhile to note that the
coefficient 2+ 3k, of the Coulomb energy term; Z?A =43

and the coefficient (1/2)5,)Ko— 3kl Of the asymmetry

term [(N—2Z)/A]? in the above equation are identical to

Blaizot's formulag 24,25 It is worthwhile also to note that,
as the variation of the incompressibilitg, comes essen-
tially from the surface incompressibilit¢g, the contribution

from the terms involving.s and kgs are as important as that
from the term involvingk? only, so the term proportional to

A~?" should be taken into account in the data fitting.
The coefficientsk ,,,
help of Egs.(52), (54), and (66), based on the Myers-
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with the other terms. This means that at least the terif in
can be omitted in the final resyls].

Figure 5 gives the comparison between the incompress-
ibility K, obtained by different methods. The lower solid
curve is calculated by the present constrained TF minimiza-
tion, the dashed curve by the approximate calculation based
on the droplet-model-like formula®4) and(95), the crosses
by the present leptodermous expandgibh0), the upper solid
curve by Myers and Swiatecki's formul@) with their pa-
rameterq 11], and the triangles by the Nayad al's lepto-
dermous expansion with their parameters for the Skid-
teraction[5]. The calculations are along th@stability line
nuclei. The relatively big deviation of the present leptoder-
mous expansion from the exact result is due to the defect of
the Fermi distribution discussed in the second paragraph af-
ter Eq.(90).

VI. DISCUSSION AND SUMMARY

In the present work, the calculation is made under the
spherical symmetry approximation only. However, it can be
seen from Fig. 4 that there are “bumps” in the regions of
deformed nuclei where the spherical symmetry distribution is
obviously not a good approximation. Therefore, it would be
interesting to work out a more realistic theory for deformed

can be easily calculated with the nuclei, to see if this kind of bump is due to the effect of

deformation or not.

Swiatecki interaction, and the use of the corresponding pa- As the trend of the experimental data shown in Fig. 4 can

rameters(56). In particular, our value 8,,=4.92 is in the
range 3-5 given by Blaizotet al. [8] where the symbol

be well reproduced by the present calculation without adjust-
ment of any existing parameter, the nuclear TF model with

SIK,, is used. This stresses the point that the Seylerthe simplified Myers-Swiatecki interaction is shown to be
Blanchard-like nonlocal interaction is similar to the Skyrme-able to give a consistent description for the isoscalar giant
type interaction in the description of nuclear matter equatiorimonopole resonance, besides the nuclear masses and the

of state.
Finally, we have

N-2Zz\2
Kg~234.422+ 84.206\ ¥3—-392.6 —

N—Zz\?
—3.730%22A 43— 40.080 1’3( T)

)
+124.67———| , (108

A

N—-2Zz\2
Kg~—365.72R Y3+ 31,93 2+ 373.2]A‘1’3(T) ,
(109

Ka~234.422-281.518\ 13+ 31.93A 23
2

—392.6%;

N—Zz\2
4 . —1/3
A 333.137 (—A )

N—2z\4
—B5.246Z%A Y3+ 124.67( —) .

A (110

other properties of nuclei. This suggests that the measure-
ment data of the isoscalar giant monopole resonance energy
Ey should be included in the fitting of the model parameters
when the calculation for deformed nuclei is included.

Experimentally, it is well known that the measurements of
the nuclear masses and the fission barriers can provide infor-
mation about the nuclear matter equation of si&(g, ),
such as that given by the droplet model parameters
a;, Ko, J, L, andM. Now the present work shows that
the measurement of the energy, can provide information
about the nuclear matter incompressibilkyp, §), such as
that given by the coefficient&, and «,, in the leptoder-
mous expansion oK, . However, in order to extract this
information of nuclear matter, high precision measurements
for closed shell nuclei and new data for nuclei away from the
B-stability line are needed. Even our purpose in the present
work is not to extract this information of nuclear matter; we
can say that the value of the standard nuclear matter incom-
pressibility Ko=234 MeV, given by Myers and Swiatecki
[15], is supported by the present calculation, and this value is
close to that given by Blaizatt al. recently[8].

In summary, the main results and conclusions of the
present work are as follows.

(1) The finite nucleus incompressibility, is essentially
the nuclear matter incompressibilitg(p,5) averaged over

The last two terms in Eq108) come from the last two terms its nucleon distributiorp(r), added to a terniKgp contrib-
in the expansion(99). Numerically, it can be seen that the uted from the gradients of nucleon densities, and with twice
contributions of these two terms are negligible in comparinghe Coulomb energy per nucledt /A subtractedK ¢p and
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—2Ec/A contribute about 20-10% and 1-5 %, respec-f the potential obeys a two-dimensional scaling

tively, to the nuclear incompressibilitg, , from the light to 5

the heavy nuclei, in this order, whereas the shell and the V(r)—=Vs(r)=nV(nr), (A3)
even-odd energy corrections are negligibly small. It is inter- . . .
esting to note that the relatiof84) is interaction indepen- Where is the scaling parameter, E(A2) can be rewritten

dent, and interaction-independent information of nuclea?®

matter incompressibility is expected to be extracted by using 22 | 52 52 52
this relation. | =t =+ = | 3+ V(1) @i(r)
. . . 2mnl g 2 9 2 P 7 | Pk s) Pk
(2) The leptodermous expansigh) used in the data fit- N\ OXg  dYs  dZg

ting is justified again and is shown to be an approximation to
the exact result by the present TF theory with the linear :iss(ps(r) (Ad)
scaling assumption. The approximation is good for heavy 2EKFIRT
nuclei but not for light ones. It is shown also by the present . ) o
work that the curvature terrk,gA~%° cannot be neglected, Wherers= »r. Comparing the above equation to the original
as it is very important in the description of the surface in-One(Al), it can be seen that
compressibilityKs. All of these results are also interaction S
independent. The reason why the curvature term has not PN =@ 7r) (AS)
been included in some data fitting should be carefully inves-
. and
tigated further.

(3) The anharmonic effect of the breathing mode contrib- s_ 2 AG

: . ; &= 1€k (A6)

utes to the isoscalar giant monopole resonance erieygn
about 6% of light nuclei and less than 0.5% of heavy nucleiUp to an arbitrary phase factor, the proportional constant in
However, as this effect depends on the anharmonic termgq. (A5) can be determined by the normalization of wave
Ks andK,, and the latter depends on the choice of interacfunctions ¢, (r) and ¢(r). It gives
tion as well as the values of the model parameters, the evalu-
ation of the anharmonic effect is both model and interaction o) =720 (7r). (A7)
dependent.

(4) In developing a localized approximation, the Seyler-Therefore, we have the three-dimensional scaling of density
Blanchard-type interaction is shown to be similar to the 3
Skyrme-type interaction, in the sense that the density- p(r)—=ps(r)=17"p(7r). (A8)
gradient-dependent terms appear in the Hamiltonian func-

fional The spherical harmonic potenti®l(r) = imyw?r? is an

example for this scaling transformation. If the potential pa-

rametero has a change as
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V()= Vs(r) = 5 myesr == "5 mye(9r)== 7°V(7r),
APPENDIX A: A QUANTUM MECHANICAL MODEL (A10)
FOR SCALING
. 1 1

The Schrdinger equation for a nucleon with maes g ep=hwg Nt 5|= n*ho| N+ 5|= n%ey.

moving in the potentiaV/(r) is (A11)
2 2 2 2
_ h (‘9_+5_+‘9_)(’D (N + V(1) o(F) = o(r) The change of the potential parameier (A9) means a
2my\ X " ay? " 9z?) Tk X KT squeezingfor »>1) or an extensiorifor »<1) of the po-

(Al)  tential radially, so it results in a squeeziffgr »>1) or an
) ] ] ) extension (for #<<1) of the nuclear density radially, as
whereg,(r) is the single-particle wave function argl the  shown by Eq(A8). In this way, the scaling assumption as-
single-particle energy of nucleon. If the potentl(r) is  sumed in the text is suitable to describe the breathing mode.
changed intd/(r), the wave functionpy(r) and the energy The scaling of the shell correctidfy,, and the even-odd
e Will be changed intap(r) andey, respectively, accord-  energyE . en.0qqcan be determined by the scalit@6) of the
ing to the changed equation single-particle energy of nucleons. The shell correction
Esnen can be defined, according to the Strutinsky method
h? ( N C

S S S S 261 l
2my m+a_yz+ﬁ)sokm+vs(r>qok<r>=sksok<r>. (26} asl1] i
(A2) EsheimE—E, (A12)
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whereE=3% ,&,;, andE is the smooth part of the above Where
summatiork after some arithmetic smoothing procedure. As 23
both E andE are linear ine,, the summations as well as €11 zlyl(@)
their difference(A12) will have the same scaling ag (A6), ro2 Po
€., p\ 2 [ p |28
Ll I L f <
Esheir— Esneil 7) = 7°Eshell, (A13) 1 3( ;Jo) ( ;)0) » 10T Pn=Pp
, . + 2% -1/3
whereEg.,o( 7) is the scaled shell correction. Pol Pn
The even-odd energ¥qyen-oqqiS the double of the energy 2 — , for pn>pp,
gapA which is determined according to BCS the¢#7] by Po\ Po
the following gap equatiofl]: (B3)
2 st+Sl g(e)de 1 »p
—= ——_—, (A14) S L B4
G Jeg-s2 (e—ep)?+A2 FnaT 2 Po a'u .
whereG is the interaction constangy(e) the single-particle 3 o 5/3 o 5/3
energy level densitygr the Fermi energy of energy level, €1ng=¢ B|(Tn> +B (Tp) : (B5)
andS is the energy interval around the Fermi energy which 5 Po Po

is relevant for the pair correlation of nucleons. In case the ) .
single-particle potential of the mean field has the two-N€ €Xpressions oé;,,, €ip,, and eps can be obtained
dimensional scalingA3), it is consistent to assume that the from Eas.(B3), (B4), and(BS), respectively, by interchang-

residual interaction between the nucleons also has the twdPd the subscriph andp. , _
dimensional scaling The following is the functionale,, that appears in the

EGD.
G—Gs=7°G. A15
=7 ( ) 1 -1/3 1, for Pn<pp
In addition, as the single-particle energy has the two- €2n:_( &) Y+ 74 Pp _
dimensional scalingA6), it can be seen easily that the Fermi 6\ po -, for py>pp
energy e and the energy intervab also have the two- Pn (B6)
dimensional scaling
The expression oé,, can be obtained by interchanging the
epep=ner,  SoS=7°S, (A16) subscriptn andp. i

The following formulas are used for calculating the an-

whereas the energy level densgye) has the following in- harmonic coefficient ; andK

verse two-dimensional scaling:

1 d°E T 613
S Ou(e) = == a(e), (A7) A dAgmi =% dgr[_w‘”(ﬂ) o0
g(S —>gs(88 _ASS_ " AS_?g €), 7 =1 Po
8/3 3
wheref is the degeneracy of the single-particle energy level. x( L }+ l dEG—Dén) , (B7)
Therefore, it can be shown from EGA14) that the energy Po A dy p=1
gap has two-dimensional scaling
2 LAEAD| - _poTo f | 12000 2|
A—)ASIA(ﬂ):ﬂ A. (A18) A d774 ‘7]:1 A Po
Accordingly, the even-odd enerdy,,en-oqq@lSo has the two- 1 d*Egp(7)
dimensional scaling ~——a ] (B8)
A dy =1

S _ _ .2
Eeven—odd_ Eeven—od(g 77) n Eeven—odd (A19) where [dsEGD( 77)/d7]3],}:1 and [d4EGD( 77)/d774] - can
whereEyen.0af 7) is the scaled even-odd energy. All of the be obtained by the standard scaling calculation.
results given above are based on the model assum(@@n

APPENDIX C: SOME FORMULAS FOR INTEGRALS

APPENDIX B: SOME FORMULAS FOR Egp, Kg, AND K, INVOLVING FERMI FUNCTION

The following are the functionals;, ande;, that appear Let us consider the integral

in the Egp:

G,(c =fwdxf“ X,€)g(x), >0, C1l
€1n= " €1ny~ €1na T €10, (B1) M( ) 0 ( J9(x) ® €Y

€1p= — €1py~ €1pat E1pp, (B2)  wheref(x,c) is the Fermi function
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f(x,0)= 0= 0= c2 Fd M) 1 —— 2y
(X0)= g g 0sx<=, 0Osc<e, (C2 . x— "(X.0)g(x)= Tt u+u(C).
. . . (C13
which has the following symmetry properties:
Using Eq.(C7), we can obtain another recursion relation
f(—x,—c)=f(c,x), f(x,c)+f(c,x)=1, (C3
1
ot ot G+1(C)=G,(c)=~— ;H#(C)- (C149
FrU (€4

The nth order derivative off can be expressed asna-1
order polynomial off as

of 5*f
=f2—f, —5=2f3-3f2+f,

X "X )

and so on. For a well behaved functig(x), the following

formulas can be obtained by using E¢S4) and (C5):

1 dG,(c)

G,L+1(C)=GM(C)—;T (C6)

Jf*(x,c) , B
fO dXTf (XYC)g(X)_ILL[G[L+V+1(C)_GM+V(C)]Y

(C7)
»  §PfH(x,cC)
fo dx—— 7 f"(%,0)9(X) = (1 +1)G 1+, +2(C)
—p(2u+1)G 4y 44(0)
+1?G,1,(C). (C8

Applying Eg. (C6), the above Eqgs(C7) and (C8) can be
rewritten as

X,C V M dG,LL+V(C)
fd f'(x,c)g(x)= Tty de
(C9
= P p(pt1) dG, 1 ,1a(c)
fo dx—>32 f(x’c)g(x)__,u-i‘v-i‘l dc
/‘LZ dG,u+v(C)
n+v dc
(C10
Furthermore, if  g(0)=0, h(x)=dg(x)/dx, and

lim,_,..f#(x,c)g(x) =0, it can be shown that

dG,(c) c
#zHM(c), G#(c)=GM(0)+dec H.(c),
(C1))
where
H#(c)=fwdxf“(x,c)h(x). (C12
0

Similarly, we also have

In the present application, the following integral with
g(x)=x"is needed:

|M,,(C)=J’0 dxf*(x,c)x”, u>0, v>-—1. (C1H

According to Eqs(C6), (C11), and(C14), the following re-
cursion relations of ,,(c) can be obtained, respectively:

1 dl,-—1,.(0)

I/J,V(C) =1 ,u,—l,v(c) m dc y (C16)
J(C
% '“V 1(C) l“’(c) MV(O)+VJ dCI}LV 1(C)
(C17
s 1,(€)=1,,,(C)— %lw_l(c» (C19

The general expression bf,(c) for integerv=0 can be
found in Refs[28-30. We will give some simple relations
here for bothu =m andv=n being integers. In this case, the
specific expression df,,(c) can be obtained from the sim-
plestlo(c) and the value of ,(0):

= dx
IlO(C)ZJOWZC+w1°(C)’
o (=DF
wlo(c)=—k2l e (C19
» xNdx 1
[1,(0)= f Tre —=I'(n+1) 1—— l(n+1), n>-1,
(C20

wherel'(p) is the gamma function, ang{p) is the Riemann
function.
The expression df;,(c) can be obtained frorhy(c) and

I1,(0) by Eq.(C17):

l1n(C)=11n(0)+ njocdclln,l(c)z Pin(c) +w1n(c),
(C21)

where
C
Pln(0)=nfod0P1n—1(C)+ P1n(0) (C22

is an+1 order polynominal ot and



©

wln(c):_nfc dc wq,-4(C)

o

1
=(—=1)" 1> (—1)kwe*k0. (C23

The integral constar®;,,(0) in Eq.(C22 can be calculated
as

P1n(0) =11,(0) = w1,(0)
—[1-(—D)"(1—2"") n! {(n+1). (C24

The expression df,,,(c) can be obtained frorh,(c) by
Eq. (C16):
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1 dlp_1n(c)
|mn(C):|m—l,n(C)_m%zpmn(c)"'wmn(c)a
(C25
where
1 dPp_qn(C)
P €)= Prm-1(€) ~ ——7 —= = (C26
is an+1 order polynominal ot and
1 dwp-15(0)
Omn(€)= 0 10(C) ~ 5 —= = (C27)

is an infinite series in power of exp€).
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