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Sudakov form factor in a massive vector field theory
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The leading-logarithm approximation for the Sudakov form factor is examined in a theory containing
massive fermion and massive neutral vector meson fields. In the on-shell case, where there is only one mass
scale(the meson magsthe Sudakov form factor in this model agrees with the result in QED. In the off-shell
case, however, with two different mass scalte meson mass and the off-shell mass of the ferjmithe
Sudakov form factor differs from the QED resyl80556-28137)01805-0

PACS numbsdis): 12.40.Vv, 13.75.Cs

At large spacelike momentum transfer, the leading contricontribution to the electromagnetic form factor@t«?") in
butions to the form factor of a fermion coupled to a vectorperturbation theory factorizes a8 =(I'™)"/n!, where
boson exponentiate, yielding the so-called Sudakov fornT"(%) indicates the lowest-order correction to the bare vertex.
factor. The application of the factorization process thatin their work, Fishbane and Sullivan gave the photon a small
causes the Sudakov form factor in QED and QCD producegegulator mass, and their proof waindependenof the size
the well-known electron and quark electromagnetic form facof ». By taking v~0, they reproduced Sudakov’s result for
tors. In the derivations of these form factors, an infinitesimakhe off-shell vertex, and for the on-shell vertex they found
boson mass is introduced, when needed, to avoid infrareghat the vertex function behaves as
divergences. Here we examine the calculation of the Suda-
kov form factor in a theory containing a massive fermion and

a massive neutral vector field. u(pp) A*u(pa) —u(pp) Y*u(pa)
Quantum theories with massive vector fields are impor- 2
tant in the development of quantum hadrodynanti@siD) Xexp{ — 167Tzlnz(—qzlvz) . (2

[1-3]. Proposed as a way to describe nucleons and the
nuclear force at intermediate energies, QHD has been suc-
cessful in predicting many nuclear properties at the meanwith the regulator mass being associatetlltimately) with
field level. However, some calculations beyond this levelthe energy resolution of the detector.
have failed, because of the large size of vacuum-polarization In later work, Collins[16,17] and Sen[18] studied the
loops. It was recognizef4,5] that the size of the vacuum behavior of the Sudakov form factor in a broader class of
contributions could be reduced by including vertex correc-quantum field theories. Their combined efforts showed that
tions at the bare nucleon-meson vertices. Several calculdhe sum of nonleading logarithmic contributions to the
tions involving vector and scalar meson fields have beemroper vertex function, in both Abelian and non-Abelian
performed testing this propositiof6—12], and the results gauge field theories, either cancel or exponentiate, thus leav-
have been encouraging; however, despite these results, tiveg the leading-logarithm results intact.
Sudakov form factor in @aassivevector theory has not been ~ We consider a theory containing a fermion of mhssnd
adequately discussed. a neutral vector meson of mass, interacting through a
In his original work in QED, Sudako{13] showed that, Yukawa coupling of strengtly, . The off-shell vertex func-
in the leading-logarithm approximation, the sum of contribu-tion can be written agl15]
tions to the electromagnetic form factor at large momentum
transfer g exponentiates, and the resulting exponential is, ,
highly damped. To avoid infrared divergences that arise fro (Pa>Po.q)
a zero photon mass, Sudakov gave the electrons off-shell
momenta p, and p,, and found that for —q? = AL (pp) (YAFL+i07q,Fot QL Fa) A 4 (Pa)
>|p2|,|pg|>m32, the proper vertex function becomes _
TA_(pPp) (v Fatioh’q,Fs+q"Fe) A _(Pa)
U(Po) AU(Pa) = u(Py) ¥*u(Pa) + A4 (Po) (Y Fy+i 0470, Fat 0 Fo) A (Pa)

2
e A . ; vg. F. o)A
XeXF{_Wln(—qzﬂpgh + *(pb)(/y'u 10+|0-# ad. ll+qﬂ 12) +(pa)1 (3)

where = F,(q%,p2,p2) are the off-shell form factors, and
A.(p)= % (1 =p/M) are projection operators.
When the external baryon momenta are on shell

Jackiw [14] and Fishbane and Sullivajl5] extended (P.=pp,=M), the vertex function depends only on the mo-
Sudakov's work. They showed that the leading-logarithmicmentum transfeg“=p{ —p%, and the only surviving func-

XIn(—q%|pd)|. (1)
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tions areF;=F1(q?) andF,=F,(q?. The general form for leading-logarithm approximatio(for any value ofm,), the
the vertex function then reduces to the well-known on-shelvertex function can be written as
expressiorf 19]

AH(Pa,Pp, @)= A(0) = y*F1(q?) +io""q,F2(0?). " | 'j‘m A% (Pa:Pp.a)
4 %=
In general, the anomalou$=2,5,8,11) and longitudinal - y“f(pi,pﬁ)exr{f&l’(qz,pg,pﬁ)]. ©®)
(i=3,6,9,12) form factors in Eq(3) are suppressed with
respect to the charge form factors by a powegfhence, at We are concerned here with the behavior of the Sudakov
large|q|, the vertex is dommated by the charge form factors factorf(l) in the exponent, and we will not deal with the
In particular, amnth order ing?, function f(p2,p2). In what follows, we use the dimension-

®) Iess Euclidean momen@?=—q?/M?2, m2=—p2/M?, and
m3=—pg&/M?, and also the variablg=m, /M.
When the baryon momenta are on shell, the lowest-order
Since  F"(0?,p2,p2)—[FAV(g%p2,p2)]"n!  in the  vertex correction is

lim [A“(pa,pp, ) 1"~ y“F"(q%,p2,pp).

g% —o

2 _ YA 201 _ 2 _ 12
F(ll)(Qz)=— gvzjld (2[2(1 u)—u+Q<(1-u/2) ]In S(u)+uQ/2 o 2u[22(1 u)—u“]
167 ) o QSu) S(u)—uQ/2 u+u(l—u)
2S(u)  [S(u)+uQ/2 )
Q S(u)—uQ/2]/’ ™
|
where and the vertex correction becomes, to logarithmic accuracy,
2Q2 1/2 2 1 22
S(u)= 2+_+,U~2(1_U)) : ® (1)(92)~ _ v f du L)
Fi(Q%) 1672 ) 2,00 U n W2t n2(1-u) (13)

with Q=/Q? and u defined above.

At large Q, the term proportional t@Q? dominates the gf 5 o 0 . o
integrand, and to extract the leading behayjmmoportional - 16w2<|n (Q%) —In“(4u°)
to IN?(Q?)], one need consider on[y¥]

J du S(u)+uQ/2

S(u) uQ/2

For finite u and Q> u~1, S(u) behaves linearly iru as

long asu>2u/Q. In this asymptotic limit, the logarithm in
the integrand behaves as

S(u)+uQ/2 B

"s(w—uor) =~

(12)

—fl %4In[,u2(1—u)+u2] .
QU

2ul

Fi7(Q%) ) 9
The remaining integral generates only one power of

In(Q?); hence, in the leading-logarithm approximation, the

lowest-order, on-shell vertex correction can be written as

g2 2

v 9y
) +0(1/Q%), Fi(Q%)~ = 1 2In%(Q% u?) = — 75 In*(—?/m)),
(10 (13

u2Q2
u+ p?(1—u)

which reproduces the on-shell form factor in QED derived by Fishbane and Sullaari2)].
When the baryon momenta are off shell, the lowest-order correction can be written as

FY(Q2mE,md)=— Efldu([Z(l U)— u?+ Q2(1—u/2)2]l o(u) +Cly(u) — ZUMH(U)
1 »Hiasttip 1677 2 (1 u)
—2u|n[u2+,u.2(1—u)]), (14)

where
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(W) 1 I —cu?+uyb®’—4ac+a 15
u)= n ,
0 Jb?—4ac | —cu’—u\b’—4ac+a
L) b?-2ac I —cu?+uyb’—4ac+a b [a+bu+cu? s 16
cly(u)= n — —In| —— | +2u,
2 2c\b’—4ac | —cu?—u\b?’—4ac+a) 2¢ \a—bu+cu?
] I o , . ) bI a+bu+cu?
u)=uln[(a+bu+cu?d)(a—bu+cu?d)]+ —In| ——— | —
(W A A )] 2c \a—bu+cu?
\/b2—4acI (—cu2+u\/b2—4ac+a) a7
- n 5
2c —cu?—u\b?—4ac+a

with
a=[ u2+ (m2+m)u/2](1—u)+u+u?Q?4,
b=(mZ—mg)(1-u)/2,
c=—Q?%4.

As in the preceding discussion, only the first term in the integrand can produce a factd( @f)insince only this term
contains an extra power @? in the numerator. Fo@>m,,m,1, the factor

S(u)=+b%—4ac=Qa+b?Q*~ %[UZQ2+4U+4(1— u) w2+ 2(1—u)u(mi+m2)]+2 (18)

behaves linearly i when

u2Q2>4[1— w2+ (mi+md)/2Ju+4u?,
which can be realized in two different ways:

u>4[1— w2+ (mi+md)/2]/Q%>2ulQ
or

u>2u/Q>4[1— w2+ (m3+md)/2]/Q>.

Denotinge;=2u/Q and e,=4[1— u?+ (m2+m2)/2]/Q?, we observe that in the asymptotic linfk— o, €,> ¢, is sensible

only for w=0 (the QED caskg otherwise, this inequality will always be violated for large eno@@hin contrast,e,<e€; is

sensible only forw# 0. Thus the analysis separates into the massive and massless cases. To logarithmic accuracy, we can set
the lower integration limit in Eq(14) to a cutoff e and study them in turn. In this asymptotic limit, the vertex correction
becomegone must retain the?/Q? term in Eq.(18)]

2
FH(Q%mE,mf)~— %f%z In [u+ (w2t miu)(l—(:l)z]Q[lj)j(Mz-l— mpu)(1—u)]
-~ 1giz[ln2(Q2)—ln2(62Q2)— R(#?m;,Q%) ~R(u?,mj,Q%)], (19
[
with For e= e, [e,> €, or roughly forQus(m2+m)]
R(MZ,mZ,QZ)Ele%In[qu(M2+mZU)(l—U)]- IN%(Q?) ~In*(€Q%) =In*(Q%) — IN’[Q*(4u?/Q%)]

(20) =In%(Q?) —In?(4u?), (22)

For finite u, R(x?,m?Q?) contains only one power of andR(u?,m?Q?) does not contribute to the leading order;
In(Q?), but for =0, R(0,m?,Q?)~ —In%(Q?). hence, the lowest-order, off-shell vertex function
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2

g,
FIQAmEmy)~ — 75—In(Q?) (22)

yields a Sudakov factdnalf the size of the QED resUlEq.
D]

For e=¢€, [e,<€, Or u—0] the term
In?(Q?) —In?(€5Q?) =4 In(Q?)In [4+2(m3+m?3)]
—4In[4+2(m2+md)] (23

contains no double logarithm 3©Q?). One finds, however,
that

R(0m?,Q%) = Zfl%ln{u[lﬂL m2(1—u)]}

€2

=—In%(Q?)+0[In(Q?], (24)

and thus, at the leading order, the vertex function

2
ANQME M)~ 5 Q) (25)
reproduces the QED resuEq. (1)].

We determined the on-shell and off-shell Sudakov form
factors in a theory containing massive fermion and vector
meson fields. In the on-shell case where the meson mass
provides the only mass scale, the form factor in the massive
theory agrees with the QED form factor, and the meson mass
can be identified with the infrared regulator used in QED. In
the off-shell case with two mass scales, we found two differ-
ent results. For vanishing vector meson mass, the QED form
factor is reproduced, as expected. For finite vector meson
mass, however, the form factor displays a double logarithm
behavior with a Sudakov factdnalf the sizeof the QED
result.
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