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Nuclear polarizabilities and logarithmic sum rules
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The electric polarizability and logarithmic mean-excitation energy are calculated for the deuteron using
techniques introduced in atomic physics. These results are then used to improve limits on the atomic-deuterium
frequency shift due to nuclear polarization in the unretarded dipole limit, as well as confirming previous
results.@S0556-2813~97!03906-X#

PACS number~s!: 21.45.1v, 13.75.Cs, 24.70.1s, 31.30.Gs
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The remarkable experiments@1,2# currently being per-
formed on the isotope shift in atomic hydrogen (2H vs 1H!
are primarily determined by differences in the masses of
isotopes, but are significantly sensitive to nuclear struct
These measurements provide the most precise determin
of the difference in sizes of these isotopes. The most re
@2# result for thed-p isotope shift in the 1S-2S level splitting
is

DnD2H5670 994 334~2! kHz, ~1!

of which roughly 5000 kHz is attributable to the finite-siz
differences of the nuclei, while roughly 20 kHz is due to t
electric polarizability of the deuteron. In other words, in a
dition to a weaker Coulomb potential arising from th
nuclear charge distribution seen by the electron at very s
~on the atomic scale! distances, that electron also ‘‘distorts
or polarizes the nucleus, which enhances the binding. Th
numerical calculations of the effect of nuclear polarizati
on the isotope shift have been performed recently@3–5#, al-
though the relevant leading-order analytic results for
nth S state have long been known@6,7#:

DEpol525meaufn~0!u2aEF19301 lnS 2Ē
me

D G , ~2!

where@8# a is the fine-structure constant,me is the electron
mass,ufn(0)u25m3a3/pn3 is the square of the wave func
tion of the electron at the origin,aE is the deuteron electric
polarizability,m is thee2d reduced mass, and we work i
natural units (\5c51). Even though uncertainties in th
polarization calculations are currently smaller than the e
quoted in Eq.~1!, planned improvements@2# in that accuracy
warrant a strong effort to reduce the theoretical uncerta
to a minimum.

The electric polarizability of a nucleus~or atom! is de-
fined by @9#
550556-2813/97/55~6!/2764~4!/$10.00
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aE5
2a

3 (
NÞ0

u^NuDW u0&u2

EN2E0
, ~3!

whereE0 is the energy of the ground stateu0&, EN is the
energy of theNth excited state, andDW is the electric-dipole
operator, which effects the transition between those sta
The definition~3! can be rearranged into the form of a su
rule @9,10#:

aE5
1

2p2E dv
sg
ud~v!

v2 [
s22

2p2 , ~4!

where sg
ud(v) is the cross section for photoabsorption

unretarded-dipole~long-wavelength! photons by the nucleus
Concomitantly, the logarithmic mean-excitation energy
Eq. ~2!, Ē, is defined by

2a

3 (
NÞ0

u^NuDW u0&u2

EN2E0
ln@~EN2E0!/me#[aEln~ Ē/me!, ~5!

and clearly corresponds to placing a factor of ln(v) in the
integrand in Eq.~4!. The augusts22 sum rule and its~less
well-known@11#! logarithmic relatives22

l have been used to

evaluateaE and Ē by explicitly constructing^NuDW u0& @or
equivalently,sg

ud(v)# and performing the integral numer
cally. Results foraE for many ‘‘realistic’’ potential models
are known, although the two most recent calculations@4,5#
did not have any models in common.

In this work we will ~1! calculateaE for a set of models
that subsumes most of those of Refs.@4,5# and includes sev-
eral more;~2! calculate ln(Ē) for these models;~3! use novel
~for nuclear, but not atomic, applications! numerical tech-
niques for calculating bothaE and ln(Ē); ~4! critically dis-
cuss the potential models and attempt to assign a subje
but credible uncertainty to the results. In this way we w
confirm the previous results, while shrinking the uncertain
2764 © 1997 The American Physical Society
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55 2765NUCLEAR POLARIZABILITIES AND LOGARITHMIC . . .
associated with them. Our numerical techniques were
applied to atomic problems, but now find a comfortab
home in nuclear physics.

The technique we use for calculatingaE was first used by
Podolsky@12# to treat dispersion in hydrogen atoms. Defin
tion ~3! is fully equivalent to

aE52a^0uDzuDCz&, ~6!

where

~H2E0!uDCz&5Dzu0& ~7!

is solved subject to finite boundary conditions. Note thatDW
does not connect the ground state~the only bound state! of
the deuteron to itself. Resolution of Eq.~7! into partial
waves, incorporation of the nuclear~including tensor! force,
and other minor~although tedious and important! details are
contained in Ref.@9#, together with many analytic results fo
simple potentials. Our calculation will employ the usual no
relativistic ~classical! dipole operator.

The resulting procedure is only slightly more compl
than solving for the deuteron ground state, and it is v
stable. We have calculatedaE for 14 different ‘‘realistic’’
nucleon-nucleon (NN) potential models. Such models mu
contain OPEP~one-pion-exchange potential!, which domi-
nates the binding of light nuclei, and they must fit theNN
data reasonably well. All of the models used in Refs.@4,5#
are in this category, although the quality of the fits~of vari-
ous potential parameters! to the data differs rather dramat
cally from case to case. Most of those models could be c
acterized as ‘‘first-generation’’ models. Recently, t
Nijmegen group and their collaborators@13–15# have con-
structed ‘‘second-generation’’ models, which provide go
to very good quality fits to allNN data, even approachin
x2 per degree of freedom;1. Such fits are sufficiently good
that they can be regarded as alternative phase-shift anal
This does not necessarily imply that the underlying phys
has a corresponding accuracy, since several of these mo
are purely phenomenological, except for the all-import
and dominant OPEP that incorporates different pion mas
in different ~isospin! states.

We determine the logarithmic mean-excitation energyĒ
~or logarithmic sum rule! using a trick developed for calcu
lating various logarithmic mean-excitation energies in ato
@16#, one of which is the Bethe logarithm. If we add a p
rameterl[j• f to (H2E0) in Eq. ~7!, wherej is dimen-
sionless andf has the dimensions of energy, we can th
define~and easily calculate!

aE~j!5
2a

3 (
NÞ0

u^NuDW u0&u2

j f1EN2E0
, ~8!

whereaE(0) is the usual result. The integral ofaE(j) from
0 to L ~very large compared toĒ/ f ) generates

E
0

L

djaE~j!}2 (
NÞ0

u^NuDW u0&u2

f
ln@~EN2E0!/L f #, ~9!

which gives the desired logarithm. A similar integratio
gives
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aE~j!} (

NÞ0

u^NuDW u0&u2

EN2E0
ln@~EN2E0!/e f #. ~10!

For numerical purposes, we split the integral in Eq.~10! into
*e
11*1

` , and the dimensionful scale parameterf determines
where the split occurs in energy units. Rearranging sligh
and changing variables to 1/j in the second integral, we
achieve our final result:

aE~0!ln~2Ē/me!5E
0

1dj

j
@aE~j!2aE~0!1aE~1/j!#

2aE~0!ln~me/2f !. ~11!

The integrand is finite everywhere. Choosingf;325uE0u
makes the integral converge to five significant figures w
only a few (;6) Gauss-quadrature points, and all results
Ē are independent off if the integrals are performed with
sufficient accuracy. Podolsky’s method@9,12# makes the cal-
culation ofaE(j) as easy as that ofaE(0). Themethod is
very stable.

Table I presents our results foraE , ln(2Ē/me), and
DEpol separated into first-generation@17–23# ~listed in order
of appearance in Table I! and second-generation@13–15#
~potential! categories. Note that there is much more sprea
the first-generation results, reflecting indifferent fits to t
NN data. The spread in the second-generation results ca
summarized by

npol519.26~6! kHz ~12!

and

aE50.6328~17! fm3. ~13!

As noted below in Ref.@4#, this is not a numerically com-
plete result for the sum of all polarizability corrections, sin

TABLE I. Deuteron electric polarizabilities,aE , in units of

fm3, logarithmic mean-excitation-energy ratios, ln(2Ē/me), and deu-
teron 1S-2S polarization-energy shifts,npol , in kHz.

Potential model aE (fm
3) ln(2Ē/me) npol(kHz)

Second-generation potentials

Reid Soft Core~93! 0.6345 2.9616 19.31
Argonne V18 0.6343 2.9625 19.31
Nijmegen~loc-rel! 0.6334 2.9618 19.28
Nijmegen~loc-nr! 0.6327 2.9624 19.26
Nijmegen~nl-rel! 0.6328 2.9619 19.26
Nijmegen~nl-nr! 0.6319 2.9625 19.24
Nijmegen~full-rel! 0.6311 2.9615 19.21

First-generation potentials
Reid Soft Core~68! 0.6237 2.9638 18.99
Bonn ~CS! 0.6336 2.9630 19.29
Paris 0.6352 2.9627 19.34
de Tourreil–Rouben–Sprung 0.6376 2.9623 19.41
Argonne V14 0.6419 2.9624 19.54
Nijmegen~78! 0.6472 2.9612 19.70
Super Soft Core~C! 0.6497 2.9617 19.77
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it incorporates only unretarded dipole approximation. High
multipoles, retarded dipole contributions, seagulls, etc., h
not been included here, and may decrease this result by u
1 kHz @4#.

All of the appropriate results are quite close to those p
viously calculated@4,5#, with the electric polarizabilities dif-
fering at most by 2 in the last quoted significant figure
those references. Such small differences could be attrib
to slightly different versions of the potentials~new potentials
are often a matter of ‘‘work in progress’’!. Note also that the
pairs of new Nijmegen@14# local and nonlocal potential
~labeled ‘‘loc’’ and ‘‘nl’’ in Table I! have versions with rela
tivistic ~‘‘rel’’ ! and nonrelativistic~‘‘nr’’ ! kinematics~corre-
sponding to identical deuteron energies o
2AM22k rel

2 22M or 2knr
2 /M , respectively!. The slightly

smaller value ofk rel in the~excellent! zero-range approxima
tion @5,9# accounts for those differences in the values
aE , although this makes relatively little difference innpol .
The ‘‘full’’ Nijmegen potential @14# has the same form in al
partial waves and fits theNN data less well than the other

The result~13! agrees very well with a prediction@9# of
aE 5 0.632~3! fm3 made many years ago, and this warra
further comment. One can perform perturbation theory ab
the ‘‘zero-range’’ limit by turning off the forces inp waves,
dropping the deuterond state, and replacing the~reduced!
deuteron s-state wave function by its asymptotic form
u(r )5ASexp(2kr), whereAS is thes wave asymptotic nor-
malization constant. With this ansatz we obtain@5,9#

aE>aE
05

amAS
2

32k5 , ~14!

where herem is the n-p reduced mass, and ln(2Ē/me)
52.9671. This remarkably simple formula overestimates
complete result by approximately 1%. There is little unc
tainty in any of the quantities except forAS , which was
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recently determined@24# to be AS 5 0.8845~8! fm21/2 in
agreement with the value used in Ref.@9#, and which leads to
aE
0 5 0.6378~12! fm3. Moreover, the corrections,DaE , to

aE
0 defined byaE5aE

01DaE can be determined from th
potential models~see Refs.@5,9#! to beDaE>20.0044(2)
fm3, which leads directly toaE50.6334~14! fm3, which is
consistent with Eq.~13!. Note that no relativistic correction
have been incorporated and they are not likely to be ne
gible on the scale of the uncertainty in Eq.~13!.

Why do the ‘‘second-generation’’ potentials agree so w
with the perturbation theory estimates? The answer is
AS is determined by analyzingNN scattering, and we state
earlier that the new potentials could be viewed as alterna
phase-shift analyses. That is, they fit theNN data quite well,
and associated properties~such asAS) should agree with
other experimental determinations. Thus,aE is very well de-
termined.

We summarize by noting thataE and ln(Ē) have been
calculated for the deuteron by novel methods. These ca
lations confirm previous results and add additional ones.
strongly recommend that only second-generation poten
results be used when assessing the reliability ofaE calcula-
tions. Equation~12! gives our best estimate for the leadin
order ~unretarded-dipole or long-wavelength! approximation
to the nuclear-polarizability correction given by Eq.~2!.

Note added in proof. S. Karshenboim informed us tha
we overlooked the zero-range calculations in A. I. Milshte
I. B. Khriplovitch, and S. S. Petrosyan, Zk. Eksp. Teor. F
109, 1146 ~1996! @Sov. Phys. JETP82, 616 ~1996!#. We
thank Dr. Karshenboim.

The work of J.L.F. was performed under the auspices
the U.S. Department of Energy, while that of G.L.P. w
supported in part by the U.S. Department of Energy. One
us ~J.L.F.! would like to thank Don Sprung and Winfrie
Leidemann for helpful discussions of their results.
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@2# T. W. Hänsch~unpublished!; efforts are under way to reduc
this uncertainty by an order of magnitude, T. W. Ha¨nsch~pri-
vate communication!.

@3# K. Pachucki, D. Leibfried, and T. W. Ha¨nsch, Phys. Rev. A
48, R1 ~1993!; K. Pachucki, M. Weitz, and T. W. Ha¨nsch,ibid.
49, 2255~1994!.

@4# W. Leidemann and R. Rosenfelder, Phys. Rev. C51, 427
~1995!; Y. Lu and R. Rosenfelder, Phys. Lett. B319, 7 ~1993!.
This work goes beyond our Eq.~2!, and includes retardation
and higher multipoles.

@5# J. Martorell, D. W. L. Sprung, and D. C. Zheng, Phys. Rev
51, 1127 ~1995!. The individual results of this paper diffe
from ours by 0.07 kHz, because their unretarded dipole
proximation contains additional small terms from the electr
kinematics.

@6# J. Bernabe´u and T. E. O. Ericson, Z. Phys. A309, 213~1983!.
@7# J. L. Friar~unpublished!; reference@6# appeared just before th
-

completion of this work, which was an extension of Ref.@11#
from muonic to electronic atoms. This work nevertheless u
completely different techniques~Euclidean four-dimensiona
spherical coordinates! to perform the integrals and verified th
results of Ref.@6#.

@8# E. R. Cohen and B. N. Taylor, Rev. Mod. Phys.59, 1121
~1987!. All constants are taken from this work.

@9# J. L. Friar and S. Fallieros, Phys. Rev. C29, 232 ~1984!.
@10# J. L. Friar, S. Fallieros, E. L. Tomusiak, D. Skopik, and E.

Fuller, Phys. Rev. C27, 1364~1983!. This reference uses Eq
~4! to obtainaE50.61(4)fm3; see also N. L. Rodning, L. D.
Knutson, W. G. Lynch, and M. B. Tsang, Phys. Rev. Lett.49,
909 ~1982!, which obtainedaE50.70(5)fm3.

@11# J. L. Friar, Phys. Rev. C16, 1540~1977!.
@12# B. Podolsky, Proc. Natl. Acad. Sci. USA14, 253 ~1928!.
@13# J. L. Friar, G. L. Payne, V. G. J. Stoks, and J. J. de Sw

Phys. Lett. B311, 4 ~1993!.
@14# V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J

de Swart, Phys. Rev. C49, 2950~1994!.
@15# R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev.



ys

v.

D

eu-

y

55 2767NUCLEAR POLARIZABILITIES AND LOGARITHMIC . . .
51, 38 ~1995!.
@16# S. Rosendorff and A. Birman, Phys. Rev. A31, 612 ~1985!.
@17# R. V. Reid, Ann. Phys.~N.Y.! 50, 411 ~1968!.
@18# R. Machleidt, K. Holinde, and C. Elster, Phys. Rep.149, 1

~1987!.
@19# M. LaCombeet al., Phys. Rev. C21, 861 ~1980!.
@20# R. de Tourreil, B. Rouben, and D. W. L. Sprung, Nucl. Ph

A242, 445 ~1975!.
@21# R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Phys. Re

C 29, 1207~1984!.
.

@22# M. M. Nagels, T. A. Rijken, and J. J. de Swart, Phys. Rev.
17, 768 ~1978!.

@23# R. de Tourreil and D. W. L. Sprung, Nucl. Phys.A201, 193
~1973!.

@24# J. J. de Swart, C. P. F. Terheggen, and V. G. J. Stoks,Pro-
ceedings of the Third International Symposium Dubna D
teron 95, Dubna, Russia, 1995~Nijmegen Report THEF-
NYM-95.11, nucl-th/9509032, 1995!; J. J. de Swart, R. A. M.
Klomp, M. C. M. Rentmeester, and Th. A. Rijken, Few-Bod
Syst. Suppl.99, ~1995!.


