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Sudakov form factor in a massive vector field theory
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~Received 10 December 1996!

The leading-logarithm approximation for the Sudakov form factor is examined in a theory containing
massive fermion and massive neutral vector meson fields. In the on-shell case, where there is only one mass
scale~the meson mass!, the Sudakov form factor in this model agrees with the result in QED. In the off-shell
case, however, with two different mass scales~the meson mass and the off-shell mass of the fermion!, the
Sudakov form factor differs from the QED result.@S0556-2813~97!01805-0#

PACS number~s!: 12.40.Vv, 13.75.Cs
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At large spacelike momentum transfer, the leading con
butions to the form factor of a fermion coupled to a vec
boson exponentiate, yielding the so-called Sudakov fo
factor. The application of the factorization process th
causes the Sudakov form factor in QED and QCD produ
the well-known electron and quark electromagnetic form f
tors. In the derivations of these form factors, an infinitesim
boson mass is introduced, when needed, to avoid infra
divergences. Here we examine the calculation of the Su
kov form factor in a theory containing a massive fermion a
a massive neutral vector field.

Quantum theories with massive vector fields are imp
tant in the development of quantum hadrodynamics~QHD!
@1–3#. Proposed as a way to describe nucleons and
nuclear force at intermediate energies, QHD has been
cessful in predicting many nuclear properties at the me
field level. However, some calculations beyond this le
have failed, because of the large size of vacuum-polariza
loops. It was recognized@4,5# that the size of the vacuum
contributions could be reduced by including vertex corr
tions at the bare nucleon-meson vertices. Several calc
tions involving vector and scalar meson fields have b
performed testing this proposition@6–12#, and the results
have been encouraging; however, despite these results
Sudakov form factor in amassivevector theory has not bee
adequately discussed.

In his original work in QED, Sudakov@13# showed that,
in the leading-logarithm approximation, the sum of contrib
tions to the electromagnetic form factor at large moment
transfer q exponentiates, and the resulting exponential
highly damped. To avoid infrared divergences that arise fr
a zero photon mass, Sudakov gave the electrons off-s
momenta pa and pb , and found that for 2q2

@upa
2u,upb

2u@me
2 , the proper vertex function becomes

ū~pb!L
mu~pa!→ū~pb!g

mu~pa!

3expF2
e2

8p2 ln~2q2/upa
2u!

3 ln~2q2/upb
2u!G . ~1!

Jackiw @14# and Fishbane and Sullivan@15# extended
Sudakov’s work. They showed that the leading-logarithm
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contribution to the electromagnetic form factor ofO(a2n) in
perturbation theory factorizes asG (n)5(G (1))n/n!, where
G (1) indicates the lowest-order correction to the bare vert
In their work, Fishbane and Sullivan gave the photon a sm
regulator massn, and their proof wasindependentof the size
of n. By taking n'0, they reproduced Sudakov’s result fo
the off-shell vertex, and for the on-shell vertex they fou
that the vertex function behaves as

ū~pb!L
mu~pa!→ū~pb!g

mu~pa!

3expF2
e2

16p2 ln
2~2q2/n2!G , ~2!

with the regulator massn being associated~ultimately! with
the energy resolution of the detector.

In later work, Collins@16,17# and Sen@18# studied the
behavior of the Sudakov form factor in a broader class
quantum field theories. Their combined efforts showed t
the sum of nonleading logarithmic contributions to t
proper vertex function, in both Abelian and non-Abelia
gauge field theories, either cancel or exponentiate, thus l
ing the leading-logarithm results intact.

We consider a theory containing a fermion of massM and
a neutral vector meson of massmv interacting through a
Yukawa coupling of strengthgv . The off-shell vertex func-
tion can be written as@15#

Lm~pa ,pb ,q!

5L1~pb!~gmF11 ismnqnF21qmF3!L1~pa!

1L2~pb!~gmF41 ismnqnF51qmF6!L2~pa!

1L1~pb!~gmF71 ismnqnF81qmF9!L2~pa!

1L2~pb!~gmF101 ismnqnF111qmF12!L1~pa!, ~3!

whereFi[Fi(q2,pa2 ,pb2) are the off-shell form factors, and

L6(p)5
1
2 (16p” /M ) are projection operators.

When the external baryon momenta are on sh
(p” a5p” b5M ), the vertex function depends only on the m
mentum transferqm[pb

m2pa
m , and the only surviving func-
2704 © 1997 The American Physical Society
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tions areF1[F1(q
2) andF2[F2(q

2). The general form for
the vertex function then reduces to the well-known on-sh
expression@19#

Lm~pa ,pb ,q!⇒Lm~q!5gmF1~q
2!1 ismnqnF2~q

2!.
~4!

In general, the anomalous (i52,5,8,11) and longitudina
( i53,6,9,12) form factors in Eq.~3! are suppressed with
respect to the charge form factors by a power ofq2; hence, at
largeuqu, the vertex is dominated by the charge form facto
In particular, atnth order ingv

2 ,

lim
uq2u→`

@Lm~pa ,pb ,q!#n'gmF1~n!~q2,pa
2 ,pb

2!. ~5!

Since F1(n)(q2,pa2 ,pb2)→@F1(1)(q2,pa2 ,pb2)#n/n! in the
ll

.

leading-logarithm approximation~for any value ofmv), the
vertex function can be written as

lim
uq2u→`

Lm~pa ,pb ,q!

5gm f ~pa
2 ,pb

2!exp@F1~1!~q2,pa
2 ,pb

2!#. ~6!

We are concerned here with the behavior of the Suda
factor F1(1) in the exponent, and we will not deal with th
function f (pa

2 ,pb
2). In what follows, we use the dimension

less Euclidean momentaQ252q2/M2, ma
252pa

2/M2, and
mb
252pb

2/M2, and also the variablem5mv /M .
When the baryon momenta are on shell, the lowest-or

vertex correction is
F1
~1!~Q2!52

gv
2

16p2E
0

1

duS 2@2~12u!2u21Q2~12u/2!2#

QS~u!
lnFS~u!1uQ/2

S~u!2uQ/2G22u2
2u@2~12u!2u2#

u21m~12u!

1
2S~u!

Q
lnFS~u!1uQ/2

S~u!2uQ/2G D , ~7!
cy,

of
he
where

S~u![S u21 u2Q2

4
1m2~12u! D 1/2, ~8!

with Q[AQ2 andm defined above.
At large Q, the term proportional toQ2 dominates the

integrand, and to extract the leading behavior@proportional
to ln2(Q2)#, one need consider only@7#

F1
~1!~Q2!'2

gv
2

16p2E
0

1

du
2Q

S~u!
lnSS~u!1uQ/2

S~u!2uQ/2D . ~9!

For finite m andQ@m'1, S(u) behaves linearly inu as
long asu@2m/Q. In this asymptotic limit, the logarithm in
the integrand behaves as

lnSS~u!1uQ/2

S~u!2uQ/2D5 lnS u2Q2

u21m2~12u! D1O~1/Q2!,

~10!
and the vertex correction becomes, to logarithmic accura

F1
~1!~Q2!'2

gv
2

16p2E
2m/Q

1 du

u
4 lnS u2Q2

u21m2~12u! D ~11!

'2
gv
2

16p2S ln2~Q2!2 ln2~4m2!

2E
2m/Q

1 du

u
4 ln@m2~12u!1u2# D . ~12!

The remaining integral generates only one power
ln(Q2); hence, in the leading-logarithm approximation, t
lowest-order, on-shell vertex correction can be written as

F1
~1!~Q2!'2

gv
2

16p2 ln
2~Q2/m2!52

gv
2

16p2 ln
2~2q2/mv

2!,

~13!
which reproduces the on-shell form factor in QED derived by Fishbane and Sullivan@Eq. ~2!#.
When the baryon momenta are off shell, the lowest-order correction can be written as

F1~1!~Q2,ma
2 ,mb

2!52
gv
2

16p2E
0

1

duS @2~12u!2u21Q2~12u/2!2#I 0~u!1cI2~u!22u
2~12u!2u2

u21m2~12u!
1L~u!

22u ln@u21m2~12u!# D , ~14!

where
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I 0~u![
1

Ab224ac
lnS 2cu21uAb224ac1a

2cu22uAb224ac1a
D , ~15!

cI2~u![
b222ac

2cAb224ac
lnS 2cu21uAb224ac1a

2cu22uAb224ac1a
D 2

b

2c
lnS a1bu1cu2

a2bu1cu2D12u, ~16!

L~u![u ln@~a1bu1cu2!~a2bu1cu2!#1
b

2c
lnS a1bu1cu2

a2bu1cu2D 24u

2
Ab224ac

2c
lnS 2cu21uAb224ac1a

2cu22uAb224ac1a
D , ~17!

with

a[@m21~ma
21mb

2!u/2#~12u!1u1u2Q2/4,

b[~ma
22mb

2!~12u!/2,

c[2Q2/4.

As in the preceding discussion, only the first term in the integrand can produce a factor of ln2(Q2), since only this term
contains an extra power ofQ2 in the numerator. ForQ@ma ,mb ,1, the factor

S~u![Ab224ac5QAa1b2/Q2'
Q

2
@u2Q214u14~12u!m212~12u!u~ma

21mb
2!#1/2 ~18!

behaves linearly inu when

u2Q2.4@12m21~ma
21mb

2!/2#u14m2,

which can be realized in two different ways:

u.4@12m21~ma
21mb

2!/2#/Q2.2m/Q

or

u.2m/Q.4@12m21~ma
21mb

2!/2#/Q2.

Denotinge1[2m/Q ande2[4@12m21(ma
21mb

2)/2#/Q2, we observe that in the asymptotic limitQ→`, e2.e1 is sensible
only for m50 ~the QED case!; otherwise, this inequality will always be violated for large enoughQ. In contrast,e2,e1 is
sensible only formÞ0. Thus the analysis separates into the massive and massless cases. To logarithmic accuracy, w
the lower integration limit in Eq.~14! to a cutoff e and study them in turn. In this asymptotic limit, the vertex correct
becomes@one must retain theb2/Q2 term in Eq.~18!#

F1~1!~Q2,ma
2 ,mb

2!'2
gv
2

16p2E
e

1du

u
2 ln S ~u2Q2!2

@u1~m21ma
2u!~12u!#@u1~m21mb

2u!~12u!# D
'2

gv
2

16p2 @ ln2~Q2!2 ln2~e2Q2!2R~m2,ma
2 ,Q2!2R~m2,mb

2 ,Q2!#, ~19!
f r;
with

R~m2,m2,Q2![2E
e

1du

u
ln@u1~m21m2u!~12u!#.

~20!

For finite m, R(m2,m2,Q2) contains only one power o
ln(Q2), but form50, R(0,m2,Q2)'2 ln2(Q2).
For e5e1 @e1.e2 or roughly forQm@(ma
21mb

2)#

ln2~Q2!2 ln2~e1
2Q2!5 ln2~Q2!2 ln2@Q2~4m2/Q2!#

5 ln2~Q2!2 ln2~4m2!, ~21!

andR(m2,m2,Q2) does not contribute to the leading orde
hence, the lowest-order, off-shell vertex function
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F1~1!~Q2,ma
2 ,mb

2!'2
gv
2

16p2 ln
2~Q2! ~22!

yields a Sudakov factorhalf the size of the QED result@Eq.
~1!#.

For e5e2 @e1,e2 or m→0# the term

ln2~Q2!2 ln2~e2
2Q2!54 ln~Q2!ln @412~ma

21mb
2!#

24 ln2@412~ma
21mb

2!# ~23!

contains no double logarithm ln2(Q2). One finds, however
that

R~0,m2,Q2!52E
e2

1du

u
ln$u@11m2~12u!#%

52 ln2~Q2!1O@ ln~Q2!#, ~24!
-

and thus, at the leading order, the vertex function

F1~1!~Q2,ma
2 ,mb

2!'2
gv
2

8p2 ln
2~Q2! ~25!

reproduces the QED result@Eq. ~1!#.
We determined the on-shell and off-shell Sudakov fo

factors in a theory containing massive fermion and vec
meson fields. In the on-shell case where the meson m
provides the only mass scale, the form factor in the mass
theory agrees with the QED form factor, and the meson m
can be identified with the infrared regulator used in QED.
the off-shell case with two mass scales, we found two diff
ent results. For vanishing vector meson mass, the QED f
factor is reproduced, as expected. For finite vector me
mass, however, the form factor displays a double logarit
behavior with a Sudakov factorhalf the sizeof the QED
result.
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