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Ground-state spectrum of light-quark mesons
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A confining, Goldstone theorem preserving, separable ansatz for the ladder kernel of the two-body Bethe-
Salpeter equation is constructed from phenomenologically efficaciousu, d, ands dressed-quark propagators.
The simplicity of the approach is its merit. It provides a good description of the ground-state flavor-octet
pseudoscalar, vector, and axial-vector meson spectrum facilitates an exploration of the relative importance of
various components of the two-body Bethe-Salpeter amplitudes, showing that subleading Dirac components
are quantitatively important in the flavor-octet pseudoscalar meson channels, and allows a scrutiny of the
domain of applicability of ladder truncation studies. A color-antitriplet diquark spectrum is obtained. The
shortcomings of separableAnsätzeand the ladder kernel are highlighted.@S0556-2813~97!04405-1#

PACS number~s!: 12.40.Yx, 11.10.St, 14.40.2n, 24.85.1p
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I. INTRODUCTION

The spectroscopy of light-quark mesons is made inter
ing because of the role played by dynamical chiral symme
breaking, the natural scale of which is commensurate w
other scales in this sector. It also explores quark and gl
confinement because most vector and axial-vector me
have masses that are more than twice as large as ty
constituent-quark masses. Covariant, constituent-quark
tential models are a useful tool in the study of this probl
@1#.

A salient feature of the strong interaction spectrum is
fact thatmr

22mp
2'30mp

2 , which may be compared with th
vector-pseudovector splittingma1

2 2mr
2'1.7mr

2 . Further-

more, the pion mass must vanish in the chiral limit; i.
when the current-quark mass vanishes, whereasma1

2 →mr
2 .

~We note that a vanishing current-quark mass does not e
a vanishing of the constituent-quark mass.! These observa
tions are an indication that the Goldstone-boson characte
the pion is a particular and crucial feature of the stron
interaction spectrum. That these features are difficult to c
ture in potential models is well illustrated in Refs.@1#.

An efficacious framework for studying meson spectro
copy is provided by the QCD Dyson-Schwinger equatio
@DSE’s# @2#, which include the ‘‘QCD gap equation’’~quark
DSE!, that has proven useful in the study of quark confin
ment and dynamical chiral symmetry breaking, and the
variant, two-body bound-state Bethe-Salpeter equati
@BSE’s#. With one exception, Ref.@3#, all spectroscopic
studies to date have employed the rainbow-ladder trunca
of the quark DSE and two-body BSE, which is defined
follows. Rainbow approximation specifies that the dres
quark-gluon vertex in the quark DSE is replaced by the b
vertex:Gm

a (k,p)[gmla/2, where$la%a51
8 are the color Gell-

Mann matrices. This equation is then solved with a giv
model form of the dressed-gluon propagator,Dmn(k), to
yield a dressed-quark propagator,S(p)51/@ ig•pA(p2)
550556-2813/97/55~5!/2649~16!/$10.00
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1B(p2)]. The kernel of the ladder approximation to th
two-body BSE is then the customary ladder kernel but w
Dmn(k) andS(p) employed in place of free-particle propa
gators.

It has been shown@4# that for anyDmn(k) that leads to the
dynamical generation of a fermion mass in the chiral lim
i.e., to dynamical chiral symmetry breaking, the flavor-oc
pseudoscalar meson BSE necessarily admits aP250 bound-
state solution (Pm is the total momentum of the dresse
quark, antiquark system!. No fine tuning is necessary to en
sure this outcome and one thus has a natural understan
of the pion as both a Goldstone boson and a bound state
strongly dressed quark and antiquark. This outcome is
result of an equivalence, in the chiral limit, between t
quark DSE and the flavor-octet, pseudoscalar meson B
This equivalence is an intrinsic feature of the DSE’s, whi
persists in more sophisticated truncation schemes@3,5#.

The most extensive and phenomenologically succes
spectroscopic studies in the rainbow-ladder framework
those of Ref.@6#, in which the quark DSE is solved numer
cally for spacelikep2 using a model gluon propagator. I
Landau gauge the behavior of the gluon propagator is c
strained by perturbation theory fork2.122 GeV2 @7# and
one models the infrared behavior, which is presently u
known. Such studies have the ability to unify many obse
ables via the few parameters that characterize the behavi
the model dressed-gluon propagator in the infrared.

In this approach, solving the meson BSE’s is complica
by the fact that these equations sample the dressed-q
propagator off the spacelike-p2 axis. In Ref.@6# this diffi-
culty was circumvented by employing a derivative expans
of the dressed-quark propagator functions,A(p2) and
B(p2), and estimating the error introduced thereby. Th
however, obscures the discussion and exploration of the
of quark and gluon confinement, a sufficient condition f
which is the absence of a Lehmann representation for
dressed-quark and dressed-gluon propagators. The pro
becomes more acute in studies of scattering observables
2649 © 1997 The American Physical Society
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An algebraic parametrization of a confining dressed-qu
propagator, based on numerical solutions of model qua
DSE’s, has been used successfully in studies of a large ra
of mesonic scattering observables; for example:f p , rp , the
p-p scattering lengths and the pion electromagnetic fo
factor @8#; f K and the charged and neutral kaon electrom
netic form factors@9#; the anomalousgp→g @10# and
gp→pp transition form factors@11#. In these studies the
dressed-gluon propagator is only specified implicitly inso
as the model dressed-quark propagator can be used as a
straint on its form via the quark DSE.

It would be useful to make this connection explicit. How
ever, given a dressed-quark propagator it is not possible
principle, to invert the quark DSE and extract a dress
gluon propagator; one reason being that the quark DSE
volves the dressed-quark-gluon vertex, which depends
plicitly on both the dressed-quark and dressed-glu
propagators. In the peculiar case of the rainbow trunca
this particular difficulty, at least, is eliminated.

It is known that the rainbow truncation is only quantit
tively and qualitatively reliable in Landau gauge@12#, which
means that it is inappropriate to infer a connection betwee
given phenomenologically constrained model dressed-gl
propagator and a solution of the gluon DSE, such as th
obtained in Refs.@7,13#, in any other covariant gauge. Th
quark DSE is, in general, a pair of coupled, nonlinear in
gral equations forA(p2) andB(p2). In Landau gauge, the
kernel in the equation forA(p2) is sufficiently complicated,
even in rainbow truncation, that it is not possible to inv
the equation without introducing kinematic singularities. A
explicit connection between the dressed-quark propag
and a confining dressed-gluon propagator via the invers
of the quark DSE is therefore not possible.

A goal of this study, and another@14#, is to explore the
extent to which pion and kaon observables, as embodie
the model dressed-quark propagators employed in R
@8–11#, constrain the properties of all light-quark mesons.
we have described, it is not possible to explicitly construc
dressed-gluon propagator from these dressed-quark prop
tors. However, one may adopt a purely phenomenolog
approach in order to construct a simple, confiningAnsatzfor
the kernelof the two-body BSE’s that is constrained by th
pion and kaon scattering observables. This facilitates
present exploration of the extent to which a confining, Go
stone theorem preserving, BSE approach can generate
ground-state spectrum of light-quark mesons. It also allo
one to easily identify those channels in which a ladder tr
cation of the BSE is applicable and those in which it
inadequate, and to explore the extent to which observa
properties are influenced by subleading Dirac componen
the Bethe-Salpeter amplitude, e.g., the influence of
pseudovector,g5g•P, piece of the pion Bethe-Salpeter am
plitude on the pion mass and decay constant. Such te
have been neglected in almost all studies undertaken to d
A similar situation holds for the calculation of hadronic co
pling constants and associated form factors for proce
such asr→pp @15,16# andr→gp @17#. Semiphenomeno
logical q̄q Bethe-Salpeter amplitudes for the leading Dir
covariant are currently used to facilitate the necessary i
grations. The amplitudes provided here have a signific
amount of dynamical justification and yet are simple enou
k
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to allow a more realistic study of hadron couplings. We a
take this opportunity to explore diquark correlations.

It is with this goal in mind that, in Sec. II, we construct
constrained, confining, flavor-dependent, separableAnsatz
for the dressed-ladder kernel of the two-body BSE’s. Lig
quark meson solutions are discussed in Sec. III. Details
the derivation of the explicit form taken by the ladder Beth
Salpeter equation with the separable kernelAnsatz, and with
retention of the most general Dirac covariant structure
lowed here, are collected into Appendix A. Specific aspe
of the solution amplitudes are presented in Appendix B.
Sec. IV we consider the effective masses of color-antitrip
quark-quark ~diquark! correlations, which are bound in
dressed-ladder truncation. This is a defect of the truncat
which is due to the fact that there are no repulsive terms
the kernel at this level of truncation. It is a peculiarity; r
pulsive terms appear at every higher order, with ‘‘orde
referring to the number of explicit dressed-gluon propagat
in the kernel, and these eliminate the diquark bound sta
@3#. Diquark correlations are nevertheless of contempor
interest because a number of studies of the nucleon Fadd
equation have proceeded under the assumption that
quark-quarkT matrix can be represented as a sum of sim
diquark-pole terms, and that the mass splittings are such
only the lowest mass poles need be retained in solving
reduced two-body equation that results@18,19#. Details of
the diquark solutions are discussed in Appendices B3
B4. We summarize and conclude in Sec. V.

II. SEPARABLE ANSATZ FOR THE BETHE-SALPETER
KERNEL

The Dyson-Schwinger equation for the Euclidean-sp
dressed-quark propagator~Schwinger function!,

S~p!52 ig•psV~p2!1sS~p
2!5

1

ig•pA~p2!1B~p2!
,

~1!

can be written as

S21~p!5 ig•p1m1E d4k

~2p!4
g2Dmn@~p2k!2#

3gm

la

2
S~k! Gn

a~k,p!, ~2!

wherem is the ~bare! current-quark mass. The Euclidea
Dirac matrices satisfy the algebra$gm ,gn%52dmn , where
dmn is the Kronecker delta, anda•b[( i51

4 aibi . In Eq. ~2!,
Dmn(k) is the dressed-gluon propagator andGm(k,p) is the
dressed quark-gluon vertex.

The homogeneous BSE for a quark-antiquark bound s
is

G rs~k;P!5E d4q

~2p!4
Krs;tu~q,p;P!$Sf1~q1jP!

3G~q;P!Sf2@q2~12j!P#% tu, ~3!

where P is the center-of-mass momentum; th
f 1-flavor-quark carries momentumpf15q1jP and the
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f̄ 2-flavor-antiquark momentum isp f̄ 2
52q1(12j)P; and

K(q,p;P) is the quark-antiquark scattering kernel.
The ladder approximation is defined by

Krs;tu~q,p;P![2g2 Dmn~p2q! I r FtF S la

2 D
rCtC

3~gm!rDtD I uFsFS la

2 D
uCsC

~gn!uDsD, ~4!

where$F,C,D% indicate flavor, color, and Dirac indices.
In rainbow approximation, i.e., using

Gm
a ~k,p!5gm

la

2
~5!

in Eq. ~2!, then, if the dressed-quark propagator is know
Eq. ~2! can be used to constrain anAnsatzfor the ladder
approximation to the kernel of Eq.~3!.

Herein, solely because of its inherent simplicity, we e
ploy a model of the form

g2Dmn~p2k!5dmnD~p2k!. ~6!

In being proportional todmn , this has theappearanceof a
Feynman gauge propagator. The appearance is mislea
however. A fundamental Slavnov-Taylor identity in QC
entails that the longitudinal piece of the dressed-gluon pro
gator must be independent of interactions. Equation~6! has
the transverse and longitudinal components dressed in
actly the same way. A propagator of this form could on
arise if the gauge parameter was chosen so as to compl
cancel the transverse interaction contributions, i.e., if
gauge parameter dependent, longitudinal piece of the g
propagator is interaction dependent. Therefore Eq.~6! can
only provide a model effective potential:D(p2k), defined
in this way, cannot in principle be related to solutions o
tained in studies of the gluon DSE, such as Refs.@7,13#. We
will describe Eq.~6! asFeynman-likegauge.

One can write, without loss of generality,

D~p2k!5 (
n50

`

Dn~p
2,k2!pnkn

1

2n
Un~ p̂• k̂!, ~7!

where p̂ is the unit-magnitude direction vector forp and
$Un(x)%n50

` are the complete set of orthonormal Tscheb
shev functions, which satisfy

2

pE21

1

dx A12x2 Ui~x! Uj~x!5d i j . ~8!

Translational invariance is preserved if all contributi
Tschebyshev moments are retained.

The quark DSE, Eq.~2!, represents two coupled, nonlin
ear integral equations forA(s) andB(s), wheres5p2. In
rainbow approximation, Eq.~5!, and using Eq.~6!, these
equations are
,

-

ng,

a-

x-

ely
e
on

-

-

p2 A~p2!5p21
8

3E d4k

~2p!4
D„~p2k!2… p•k

3
A~k2!

k2A~k2!21B~k2!2
, ~9!

B~p2!5m1
16

3 E d4k

~2p!4
D„~p2k!2…

B~k2!

k2A~k2!21B~k2!2
.

~10!

The simplicity inherent in Feynman-like gauge is obvious
Introducing the Tschebyshev expansion forD(p2k), Eq.

~7!, these equations become

A~s!511
1

24p2E
0

`

dt t2 D1~s,t ! sV~ t !, ~11!

B~s!5m1
1

3p2E
0

`

dt t D0~s,t ! sS~ t !, ~12!

from which one observes that, in rainbow approximation a
in Feynman-like gauge, the quark DSE is only sensitive
the zeroth and first Tschebyshev moments ofD(p2k).
Hence, translational invariance of the kernel of the qu
DSE is not lost as long as the zeroth and first Tschebys
moments are retained.

A constrained kernel can now be obtained by employin
rank-N, separable approximation for the Tschebyshev m
ments:

Dn~s,t !5(
i51

N

Fn
i ~s! Fn

i ~ t !. ~13!

The simplest such approximation is rank-1, which is cons
ered herein, i.e., one writes

F0
1~s![G~s!5

1

b
@B~s!2m#,

F1
1~s![F~s!5

1

a
@A~s!21#, ~14!

wherea and b are fixed constants, which are to be dete
mined, andA(s) andB(s) are the functions that appear i
the quark propagator. As will be seen below, this particu
choice forF0

1 andF1
1 is sufficient to ensure that Goldstone

theorem is preserved.
Substituting Eqs.~14! via Eq.~13! into Eqs.~11! and~12!

one finds that this latter pair of equations@i.e., the quark
DSE# is solved if, and only if,

a25
1

24p2E
0

`

dt t2 @A~ t !21# sV~ t !, ~15!

b25
1

3p2E
0

`

dt t @B~ t !2m# sS~ t !. ~16!

One now has a rank-1, separableAnsatzfor the ladder
kernel of the BSE for like quarks, which is completely d
termined by the propagator of that quark, i.e., Eq.~4! with
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g2Dmn~p2k!5dmnD~p2k!

5dmn@G~p2! G~k2!1p•k F~p2! F~k2!#.

~17!

With u andd quarks treated as indistinguishable, except
their electric charge, Eq.~17! can be used in the study of th
BSE forp, v, andr mesons, for example.

A simple generalization of thisAnsatzto mesonlike bound
states with arbitrary flavor content is obtained via the id
tification

Sf1~k1jP! D~p2k! Sf2~k2~12j!P!

[Sf1~k1jP!$ 1
2 @Gf1

~p2! Gf2
~k2!1Gf1

~k2! Gf2
~p2!#

1p•k 1
2 @F f1

~p2! F f2
~k2!1F f1

~k2! F f2
~p2!#%

3Sf2@k2~12j!P#, ~18!

wherever it appears in the kernel of a given BSE. This can
used in the study of the BSE forK and K* mesons, for
example.

We observe that, once the propagators for quarks of
vors f 1 and f 2 are known, Eq.~18! provides a constrained
separableAnsatzfor the ladder kernelof the Bethe-Salpete
equation. If the dressed-quark propagators have no Lehm
representation then this kernel is free of quark and glu
production thresholds and may therefore be described
confining. As remarked above, thisAnsatzfor the kernelis
not equivalent to anAnsatzfor the gluon propagator and it i
inappropriate to infer comparisons with solutions obtained
studies of the gluon DSE, such as Refs.@7,13#. Such com-
parisons can only be made when one employs a gauge-fi
procedure that does not violate the relevant Slavnov-Ta
identity; for example, Ref.@20#, which employs Landau
gauge and is not separable. We note that any attemp
construct a constrained, separableAnsatz in other than
Feynman-like gauge will introduce kinematic singularities
the analog of Eq.~18!.

The BSE is solved in the rest frame by setti
P5(0,0,0,iM ) in Eq. ~3! and details of this for the case o
identical quarks (f 15 f 2) are given in Appendix A. The gen
eralization to mesonlike bound states with arbitrary flav
content is straightforward using Eq.~18!. In general, the lad-
der truncation of the BSE reduces to a finite matrix equat
that admits solutions for discrete values of the meson m
M .

A. Meson decay constant

The canonical normalization of the Bethe-Salpeter am
tudeG is given by@21#

2Pm5NcE d4k

~2p!4
„trD$Ḡ~k,2P!]m

PSf1~k1jP!G~k,P!

3Sf2@k2~12j!P#%1trD$Ḡ~k,2P!

3Sf1~k1jP!G~k,P!]m
PSf2@k2~12j!P#%…, ~19!
r

-

e

a-

nn
n
as

n

ng
r

to

r

n
s,

i-

where Ḡ(k,P)T5C21G(2k,P)C defines the correspondin
antimeson amplitude. In ladder approximation the kerne
the Bethe-Salpeter equation is independent of the cente
mass momentumP, hence there is no contribution of th
type ]K/]P to the normalization.

The pseudoscalar meson decay constant,fP , is defined by

^0uC̄~0!gmg5

LP

2
C~0!uF~P!&5Pm fP , ~20!

whereuF(P)& is the pseudoscalar meson state vector,LP are
matrices acting in flavor space, andC is a color triplet and
flavor multiplet of Dirac spinors. For theK2 meson, for
example, the relevant flavor matrix is, with$l i% i51

8 the Gell-
Mann matrices,

LK2
5

1

A2
~l41 il5!5S 0 0 A2

0 0 0

0 0 0
D , ~21!

which gives ^0uC̄u(0)gmg5Cs(0)uFK2(P)&5A2 Pm f K2.
Thus, the decay constants for the pseudoscalar meson
tions to the BSE given in Eq.~3! are defined by

A2 Pm f M5^0uC̄f2
~0!gmg5C f1

~0!uFM~P!&. ~22!

To obtain an expression in terms of the Bethe-Salpe
amplitude, we note that the unamputated BS wave funct

x~p,P!5Sf1~p1jP!G~p,P!Sf2@p2~12j!P#, ~23!

can be expressed as

~2p!4d4~p2q!x~p,P!

5E d4xd4y e2 iP•[ ~jx1~12j!y]e2 i ~q•x2p•y!

3^0uC f1
~x!C̄f2

~y!uF~P!&. ~24!

~For a color singlet bound state,x(p;P) is diagonal in color
space.! Multiplying both sides byg5g•P, taking the matrix
trace throughout, evaluating the integrals overp andq, and
using Eq.~22! one obtains

P2f M5
Nc

A2
E d4p

~2p!4
trD$g5g•PSf1~p1jP!G~p,P!

3Sf2@p2~12j!P#%, ~25!

which provides the relation between the Bethe-Salpeter
plitude and the canonically defined meson decay constan
this equationG is normalized according to Eq.~19!.

B. Dressed quark propagators

The separableAnsatz is completely defined once th
quark propagators are specified. Following Ref.@9#, the sca-
lar and vector parts of the quark propagators are define
terms of dimensionless functions:
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sV
f ~s!5

1

2D
s̄V
f ~x!, sS

f ~s!5
1

A2D
s̄S
f ~x!, ~26!

with s5p2, x5s/(2D), D is a mass-scale parameter, a
where (L51024):

s̄S
f ~x!5

m̄f

x1m̄f
2 ~12e22~x1m̄f

2
!!

1
12e2b1

f x

b1
f x

12e2b3
f x

b3
f x S b0f 1b2

f 12e2Lx

Lx D , ~27!

and

s̄V
f ~x!5

2~x1m̄f
2!211e22~x1m̄f

2
!

2~x1m̄f
2!2

. ~28!

Here m̄f5mf /A2D. In this work theu and d quarks are
considered to be identical, except for their electric charg

The dressed-quark propagator described by Eqs.~27! and
~28! is an entire function in the finite complexp2 plane and
may therefore be interpreted as describing a confined par
@2#. The ;e2x form that ensures this is suggested by
algebraic solution of the model DSE studied in Ref.@22#,
which employed a confining model dressed-gluon propag
and dressed quark-gluon vertex. Furthermore, the beha
of Eqs. ~27! and ~28! on the spacelike-p2 axis is such that
neglecting ln@p2# corrections associated with the anomalo
dimension of the dressed-quark propagator in QCD, wh
are quantitatively unimportant herein, asymptotic freedom
manifest. In Eq.~27! the term;1/x2 allows for the repre-
sentation of dynamical chiral symmetry breaking and
;m/x term represents explicit chiral symmetry breaking.

In Ref. @9# the five parameters$mu ,b0
u , . . . ,b3

u% in Eqs.
~27! and~28! were varied in order to determine whether th
model form could provide a good description of the pi
observables:f p ; mp ; ^q̄q&; rp ; thep-p scattering lengths
and partial wave amplitudes; and the electromagnetic p
form factor. A very good fit was found with theu-quark
parameter values listed in Eq.~29!:

u quark s quark

m̄f 0.00897 0.224

b0
f 0.131 0.105

b1
f 2.90 2.90

b2
f 0.603 0.740

b3
f 0.185 0.185

~29!

The scale is set withD50.160 GeV2. This same model als
provides a good description of theg*p→g @10# and
gp*→pp @11# transition form factors.

Dyson-Schwinger equation studies@23# indicate that
while it is a good approximation to represent theu and d
quarks by the same propagator, this is not true for ths
quark. For example; contemporary theoretical stud
suggest that 2ms /(mu1md);17225 @24# and ^s̄s&
;0.520.8 ^ūu& @25#, which is a nonperturbative differenc
le

or
ior

s
h
is

e

n

s

In Ref. @9#, with this in mind, the model forms in Eqs.~27!
and~28! were employed in a study of the kaon observabl
f K ; ^s̄s&; r K0; r K6; and the electromagnetic form factors
the charged and neutral kaon. The sensitivity of these
servables tom̄s and ^s̄s& was too weak for an independen
determination and thereforem̄s525m̄u and b0

s50.8b0
u ,

which ensureŝ s̄s&50.8̂ ūu&, were chosen for consistenc
with other theoretical estimates. The parameterb2

s was al-
lowed to vary to provide a minimal residual difference b
tween theu/d- ands-quark propagators and a very good
to the kaon observables was obtained with the value liste
Eq. ~29!.

To complete the specification of the constrained separa
approximation to the kernel of the Bethe-Salpeter equat
the quantitiesa andb in Eqs. ~15! and ~16! must be deter-
mined. However, using Eqs.~27! and~28! neithera nor b is
finite. Equations~15! and ~16! only yield finite values if the
large spacelike-x behavior ofs̄V and s̄S is such that

s̄V~x!5
1

x1m̄2
1OS 1

x21dD , s̄S~x!5
m̄

x1m̄2
1OS 1

x21dD ,
~30!

for any d.0. Dynamical chiral symmetry breaking in QCD
entails that at largex ~up to corrections;@ lnx#2g, g,1)
s̄S(x)5m̄/(x1m̄2)1O(x22) and hence no quark propaga
tor that properly incorporates the momentum dependenc
largex due to dynamical chiral symmetry breaking will yiel
finite values ofa andb. ~This behavior is tied to the neces
sary divergence of the quark condensates in QCD; neces
because condensates are related to two-point Schwi
functions evaluated at zero relative Euclidean spatial sep
tion.!

To complete the specification of the constrained, se
rable Ansatzone must therefore incorporate an ultravio
regularization in the propagator:

s̄S
f Reg~x!5

m̂f

x1m̂f
2 ~12e22~x1m̂f

2
!!

1
12e2b1

f x

b1
f x

12e2b3
f x

b3
f x

3S b0f 1b2
f 12e2b4x

b4x
D12e2~eS

f x!2

~eS
f x!2

~31!

s̄V
f Reg~x!5

2~x1m̂f
2!2e2eV

2
~x1m̂f

2
!21e22~x1m̂f

2
!

2~x1m̂f
2!2

, ~32!

which introduces three new parameters:eV , eS
u , eS

s , that are
not determined by the studies of Ref.@9#. The parameter
eV50.1 is chosen so as to ensure thats̄V

f Regare numerically
good approximations tos̄V

f on the domain 0,x,3; our re-
sults are not sensitive to the domainx.3. It is not varied but
we have established that our results are insensitive to it,
that changes can be absorbed into a change ineS

f . The regu-
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larization parameters modify the large-p2 behavior of the
propagator, which entails that the light-quark mass val
must be refit (m̄q→m̂q).

Equations~14!–~16!, ~18!, ~29!, ~31!, and~32! completely
specify the constrained, confining, separable ansatz for
ladder kernel of the Bethe-Salpeter equation. The nume
studies proceed by varying the four parametersm̂f andeS

f in
order to fit f p/K andmp/K and then predicting the ground
state spectrum of octet mesons. Diquark systems are
studied.

III. MESONS

The Bethe-Salpeter equation considered for a bound s
of a quark of flavorf 1 and an antiquark of flavorf̄ 2 is

G~p,P!52
4

3E d4q

~2p!4
D~p2q!gmSf1~q1jP!

3G~q,P!Sf2@q2~12j!P#gm . ~33!

In this equationD(p2q) is obtained from Eq.~18! with
Sf i obtained from Eqs.~31! and~32! using the parameters i
Eq. ~29! and Table I. This equation is solved in each chan
as an eigenvalue problem of the formKG5l(P2)G, with the
bound-state mass identified froml(P252M2)51.

A. Scalar and pseudoscalar mesons

1. f15u/d5f 2

In this case the requirement of charge conjugation inv
ance for the neutral mesons entailsj51/2. The form of the
charge parityC56, f 15u/d5 f 2 Bethe-Salpeter amplitudes
GC , obtained as solutions at the mass-shell po
P252M2 are given in Eqs.~B1!–~B4!.

TABLE I. Values of the fitting parameters,eS
f i andm̂f i

, used in
constructing the constrained, separable ansatz; and the valueaf i
andbf i, defined in Eqs.~15! and ~16!, calculated using them. Th

parameterseS
u andm̂u/d are chosen so as to fitmp5137.5 MeV and

f p592.4 MeV; the parameterseS
s and m̂s so as to fitmK5493.6

MeV and f K5113 MeV. The values ofm̂f i
listed here correspond

tomu/d54.59 MeV andms5112 MeV. See Eq.~34! and associated
text for further details.

f i eS
f i m̂f i

af i
calc GeV2 bf i

calc GeV2

u/d 0.482 0.00811 0.0413 0.0281
s 0.580 0.198 0.0385 0.0426
s

he
al

lso

te

l

i-

t

These equations expose a shortcoming of separableAn-
sätze: the pseudoscalar and pseudovector pieces of the p
doscalar Bethe-Salpeter amplitude are characterized by
same function, which is not the case in general.

The calculated eigenvectors are given in Eq.~B6! and the
bound-state masses in Table II.

The separableAnsatzfor the kernel of the Bethe-Salpete
equation yieldsm02150 whenm̄u/d50. This is a necessary
consequence of the equivalence between the flavor-o
pseudoscalar BSE and the quark DSE in this chiral limit@4#,
which is preserved in the approach described herein and
cussed in detail in Ref.@3#.

One might be tempted to conclude from Eq.~B6! that for
C51 states the leading Dirac component of the amplitu
dominates; i.e., the pureg5 component dominates for th
021 state and the pureI D component for the 011 state.
Indeed, it is an often used approximation to neglect suble
ing Dirac components of the Bethe-Salpeter amplitude
ground-state studies using the Bethe-Salpeter equation. C
sidering Tables II and III one observes that while this is
good approximation for the heavy 011 state, it represents a
erroneous conclusion for the light 021 state, for which the
subleading, axial-vector component provides 17% of
mass and 39% of the decay constant. This feature is also
in Ref. @3#.

TABLE II. Calculated meson masses compared with experim
tal values@24#, when known. The column labeled with the supe
script ‘‘Dom’’ means that the quantity was calculated using on
the leading Dirac amplitude, e.g.,Gp(p,P)} ig5 Gu(p

2) for the
pseudoscalar; ‘‘unbound’’ means that in ladder approximation
constrained, separableAnsatzdoes not yield a stable bound state
the channel under consideration.

mM
calc GeV mM

calc DomGeV Expt.

p (021) 0.139~fit! 0.116 p6(140),p0(135)
f 0 /a0 (0

11) 0.715 0.743 f 0(980)/a0(982)
012 1.082 1.092 Not seen
022 1.319 1.299 Not seen
K 0.494~fit! 0.412 K6(494),K0(498)
K0* Unbound Unbound K0* (1430)
h(uP550) 0.549 0.472 h(547)
h(uP500) 0.513 0.441
v/r 0.736 0.755 v(782)/r(770)
a1 / f 1 1.34 1.37 a1(1260)/f 1(1285)
K* 0.854 0.866 K* ~892!
K1 1.39 1.39 K1(1270),K1(1400)
f ( s̄s 12) 0.950 0.957 f(1020)
s̄s 11 1.60 1.60 f 1(1510)
TABLE III. Calculated weak decay constants compared with experimental values@24#. The superscript
‘‘Dom’’ has the same meaning as in Table II.

f M
calc GeV f M

calc DomGeV Expt.

p 0.0924~fit! 0.056 p1~0.0924!
K6 0.113~fit! 0.76 K1(0.113)
h(u550) 0.114 0.086 0.09460.007 or 0.09160.006
h(u500) 0.111 0.082
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Table II shows that the separable ansatz for the BSE
nel yields a largem0112m021 splitting without fine tuning,
thus reproducing this characteristic feature of the strong
teraction spectrum. The 011 state can be identified with th
a0(980) meson. The discrepancy between the calculated
observed masses is consistent with the contention that
state involves a considerableK̄-K admixture, which can be
represented as a contribution to the Bethe-Salpeter kerne
is absent in ladder approximation.

No JPC5012 states have been observed in the stro
interaction spectrum. However, in general, as observed
Ref. @27#, the Bethe-Salpeter equation admits solutions
this type. The amplitudes for such solutions characteristic
differ from theirC51 counterparts by the factorp•P which
is odd under charge conjugation. Such states have no an
in quantum mechanics since, for equal-mass constituent
ticles on shell,p•P50.

We expect that such exotic state solutions of the
Bethe-Salpeter equation would be heavy, certainly above
mass of thea1 meson solution, or unbound. However, th
ladder approximation is known to be dynamically inadequ
for the 011 states~it is too attractive!, and a similar inad-
equacy for scalarC52 states would not be surprising. On
may identify this as the reason why it is not usual for t
C52 states to be investigated or reported in Bethe-Salp
studies. For completeness, and a fuller elucidation of
shortcomings of the ladder truncation and the present s
rableAnsatz, in Table II we present masses obtained for t
022 and 012 states.

One observes thatm022;10m021 andm012;2m011,
which indicates that with this simpleAnsatz, the reversal in
C parity introduces a significant repulsive effect. It is, ho
ever, too weak and the calculated values are not large eno
to be consistent with the observed strong interaction sp
trum.

The methods of Ref.@3# indicate that the next order con
tributions to the kernel@O(g4) in a quark-gluon skeleton
graph expansion# for the scalar channel are all predominan
repulsive. This is to be contrasted with the flavor-octet ps
doscalar and vector channels where there are both repu
and attractive corrections that have a significant amoun
cancellation. This highlights the fact that progress in und
standing the complex issues of scalar states withC51 in the
Bethe-Salpeter approach certainly requires studies bey
the ladder truncation, including, for example, possibly i
portant meson-loop contributions to the open decay ch
nels. It is our opinion that the same is true in the study of
associatedC52, exotic states.

2. f15u/d, f25s

The Bethe-Salpeter equation forū-s states is Eq.~33!
with f 15u/d, f 25s. Consider first the pseudoscalar~kaon!
channel. A value ofj is determined by ensuring that th
electric charge of theK0 is zero in impulse approximation
@9#. The value obtained in Ref.@9# with empirical Bethe-
Salpeter amplitudes isj50.49 ('0.5), while the presen
work requiresj50.56 ('0.5). There is only a weak sens
tivity of masses to changes inj of this magnitude throughou
this work.
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The solution amplitude is given in Eq.~B7! with the cal-
culated eigenvector given in Eq.~B8! and the mass in Table
II. We note that there is no charge parity~C!, symmetry for
bound states of distinguishable quarks.

The leading, pseudoscalar Dirac amplitudes (l1u ,l1s)
again appear to be dominant for the kaon, however, as for
pion, the subleading, axial-vector amplitudes (l3u ,l3s) con-
tribute significantly to the mass~17%! and decay constan
~33%!.

Each type of covariant in the kaon solution is weighted
two amplitudes that describe the internal momentum dep
dence in terms of functions that relate to the dressed pro
gators of theu/d and s quarks. These are found to hav
approximately equal influence in the solution. For examp
from Eq. ~B8! and Table I one calculates thatl1 /bu59.4
GeV21 andl2 /bs59.2 GeV21. This means that, using th
constrained, separableAnsatz, the kaon Bethe-Salpeter am
plitude for the pseudoscalar covariant is an approxima
even mixture of theu- ands-quark mass functions.

It is clear from Table I that

2 m̂s

m̂u1m̂d

524.4, ~34!

which is essentially the same as the ratio obtained from
mass values in Eq.~29! and is in the range~17–25! sug-
gested by other theoretical analyses@24#. With D50.160
GeV2, m̂u/d50.00811 corresponds tomu/d54.6 MeV and
m̂s50.198 corresponds toms5112 MeV. These values

should notbe compared directly with values ofmu/d,s
m251 GeV2

quoted by other authors because the regularization of
vacuum condensates employed herein, via the parame
eV andeS

f in Eqs.~31! and~32!, is unconventional and enter
through the quantitiesa and b in Eqs. ~15! and ~16!. The
ratio, Eq.~34!, is likely to be less sensitive to this differenc
and therefore provides a meaningful point of comparison

The dressed-quark propagators we employ are confin
with the dressed-quark mass being a function ofp2,
M (p2), such that there is no dressed-quark mass pole, i.e
solution of the equationp2@Af(p2)#21@Bf(p2)#250. A
simple estimate of the value of the mass function that is m
important in calculations of meson observables is obtai
from the solution of2p2@Af(p2)#21@Bf(p2)#250, which
might be called the Euclidean constituent-quark mass,ME

f .
With the parameter values used herein,ME

u5315 MeV and
ME

s5397 MeV.
Our calculations yield no true 01 eigenstate with a mas

less than 2 GeV, which we consider to be the upper limit
the present approach. The condition for an eigenstate
closest to being satisfied at a mass of 1.18 GeV. This
again consistent with a largem012m0 splitting without fine
tuning. This 01 state might be identified with the
K0* (1430). Such an identification would suggest that t
state, like thea0(980), has a sizeable coupling to other cha
nels, which contribute to its mass, i.e., that the ladder ker
is inadequate to properly describe this channel.

3. h meson

Ladder approximation is inadequate to properly study
h-h8 complex. A minimal extension that can dynamical
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couple the flavor octet and singlet channels is the inclus
of timelike-gluon exchange diagrams. This is not conside
here.

Instead we study

Gh~p,P!52
4

3E d4q

~2p!4
@ 1
3 ~cosuP2A2sinuP!2

3Du~p2q! gmSu~q1 1
2P!Gh~q,P!

3Su~q2 1
2P!gm

1 1
3 ~A2cosuP1sinuP!2Ds~p2q!

3gmSs~q1 1
2P!Gh~q,P!Ss~q2 1

2P!gm#, ~35!

with

D f~p2q!5Gf~p
2! Gf~q

2! 1 p•q Ff~p
2! F f~q

2!.
~36!

Equation ~35! is the projected Bethe-Salpeter equation
the meson whose flavor structure is

Fh5l8cosuP2l0sinuP , ~37!

with l05A2/3 diag(1,1,1) anduP an octet-singlet mixing
angle. The exact kernel of the Bethe-Salpeter equation wo
lead to a prediction foruP .

With the kernel considered herein,uP is treated as an
external parameter on which the mass and other propertie
the h meson depend. For example, in this case the exp
sions for the normalization of the Bethe-Salpeter amplitu
Eq. ~19!, and the decay constant, Eq.~25!, areuP dependent.
The modified forms are given in Eqs.~B9! and ~B10!, re-
spectively.

The form of the positive charge parity solution of Eq.~35!
is given in Eq.~B11!. The calculated mass, decay consta
and eigenvector, at a number of values ofuP , are given in
Eq. ~B12!. The experimental values of the mass and de
constant are given in Table II.

In this case the subleading Dirac amplitudes contrib
; 14% to the mass and; 26% to the decay constant.

The constrained separableAnsatzfavors a small positive
value for the mixing angle,uP . This can be compared with
uP5210° estimated in Ref.@24#. As remarked therein, how
ever, there are large uncertainties in this value.

The h8 meson can be studied via the projection of t
Bethe-Salpeter equation orthogonal to that in Eq.~35!, which
is obtained from this equation underuP→uP2p/2. As re-
marked above, one expects timelike-gluon exchange, for
den in the flavor-octet channel, to be important in this mai
singlet channel. The results in Eq.~B12!, which one might
compare with the experimental values ofMh8

expt
5958 MeV

and f h8589.165 or 77.865 MeV, may be interpreted as
guide to the importance of such contributions in this chan
and emphasize the necessity to go beyond ladder approx
tion for theh8 state.

B. Vector and axial-vector mesons

The ladder approximation to the Bethe-Salpeter equa
for vector and axial vector mesons is
n
d

r

ld

of
s-
,

t,

y

e

d-
y

l
a-

n

Gn~p,P!52
4

3E d4q

~2p!4
D~p2q!gmSf1~q1jP!

3Gn~q,P!Sf2@q2~12j!P#gm , ~38!

which is identical to Eq.~33! except that the Bethe-Salpete
amplitude carries a Lorentz index. On-shell vector and ax
vector bound states are transverse:

Pn Gn~p,P!50, ~39!

which constrains the general form of the Bethe-Salpeter
plitude.

1. f15u/d5f 2

The most general form of the vector meson Beth
Salpeter amplitude when using the separable ansatz is g
in Eq. ~B14! and that for the axial-vector meson is given
Eq. ~B16!. These equations expose another shortcoming
separableAnsätze: the vector and axial-vector meson Beth
Salpeter amplitudes are characterized by the same func
as the pseudoscalar mesons, which is not true in genera
Ref. @6#, for example, the vector meson amplitudes we
found to be much narrower in momentum space.

The ladder approximation does not distinguish betwe
I50 andI51, hence the vector channel corresponds to b
thev andr mesons. Similarly, the axial-vector channel co
responds to thef 1 anda1 mesons.

The calculated mass for these states is presented in T
II and the eigenvectors in Eq.~B17!. With pion and kaon
physics used to fix the parameters of the quark propaga
as described in Sec. II, these results are predictions.
subleading Dirac amplitudes contribute very little to t
J51 meson masses.

The relevant experimental value to compare the vec
meson with isMv

expt5782 MeV, since it is known that pion
loop dressing will lower ther-meson mass while having
little effect on thev meson@15#. A recent study of this effect
@16# yieldsMv2M r521.0 MeV.

These results in theu2d sector indicate that theu/d
quark propagator parameters, previously set by pion phys
have produced a separable BSE kernel that captures
dominant physics for the ground-state vector and axial ve
channels.

2. f15u/d, f 25s

The general form of the Bethe-Salpeter amplitude for
u-s̄meson, which corresponds to theJP512 K*1 meson, is
given in Eq.~B18!. We choosej so as to ensure the neutra
ity of the K* 0 meson, which producesj50.49'0.5.

The form of the amplitude forJP511, which is a nearly
equal mix ofK1(1270) andK1(1400), is simplyg5 times
this. The corresponding choice forj yields j50.50. The
calculated masses are listed in Table II and the eigenvec
in Eq. ~B19!.

The subleading Dirac amplitudes contribute little to t
masses.
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3. f15s5f 2

The JPC5122 s̄s state, identified with thef meson, is
computed in exactly the same manner as thev/r meson
except for the replacement of theu-quark propagator with
that for thes quark. The Bethe-Salpeter amplitude for t
f and for the 111 state, identified with thef 1(1510) meson,
are described in Appendix II B3.

The calculated masses are listed in Table II and the eig
vectors in Eq.~B20!. The subleading Dirac amplitudes a
again unimportant.

4. J51 summary

We observe that theJ51 meson spectrum is satisfactori
reproduced. These higher-mass states explore a large
main in the complex quark-momentum plane than do
pion and kaon, which are used to constrain the separ
ansatz for the ladder kernel. This is an indication that a s
cessful description of a subset of hadronic observables
translate into a uniformly good description of a broad ran
of phenomena, which is a feature that underlies many ap
cations of this framework and emphasizes the utility of st
ies such as that of Ref.@20#.

IV. DIQUARK CORRELATIONS

The derivation of the homogeneous Bethe-Salpeter eq
tion from the inhomogeneous equation for the two-bodyT
matrix proceeds under the assumption that there exis
bound-state pole in the channel under consideration.
QCD, one expects that confinement ensures the absen
such poles in the quark-quarkT matrix and hence that ther
are no solutions to the homogeneous Bethe-Salpeter equ
in any color-antitriplet quark-quark~diquark! channel. This
is supported by the studies of Ref.@3#, which indicate, how-
ever, that one must proceed beyond ladder approximatio
obtain this result. In ladder approximation one finds bou
state, diquark solutions. This is a defect of the truncation

Studies of the nucleon as a bound state of three dre
quarks using the covariant Fadde’ev equation have been
dertaken@18#. The appearance of the pole in the ladder a
proximation to the homogeneous, quark-quark Bet
Salpeter equation was used therein to simplify the three-b
problem, i.e., to re-express it as an effective two-bo
quark-diquark problem. This technique can also be said
underly the study of Ref.@19#. Presently, the only justifica
tion for this Ansatzis the simplicity it introduces into the
problem.

Accepting this approach for the present it is then imp
tant to identify those diquark correlations that contribute s
nificantly to a given three-body bound state. As a guide o
might assume that those diquarks whose mass is greater
that of the three-body bound state under consideration wo
contribute little to the three-body ground-state mass. S
studies of the ‘‘u/d-diquark spectrum’’ have been reporte
in Refs.@26,28#. Herein we extend these studies to SUf(3).

The ladder approximation to the homogeneous Bet
Salpeter equation for a diquark correlation involving qua
of flavor f 1 and f 2 is
n-

do-
e
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G 3̄~p,P!52E d4q

~2p!4
D~p2q!gm

la

2
Sf1~q1jP!G 3̄~q,P!

3$Sf2@2q1~12j!P#%TS gm

la

2 D T, ~40!

whereT denotes matrix transpose. The study of such co
lations is simplified if one defines

G 3̄
C~p,P![G 3̄~p,P! C, ~41!

whereC5g2g4 is the charge conjugation matrix. It follow
from Eq. ~40! that this auxiliary amplitude satisfies

G 3̄
C~p,P!52

2

3E d4q

~2p!4
D~p2q!gm

3Sf1~q1jP! G 3̄
C~q,P! Sf2@q2~12j!P#gm .

~42!

It is immediately obvious that Eq.~42! is identical to Eq.
~33! but for a reduction in the~purely attractive! coupling
strength: 4/3→2/3. This observation in Ref.@28# entailed the
result that the mass of the scalar (u2d) diquark is greater
than mp ; and that of the vector (u2u), (u2d), and
(d2d) correlations is greater than the mass of t
a1(1280) meson.~This result is true in an arbitrary covarian
gauge and independent of the form of the gluon propaga
However, it is peculiar to ladder approximation. As di
cussed in Ref.@3#, any other truncation of the kernel of th
Bethe-Salpeter equation introduces repulsive terms
eliminate the diquark pole.!

The masses produced in various diquark channels by
present ansatz for the ladder kernel are listed in Table
Further details and a brief discussion of these results and
associated Bethe-Salpeter amplitudes are provided in Ap
dices B3 and B4.

V. SUMMARY AND CONCLUSIONS

We have constructed a crude, confining, separableAnsatz
for the ladder kernel of the two-body Bethe-Salpeter eq
tion ~BSE! from the phenomenologically efficaciousu/d and
s dressed-quark propagators of Ref.@9#. We have empha-
sized that no connection can be made between this c

TABLE IV. Calculated diquark effective masses. The sup
script ‘‘Dom’’ has the same meaning as in Table II.

f 1 f 2 JP M GeV MDom GeV

u/d u/d 01 0.737 0.653
u/d u/d 02 1.50 1.52
u/d s 01 0.882 0.786
u/d s 02 Unbound Unbound
u/d u/d 11 0.949 0.958
u/d u/d 12 1.47 1.48
u/d s 11 1.05 1.05
u/d s 12 1.53 1.53
s s 11 1.13 1.13
s s 12 1.64 1.64
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kernel and the solution of the Dyson-Schwinger equation
the dressed-gluon propagator.

A very good description of the ground-state, SUf(3),
flavor-octet pseudoscalar, vector and axial-vector me
spectrum was obtained. However, scalar mes
(JPC5011), 012 exotics and the pseudoscalarh2h8 com-
plex were poorly described. We argued that this is a defec
ladder truncation that can be understood as the result of
glecting higher-order terms in the kernel. The present cr
construction therefore provides a useful demonstration of
reliability and extent of applicability of the rainbow-ladde
truncation of the quark-DSE/meson-BSE complex.

We found that in the flavor-octet pseudoscalar me
channel the subleading Dirac components of the Be
Salpeter amplitude, i.e., those terms whose Dirac ma
structure is more than justg5, provide quantitatively impor-
tant contributions to the mass (;15% effects! and weak de-
cay constant (;35% effects!. These terms are unimportan
in the vector and axial-vector meson channels.

We saw that separableAnsätze have a number of short
comings. In the pseudoscalar channel one finds that theg5
andg5g•P components of the meson Bethe-Salpeter am
tude are characterized by the same function,B(p2), which is
not true in general. One also finds that the dominant com
nents in the Bethe-Salpeter amplitudes of the vector
axial-vector mesons are characterized by the same func
that characterize these components of the pseudoscalar
sons,B(p2). More sophisticated studies indicate that the v
tor meson amplitudes are narrower in momentum space.
indicates that the amplitudes we have obtained should
used with caution in the calculation of, for example, mes
meson scattering processes.

The shortcomings notwithstanding, there are areas
study in hadronic physics for which the presently provid
Bethe-Salpeter amplitudes have significantly greater dyna
cal justification than that of currently used approximatio
For example, hadronic coupling constants such asgrpp @16#
andggpr @17# have been reproduced from theq̄q structure of
the mesons in terms of a single dominant Dirac covarian
the amplitude is allowed some phenomenological freed
A more realistic treatment is facilitated by the present wo

The ladder kernel also has the defect that it is pur
attractive in both the color-singletq̄-q and color-antitriplet
q-q channels. This entails that it yields bound colo
antitriplet diquarks. This is a peculiarity of ladder approx
mation. Measuring ‘‘order’’ by the number of dressed-glu
lines in the Bethe-Salpeter kernel, ladder approximation
the lowest order kernel. Repulsive terms appear at ev
higher order. It has been shown@3# that in the flavor-octet
pseudoscalar and vector meson channels, these repu
terms are cancelled by attractive terms of the same or
This explains why ladder approximation is phenomenolo
cally successful in these channels. In the color-antitriplet
quark channel the algebra of SUc(3) entails that the repul
sive terms are stronger; they are not completely cance
and eliminate the diquark bound states@3#.

The artificial diquark spectrum we obtain is neverthele
of contemporary interest because there have been a nu
of studies of the covariant, three-body Fadde’ev equa
that use the existence of diquark poles in the quark-quaT
matrix to reduce this problem to a two-body, quark-diqua
r
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bound-state problem. Our constrained, separableAnsatzin-
dicates that such studies of the baryon should inclu
SU f(3) scalar and pseudovector diquarks, since these
low in mass, but can neglect pseudoscalar and vector
quarks.

The diquark results might be used in the following wa
The study of Ref.@3# suggests that, even though colo
antitriplet states are not bound, one may associate an inv
correlation length,M , with each channel; the ‘‘bound-stat
mass’’ providing an estimate of this. One might then co
struct a ‘‘pseudopole’’ representation of the quark-qua
T matrix „for example: ;(n an $12exp(2@P21Mn

2#)%/
@P21Mn

2#…, which would not entail asymptotic~unconfined!
diquark states but would provide for a simplification of th
covariant, three-body Fadde’ev equation.

Finally, this study shows that in order to directly conne
hadron phenomena with the dressed-gluon propaga
Dmn(k), one must start with a form ofDmn(k), as in Ref.
@20#. Other approaches, while they may provide a useful p
nomenology, efficacious in that it correlates many obse
ables via few parameters, can only loosely constr
Dmn(k) and hence the nature of the quark-quark interact
in the infrared.
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APPENDIX A: BETHE-SALPETER EQUATION
FOR EQUAL MASS QUARKS

Here we present details of the solution of the ladder
proximation to the Bethe-Salpeter equation in the case
equal mass quarks (f 15 f 2) using a separableAnsatzfor the
kernel.

We begin with Eq.~3! subject to Eqs.~4! and ~6! with
f 15 f 2 andj51/2:

G~p,P!52
4

3E d4q

~2p!4
D~p2q!gmS~q1 1

2P!G~q,P!

3S~q2 1
2P!gm . ~A1!

The general form of the scalar and pseudoscalar meson
plitudes is@27#

Gscalar~q,P!5gI~q
2,P2,q•P!I1@gP~q2,P2,q•P!Pm

1gu~q
2,P2,q•P!um~q!# igm , ~A2!

and
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Gpseud~q,P!5g5~q
2,P2,q•P!g51@gP5~q

2,P2,q•P!Pm

1gu5~q
2,P2,q•P!um~q!# igmg5 , ~A3!

where

um~p,P̂!5
pm1p• P̂ P̂m

p21~p• P̂!2
, uu~p!u5Au~p,P̂!2,

um~p!5
um~p,P̂!

uu~p!u
, ~A4!

with P̂m @ P̂2521# the direction vector associated wit
Pm .

In Feynman-like gauge it follows from the Fierz identi
that there is no piece proportional to@g•P,g•q#. For mesons
which are even~odd! under charge conjugation,gI , gu ,
g5, andgP5 are even~odd! functions andgP and gu5 odd
~even! functions ofq•P.

Defining km5qm1 1
2Pm and lm5qm2 1

2Pm one has

P•u~q!50, k•u~q!5 l •u~q!51,

k•u~p!5 l •u~p!5q•u~p!. ~A5!

Multiplying Eq. ~A2! by I , g•P or g•u(p) and taking
traces one projects out a set of coupled integral equation
the scalar meson amplitudes. Defining

f ~p,P!5gI~p,P!, W~p,P!5 i M gP~p,P!,

U~p,P!5uu~p!ugu~p,P!, ~A6!

where i M5AP2 , these equations take the followin
simple form:

f ~p!5
16

3 E d4q

~2p!4
D~p2q!

3@Tf f f ~q!1TfWW~q!1TfUU~q!#,

W(p)5
8
3
*
d4q

(2p)4
D(p2q)

3@TWff ~q!1TWWW~q!1TWUU~q!#,

U~p!5
8

3E d4q

~2p!4
D~p2q! û~p,P̂!•û~q,P̂!

3@TUf f ~q!1TUWW~q!1TUUU~q!#, ~A7!

where

Tf f
scalar5k• l usVu22usSu2,

TWW
scalar5~k• l12k• P̂ l • P̂!usVu21usS2,

TUU
scalar5S k• l2 2

u~q,P̂!2
D sVu21usSu2 ~A8!
or

and

TfW
scalar5TWf

scalar5M I~sV*sS!12i q• P̂R~sV*sS!,

TfU
scalar5TUf

scalar52
2

uu~q!u
R~sV*sS!,

TWU
scalar5TUW

scalar52 i
q• P̂

u~q!u
usVu2, ~A9!

with

sV*[sV~k2!, sV[sV~ l 2!, ~A10!

and similarly forsS . In these equations

usVu2[sV sV* , R~sV*sS![
1
2 ~sV*sS1sVsS* !,

I~sV*sS![
1

2i
~sV*sS2sVsS* !. ~A11!

In terms of the functions

f ~p,P!5 ig5~p,P!, W~p,P!5 iMgP5~p,P!,

U~p,P!5uu~p!ugu5~p,P!, ~A12!

the equations for the pseudoscalar states have the form in
~A7! but with theT’s replaced by

Tf f
pseud5k• l usVu21usSu2,

TWW
pseud5~k• l12k• P̂ l • P̂!usVu22usSu2,

TUU
pseud5S k• l2 2

u~q,P̂!2
D usVu22usSu2, ~A13!

and

TfW
pseud52TWf

pseud52M R~sV*sS!12 i q• P̂ I~sV*sS!,

TfU
pseud52TUf

pseud52
2

uu~q!u
I~sV*sS!,

TWU
pseud5TUW

pseud52 i
q• P̂

u~q!u
usVu2. ~A14!

1. SeparableAnsatz

The form of the gluon propagatorD(p2q) appearing in
Eq. ~A7! is not yet specified. Introducing the separable fo
in Eq. ~17! and taking into account the symmetry properti
of the functions f , W and U under p• P̂→2p• P̂, which
follow from charge conjugation symmetry, one obtains t
following sets of integral equations for the scalar mesons
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a. Scalar,C51 mesons

f ~p!5
16

3 E d4q

~2p!4
G~p2! G~q2!

3@Tf f f ~q!1TfWW~q!1TfUU~q!#,

W~p!5
8

3E d4q

~2p!4
p•q F~p2! F~q2!

3@TWff ~q!1TWWW~q!1TWUU~q!#,

U~p!5
8

3E d4q

~2p!4
p•q F~p2! F~q2! û~p,P̂!•û~q,P̂!

3@TUf f ~q!1TUWW~q!1TUUU~q!#. ~A15!

b. Scalar,C52 mesons

f ~p!5
16

3 E d4q

~2p!4
p•q F~p2! F~q2!

3@Tf f f ~q!1TfWW~q!#,

W~p!5
8

3E d4q

~2p!4
G~p2! G~q2!

3@TWff ~q!1TWWW~q!#,

U~p!50 ~A16!

The Tf f ,TfW , . . . are given by Eqs.~A8!,~A9!. There are
similar equations for the pseudoscalar mesons.

2. Form of the solution using the constrained
separableAnsatz

The separable form of the propagator causes the solut
of these equations to be proportional to the functionsG and
F. For the scalar,C51 meson, for instance, one finds th
the solution is of the form

f ~p!5l fG~p2!,

W~p!52 i lWp• P̂F~p2!,

U~p!5lU

1

uu~p!u
F~p2!. ~A17!

Substituting the aboveAnsatz into Eqs. ~A15! yields a
simple matrix equation of the form

S l f

lW

lU

D 5K~M !S l f

lW

lU

D , ~A18!

where K(M ) is a 333 matrix whose elements are two
dimensional integrals that are completely determined o
sV and sS are specified. This equation is then solved
adjusting the meson massM until one of the eigenvalues o
K equals one. This procedure can be implemented by in
ns

e

o-

ducing an eigenvalue,m(M ), on the left-hand side of Eq
~A18!; solving form(M ) and the eigenvector at each valu
of M ; and repeating the process until one findsM such that
m(M )51. At this point one also has the Bethe-Salpeter a
plitude for the bound state, which is characterized by
multiplet $l f ,lW ,lU%.

Bound states of unequal mass quarks@see Eqs.~18! and
Sec. III A2, for example#, are not characterized by a charg
conjugation quantum number,C. In this case the functions
f ,W, andU are complex and Eq.~A17! generalizes to forms
such as

f ~p!5l1uGu~p
2!1l1sGs~p

2!

1q• P̂@l2uFu~p
2!1l2sFs~p

2!#1 . . . .

~A19!

In this case the analog of the matrixK(M ) in Eq. ~A18! is, in
general, a 12312 matrix, which reduces to a 10310 matrix
when residual symmetry underC is taken into account.

APPENDIX B: BETHE-SALPETER AMPLITUDES
IN SEPARABLE APPROXIMATION

1. Scalar and pseudoscalar mesons

a. f15u/d5f 2

The most general form for the solutions of Eq.~33! in the
scalar and pseudoscalar channels are

G1
pseud~p,P!5Gu~p

2! @l f I D2 i lW g• P̂# ig5 , ~B1!

G1
scalar~p,P!5Gu~p

2! l f I D1 i F u~p
2!

3F2lW p• P̂ g• P̂1lU

1

uu~p!u
g•û~p!G ,

~B2!

G2
pseud~p,P!5Fu~p

2!F i l f p• P̂1lW p• P̂ g• P̂

2lU

1

uu~p!u
g•û~p!G ig5 , ~B3!

G2
scalar~p,P!5 i F u~p

2! l f p• P̂I D2Gu~p
2! lW g• P̂,

~B4!

whereP̂m @ P̂2521# is the direction vector associated wit
Pm , andum(p,P̂) is defined in Eq.~A4!. We note the cova-
riants involvingg•û(p) may be brought to a more familia
form through use of the identity

1

uu~p!u
g•û~p!5g•p1p• P̂ g• P̂. ~B5!

Solving Eq.~33! yields the followingC56, pseudoscalar
and scalar eigenvectors:
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JPC 021 011 022 012

l f 0.61 0.67 20.52 0.11

lW 20.045 2 0.0075 0.084 0.26

lU 0.0 20.050 0.024 0.0

~B6!
which are normalized in accordance with Eq.~19!.

b. f15u/d, f25s

Solutions for the pseudoscalar Bethe-Salpeter amplitu
for the ū-s mesons are of the form
Gpseud~p,P!5H l1uGu~p
2!1l1sGs~p

2!2p• P̂@l2u Fu~p
2!1l2s Fs~p

2!#2$l3uGu~p
2!1l3sGs~p

2!2p• P̂@l4uFu~p
2!

1l4sFs~p
2!#% ig• P̂2 i @l5uFu~p

2!1l5sFs~p
2!#

1

uu~p!u
g•û~p!J ig5 . ~B7!

The scalar amplitude has the same form but withig5→I D . The pseudoscalar amplitude given here corresponds to theK2. The
K1 amplitude is obtained by making the replacementpm→2pm .

The calculated pseudoscalar eigenvector is

JP l1u l1s l2u l2s l3u l3s l4u l4s l5u l5s

02 263 390 21.3 23.3 260 297 2.9 7.0 2.8 6.7, ~B8!

where each of the components is to be multiplied by 1023 and the normalization is in accordance with Eq.~19!. No true scalar
solution is found.

c. h meson

The normalization condition for thehuP
meson is

2Pm5NcE d4k

~2p!4
$ 1
3 ~cosuP2A2sinuP!2@ tr„Gh~k,2P!]m

PSu~k1 1
2P!Gh~k,P!Su~k2 1

2P!…1tr„Gh~k,2P!Su~k1 1
2P!

3Gh~k,P!]m
PSu~k2 1

2P!…#1 1
3 ~A2cosuP1sinuP!2@ tr„Gh~k,2P!]m

PSs~k1 1
2P!Gh~k,P!Ss~k2 1

2P!…

1tr„Gh~k,2P!Ss~k1 1
2P!Gh~k,P!]m

PSs~k2 1
2P!…#%. ~B9!

The formula for the decay constant of thehuP
meson is

P2f h5
Nc

A2E d4k

~2p!4
$ 1
3 ~cosuP2A2sinuP!2tr@g•Pg5Su~p1 1

2P!Gh~p,P!Su~p2 1
2P!#

1 1
3 ~A2cosuP1sinuP!2tr@g•Pg5Ss~p1 1

2P!Gh~p,P!Ss~p2 1
2P!#%. ~B10!

The positive charge-parity solution of Eq.~35! has the form

Gh~q,P!5@l f uGu~q
2!1l f sGs~q

2!2@lWuGu~q
2!1lWsGs~q

2!# ig• P̂# i g5 . ~B11!

Solving Eq.~35! leads to the following values of the mass, decay constant, and eigenvector at the listed values ofuP :

uP 5° 0° 25° 210° 290° 295°

MhuP
0.549 0.513 0.475 0.436 0.357 0.399

f huP
0.114 0.111 0.108 0.105 0.100 0.102

l f u 0.18 0.23 0.28 0.33 0.43 0.38

l f s 0.47 0.41 0.35 0.29 0.19 0.25

lWu 20.041 20.051 20.059 20.066 20.073 20.071

lWs 20.11 20.092 20.074 20.058 20.032 20.045.

~B12!
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The masses and decay constants are given in GeV. The
two columns correspond to theh8 flavor projection.

2. Vector and axial-vector mesons

a. f15u/d5f 2

The on-shell constraint of Eq.~39! entails that in con-
structing the general form of the vector meson Bet
Salpeter amplitude we can work with the following tran
verse Euclidean covariants:

pn
T ,gn

T ,pn
Tg•p,pn

Tg•Pp•P,g5emnlrgmplPr . ~B13!

The general amplitude is a linear combination of these co
riants weighted by invariant amplitudesFi(p2,P2,p•P).
Employing the separableAnsatz, Eq.~17!, the Bethe-Salpete
equation, Eq.~38!, cannot support contributions toGn(p,P)
that are bilinear inp. Hence, at the mass shell, the produc
vector meson Bethe-Salpeter amplitude is

Gn
T~p,P!5pn

TFu~p
2!l̂11 ign

TGu~p
2!l̂2

1 ig5emnlrgmplP̂rFu~p
2!l̂3 . ~B14!

For the axial-vector meson the transverse Euclidean co
riants are

pn
Tg5p•P,g5gn

T ,pn
Tg5g•p,pn

Tg5g•Pp•P,emnlrgmplPr .
~B15!

Again the terms bilinear inp do not contribute and, using th
separableAnsatz, the produced axial-vector Bethe-Salpe
amplitude is

G5n
T ~p,P!5 ig5gn

TGu~p
2!l̂11 i emnlrgmplP̂rFu~p

2!l̂2 .
~B16!

As above, the Bethe-Salpeter equation is a matrix eig
value problem. We obtain the solutions
ast

-

a-

d

a-

r

n-

JPC l̂1 l̂2 l̂3

122 0.075 20.33 0.049

111 0.056 20.28 0.0 ~B17!

corresponding to ther/v anda1 / f 1 channels, respectively
The Bethe-Salpeter amplitudes are normalized accordin
the vector and axial-vector generalizations of Eq.~19!.

b. f15u/d, f 25s

Consider theJP512 K*1 meson. As for thev meson,
there are five transverse covariants, which can be taken t
those in Eq.~B13! except that the explicit factor ofp•P is no
longer necessary becauseu-s̄ states are not eigenstates of t
charge conjugation operator,C. The general amplitude is a
linear combination of these covariants weighted by invari
amplitudesFi(p2,P2,p•P) where odd powers ofp•P are
allowed for the same reason. The separableAnsatzdoes not
support contributions bilinear inp and hence, at the mas
shell, the producedK*1 amplitude has the form

GT
n~p,P!5pn

T@Fu~p
2!l̂1u1Fs~p

2!l̂1s#1 ign
T@Gu~p

2!l̂2u

1Gs~p
2!l̂2s#1 ign

Tp• P̂@Fu~p
2!l̂3u

1Fs~p
2!l̂3s#1 ipn

Tg• P̂@Fu~p
2!l̂4u1Fs~p

2!l̂4s#

1 ig5emnlrgmplP̂r@Fu~p
2!l̂5u1Fs~p

2!l̂5s#.

~B18!

The amplitude for theK*2 meson is obtained by reversin
the sign ofp, under which the kernel is invariant. The am
plitudes for theJP511 K1 meson states are simplyg5 times
the appropriate form of Eq.~B18!.

The calculated eigenvectorsl̂ i are
JP l̂1 l̂2 l̂3 l̂4 l̂5

12 u 0.020 20.12 24.531024 2.031024 0.014

s 0.046 20.21 26.531024 3.431024 0.026

11 u 0.16 25.431023 26.731023 21.831023 6.831024

s 0.34 4.031023 21.531022 9.931023 1.931023.

~B19!
-

c. f15s5f 2

The Bethe-Salpeter amplitude for theJPC5122 s̄s state
@f# has the same form as Eq.~B14! for the r/v but with
Gu→Gs and Fu→Fs . That for the JPC5111 state
@ f 1(1510)# is related in a similar way to Eq.~B16! for the
a1 / f 1. The calculated eigenvectors are

JPC l̂1 l̂2 l̂3

122 0.049 20.35 0.030

111 0.0044 20.18 0.0.

~B20!
3. Scalar and pseudoscalar diquark correlations

a. f15u/d5f 2

To obtain theJP501 diquark solution of the Bethe
Salpeter equation given in Eq.~40! one searches for the 02

auxiliary amplitude solution of Eq.~42!. The latter can be
written in the form

G 3̄
C~p,P!5Gu~p

2! @l f
3̄2 i lW

3̄ g• P̂# i g5 , ~B21!

which is identical in form to the meson amplitudeG1
pseudin
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Eq. ~B1!. The 02 pseudoscalar diquark solution is describ
by an auxiliary amplitude identical in form toG1

scalar of Eq.
~B2!. The calculated masses for the scalar (01) and pseudo-
scalar (02) diquark correlations are listed in Table IV an
the eigenvectors are

JP l f
3̄ lW

3̄ lU
3̄

01 0.96 20.29 0.0

02 0.15 0.58 20.80.

~B22!

For all diquark eigenvectors we use the normalizat
( i ul i u251. We note that the subleading Dirac amplitu
contributes 11% to the 01 diquark mass.

The obtained mass values suggest that the 01 diquark
pole will provide a contribution to the truncated quark-qua
T matrix that is important in the type of Fadde’ev equati
studies of the nucleon described in Sec. IV. The much lar
ti
th
n
in
r

ing
h
t
bo
th

et
rk

b

-
n
t o
e
di

de
d

n

er

mass found to be associated with the 02 diquark correlation
suggests that it may be neglected in such studies.

b. f15u/d, f25s

The homogeneous Bethe-Salpeter equation in theu/d-s
quark-quark channel can be written in the form

Gus
3̄ C~p,P!52

2

3E d4q

~2p!4
D~p2q!gmSu~q1jP!

3Gus
3̄ C~q,P!Ss@q2~12j!P#gm , ~B23!

where the momentum partitioning parameter
j50.56'0.5, as for the kaon.

The solution of this equation that corresponds to the1

diquark is identical in form toGpseudin Eq. ~B7!. The calcu-
lated mass is listed in Table IV and the eigenvector is
JP l1u l1s l2u l2s l3u l3s l4u l4s l5u l5s

01 498 802 210.4 233.2 2165 2282 5.2 14.9 4.7 11,
~B24!
q.
ble

an-

be
ns,
where each component is to be multiplied by 1023. The sub-
leading Dirac amplitudes contribute 11% to the 01 diquark
mass. The magnitude of its mass is such that this correla
may be important in the Fadde’ev equation studies of
strange octet baryons. No 02 solution with a mass less tha
2 GeV was found. This is in accord with our finding that
the 01 meson channel, there was insufficient attraction fo
clear bound state.

One observes that the diquark mass splitt
Mus2Mud5145 MeV. This may be compared wit
mS2mp'250 MeV. One might infer from this tha
Fadde’ev equation studies, such as the ones described a
may yield the correct ordering and level separation of
octet baryons.

4. Vector and axial-vector diquarks

a. f15u/d5f 2

In ladder approximation the homogeneous Bethe-Salp
equation for vector and axial-vector color-antitriplet diqua
correlations has the same form as Eq.~40! except that the
Bethe-Salpeter amplitude carries a Lorentz index. It can
recast into the form of Eq.~42! in the same manner.

For the axial-vector (11) diquark channel, the auxiliary
amplitudeG5m

3̄ C(p,P) is identical in form to the vector me
son amplitude in Eq.~B14!. The calculated mass is listed i
Table IV. The axial-vector diquark mass is larger than tha
the vector meson, in agreement with the argument of R
@28#. However, it is comparable to the predicted scalar
quark mass. Hence the 11 diquark pole is likely to provide a
contribution to the truncated quark-quarkT matrix, within
the type of simplified nucleon Fadde’ev equation studies
scribed earlier, that is comparable to that of the scalar
on
e

a

ve,
e

er

e

f
f.
-

-
i-

quark. In the 12 channel, the auxiliary amplitude
Gm
3C(p,P) has the axial-vector meson form given in E

~B16!. The calculated vector diquark mass is listed in Ta
IV. It is too massive to be of importance.

The eigenvectors are

JP l̂1 l̂2 l̂3

12 0.12 21.46 0.0

11 0.16 20.98 0.11.

~B25!

Subleading Dirac amplitudes contribute little in these ch
nels.

b. f15u/d, f25s

The auxiliary amplitude for the 11 diquark has the same
form as the vector meson amplitude in Eq.~B18!, while that
for the 12 diquark is simplyg5 times this. The calculated
masses are given in Table IV and the eigenvectors are

JP l̂1 l̂2 l̂3 l̂4 l̂5

12 u 168 24.7 20.029 27.0 4.0

s 445 6.3 0.21 217.0 39.6

11 u 16.2 2161 20.64 0.13 12.9

s 45.8 2288 21.05 0.21 26.8,

~B26!

where again each component is to be multiplied by 1023.
These results suggest that the axial-vector diquark can

important in Fadde’ev equation studies of strange baryo
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whereas the vector diquark can be neglected. Again, subl
ing Dirac amplitudes contribute little in these channels.

c. f15s5f 2

The auxiliary amplitude for the 11 diquark is identical in
form to that for thef meson while that for the 12 diquark
has the form of the axial counterpart@ f 1(1510)#, both of
which are described in Appendix II.B.3. The calculat
masses are given in Table IV and the eigenvectors are
t
in

t.

y,
d- JP l̂1 l̂2 l̂3

12 0.030 21.64 0.0

11 0.090 20.99 0.061.

~B27!

The low mass of the axial-vector diquark suggests tha
can be important in Fadde’ev equation studies of all stran
ness carrying baryons, whereas again the vector diquark
be neglected. The subleading Dirac amplitudes are unim
tant in these channels.
.
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