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Nuclear polarizabilities and logarithmic sum rules
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The electric polarizability and logarithmic mean-excitation energy are calculated for the deuteron using
techniques introduced in atomic physics. These results are then used to improve limits on the atomic-deuterium
frequency shift due to nuclear polarization in the unretarded dipole limit, as well as confirming previous
results.[S0556-28137)03906-X

PACS numbdps): 21.45+v, 13.75.Cs, 24.7@:s, 31.30.Gs

The remarkable experimenf4,2] currently being per- 20 |<N|I5|0>|2
formed on the isotope shift in atomic hydrogetH(vs 1H) ap=— D,
are primarily determined by differences in the masses of the 3870 En—Eo
isotopes, but are significantly sensitive to nuclear structure. . )
These measurements provide the most precise determinati¥fhere Eo is the energy of the ground sta@), Ey is the
of the difference in sizes of these isotopes. The most recemnergy of theNth excited state, anB is the electric-dipole
[2] result for thed-p isotope shift in the $-2S level splitting  operator, which effects the transition between those states.
is The definition(3) can be rearranged into the form of a sum

rule [9,10]:
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of which roughly 5000 kHz is attributable to the finite-size

differences of the nuclei, while roughly 20 kHz is due to the ud , _ ,
electric polarizability of the deuteron. In other words, in ad-VNere o, (w) is the cross section for photoabsorption of

dition to a weaker Coulomb potential arising from the Unretarded-dipolélong-wavelengthphotons by the nucleus.
nuclear charge distribution seen by the electron at very shof¢oncomitantly, the logarithmic mean-excitation energy in
(on the atomic sca)edistances, that electron also “distorts” Eq. (2), E, is defined by

or polarizes the nucleus, which enhances the binding. Three

numerical calculations of the effect of nuclear polarization2, |<N|I5|0>|2
on the isotope shift have been performed recefhy5], al- 3 & E.—E.
though the relevant leading-order analytic results for the N#0 - ENTTEO
nth S state have long been know8,7]:

In[(Ex—Eg)/me]=agIn(E/my),  (5)

and clearly corresponds to placing a factor ofdpn the
integrand in Eq(4). The augustr_, sum rule and itfless

E well-known[11]) logarithmic relativezr/_2 have been used to
m @ cvauate E ici i )

e ag and E by explicitly constructing(N|D|0) [or
equivalently, aid(w)] and performing the integral numeri-
cally. Results forag for many “realistic” potential models
are known, although the two most recent calculatiph$]
did not have any models in common.
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where[8] « is the fine-structure constamty, is the electron

mass,| ¢,(0)|%2=u3a>/wn® is the square of the wave func-
tion of the electron at the origiryg is the deuteron electric . .
polarizability, i is thee—d reduced mass, and we work in In this work we will (1) calculateae for a s_et of models
natural units §=c=1). Even though uncertainties in the that subsumes most of those of R¢fs5] and includes sev-
polarization calculations are currently smaller than the errofral more;(2) calculate Ing) for these models(3) use novel
quoted in Eq(1), planned improvemen{g] in that accuracy (for nuclear, but not atomic, appllca_tl()naumerlcal tech-
warrant a strong effort to reduce the theoretical uncertaintyiques for calculating botlag and InE); (4) critically dis-

to a minimum. cuss the potential models and attempt to assign a subjective
The electric polarizability of a nucleu®r aton) is de-  but credible uncertainty to the results. In this way we will
fined by[9] confirm the previous results, while shrinking the uncertainty
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associated with them. Our numerical techniques were first TABLE I. Deuteron electric polarizabilitiesqg, in units of
applied to atomic problems, but now find a comfortablefm?, logarithmic mean-excitation-energy ratios, IE(gh,), and deu-

home in nuclear physics. teron 1S-2S polarization-energy shiftsyy, in kHz.

The technique we use for calculating was first used by —
Podolsky[12] to treat dispersion in hydrogen atoms. Defini- Potential model ag (fM’)  InEEmMY)  vpol(kH2)
tion (3) is fully equivalent to Second-generation potentials

ag= 2a<O|DZ|A\IIZ>, (6) Reid Soft Core(93) 0.6345 2.9616 19.31

Argonne Vg 0.6343 2.9625 19.31

where Nijmegen(loc-rel) 0.6334 2.9618 19.28
. Nijmegen(loc-nr) 0.6327 2.9624 19.26

(H=Eo)[A¥,)=D0) @) Nijmegen(nl-rel) 0.6328 2.9619 19.26

Nijmegen(nl-nr) 0.6319 2.9625 19.24

is solved subject to finite boundary conditions. Note that

does not connect the ground stétiee only bound stajeof Nijmegen full-rel) _ 0.'6311 : 2.9615 19.21
the deuteron to itself. Resolution of E¢7) into partial _ First-generation potentials
waves, incorporation of the nucleéincluding tensorforce, ~ Reid Soft Core(68) 06237  2.0638 18.99
and other minofalthough tedious and importardetails are 80 (C9 0.6336  2.9630 19.29
contained in Ref[9], together with many analytic results for Pars 0.6352  2.9627 19.34
simple potentials. Our calculation will employ the usual non-de Tourreil-Rouben—Sprung ~ 0.6376  2.9623 19.41
relativistic (classical dipole operator. Argonne Vy, 0.6419  2.9624 19.54
The resulting procedure is only slightly more complex Niimegen(78) 0.6472  2.9612 19.70
than solving for the deuteron ground state, and it is verySuper Soft CoréC) 0.6497 2.9617 19.77

stable. We have calculated: for 14 different “realistic”
nucleon-nucleonN) potential models. Such models must .
contain OPEP(one-pion-exchange potentialwhich domi- odé [(N|D]0)|?
nates the binding of light nuclei, and they must fit té\ L ?05(5)“%0 ﬁln[
data reasonably well. All of the models used in Ré¢f55]

are in this category, although the quality of the fit§ vari-  For numerical purposes, we split the integral in Exf) into

ous potential parametgrto the data differs rather dramati- Si+%, and the dimensionful scale parametedetermines
cally from case to case. Most of those models could be chaiynere the split occurs in energy units. Rearranging slightly

acterized as “first-generation” models. Recently, theang changing variables to &/in the second integral, we
Nijmegen group and their collaborator$3—19 have con-  gchieve our final result:

structed “second-generation” models, which provide good

to very good quality fits to aINN data, even approaching _ 1dé

x2 per degree of freedom 1. Such fits are sufficiently good ag(0)In(2E/m) = fo ?[CVE(f)— ag(0)+ ag(1/§)]

that they can be regarded as alternative phase-shift analyses.

This does not necessarily imply that the underlying physics — ag(0)In(m/2f). (1D
has a corresponding accuracy, since several of these models

are purely phenomenological, except for the all-importanfThe integrand is finite everywhere. Choosifig 3—5|E|
and dominant OPEP that incorporates different pion massasakes the integral converge to five significant figures with
in different (isospin states. only a few (~6) Gauss-quadrature points, and all results for

We determine the logarithmic mean-excitation enekgy E are independent of if the integrals are performed with
(or logarithmic sum ruleusing a trick developed for calcu- sufficient accuracy. Podolsky’s methf@l12] makes the cal-
lating various logarithmic mean-excitation energies in atomgulation of ag(£) as easy as that afg(0). The method is
[16], one of which is the Bethe logarithm. If we add a pa- very stable.

rameterh=¢-f to (H—Ey) in Eq. (7), where§ is dimen- Table | presents our results fotg, In(2E/my), and
sionless and has the dimensions of energy, we can thenAg,, separated into first-generatigh7—23 (listed in order
define(and easily calculaje of appearance in Table) land second-generatigii3—15
_— (potentia) categories. Note that there is much more spread in
a(£)= Z_QE |(N|D|0)| ® the first-generation results, reflecting indifferent fits to the
E 3 K70 éf+EN—Ep’ NN data. The spread in the second-generation results can be

summarized by
whereag(0) is the usual result. The integral af(¢) from

0 to A (very large compared t&/f) generates Vpoi=19.266) kHz (12)

and

[REZEGERSS INBIOE, e —eaiat, ©
o T o o f NGO ’ ag=0.632817) fm?3. (13

which gives the desired logarithm. A similar integration As noted below in Ref[4], this is not a numerically com-
gives plete result for the sum of all polarizability corrections, since
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it incorporates only unretarded dipole approximation. Higherrecently determined24] to be Ag = 0.884%8) fm 2 in

multipoles, retarded dipole contributions, seagulls, etc., havagreement with the value used in Réf], and which leads to

not been included here, and may decrease this result by up g;g = 0.637812) fm3. Moreover, the corrections) ag, to

1 kHz [4]. _ _ ag defined byag=al+Aag can be determined from the
All of the appropriate results are quite close to those pre'potential modelgsee Refs[5,9)) to be Aag=—0.0044(2)

viously calculated4,5], with the electric polarizabilities dif- fm?2, which leads directly to);E=0.633414) fm2, which is

fering at most by 2 in the last quoted significant figure Inc(:]onsistent with Eq(13). Note that no relativistic corrections

those references. Such small differences could be attributenave been incorporated and they are not likely to be negli-
to slightly different versions of the potentigaisew potentials gible on the scale of the uncertainty in Ha3).

are often a matter of “work in progress.’Note also that the ) .
progress Why do the “second-generation” potentials agree so well

pairs of new Nijmeger{14] local and nonlocal potentials . ) X X
(labeled “loc” and “nl” in Table 1) have versions with rela- with the perturbation theory estimates? The answer is that

tivistic (“rel” ) and nonrelativisti¢“nr’ ) kinematics(corre- ~ As iS determined by analyzinN scattering, and we stated
sponding to identical deuteron  energies of e€arlier that the new potentials could be viewed as alternative

2 IM2= 2. kZ—2M or — Kﬁ,ll\/l, respectively. The slightly phase-shift. analyses. That is, they fit thdl data quite We-II,
smaller value o, in the (excelleni zero-range approxima- and associated propertigsuch asAg) should agree with
tion [5,9] accounts for those differences in the values ofother experimental determinations. Thug, is very well de-
ag, although this makes relatively little difference in,. termined. L
The “full” Nijmegen potential[14] has the same form in all We summarize by noting thatg and InE) have been
partial waves and fits thN data less well than the others. calculated for the deuteron by novel methods. These calcu-
The result(13) agrees very well with a predictiof®] of  |ations confirm previous results and add additional ones. We
ag = 0.6323) fm® made many years ago, and this warrantsstrongly recommend that only second-generation potential
further comment. One can perform perturbation theory aboutesults be used when assessing the reliabilitygfcalcula-
the “zero-range” limit by turning off the forces ip waves, tions. Equation(12) gives our best estimate for the leading-
dropping the deuterod state, and replacing th@educed  order (unretarded-dipole or long-wavelenytapproximation
deuteron s-state wave function by its asymptotic form: to the nuclear-polarizability correction given by Hg).

u(r)=Agexp(—«r), whereAg is thes wave asymptotic nor- Note added in proofS. Karshenboim informed us that
malization constant. With this ansatz we obtgbnO] we overlooked the zero-range calculations in A. I. Milshtein,
) I. B. Khriplovitch, and S. S. Petrosyan, Zk. Eksp. Teor. Fiz.
= :CVMAS (14) 109 1146 (1996 [Sov. Phys. JETRB2, 616 (1996]. We
ETTET 325 thank Dr. Karshenboim.

o The work of J.L.F. was performed under the auspices of
where hereu is the n-p reduced mass, and If#m,)  the U.S. Department of Energy, while that of G.L.P. was
=2.9671. This remarkably simple formula overestimates theupported in part by the U.S. Department of Energy. One of
complete result by approximately 1%. There is little uncer-us (J.L.F) would like to thank Don Sprung and Winfried
tainty in any of the quantities except féxg, which was Leidemann for helpful discussions of their results.
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