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A confining, Goldstone theorem preserving, separable ansatz for the ladder kernel of the two-body Bethe-
Salpeter equation is constructed from phenomenologically efficacipdsands dressed-quark propagators.
The simplicity of the approach is its merit. It provides a good description of the ground-state flavor-octet
pseudoscalar, vector, and axial-vector meson spectrum facilitates an exploration of the relative importance of
various components of the two-body Bethe-Salpeter amplitudes, showing that subleading Dirac components
are quantitatively important in the flavor-octet pseudoscalar meson channels, and allows a scrutiny of the
domain of applicability of ladder truncation studies. A color-antitriplet diquark spectrum is obtained. The
shortcomings of separablnsaze and the ladder kernel are highlightd&0556-281@7)04405-1]

PACS numbgs): 12.40.Yx, 11.10.St, 14.46.n, 24.85+p

I. INTRODUCTION +B(p?)]. The kernel of the ladder approximation to the
two-body BSE is then the customary ladder kernel but with

The spectroscopy of light-quark mesons is made interes® ,,(k) and S(p) employed in place of free-particle propa-
ing because of the role played by dynamical chiral symmetrygators.
breaking, the natural scale of which is commensurate with It has been showi#] that for anyD ,,(k) that leads to the
other scales in this sector. It also explores quark and gluoflynamical generation of a fermion mass in the chiral limit,
confinement because most vector and axial-vector meson€-, to dynamical chiral symmetry breaking, the flavor-octet
have masses that are more than twice as large as typicBpeudoscalar meson BSE necessarily admi$-a0 bound-
constituent-quark masses. Covariant, constituent-quark p&iate solution R, is the total momentum of the dressed-
tential models are a useful tool in the study of this problemduark, antiquark systemNo fine tuning is necessary to en-
[1]. sure this outcome and one thus has a natural understanding

A salient feature of the strong interaction spectrum is thePf the pion as both a Goldstone boson and a bound state of a
fact thatmﬁ—mf,%30mfr, which may be compared with the strongly dressed quark and antiquark. This outcome is the

vector-pseudovector  splittinam? —m2~1.7m2. FEurther- 'esult of an equivalence, in the chiral limit, between the
P PItingM,, =M, P quark DSE and the flavor-octet, pseudoscalar meson BSE.

more, the pion mass must vanish in the chiral I|m|t2; I-€-,This equivalence is an intrinsic feature of the DSE’s, which
when the current-quark mass vanishes, whemél% M,.  persists in more sophisticated truncation schefBes].
(We note that a vanishing current-quark mass does not entail The most extensive and phenomenologically successful
a vanishing of the constituent-quark masBhese observa- spectroscopic studies in the rainbow-ladder framework are
tions are an indication that the Goldstone-boson character ahose of Ref[6], in which the quark DSE is solved numeri-
the pion is a particular and crucial feature of the strong-cally for spacelikep? using a model gluon propagator. In
interaction spectrum. That these features are difficult to capcandau gauge the behavior of the gluon propagator is con-
ture in potential models is well illustrated in Ref4]. strained by perturbation theory fé>1—2 GeV? [7] and

An efficacious framework for studying meson spectros-one models the infrared behavior, which is presently un-
copy is provided by the QCD Dyson-Schwinger equationsknown. Such studies have the ability to unify many observ-
[DSE’s| [2], which include the “QCD gap equation(quark  ables via the few parameters that characterize the behavior of
DSB), that has proven useful in the study of quark confine-the model dressed-gluon propagator in the infrared.
ment and dynamical chiral symmetry breaking, and the co- In this approach, solving the meson BSE’s is complicated
variant, two-body bound-state Bethe-Salpeter equationby the fact that these equations sample the dressed-quark
[BSE's]. With one exception, Ref[3], all spectroscopic propagator off the spacelikg? axis. In Ref.[6] this diffi-
studies to date have employed the rainbow-ladder truncatiosulty was circumvented by employing a derivative expansion
of the quark DSE and two-body BSE, which is defined asof the dressed-quark propagator function&(p?) and
follows. Rainbow approximation specifies that the dresse@®(p?), and estimating the error introduced thereby. This,
quark-gluon vertex in the quark DSE is replaced by the baréowever, obscures the discussion and exploration of the role
vertex:I'% (k,p)=y,\%/2, where{\?18_ are the color Gell- of quark and gluon confinement, a sufficient condition for
Mann matrices. This equation is then solved with a givenwhich is the absence of a Lehmann representation for the
model form of the dressed-gluon propagatbr,,(k), to  dressed-quark and dressed-gluon propagators. The problem
yield a dressed-quark propagato&(p)=1/1ivy-pA(p?) becomes more acute in studies of scattering observables.
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An algebraic parametrization of a confining dressed-quarko allow a more realistic study of hadron couplings. We also
propagator, based on numerical solutions of model quarktake this opportunity to explore diquark correlations.
DSE'’s, has been used successfully in studies of a large range It is with this goal in mind that, in Sec. II, we construct a
of mesonic scattering observables; for example; r ., the  constrained, confining, flavor-dependent, separageatz
-7 scattering lengths and the pion electromagnetic fornfor the dressed-ladder kernel of the two-body BSE'’s. Light-
factor[8]; fx and the charged and neutral kaon electromagduark meson solutions are discussed in Sec. lll. Details of
netic form factors[9]; the anomalousym—y [10] and the derivation Qf the_expllcn form taken by the ladder Bethe—
ymr—mrar transition form factord11]. In these studies the S@lpeter equation with the separable kervesatz and with

dressed-gluon propagator is only specified implicitly insofarretention of the most general Dirac covariant structure al-

as the model dressed-quark propagator can be used as a c#yved here, are collected into Appendix A. Specific aspects
straint on its form via the quark DSE. of the solution amplitudes are presented in Appendix B. In

It would be useful to make this connection explicit. How- Sec. IV we consider the effective masses of color-antitriplet
ever, given a dressed-quark propagator it is not possible, ifuark-quark (diquark correlations, which are bound in
principle, to invert the quark DSE and extract a dressegdressed-ladder truncation. This is a defect of the truncation,

gluon propagator; one reason being that the quark DSE inwhich is due to the fact that there are no repulsive terms in

volves the dressed-quark-gluon vertex, which depends imthe kernel at this level of truncation. It is a peculiarity; re-

plicitty on both the dressed-quark and dressed-gluorPulSive terms appear at every higher order, with “order”
propagators. In the peculiar case of the rainbow truncatiof€ferring to the number of explicit dressed-gluon propagators
this particular difficulty, at least, is eliminated. in the kernel, and these eliminate the diquark bound states

It is known that the rainbow truncation is only quantita- _[3]. Diquark correlations are neve_:rtheless of contemporary
tively and qualitatively reliable in Landau gauf2], which interest because a number of studies of the nucleon Fadde’'ev

means that it is inappropriate to infer a connection between §duation have proceeded under the assumption that the
given phenomenologically constrained model dressed-gluofuark-quark? matrix can be represented as a sum of simple
propagator and a solution of the gluon DSE, such as thosdiquark-pole terms, and that the mass splittings are such that

obtained in Refs[7,13], in any other covariant gauge. The only the lowest mass po!es need be retained in splving the
quark DSE is, in general, a pair of coupled, nonlinear intef€duced two-body equation that resyls3,19. Details of

gral equations fo\(p?) and B(p?). In Landau gauge, the the diquark solutions are discussed in Appendices B3 and

kernel in the equation foA(p?) is sufficiently complicated, B4 We summarize and conclude in Sec. V.
even in rainbow truncation, that it is not possible to invert
the equation without introducing kinematic singularities. An |l. SEPARABLE ANSATZ FOR THE BETHE-SALPETER
explicit connection between the dressed-quark propagator KERNEL
and a confining dressed-gluon propagator via the inversion
of the quark DSE is therefore not possible.

A goal of this study, and anothéi4], is to explore the
extent to which pion and kaon observables, as embodied in
the model dressed-quark propagators employed in Refs. S(p)=—ivy-poy(p?) +os(p?)=: ADD T B2
[8—11], constrain the properties of all light-quark mesons. As Ly PA(P") +B(p) )
we have described, it is not possible to explicitly construct a
dressed-gluon propagator from these dressed-quark propagsin be written as
tors. However, one may adopt a purely phenomenological
approach in order to construct a simple, confinirgsatzfor _1 ) d*k ) )
the kernelof the two-body BSE'’s that is constrained by the S (p)=iy-p+ m+f 2?9 Dl (P=k)7]
pion and kaon scattering observables. This facilitates the
present exploration of the extent to which a confining, Gold- a
stone theorem preserving, BSE approach can generate the XV 2 S(k) I (k, p), @
ground-state spectrum of light-quark mesons. It also allows
one to easily identify those channels in which a ladder trunwhere m is the (bare current-quark mass. The Euclidean
cation of the BSE is applicable and those in which it isDirac matrices satisfy the algebfey,,y,}=26,,, where
inadequate, and to explore the extent to which observablew is the Kronecker delta, amj.bzzi“':laibi_ In Eq. (2),

properties are influenced by subleading Dirac components iDM,,(k) is the dressed-gluon propagator dng(k,p) is the
the Bethe-Salpeter amplitude, e.g., the influence of theressed quark-gluon vertex.

pseudovectorysy- P, piece of the pion Bethe-Salpeter am-  The homogeneous BSE for a quark-antiquark bound state
plitude on the pion mass and decay constant. Such termsg
have been neglected in almost all studies undertaken to date.
A similar situation holds for the calculation of hadronic cou- rs)u st _

pling constants and associated form factors for processes r (k*P):f (2m)* K™ (q,p,P){Sfl(q+§P)

such asp— 77 [15,16 and p— y# [17]. Semiphenomeno-

logical qq Bethe-Salpeter amplitudes for the leading Dirac XT(q;P)S [q—(1- P}, (©)]
covariant are currently used to facilitate the necessary inte-

grations. The amplitudes provided here have a significamvhere P is the center-of-mass momentum; the
amount of dynamical justification and yet are simple enougt ;-flavor-quark carries momentunps =q-+¢P and the

The Dyson-Schwinger equation for the Euclidean-space
dressed-quark propagat@chwinger functioh

a
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f_z-flavor-antiquark momentum ipf_2= —g+(1-¢)P; and 4

2 2 _n2, —K)3) p.-
K(q,p;P) is the quark-antiquark scattering kernel. P=A(P)=p +3f (2m)* A=k p-k
The ladder approximation is defined by

A(K?)
| \e KA T+ B(KD)Z ©
K™(q,p;P)=—0? D,.,(p—a) I, 1, (7)
rete ~ 16 [ d*k ) B(k?)
)\a B(p )_m+§JWA((p_k) )kZA(k2)2+B(k2)2'
X(')’,u)rDtD Iu,;s,;(?) (Yv)uDsDi (4) (10

UrS
e The simplicity inherent in Feynman-like gauge is obvious.

Introducing the Tschebyshev expansion Aqp—k), Eq.

where{F,C,D} indicate flavor, color, and Dirac indices. :
(7), these equations become

In rainbow approximation, i.e., using

1 ©
A2 A(s)=1+ —zf dt 2 Ay(sit) oy(t), (1D
FLkp) =7, 5 5 24 Jo
1 ©
in Eq. (2), then, if the dressed-quark propagator is known, B(S)=m+§zjo dt t Ag(s,t) ag(t), 12

Eq. (2) can be used to constrain adnsatzfor the ladder
approximation to the kernel of E@3).

Herein, solely because of its inherent simplicity, we em-
ploy a model of the form

from which one observes that, in rainbow approximation and

in Feynman-like gauge, the quark DSE is only sensitive to

the zeroth and first Tschebyshev moments Xdfp—k).

) Hence, translational invariance of the kernel of the quark

9°D,u(p—K)=6,,A(p—K). (6)  DSE is not lost as long as the zeroth and first Tschebyshev
moments are retained.

In being proportional tas,,,, this has theappearanceof a A constrained kernel can now be obtained by employing a

Feynman gauge propagator. The appearance is misleadinginkN, separable approximation for the Tschebyshev mo-

however. A fundamental Slavnov-Taylor identity in QCD ments:

entails that the longitudinal piece of the dressed-gluon propa-

gator must be independent of interactions. Equat@rhas N .

the transverse and longitudinal components dressed in ex- A”(S’t):-Zl FL(s) Fu(b). (13

actly the same way. A propagator of this form could only o

arise if the gauge parameter was chosen so as to complétefye simplest such approximation is rank-1, which is consid-

cancel the transverse interaction contributions, i.e., if theyred herein, i.e., one writes

gauge parameter dependent, longitudinal piece of the gluon

propagator is interaction dependent. Therefore ®{.can 1 1

only provide a model effective potentiak(p—k), defined Fo(s)=G(s)=[B(s)—ml,

in this way, cannot in principle be related to solutions ob-

tained in studies of the gluon DSE, such as REfsl3]. We 1

will describe Eq.(6) asFeynman-likegauge. Fi(s)EF(s)= —[A(s)—1], (14
One can write, without loss of generality, a

wherea andb are fixed constants, which are to be deter-

I mined, andA(s) andB(s) are the functions that appear in
A(p—k)=nzo An(p? k%) K" on Un(p-k), D the quark pr(gpzagator. (A)s will be seen below, thisppparticular
choice forF§ andF] is sufficient to ensure that Goldstone’s
theorem is preserved.
Substituting Eqs(14) via Eq.(13) into Egs.(11) and(12)
e finds that this latter pair of equatiofise., the quark
DSE] is solved if, and only if,

o0

wheref) is the unit-magnitude direction vector fgr and
{Un(X)}n=o are the complete set of orthonormal Tscheby-g,
shev functions, which satisfy

2 (1 1 ®
—f dx V1I—xZ U;(X) Ui(x)=&;; . (8) a’= zf dt t? [A(t)—1] oy(t), (15)
m) -1 ! ) 24 0

Translational invariance is preserved if all contributing , 1 J““ _

Tschebyshev moments are retained. b*=372 0 dtt[B()=m] os(t). (16

The quark DSE, Eq(2), represents two coupled, nonlin-
ear integral equations foA(s) and B(s), wheres=p?. In One now has a rank-1, separal#lesatzfor the ladder
rainbow approximation, Eq(5), and using Eq.6), these kernel of the BSE for like quarks, which is completely de-
equations are termined by the propagator of that quark, i.e., E.with
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9?D,,(p—K)=38,,A(p—kK) whereT'(k,P)T=C~1TI'(—k,P)C defines the corresponding
) ) ) ) antimeson amplitude. In ladder approximation the kernel of
=0,[G(p?) G(k)+p-k F(p%) F(k9)]. the Bethe-Salpeter equation is independent of the center-of-
(17  mass momentun®, hence there is no contribution of the
type dK/JP to the normalization.
With u andd quarks treated as indistinguishable, except for The pseudoscalar meson decay constgntjs defined by
their electric charge, Eq17) can be used in the study of the AP
BSE for 7, o, andp mesons, for example. olw(0 — W (0)|®d(P)=P f 20
A simple generalization of thisnsatzto mesonlike bound (007,75 2 V! IP(P))=P,fp, 20
states with arbitrary flavor content is obtained via the iden-

tification where|®(P)) is the pseudoscalar meson state vecidrare
matrices acting in flavor space, ald is a color triplet and
_ a flavor multiplet of Dirac spinors. For th&~ meson, for

St (k+¢P) A(p—k) S (k—(1-£)P)

example, the relevant flavor matrix is, with;}2_, the Gell-
=S, (k+EP){3[Gy,(p) Gy (K)+Gy,(K) G (p)]  Mann matrices,

+p-k 3[Fi,(p?) Fr(k*)+F (K Fr,(p?)]} -1 . 0.0 2
AK 23(A4+IK5)= 0O 0 0], (21
XS [k=(1-£)P], a8 00 o

wherever it appears in the kernel of a given BSE. This can bwhich gives (Olﬁ(O)yﬂ%‘PS(O)VDW(P))= V2 P.fk-
used in the study of the BSE fdf and K* mesons, for Thus, the decay constants for the pseudoscalar meson solu-

example. tions to the BSE given in Eq3) are defined by
We observe that, once the propagators for quarks of fla- _
vors f; andf, are known, Eq(18) provides a constrained, V2 PMfM=(0|\Iff2(0)yﬂy5llffl(0)|<DM(P)}. (22

separabléAnsatzfor the ladder kernelof the Bethe-Salpeter

equation. If the dressed-quark propagators have no Lehmann To obtain an expression in terms of the Bethe-Salpeter

representation then this kernel is free of quark and gluommplitude, we note that the unamputated BS wave function
production thresholds and may therefore be described as

confining. As remarked above, thinsatzfor the kernelis x(p,P)=S; (p+&P)I'(p,P)St [p—(1-&)P], (23
not equivalent to amnsatzfor the gluon propagator and it is

inappropriate to infer comparisons with solutions obtained incan pe expressed as

studies of the gluon DSE, such as Rdf8,13]. Such com-

parisons can only be made when one employs a gauge-fixing )4 5*(p—q) x(p, P)

procedure that does not violate the relevant Slavnov-Taylor

identity; for _example, Ref[20], which employs Landau :f déxdly e 1P 1(EcHL- Oyl gi(@-x—p-y)

gauge and is not separable. We note that any attempt to

construct a constrained, separabdmsatz in other than —

Feynman-like gauge will introduce kinematic singularities in X(O[ W, (X)W (y)|®(P)). (24)
the analog of Eq(18).

The BSE is solved in the rest frame by setting (For a color singlet bound statg(p;P) is diagonal in color
P=(0,0,0jM) in Eg. (3) and details of this for the case of space). Multiplying both sides byysy- P, taking the matrix
identical quarks {;=f,) are given in Appendix A. The gen- trace throughout, evaluating the integrals opeandqg, and
eralization to mesonlike bound states with arbitrary flavorusing Eq.(22) one obtains
content is straightforward using E@.8). In general, the lad-
der truncation of the BSE reduces to a finite matrix equation ) Ne [ d*p
that admits solutions for discrete values of the meson mass, P fM:ﬁf (ZT)“UD{ vy PS,(p+£P)I(p.P)

M.
XSt [p—(1-§P]}, (25
A. Meson decay constant
which provides the relation between the Bethe-Salpeter am-
‘plitude and the canonically defined meson decay constant. In
this equationl” is normalized according to E¢19).

The canonical normalization of the Bethe-Salpeter ampli
tudel is given by[21]

d*k —
2P,= NcJ’ W(UD{F(K - P)azsfl(k+ EP)L(K,P) B. Dressed quark propagators

The separableAnsatzis completely defined once the
quark propagators are specified. Following Rél, the sca-
lar and vector parts of the quark propagators are defined in
terms of dimensionless functions:

X S [k—(1—£)P}+trp{T(k,~P)

X S, (k+EP)T(K,P)d; S [k— (1= €)PT), (19
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1 1 In Ref.[9], with this in mind, the model forms in Eq§27)
ol(s)= EE\C(X), ois)=—==05x), (26) and(28) were employed in a study of the kaon observables:
V2D fk; (sS); rgo; rg=; and the electromagnetic form factors of
, . i the charged and neutral kaon. The sensitivity of these ob-
with s=p®, x=5/(2D), D is a mass-scale parameter, andseryaples tan, and (ss) was too weak for an independent
where (A=10""): determination and thereforen,=25m, and b3=0.80Y,
— which ensuregss)=0.8uu), were chosen for consistency

ol(x)= mf_z(l_e72<x+mﬂf>) with other theoretical estimates. The p_arameki%rwas al-
X+ mg lowed to vary to provide a minimal residual difference be-

] ] tween theu/d- ands-quark propagators and a very good fit

N 1-e " 1—e P/ bf 1 1- @7 to the kaon observables was obtained with the value listed in
bix bix | % 7% Ax /)’ Ea. (29). o .

To complete the specification of the constrained separable

—AX

and approximation to the kernel of the Bethe-Salpeter equation,
the quantitiesa andb in Egs. (15 and(16) must be deter-
. 2(X+mf2)_1+e—2<x+mﬁ}') mined. However, using Eq$27) and(28) neithera norb is
oy(X)= =5 (28 finite. Equationg15) and(16) only yield finite values if the
2(x+mp) large spacelikec behavior ofoy andog is such that

Here m¢=m;//2D. In this work theu and d quarks are

considered to be identical, except for their electric charge. — )= 1 40 — . m +0 1
The dressed-quark propagator described by Ef8.and ov(X)= X+ m2 x2ta| os(X) = X+ 2 X2t/
(28) is an entire function in the finite complg? plane and (30)

may therefore be interpreted as describing a confined particle
2]. The ~e™* form that ensures this is suggested by the . . N
E\Ig]gebraic solution of the model DSE studie?dg in R[@’Q]y for any 6>0. Dynamical chiral symmetry breaking in QCD
; ; - —

which employed a confining model dressed-gluon propagatof?ﬂw"s_tiflt Tiazrnge(O(uQZtO CO(;I’re]CtIOI’IS [Inx] k y<1)

and dressed quark-gluon vertex. Furthermore, the behavi s(X¥) =m/(x+m .) (x”%) and hence no quark propaga-
of Egs.(27) and (28) on the spacelik@? axis is such that, or that properly Incorporates the momentum (_Jleper)de_nce at
neglecting Ifip?] corrections associated with the anomalousIargex due to dynamical chiral symmetry breaking will yield

dimension of the dressed-quark propagator in QCD, whiclfﬁnite \{alues ofa andb. (This behavior is tigd to the neces-
are quantitatively unimportant herein, asymptotic freedom i ary divergence of the quark condensates in QCD; necessary

manifest. In Eq(27) the term~ 152 allows for the repre- ecause condensates are related to two-point Schwinger

sentation of dynamical chiral symmetry breaking and thefunctlons evaluated at zero relative Euclidean spatial separa-

Lo . tion.)
rmx;;rnfgaeg]r:sﬁevr:s Z;(;rlgiecrg;al memei%}birre]aé'lg' To complete the specification of the constrained, sepa-
: par u>~0s - - - 3 9. rable Ansatzone must therefore incorporate an ultraviolet
(27) and(28) were varied in order to determine whether this i .
X oo ._~regularization in the propagator:
model form could provide a good description of the pion
observablesf .; m_; (qq); r,; the w-7 scattering lengths

and partial wave amplitudes; and the electromagnetic pion —tr m; B <5
form factor. A very good fit was found with tha-quark o5 X)) =——=(1-e 20 mi))
Y ( : X+ms
parameter values listed in E@Q9):
_ —bfx _ —blx
u quark s quark +1 e l-e

f f
m; 0.00897 0.224 b;x bgx

b, 0131  0.105 L 1-e b1 (e’

X x| bo+by— — (31)
bl 2.90 2.90 (29) X (e5x)

b, 0.603  0.740 . .

f 2(X+rAnz)_e—ev(x+mf)2+e—2(x+mf)

b, 0.185  0.185 STReq) = f @2

. . . 2(x+mp)?
The scale is set witD =0.160 Ge\?. This same model also

provides a good description of the*7— vy [10] and o
ya* — arar [11] transition form factors. which introduces three new parameters; eg, €3, that are

Dyson-Schwinger equation studig®3] indicate that not determined by the studies of R¢f]. The parameter
while it is a good approximation to represent theandd  €v=0.1 is chosen so as to ensure thgf**dare numerically
quarks by the same propagator, this is not true for she good approximations toV, on the domain &2x<3; our re-
quark. For example; contemporary theoretical studiesults are not sensitive to the domair 3. It is not varied but
suggest that @&/(my,+my)~17—-25 [24] and (ss) we have established that our results are insensitive to it, i.e.,
~0.5-0.8 (uu) [25], which is a nonperturbative difference. that changes can be absorbed into a changd iThe regu-
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TABLE I. Values of the fitting parametersg andm; , used in TABLE Il. Calculated meson masses compared with experimen-

constructing the constrained, separable ansatz; and the \ajues tal _Va|“{es[2‘}’]n when known. The co_Iumn labeled with the_ super-

andb; , defined in Eqs(15) and (16), calculated using them. The script “Dom” means that the quantity was calculated using only

u ~ L the leading Dirac amplitude, e.dl,.(p,P)xiys G,(p?) for the
parametergs andm,q are chosen so as to fit,=137.5 MeV and pseudoscalar; “unbound” means that in ladder approximation our

f.=92.4 MeV; the parameteres and rAT]s so as to fitmy=493.6  constrained, separablnsatzdoes not yield a stable bound state in
MeV andf=113 MeV. The values ofn;, listed here correspond the channel under consideration.
to my,q=4.59 MeV andn,=112 MeV. See Eq(34) and associated

text for further details. mi© GeV  miacPom Gev Expt.
f, ] e 2% GeV? bsae Gev? m (0 +)+ . 0.139(fit) 0.116 w7 (140),7°(135)
i i i folag (07 ) 0.715 0.743 f,(980)/h,(982)
u/d 0.482 0.00811 0.0413 0.0281 0+~ 1.082 1.092 Not seen
S 0.580 0.198 0.0385 0.0426 (O 1.319 1.299 Not seen
K 0.494 (fit) 0.412 K*(494) K°(498)
o ) ) K% Unbound Unbound K (1430)
larization parameters modify the largé- behavior of the 7(0p=5% 0.549 0.472 7(547)
propagator, which Aentails that the light-quark mass value%(opzoo) 0.513 0.441
must be refit (ng—m). wlp 0.736 0.755 w(782)/p(770)
Equationg(14)—(16), (18), (29), (31), and(32) completely 5 /¢, 1.34 1.37 a,(1260)ff,(1285)
specify the constrained, confining, separz_;lble ansatz for_th@* 0.854 0.866 K* (892)
ladder kernel of the Bethe-Salpeter equatlorl. The numerlca]{1 1.39 1.39 K1(1270),K,(1400)
studies proceed by varying the four parametarsand efs in ¢ (ss17) 0.950 0.957 $(1020)
order to fitf ,x andm_x and then predicting the ground- ss1+ 1.60 1.60 f,(1510)
state spectrum of octet mesons. Diquark systems are alse
studied.

These equations expose a shortcoming of separabie
1. MESONS saze the pseudoscalar and pseudovector pieces of the pseu-
%oscalar Bethe-Salpeter amplitude are characterized by the
same function, which is not the case in general.
The calculated eigenvectors are given in B86) and the

The Bethe-Salpeter equation considered for a bound sta
of a quark of flavorf, and an antiquark of flavaf, is

41 diq bound-state masses in Table II.
T'(p,P)=— _f ———A(p—Q)y,S:.(q+ EP) The separablénsatzfor the kernel of the Bethe-Salpeter
(p 3) (2m)* (P~ 07,5, (a equation yieldsng-+=0 whenm,,4y=0. This is a necessary
XF(q,P)sz[q—(l—f)P]yﬂ. (33) consequence of the equivalence between the flavor-octet

pseudoscalar BSE and the quark DSE in this chiral Ijejt

. . . . . which is preserved in the approach described herein and dis-
In this equationA(p—q) is obtained from Eq(18) with cussed in detail in Ref3].

Sy, obtained from Egs(31) and(32) using the parameters in One might be tempted to conclude from EB6) that for

Eq. (29) and Table I. This equation is solved in each channep= + states the leading Dirac component of the amplitude
as an eigenvalue problem of the fokd' =\ (P“)I", with the  gominates; i.e., the pures component dominates for the

bound-state mass identified fron{P*=—M?)=1. 0~ state and the puré, component for the 0" state.
Indeed, it is an often used approximation to neglect sublead-
A. Scalar and pseudoscalar mesons ing Dirac components of the Bethe-Salpeter amplitude in

1 f=u/d=f ground-state studies using the Bethe-Salpeter equation. Con-
ot 2 sidering Tables Il and lll one observes that while this is a
In this case the requirement of charge conjugation invarigood approximation for the heavy 0 state, it represents an
ance for the neutral mesons entafls 1/2. The form of the  erroneous conclusion for the light 0 state, for which the
charge paritC= =, f;=u/d=f, Bethe-Salpeter amplitudes, subleading, axial-vector component provides 17% of the
I';, obtained as solutions at the mass-shell pointnass and 39% of the decay constant. This feature is also seen
P2=—M? are given in Eqs(B1)—(B4). in Ref.[3].

TABLE Ill. Calculated weak decay constants compared with experimental vE24ésThe superscript
“Dom” has the same meaning as in Table II.

falc Gev fgalcDom ey Expt.
77 0.0924(fit) 0.056 7*(0.0929
K* 0.113(fit) 0.76 K*(0.113)
7(0=5° 0.114 0.086 0.0940.007 or 0.09% 0.006

7(9=0° 0.111 0.082
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Table 1l shows that the separable ansatz for the BSE ker- The solution amplitude is given in E¢B7) with the cal-
nel yields a largamy++—mg-+ splitting without fine tuning, culated eigenvector given in E@B8) and the mass in Table
thus reproducing this characteristic feature of the strong inl. We note that there is no charge parity), symmetry for
teraction spectrum. The'0" state can be identified with the bound states of distinguishable quarks.
a,(980) meson. The discrepancy between the calculated and The leading, pseudoscalar Dirac amplitudes (1)
observed masses is consistent with the contention that thJain appear to be dominant for the kaon, however, as for the

state involves a considerabke-K admixture, which can be pion, the subleading, axial-vector amplitudes,(,A35) con-
, ) O o
represented as a contribution to the Bethe-Salpeter kernel b bute significantly to the masfl7%) and decay constant

. ; o 3%).
is absent in ladder approximation. _— L .
No JPC=0* - states have been observed in the stronng Each type of covariant in the kaon solution is weighted by

. i ) wo amplitudes that describe the internal momentum depen-
interaction spectrum. However, in general, as observed in

; ) X ence in terms of functions that relate to the dressed propa-
Ref. [27], the Bethe-Salpeter equation admits solutions Ofgators of theu/d and s quarks. These are found to have

this type. The _amplitudes for such solutions character_isticalI)(meroximate|y equal influence in the solution. For example,

differ from theirC=+ counterparts by the factqr- P which  fom Eq. (B8) and Table | one calculates thag /b,=9.4

is odd under charge conjugation. Such states have no analgey—1 and\,/b,=9.2 GeV 1. This means that, using the

in quantum mechanics since, for equal-mass constituent pagonstrained, separablnsatz the kaon Bethe-Salpeter am-

ticles on shellp-P=0. plitude for the pseudoscalar covariant is an approximately
We expect that such exotic state solutions of the fulleven mixture of thes- ands-quark mass functions.

Bethe-Salpeter equation would be heavy, certainly above the It is clear from Table | that

mass of thea; meson solution, or unbound. However, the

ladder approximation is known to be dynamically inadequate 2ms 044 34)

for the 0" states(it is too attractive, and a similar inad- My+ My S (

equacy for scala€= — states would not be surprising. One

may identify this as the reason why it is not usual for thewhich is essentially the same as the ratio obtained from the

C=— states to be investigated or reported in Bethe-Salpetdhass values in E¢(29) and is in the range¢1l7-23 sug-

studies. For completeness, and a fuller elucidation of th@ested by other theoretical analysiest]. With D=0.160

shortcomings of the ladder truncation and the present sep&€V?, myq=0.00811 corresponds tm,,q=4.6 MeV and

rable Ansatz in Table Il we present masses obtained for them,=0.198 corresponds tan,=112 MeV. These values

0" and 0" states. should notbe compared directly with values aft; %"

One observes thang--~10mg-+ andmo+-~2Mo++,  guoted by other authors because the regularization of the
which indicates that with this simplénsatz the reversal in  yacyum condensates employed herein, via the parameters
C parity introduces a significant repulsive effect. It is, how- andefs in Egs.(31) and(32), is unconventional and enters
ever, too weak and the calculated values are not large enoug rough the quantities and b in Egs. (15) and (16). The

to be consistent with the observed strong interaction SpeGeig “Eq.(34), is likely to be less sensitive to this difference

trum. and therefore provides a meaningful point of comparison.

The methods of Ref.3] indicate that the next order con- The dressed i
Lo o -quark propagators we employ are confining,
tributions to the kerne[O(g®) in a quark-gluon skeleton with the dressed-quark mass being a function

graph expansioffor the scalar channel are all predominantly M (p?), such that there is no dressed-quark mass pole, i.e., no

repulsive. This is to be contrasted with the flavor-octet PSeUz | ition of the equationpZ A'(p?)12+[Bf(p?)]2=0. A

doscalar and vector channels where there are both repulsi ?mple estimate of the value of the mass function that is most

and attractive corrections that have a significant amount N portant in calculations of meson observables is obtained

cancellation. This highlights the fact that progress in under:from the solution of—p2[A(p?)]2+[B'(p?)]2=0, which

e b ooy vesavee s beyoat be calld te Eucidean consttent quark st
P P y reg y ith the parameter values used hereihy =315 MeV and

the ladder truncation, including, for example, possibly im-* "
portant meson-loop contributions to the open decay chanMe=397 MeV.

nels. It is our opinion that the same is true in the study of the OUr calculations yield no true Oeigenstate with a mass
associated’= — . exotic states. less than 2 GeV, which we consider to be the upper limit for

the present approach. The condition for an eigenstate was
closest to being satisfied at a mass of 1.18 GeV. This is
2.f;=uld, f,=s again consistent with a largey+ — mj, splitting without fine
The Bethe-Salpeter equation fors states is Eq(33)  tuning. This 0 state might be identified with the
with f;=u/d, f,=s. Consider first the pseudoscalgaon $(1430). Such an identification would suggest that this
channel. A value of¢ is determined by ensuring that the state, like theay(980), has a sizeable coupling to other chan-
electric charge of th&° is zero in impulse approximation nels, which contribute to its mass, i.e., that the ladder kernel
[9]. The value obtained in Ref9] with empirical Bethe- is inadequate to properly describe this channel.
Salpeter amplitudes i§=0.49 (=0.5), while the present
work requiresé=0.56 (=0.5). There is only a weak sensi-
tivity of masses to changes §of this magnitude throughout Ladder approximation is inadequate to properly study the
this work. n-n' complex. A minimal extension that can dynamically

3. » meson
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couple the flavor octet and singlet channels is the inclusion 4q
of timelike-gluon exchange diagrams. This is not considered ~ I',(p,P)=— §f WA(P—Q)YMSM(Q*' &P)
here.

Instead we study XI'(q,P)S [a— (1= &Py, (38
__4( d%a , 2
I'y)(p.P)=~ EJ' (277)4[§(C°S9P_ J25inGp) which is identical to Eq(33) except that the Bethe-Salpeter
. amplitude carries a Lorentz index. On-shell vector and axial-
XAy(p—a) v,Su(g+3:P)I',(q,P) vector bound states are transverse:
XSy(q—2P) v,
+3(V2coPp+sindp) *A(p— Q) Py I(p.P)=0, 39
X +1iP)T . (q,P)S(q—1P)y,], (35
YuSa* 2P 4(9.P)Sa=2P) 7] which constrains the general form of the Bethe-Salpeter am-
with plitude.
A¢(p—a)=G(p?) G(q®) + p-q Fe(p?) Ff(qz)-(36 1. fi=u/d=t,

The most general form of the vector meson Bethe-
Equation (35) is the projected Bethe-Salpeter equation forSalpeter amplitude when using the separable ansatz is given

the meson whose flavor structure is in Eq. (B14) and that for the axial-vector meson is given in
Eqg. (B16). These equations expose another shortcoming of
F,7=)\Scos9p—)\°sin0p, (37) separableAnsaze the vector and axial-vector meson Bethe-

Salpeter amplitudes are characterized by the same functions
with \°=/2/3 diag(1,1,1) and¥p an octet-singlet mixing as the pseudoscalar mesons, which is not true in general. In
angle. The exact kernel of the Bethe-Salpeter equation woulRef. [6], for example, the vector meson amplitudes were
lead to a prediction fofp. found to be much narrower in momentum space.

With the kernel considered hereidy is treated as an The ladder approximation does not distinguish between
external parameter on which the mass and other properties 60 andl =1, hence the vector channel corresponds to both
the » meson depend. For example, in this case the expreshe w andp mesons. Similarly, the axial-vector channel cor-
sions for the normalization of the Bethe-Salpeter amplitudeyesponds to thé; anda; mesons.

Eqg. (19), and the decay constant, Eg5), are 6 dependent. The calculated mass for these states is presented in Table
The modified forms are given in Eq&B9) and (B10), re- 1l and the eigenvectors in EqB17). With pion and kaon
spectively. physics used to fix the parameters of the quark propagators

The form of the positive charge parity solution of E85) as described in Sec. Il, these results are predictions. The
is given in Eq.(B11). The calculated mass, decay constant,subleading Dirac amplitudes contribute very little to the
and eigenvector, at a number of valuesépf, are given in  J=1 meson masses.

Eqg. (B12). The experimental values of the mass and decay The relevant experimental value to compare the vector

constant are given in Table Il. _ ~meson with isM eXPl= 782 MeV, since it is known that pion
In this case the subleading Dirac amplitudes contribut@oop dressing will lower thep-meson mass while having
~ 14% to the mass and 26% to the decay constant. little effect on thew meson 15]. A recent study of this effect

The constrained separabMnsatzfavors a small positive [16] yieldsM,,—M,=21.0 MeV.
value for the mixing anglegp . This can be compared with  These results in thei—d sector indicate that the/d
0p=—10° estimated in Ref24]. As remarked therein, how- quark propagator parameters, previously set by pion physics,
ever, there are large uncertainties in this value. have produced a separable BSE kernel that captures the
The »" meson can be studied via the projection of thedominant physics for the ground-state vector and axial vector
Bethe-Salpeter equation orthogonal to that in 8§), which  channels.
is obtained from this equation und@p— 6p— 7/2. AsS re-

marked above, one expects timelike-gluon exchange, forbid- _ _
. . Aty _ 2. f,=u/d, f,=s
den in the flavor-octet channel, to be important in this mainly '
singlet channel. The results in EB12), which one might The general form of the Bethe-Salpeter amplitude for the

compare with the experimental values Mf"=958 Mev  U-S meson, which corresponds to thg=1" K** meson, is

andf, =89.1+5 or 77.8-5 MeV, may be 7i]nterpreted as a divenin Eq.(0818). We choosé& so as to ensure the neutral-
, . N .

guide to the importance of such contributions in this channelty of the K** meson, which produces=0.49~0.5.

. P_ . .
and emphasize the necessity to go beyond ladder approxima- The form of the amplitude fog”= 1%, which is a nearly
tion for the 7' state. equal mix ofK;(1270) andK,(1400), is simplyys times

this. The corresponding choice fa@r yields §&=0.50. The
, calculated masses are listed in Table Il and the eigenvectors
B. Vector and axial-vector mesons ;
in Eq. (B19).
The ladder approximation to the Bethe-Salpeter equation The subleading Dirac amplitudes contribute little to the
for vector and axial vector mesons is masses.
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3. fi=s=f, TABLE IV. Calculated diquark effective masses. The super-
The JPC=1-~ ss state, identified with thep meson, is script “Dom” has the same meaning as in Table .
computed in exactly the same manner as @ie meson ¢ f, P M GeV MPom Gev
except for the replacement of thequark propagator with
that for thes quark. The Bethe-Salpeter amplitude for the u/d u/d 0" 0.737 0.653
¢ and for the I * state, identified with thé,(1510) meson, u/d u/d 0" 1.50 1.52
are described in Appendix 11B 3. u/d s 0" 0.882 0.786
The calculated masses are listed in Table Il and the eigert/d S 0~ Unbound Unbound
vectors in Eq.(B20). The subleading Dirac amplitudes are u/d u/d 1" 0.949 0.958
again unimportant. u/d u/d 1 1.47 1.48
u/d S 1t 1.05 1.05
u/d S 1 1.53 1.53
4. J=1 summary S s 1+ 113 113
We observe that th&@=1 meson spectrum is satisfactorily s s 1 1.64 1.64

reproduced. These higher-mass states explore a larger do=
main in the complex quark-momentum plane than do the

pion and kaon, which are used to constrain the separabl P __f dq A(p— AT )T P
ansatz for the ladder kemnel. This is an indication that a suc. 3(P+P)= (2m* (P74 Sry(A+EPIT5(A.P)
cessful description of a subset of hadronic observables can

a

. ) L. )\a T
translate into a unlforn_"nly good description of_a broad range X{sz[_q+(1_§)P]}T m_) , (40)
of phenomena, which is a feature that underlies many appli- 2
cations of this framework and emphasizes the utility of stud- .
ies such as that of Ref20] whereT denotes matrix transpose. The study of such corre-
' lations is simplified if one defines
I'p,P)=I's3tp.,P) C, (41)

IV. DIQUARK CORRELATIONS

whereC= vy,v, is the charge conjugation matrix. It follows

The derivation of the homogeneous Bethe-Salpeter equgiom Eq. (40) that this auxiliary amplitude satisfies

tion from the inhomogeneous equation for the two-bady
matrix proceeds under the assumption that there exists a 2 ( d%

bound-state pole in the channel under consideration. |nF§(p,P)=—§f (ZT)ztA(p_q”u

QCD, one expects that confinement ensures the absence of

such poles in the quark-quatkmatrix and hence that there XS (q+&P) T§(q,P) S [a—(1-£)Py,,.
are no solutions to the homogeneous Bethe-Salpeter equation (42)
in any color-antitriplet quark-quarkdiquark channel. This

is supported by the studies of R¢8], which indicate, how- |t is immediately obvious that Eq42) is identical to Eq.
ever, that one must proceed beyond ladder approximation t®3) but for a reduction in thepurely attractiveé coupling
obtain this result. In ladder approximation one finds boundstrength; 4/3-2/3. This observation in Ref28] entailed the
state, diquark solutions. This is a defect of the truncation. result that the mass of the scalar{d) diquark is greater
Studies of the nucleon as a bound state of three dressgfan m,; and that of the vector U—u), (u—d), and
guarks using the covariant Fadde’ev equation have been ufd—d) correlations is greater than the mass of the
dertaken[18]. The appearance of the pole in the ladder ap-3,(1280) meson(This result is true in an arbitrary covariant
proximation to the homogeneous, quark-quark Betheyayge and independent of the form of the gluon propagator.
Salpeter equation was used thgreinto simplify.the three-bodyjowever, it is peculiar to ladder approximation. As dis-
problem, i.e., to re-express it as an effective two-bodycyssed in Ref3], any other truncation of the kernel of the
quark-diquark problem. This technique can also be said t@ethe-Salpeter equation introduces repulsive terms that
underly the study of Ref19]. Presently, the only justifica- gjiminate the diquark polg.
tion for this Ansatzis the simplicity it introduces into the The masses produced in various diquark channels by the
problem. . o . present ansatz for the ladder kernel are listed in Table IV.
Accepting this approach for the present it is then impor-pyrther details and a brief discussion of these results and the

tant to identify those diquark correlations that contribute sig-zssociated Bethe-Salpeter amplitudes are provided in Appen-
nificantly to a given three-body bound state. As a guide ongjices B3 and BA4.

might assume that those diquarks whose mass is greater than
that of the three-body bound state under consideration would
contribute little to the three-body ground-state mass. Such
studies of the t/d-diquark spectrum” have been reported We have constructed a crude, confining, separableatz

in Refs.[26,28. Herein we extend these studies to $8).  for the ladder kernel of the two-body Bethe-Salpeter equa-

The ladder approximation to the homogeneous Bethetion (BSE) from the phenomenologically efficaciousd and

Salpeter equation for a diquark correlation involving quarkss dressed-quark propagators of RE3]. We have empha-

of flavor f4 andf, is sized that no connection can be made between this crude

V. SUMMARY AND CONCLUSIONS
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kernel and the solution of the Dyson-Schwinger equation fobound-state problem. Our constrained, separaisatzin-
the dressed-gluon propagator. dicates that such studies of the baryon should include

A very good description of the ground-state, §8), SU¢(3) scalar and pseudovector diquarks, since these are
flavor-octet pseudoscalar, vector and axial-vector mesolw in mass, but can neglect pseudoscalar and vector di-
spectrum was obtained. However, scalar mesonguarks. _ . _ .
(IPC=0*"), 07~ exotics and the pseudoscala+ 7’ com- The diquark results might be used in the following way.
plex were poorly described. We argued that this is a defect of he study of Ref.[3] suggests that, even though color-
ladder truncation that can be understood as the result of n@ntitriplet states are not bound, one may associate an inverse
glecting higher-order terms in the kernel. The present crudéorrelation lengthM, with each channel; the “bound-state
construction therefore provides a useful demonstration of thé1ass” providing an estimate of this. One might then con-
reliability and extent of applicability of the rainbow-ladder Struct a “pseudopole” representation of the quark-quark
truncation of the quark-DSE/meson-BSE complex. 7 matrix (for example: ~=, a, {1—exp(~[P*+M;]}/

We found that in the flavor-octet pseudoscalar mesoi P2+ M?2]), which would not entail asymptoti@inconfined
channel the subleading Dirac components of the Bethediquark states but would provide for a simplification of the
Salpeter amplitude, i.e., those terms whose Dirac matrixovariant, three-body Fadde’ev equation.
structure is more than justs, provide quantitatively impor- Finally, this study shows that in order to directly connect
tant contributions to the mass-(15% effecty and weak de- hadron phenomena with the dressed-gluon propagator,
cay constant {-35% effect$. These terms are unimportant D ,,(k), one must start with a form dD,,(k), as in Ref.
in the vector and axial-vector meson channels. [20]. Other approaches, while they may provide a useful phe-

We saw that separablensdze have a number of short- nomenology, efficacious in that it correlates many observ-
comings. In the pseudoscalar channel one finds thatythe ables via few parameters, can only loosely constrain
and ysy- P components of the meson Bethe-Salpeter ampliD ,,(k) and hence the nature of the quark-quark interaction
tude are characterized by the same funct®{p?), which is  in the infrared.
not true in general. One also finds that the dominant compo-
nents in the Bethe-Salpeter amplitudes of the vector and ACKNOWLEDGMENTS
axial-vector mesons are characterized by the same functions ) . ]
that characterize these components of the pseudoscalar me- This work grew from discussions between R. T. Cahill, C.
sonsB(p?). More sophisticated studies indicate that the vecD- Roberts, and P. C. Tandy. The authors are grateful to the
tor meson amplitudes are narrower in momentum space. Thi§ational Centre for Theoretical Physics at the Australian Na-
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the mesons in terms of a single dominant Dirac covariant if
the amplitude is allowed some phenomenological freedom. APPENDIX A: BETHE-SALPETER EQUATION
A more realistic treatment is facilitated by the present work. FOR EQUAL MASS QUARKS

The ladder kernel also has the defect that it is purely
attractive in both the color-singlej-q and color-antitriplet
g-g channels. This entails that it yields bound color-
antitriplet diquarks. This is a peculiarity of ladder approxi-
mation. Measuring “order” by the number of dressed-gluon
lines in the Bethe-Salpeter kernel, ladder approximation i
the lowest order kernel. Repulsive terms appear at ever?/1
higher order. It has been shov8] that in the flavor-octet 40 di
pseudoscalar and vector meson channels, these repulsive I‘(p,P)z__J ——A(p—0)7,S(q+3P)T'(q,P)
terms are cancelled by attractive terms of the same order. 3) (2m)
This explains why ladder approximation is phenomenologi- 1
cally successful in these channels. In the color-antitriplet di- XS4~ 2P)vu- (AD)
quark channel the algebra of 3(3) entails that the repul- - g general form of the scalar and pseudoscalar meson am-
sive terms are stronger; they are not completely Cance”eﬂlitudes is[27]
and eliminate the diquark bound staf&s.

The artificial diquark spectrum we obtain is nevertheless scala _ 2 p2 4. 2p2 4.
of contemporary interest because there have been a number A, P)=0i(a’P7a-P) +ge(q7,PL.0-PIP,
of studies of the covariant, three-body Fadde’ev equation +094(a%P3,g-P)u, () ]iy,, (A2)
that use the existence of diquark poles in the quark-qdark
matrix to reduce this problem to a two-body, quark-diquarkand

Here we present details of the solution of the ladder ap-
proximation to the Bethe-Salpeter equation in the case of
equal mass quarkd {=f,) using a separablansatzfor the
kernel.

We begin with Eq.(3) subject to Eqs(4) and (6) with

=f, and£=1/2:
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rPeidq,P)=gs(q? P?,q-P) ys+[gps(a*,P%,q-P)P, and
2 p2 ; R
T0s(@PLA P yays, (A3) TS THI=M 3oy og)+2i - PR(0%0),
where
2
A A Tscalar: Tscalar:_ m(O'*O' )
R +p-PP — fu uf vIs)
“u<pyp>=—i’§+fp ﬁ,);‘, |u(p)|=u(p,P)?, |u(a)
" TscaIaE -I—scalar= 2i ) 2, A9
" (o) u,(p,P) ) wu — Tow u(Q)| oyl (A9)
" u )
lu(p)] with

with P, [P?=—1] the direction vector associated with
P.. av=oy(k?), ay=oy(?), (A10)
In Feynman-like gauge it follows from the Fierz identity
that there is no piece proportionalltg- P,y-q]. For mesons and similarly foros. In these equations
which are even(odd under charge conjugatiory,, g,,
gs, andgps are even(odd) functions andge and g,s odd lov?’=0y 0¥, R(o¥og=3(0yostayol),
(even functions ofqg- P.
Definingk,=q,+3P, andl ,=q,— 3P, one has 1
J(ofos) =5 (oyos—oyog). (Al11)
P-u(q)=0, k-u(a)=I-u(q)=1, '

In terms of the functions

k-u(p)=I-u(p)=q-u(p). (A5)
Multiplying Eq. (A2) by I, y-P or y-u(p) and taking f(p,P)=igs(p,P), W(p,P)=iMgps(p,P),
traces one projects out a set of coupled integral equations for
the scalar meson amplitudes. Defining U(p,P)=|u(p)|gus(p,P), (A12)
f(p,P)=g,(p,P), W(p,P)=i M gp(p,P), the equations for the pseudoscalar states have the form in Eq.
(A7) but with theT’s replaced by
U(p,P)=[u(p)|gu(p,P), (A6)
THMEK-1 [oy]*+]od?,
where i M=./P? , these equations take the following
simple form: TR (.| 4+ 2k- B |- )| o] 2= | o2,

16 d*
(0)=3 | aped(p-

TﬂsSUd:(k'|— = 2) lov|>=log?,  (A13)
X[Tef(q)+ TewW(Q) +TrgU(a)], u(a,P)

wip) =275 A=y e
p)=3% p—q

3’ (27) ~
Thseuls _TPeeud. _ N R(odog)+2i q-P I(o¥ o),

X[Twf(q) + TwwW(a) + TwoU(a)],

8 d' o TR S —THR S — g 2(evos),
U(p)=§f WA(D—Q) u(p,P)-u(q,P)
u(q)|
where
T?tf:alar: k-1 |oy|2=|ogl? 1. SeparableAnsatz

The form of the gluon propagatd(p—q) appearing in
Ts\([z\a}\l/ar:(k‘ 1+ 2k-P 1-P)|ay|2+|0s2, Eg. (A7) is not yet _spe_cified. Introducing the separable fo_rm
in Eqg. (17) and taking into account the symmetry properties
) of the functionsf, W and U under p-P— —p-P, which
-|-lchLe}|ar= k-l— ——— | oy |2+ | og? (A8) foIIow. from charge conjugation symmetry, one obtains the
u( 2 following sets of integral equations for the scalar mesons:
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a. Scalar,C= + mesons

16 d*
((0)=5 | 5y G(F?) G

X[Teef (o) + TrwW(Q) +TryU(a) ],
8 d
Wip)=3 | cpmta P F(P) F(e?)

X[Twif (o) + TywwW(aq) + TywoU(a)],
8 d* N~ A oa
U(p)=§fﬁ p-q F(p?) F(g?) u(p,P)-u(q,P)
X[Tyef(q) + TywW(a) + TyuU(a)]. (A15)

b. Scalar,C=— mesons

16 d*
((0)=5 | s P F(P) ()
X[Teef(Q)+ TrwW(Q) ],
g d*
WP =3 | 5 G(P?) G()
X[Twif(a)+ TwwW(a)],

U(p)=0 (Al6)

The Tff ,wa, e
similar equations for the pseudoscalar mesons.

2. Form of the solution using the constrained
separableAnsatz

The separable form of the propagator causes the solutions X

of these equations to be proportional to the functi@nand

F. For the scalarC=+ meson, for instance, one finds that

the solution is of the form
f(p)=N:G(p?),

W(p)=—i Awp-PF(p?),
1 2
U(IO)=>\UWF(D ).

Substituting the abovénsatzinto Egs. (A15) yields a
simple matrix equation of the form

(A17)

A¢ A¢
Aw | =K(M)| Aw |, (A18)
Ay Ay

where K(M) is a 3x3 matrix whose elements are two-
dimensional integrals that are completely determined once
oy and og are specified. This equation is then solved by
adjusting the meson masé until one of the eigenvalues of

are given by Eqs(A8),(A9). There are
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ducing an eigenvaluegw(M), on the left-hand side of Eq.
(A18); solving for u(M) and the eigenvector at each value
of M; and repeating the process until one fildssuch that
wn(M)=1. At this point one also has the Bethe-Salpeter am-
plitude for the bound state, which is characterized by the
multiplet {\ , Ay, Ay}

Bound states of unequal mass quaikse Eqs(18) and
Sec. lIIA2, for examplg are not characterized by a charge-
conjugation quantum numbeg. In this case the functions
f, W, andU are complex and EqA17) generalizes to forms
such as

f(P) =N 1,Gu(p?) + N 1Gs(p?)
+q- P ouFu(p?) + A oFo(pPAT+ - ...
(A19)

In this case the analog of the matiXM) in Eq.(A18) is, in
general, a 1% 12 matrix, which reduces to a ¥QL0 matrix
when residual symmetry undér is taken into account.

APPENDIX B: BETHE-SALPETER AMPLITUDES
IN SEPARABLE APPROXIMATION

1. Scalar and pseudoscalar mesons
a. f1= u/d =f2

The most general form for the solutions of E§3) in the
scalar and pseudoscalar channels are

ngeutep,p):Gu(pz) [N lp—1 Ay 'y~|’:\’]i75, (B1)

[5%%(p,P)=Gy(p?) \¢ Ip+i Fy(p?)

n “ 1 “
(B2)
F'ise”‘(p,P):Fu(pz)[i A p-P+Awp-Py-P
Ay u(p)|i (B3)
— —_— u | y
V] |U(p)| Y p Ys

Ficala(p,P)Ii Fu(pz) A p.ﬁ’lD—Gu(pz) Ay ’}’~ﬁ’,
(B4)

whereP, [P?=—1] is the direction vector associated with
P anduﬂ(p,ls) is defined in Eq(A4). We note the cova-

riants involving y- U(p) may be brought to a more familiar
form through use of the identity

1 . ..
el y-u(p)=y-p+p-P y-P. (B5)

Solving Eq.(33) yields the followingC= =, pseudoscalar

K equals one. This procedure can be implemented by introand scalar eigenvectors:
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J?¢ o " ot+ 0~ 0~ which are normalized in accordance with Ef9).
\¢  0.61 0.67 -0.52  0.11 b. f,=u/d, f,=s
Ay —0.045 — 0.0075 0.084 0.26B6

Solutions for the pseudoscalar Bethe-Salpeter amplitudes
\u 0.0 —0.050 0.024 0.0 for the u-s mesons are of the form

TP D P) =1 N 1,Gy(P?) + N 1Gs(P2) — P+ P2y Fu(P?) +N2s Fo(pA)1—{N3uGu(p?) + A 3sGs(p?) — p- P[ A 4uFu(p?)
n 1 R
+x4st<p2>]}iy-P—i[xsuFuwZ)+x53Fs<p2>]W y-U(p) iys. (B7)

The scalar amplitude has the same form but wjth— | 5 . The pseudoscalar amplitude given here corresponds 0 th&he
K™ amplitude is obtained by making the replacemept-—p,, .
The calculated pseudoscalar eigenvector is

‘]P )\1u 7\15 )\2u )\25 )\3u )\35 )\4u )\45 )\5u )\55
0~ 263 390 -1.3 —-3.3 —-60 -—97 29 7.0 2.8 6.7, (B8)

where each of the components is to be multiplied by®l8nd the normalization is in accordance with Ftf). No true scalar
solution is found.

C. » meson

The normalization condition for th%P meson is

a4
2P, = ch (ng)A{%(cosep— 125in0p)°[tr(T (K, — P) " Sy(k+ 1P)T (K, P)Sy(k— 3P))+tr(T" ,(k, — P)Sy(k+ 1 P)

XT,(k,P)dLS,(k—3P))]+3(/2cop+sindp) [ tr(I,(k, — P) L Sy(k+3P)T,(k,P)Sy(k— 3P))
+tr(l,(k, = P)Sy(k+3P)T",(k,P) 77 So(k— 3P))]}. (B9)

The formula for the decay constant of thg, meson is

2 NC d4k 1 ; 2 1 1
P fn=3f 2myat3(Cop—28i0p) AT y- PysSy(Pp+2P)T (P, P)Sy(P~ 3 P)]
+3(y2cop+sindp)*tr] y- PysSy(p+3P)I,(p,P)S(p—3P) 1} (B10)

The positive charge-parity solution of E@®5) has the form

Fr;(q- P)= [)\quu(qz) + )\sts(qz) - [)\WuGu(qz) + )\WsGs(qz)]i Y IS]' V5. (B11)
Solving Eq.(35) leads to the following values of the mass, decay constant, and eigenvector at the listed values of

0p 5° 0° —5° —10° —90° —95°
M,, 0.549 0.513 0.475 0.436 0.357 0.399

P

fng 0.114 0.111 0.108 0.105 0.100 0.102

A\, 018 023 028 033 043 038 (B12)
A\ 047 041 035 029 019  0.25
Awy —0.041 —0.051 —0.059 —0.066 —0.073 —0.071
Aws —0.11 —0.092 —0.074 —0.058 —0.032 —0.045.
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The masses and decay constants are given in GeV. The last JrPc ;\1 ;\2 ;\3
two columns correspond to the' flavor projection. .
1 0.075 —0.33 0.049
2. Vector and axial-vector mesons 1** 0.056 —0.28 0.0 (B17)

a. f1=U/d=f2

corresponding to the/w anda;/f, channels, respectively.
The Bethe-Salpeter amplitudes are normalized according to
‘the vector and axial-vector generalizations of ELf).

The on-shell constraint of Eq39) entails that in con-
structing the general form of the vector meson Bethe
Salpeter amplitude we can work with the following trans-
verse Euclidean covariants: b f.=u/d f.=s

1= s 127

Consider theJ’=1" K** meson. As for thew meson,

, . , o there are five transverse covariants, which can be taken to be
The general amplltud_e is a linear co_mblnatlon2 of2these COVahose in Eq(B13) except that the explicit factor gf- P is no
rlants v_velghted by invariant amplitudes;(p®,P*,p-P). longer necessary becauses states are not eigenstates of the
Employing the separablnsatz Eq. (17), the Bethe-Salpeter charge conjugation operatdZ,. The general amplitude is a

equation, Eq(38), cannot support contributions 10,(p.P)  |inear combination of these covariants weighted by invariant
that are bilinear irp. Hence, at the mass shell, the pmd“cedamplitudes]-“-(pz P2,p.P) where odd powers op-P are
1 H Ll

vector meson Bethe-Salpeter amplitude is allowed for the same reason. The separabisatzdoes not
support contributions bilinear ip and hence, at the mass
shell, the produce&* * amplitude has the form

pI ' ‘y-lll— lpl—y p'p;l;y Pp P'75E,u,v)\p’}/p,p)\Pp . (813)

I'(p,P)=piFu(pDR1+iyiGu(pdA,
+i ySGMV)\py;Lp)\ ISpFu(pz);\3 '

. . rx
For the axial-vector meson the transverse Euclidean cova- '
riants are

(B14) A A A
(p,P)= pI[Fu(pz))\lu+ Fo( pz))\ls] +i YI[Gu(pZ))\Zu

+Gy(p?)hasl+ivip- PIFu(p?)Aay
+Fo(p?)Aas]+ipLy- PIFu(P?) N gyt Fs(P?) A 4s]

+i 75€#V)\p7/ip)\ ﬁ)p[Fu( pz);\5u+ FS( pz)XSS] .
(B18)

pI’YSp PI’YS’)/I’pI’YS’y pipI’YS'y Pp Pve#v)\p’yupxpp .
(B15)

Again the terms bilinear ip do not contribute and, using the
separableAnsatz the produced axial-vector Bethe-Salpeter
amplitude is
. A A - The amplitude for the&K* ~ meson is obtained by reversing
T _ T 2 2
I's,(P,P)=1757,Gu(PIN1+i €400 VuPAPFu(P ))(\éiG) the sign ofp, under which the kernel is invariant. The am-
plitudes for thel”=1" K, meson states are simply times

As above, the Bethe-Salpeter equation is a matrix eigenthe appropriate form of EqB18).
value problem. We obtain the solutions The calculated eigenvectoks are

S CE ¥ e s Re
1~ u 0.020 -0.12 —45x10°% 2.0x10°* 0.014
s 0046 —-021 —65x10“% 3.4x10°* 0.026 (B19)
1* u 016 -54x10°% -6.7x10% -1.8x10° 6.8x10 *
s 034 4.0x103% -—15x102 9.9x10% 1.9x10 3
[
c. fi=s=f, 3. Scalar and pseudoscalar diquark correlations

The Bethe-Salpeter amplitude for tiB®=1""ss state
[ #] has the same form as E(B14) for the p/w but with
G,—G, and F,—F,. That for the JP¢=1%" state
[f1(1510)] is related in a similar way to EqB16) for the
a,/f,. The calculated eigenvectors are

S VN VS ¥
17— 0.049 -0.35 0.030 (B20)
1** 0.0044 —0.18 0.0.

a. fl=U/d=f2
To obtain theJ®=0" diquark solution of the Bethe-
Salpeter equation given in EA0) one searches for the 0
auxiliary amplitude solution of Eq42). The latter can be
written in the form

TS(p,P)=Gu(p?) [\3—i N, v-Pli vs, (B2Y)

which is identical in form to the meson amplitudi@“in
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Eqg. (B1). The 0 pseudoscalar diquark solution is describedmass found to be associated with the @iquark correlation
by an auxiliary amplitude identical in form t65°¥® of Eq.  suggests that it may be neglected in such studies.

(B2). The calculated masses for the scalaf \@nd pseudo-

scalar (0') diquark correlations are listed in Table IV and b. f;=u/d, f,=s

the eigenvectors are The homogeneous Bethe-Salpeter equation inutttes

quark-quark channel can be written in the form

PN\ N
0" 0.96 —0.29 0.0 (B22) [C(p,p) = Zf dq N g
0~ 0.15 0.58 —0.80. us (P 3) (2m PPl
For all diquark eigenvectors we use the normalization xI'3C(a,P)S{q—(1-§Ply,, (B23
=i INi|?=1. We note that the subleading Dirac amplitude
contributes 11% to the 0 diquark mass. where the momentum partitioning parameter is

The obtained mass values suggest that thediquark  £=0.56~0.5, as for the kaon.
pole will provide a contribution to the truncated quark-quark The solution of this equation that corresponds to the 0
7 matrix that is important in the type of Fadde’ev equationdiquark is identical in form td"Ps®“in Eq. (B7). The calcu-
studies of the nucleon described in Sec. IV. The much largelated mass is listed in Table IV and the eigenvector is

JP )\1u )\ls )\Zu )\Zs )\3u )\35 )\4u )\45 )\Su 7\53

0" 498 802 —-10.4 —33.2 —-165 —282 5.2 14.9 4.7 11, (B24)

where each component is to be multiplied by $0The sub- quark. In the I channel, the auxiliary amplitude
leading Dirac amplitudes contribute 11% to thé @iquark Fic(p,P) has the axial-vector meson form given in Eq.
mass. The magnitude of its mass is such that this correlatio(B16). The calculated vector diquark mass is listed in Table
may be important in the Fadde'ev equation studies of thaV. It is too massive to be of importance.

strange octet baryons. No Gsolution with a mass less than ~ The eigenvectors are

2 GeV was found. This is in accord with our finding that in

the 0" meson channel, there was insufficient attraction for a

clear bound state. AW Ny A3

One observes that the diquark mass splitting B
Mys— My =145 MeV. This may be compared with 17 012 -1.46 0.0 (B25)
my—m,~250 MeV. One might infer from this that 1" 0.16 —-0.98 0.11.

Fadde’ev equation studies, such as the ones described above,

may yield the correct ordering and level separation of thes pieading Dirac amplitudes contribute little in these chan-
octet baryons. nels.

4. Vector and axial-vector diquarks b. fy=u/d, fo=s

The auxiliary amplitude for the "1 diquark has the same
form as the vector meson amplitude in E§18), while that

In ladder approximation the homogeneous Bethe-Salpetdor the 1™ diquark is simplyys times this. The calculated
equation for vector and axial-vector color-antitriplet diguarkmasses are given in Table IV and the eigenvectors are
correlations has the same form as E40) except that the
Bethe-Salpeter amplitude carries a Lorentz index. It can be
recast into the form of Eq42) in the same manner. JP NN, s A g

For the axial-vector (1) diquark channel, the auxiliary
amplitudeI’2 °(p,P) is identical in form to the vector me-
son amplitude in Eq(B14). The calculated mass is listed in
Table IV. The axial-vector diquark mass is larger than that of; +
the vector meson, in agreement with the argument of Ref.
[28]. However, it is comparable to the predicted scalar di-
quark mass. Hence the"diquark pole is likely to provide a
contribution to the truncated quark-quaZkmatrix, within ~ where again each component is to be multiplied by°10
the type of simplified nucleon Fadde’ev equation studies de- These results suggest that the axial-vector diquark can be
scribed earlier, that is comparable to that of the scalar ditmportant in Fadde’ev equation studies of strange baryons,

a. f1=U/d=f2

168 —4.7 —0.029 —7.0 4.0

445 63 021 —17.0 396  (B26)
162 —161 —0.64 0.13 129

458 —-288 —1.05 021 26.8,

nw < u <
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whereas the vector diquark can be neglected. Again, sublead- JP ;\1 ;\2 )‘\3
ing Dirac amplitudes contribute little in these channels. B
1~ 0.030 —1.64 0.0 (B27)
c. f=s=f, 17 0.090 —0.99 0.061.
The auxiliary amplitude for the "1 diquark is identical in The low mass of the axial-vector diquark suggests that it

form to that for the¢) meson while that for the 1 diquark  can be important in Fadde’ev equation studies of all strange-
has the form of the axial counterpdrt;(1510)], both of ness carrying baryons, whereas again the vector diquark can
which are described in Appendix 11.B.3. The calculatedbe neglected. The subleading Dirac amplitudes are unimpor-
masses are given in Table IV and the eigenvectors are  tant in these channels.
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