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Rotational bands and surface waves ina- 40Ca elastic scattering
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~Received 10 July 1996; revised manuscript received 21 November 1996!

The scattering of heavy ions gives clear evidence of resonances which may be grouped in families like the
rotational bands. The classical Breit-Wigner theory makes use of fixed poles which describe locally the
resonances, but the global character of the rotational sequences is completely lost. Furthermore, the phenom-
enology shows that the rotational sequences evolve into surface waves. Again the classical Breit-Wigner
theory, in view of its local character, cannot describe this evolution. In this paper we describe the resonances
by the use of poles of the scattering amplitude in the complex angular-momentum plane: moving poles.
However, in order to interpolate a sequence of resonances belonging to the same family we must add to the
poles a term which takes into account the repulsive forces due to the Pauli principle and to the hard core. This
term describes the downward crossing, throughp/2, of the phase shifts after each resonance. At higher energies
the effect of the exchange forces tends to vanish and simultaneously the resonances evolve towards diffractive
effects: we have the surface waves creeping around the target. This phenomenon is described in our theory by
the moving poles as the imaginary part of the angular momentum increases for increasing energy. Besides a
detailed study of this theory we present here an extensive analysis of thea-40Ca elastic scattering which gives
clear phenomenological support to the model.@S0556-2813~97!02204-8#

PACS number~s!: 25.70.Ef, 24.10.Ht, 25.55.2e
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I. INTRODUCTION

In the classical theory of resonances in nuclear phy
~Breit-Wigner theory! each resonance is described by a fix
pole ~Breit-Wigner pole! and accordingly we have only
local description of the phenomenon: i.e., in the neighb
hood of the energy position of the resonance. On the o
hand, the phenomenology of ion collisions, and even
hadron interactions, give clear evidence of bands of re
nances which should be regarded as a global phenome
As a typical example one could keep in mind the rotatio
bands ina-nuclei elastic scattering. We can remark, inde
that in the classical theory of resonances the propertie
analyticity of the scattering amplitude are not related to
symmetry properties involved in nuclear models. Ana
gously the classical theory, in view of the fact that it giv
only a local description of the phenomenon, is unable
describe the evolution from quantum-mechanical to se
classical phenomena. Returning once more to the examp
a-nuclei elastic scattering, the experimental data show
the widths of the resonances increase with increasing en
and the rotational resonances evolve smoothly into sur
waves creeping around the target. This evolution is not
scribed in the classical theory.

In order to connect dynamics with symmetry in the ca
of rotational bands, the singularities of the scattering am
tude should be located in the complex plane of the ang
momentum. In spite of a large number of papers devote
the analytical properties of the scattering amplitude, the v
ous applications related to the extension of the angular
mentum to complex values remain disconnected and so
times rather obscure. The method originated long ago
connection with the diffraction of radio waves around t
550556-2813/97/55~5!/2593~11!/$10.00
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earth~see@1#!. It was then reconsidered by Levy-Keller an
others @2,3# and applied to the so-called ‘‘geometrica
diffraction theory.’’ Successively Regge@4# proved certain
analyticity properties of the scattering amplitude in the co
plex angular-momentum plane for the class of Yukawian
tentials. Starting from these results the Regge representa
was then widely used to derive asymptotic behaviors of
cross sections for high values of the energy.

Here we rather turn our attention to the applicatio
which were, in a certain sense, at the origin of the meth
the diffraction. More precisely we describe, at first, the el
tic resonances as poles of the scattering amplitude in
complex angular-momentum plane in the sense of Reg
But we will show that if we really want to connect variou
resonances, belonging to the same family, with a pole tra
tory, then we must take into account the effect of the ech
of the resonances: the downward crossing of the phase s
acrossp/2, after a resonance~see@5#!. As we shall show the
echoes, in these nuclear collisions, are essentially due to
effects of the exchange and of the hard-core forces. We m
then modify the representation formula of the phase sh
~obtained by projecting on the partial waves the comp
angular-momentum pole representation of the scattering
plitude! adding a term which takes into account the repuls
forces due to the Pauli exchange effects and to the hard-
forces. All these questions will be treated in two subsectio
of Sec. II. As the energy increases we pass from a quant
mechanical to a semiclassical description of the interact
and the effect of the exchange forces tends to vanish. Sim
taneously the resonances evolve into surface waves. We
the diffractive effects which can be properly described by
use of the classical methods originally introduced by Wats
and Sommerfeld@1# for studying the diffraction of radio
2593 © 1997 The American Physical Society
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2594 55R. FIORAVANTI AND G. A. VIANO
waves around the earth. We can then describe the sm
evolution of resonances into surface waves. These ques
will be analyzed in the third subsection of Sec. II.

The phenomenology will be illustrated in Sec. III analy
ing the elastic scattering ofa particles by40Ca. Finally, let
us mention that one of us has already analyzed, in two
vious papers@6,7#, the rotational sequence of resonances
the a-a elastic scattering@6# and the resonances in th
p1-p elastic collision@7#, working with methods based o
the ideas illustrated above. Here we extend and complete
theory; furthermore, the analysis ofa-40Ca scattering shows
very clearly two trajectories of opposite signature, interpo
ing one the rotational resonances of even parity, the o
those of odd parity, which at higher energy, where the se
classical aproximation holds true, evolve into surface wa
creeping around the target.

II. THEORY

A. Complex angular-momentum picture of a resonance
in a Yukawian potential model

If the potentialV(r ) belongs to the Yukawian class, the
the scattering amplitudef (E,u) ~whereE is the energy andu
is the scattering angle in the center-of-mass system! can be
represented as follows~Regge representation!:

f ~E,u!5
i

2 E
21/22 i`

21/21 i` ~2l11! f l~E!Pl~2cosu!

sinpl
dl

1 (
n51

N gn~E!Pln
~2cosu!

sinpln
. ~1!

Here we denote byl the extension of the angular momentu
l to complex values and accordinglyln(E)5an(E)
1 ibn(E) give the locations of the poles of the partial sc
tering amplitudes analytically continued in the complex ha
plane Rel.21/2, while gn(E) are the residues of thes
poles andPl~2cosu! denote the Legendre functions. Th
first term on the rhs of formula~1! is called the ‘‘background
integral.’’ The second term is a sum over a finite number
poles which all lie in the first quadrant of the complexl
plane.

Let us, now, suppose that at a certain energy and fo
specific value ofn, an[Reln crosses an integer, whil
bn[Imln is positive but much less than unity~i.e., 0,bn
!1!; then the corresponding term in the sum over po
becomes very large: we have a pole dominance. Howeve
view of the fact thatPl~2cosu) presents a logarithmic sin
gularity atu50 ~see@1#!, the pole approximation cannot rep
resent the amplitude forwards. Atu50 it is indeed necessar
to take into account the contribution of the background in
gral in order to make the amplitudef (E,u) finite and regular.
On the contrary the pole approximation is worth trying bac
wards, where the background integral receives much
contribution since (sinpl)21 acts as a powerful cutoff fo
high values ofulu while Pl~2cosu! is finite. In conclusion
the following one-pole approximation can be used for d
scribing the scattering amplitude backwards in the neighb
hood of a sharp and isolated resonance:
th
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f ~E,u!.g~E!
Pl~E!~2cosu!

sinpl~E!
~2!

~where the indexn is superfluous and it has been omitted!.
From formula~2! one can derive a picture of the res

nance in the complex angular-momentum plane, which
fers in a significant way from the classical one associa
with the Breit-Wigner formalism. In this latter theory th
exponential decay law of the resonance is associated with
width of the resonance which is related to the imaginary p
of the location of the pole~Breit-Wigner pole! in thek plane.
Returning to our formalism let us note that the Legend
function Pl~2cosu! (lPC) corresponds to nonunitary rep
resentations of the rotation group. Here the nonunitarity
the rotation group describes the breaking of the angular s
metry of the resonance, due to the fact that the resonanc
not stable, and accordingly we do not have angular isotr
except in the case of collision of identical particles~this case
will be discussed below!. We are thus naturally led to intro
duce a ‘‘spin-width’’ proper of the resonance. The ‘‘sp
width’’ tends to zero as the lifetime of the resonance tends
infinity and therefore the angular asymmetry proper of
resonance tends to vanish. It is, indeed, zero for the bo
states.

Let us note that even if the scattering amplitude given
the approximation~2! diverges foru50, nevertheless the to
tal cross section derived from formula~2! is finite; indeed we
have

s tot5
H~E!

usinpl~E!u2
, ~3a!

H~E!52pug~E!u2E
0

p

uPl~2cosu!u2sinudu, ~3b!

and the integral on the rhs of formula~3b! converges in view
of the fact that the singularity ofPl~2cosu! at u50 is loga-
rithmic.

Let us now project the amplitude~2! on the l th partial
wave obtaining

f l5
e2id l21

2ik
.
g

p

1

~a1 ib2 l !~a1 ib1 l11!
, ~4!

whered l denotes thel th phase shift.
Next, when the elastic unitarity condition may be applie

the following relationship amongg, a, andb can be derived:

g52
p

k
b~2a11! ~5!

and finally we obtain the following approximation for th
l th phase-shiftd l :

d l.sin21
b~2a11!

$@~ l2a!21b2#@~ l1a11!21b2#%1/2
. ~6!

Let us note that approximation~6! does not satisfy the
asymptotic behavior proper of Yukawian phase shifts: i.e.,
exponential decrease inl of the termsd l . This means that
approximation~6! is faithful for low values ofl only. This
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55 2595ROTATIONAL BANDS AND SURFACE WAVES INa- . . .
defect, however, is not very serious at low energy wher
few terms of the partial-wave expansion are sufficient to
scribe the scattering amplitude. The advantages of a re
sentation like that given by formula~6! is due to the fact tha
~i! at fixed energy it gives several phase shifts at differ
values ofl , with an acceptable approximation for small va
ues of l ; ~ii ! a depends on the energyE @i.e., we have the
pole trajectorya(E)#; whena(E) equals the integerl ~the
orbital angular momentum! and b is very small, we have
sind l.1, i.e., we have a resonance. Therefore, formula~6!
can describe, in principle, a sequence of resonances in
various partial waves. In our case the possibility of conne
ing several resonances with a pole trajectory@as illustrated in
point ~ii !# deserves particular interest. But in order to gu
antee that this connection really works, we must have m
information on the behavior of the pole trajectory itself.

From the standard theory of Regge poles, we obtain
following relationship:

b

da/dE
5

G

2
, ~7!

whereG is the width of the resonance. Ifda/dE is positive,
thenG is positive since the poles lie in the first quadrant
the complexl plane andb is positive. In such a case we ca
associate withG a lifetime t51/G ~\51!, and we can speak
of a physical resonance because the outgoing flux of parti
is delayed with respect to the incoming flux:t can be inter-
preted as a time delay. It has been proved, however, tha
trajectoriesa(E) produced by Yukawian potentials tur
back towards the left half-plane@4#. When a(E) turning
back crosses an integer, thenda/dE is negative andG is
negative too in view of the fact thatb is positive. SinceG is
negative, one cannot associate this phenomenon with a r
nance and a time delay, but rather it corresponds to
downward passage of the phaseshift throughp/2: we have an
‘‘echo’’ ~see@5#! of the resonance. At this point we meet
drastic difficulty if we pretend connecting several resonan
~like those encountered ina-40Ca system! by using approxi-
mation~2! @or equivalently Eq.~6!# without adding any other
term. In fact, the phase shifts describing these interact
present ordered sequences of resonances and echoes~see the
section devoted to the phenomenological analysis!: any
phase shift after a resonance presents the correspon
echo. Now if we consider a pole trajectory derived fro
approximation~2! @or Eq. ~6!# it could not connect two or
more resonances, because after a first crossing ofa (E)
through an integer corresponding to the angular momen
of a resonance~da/dE positive!, the pole trajectory will rap-
idly turn back to reach the same integer, with negative
rivative, in order to describe the corresponding echo. Oth
wise if one supposes that a pole trajectory connects sev
resonances in an ordered sequence, then this trajectory,
ing to the left, cannot reproduce in order the sequence of
echoes. But this fact is not surprising if we think that t
nuclear interactions cannot certainly be explained simply
terms of Yukawian potentials. We must take into account
exchange effects due to Pauli exclusion principle as wel
the hard-core forces. The next subsection is precisely
voted to these questions.
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B. Hard-core forces and echoes of resonances

There is clear phenomenological evidence that in the c
lison of ions the downward passage of the phaseshift thro
p/2 is related to the repulsive forces due to the Pauli exc
sion principle and to the hard core. In particular, in thea-a
elastic scattering a pure nonlocal potential, which represe
all the effects of antisymmetrization and exchange of
nuclear interactions, is insufficient to reproduce the ech
and a repulsive hard core must be added in order to re
duce the experimental data~see@8#!.

Let us then consider some properties of the phase s
produced by a pure hard-core potential. We recall, first of
that theS function derived from the scattering by an impe
etrable sphere of radiusr 0 reads~see@9#!:

S~l,k!52
Hl11/2
2 ~kr0!

Hl11/2
1 ~kr0!

, ~8!

whereH l11/2
(1),(2)(kr0) are the Hankel functions of first an

second kind, respectively. By the use of the following d
composition of the Hankel functions into Bessel and Ne
mann functions,

Hl11/2
~1!,~2!~kr0!5Jl11/2~kr0!6 iNl11/2~kr0! ~9!

@~1! refers to the first kind and~2! to the second kind of
Hankel function# and recalling thatS(l,k)5e2id(l,k), we ob-
tain

d~l,k!5tan21
Jl11/2~kr0!

Nl11/2~kr0!
, ~10!

where Jl11/2(kr0) are the Bessel andNl11/2(kr0) are the
Neumann functions. Then from the asymptotic behavior
the Neumann functions, for large values ofk, we deduce that
the zeros ofNl11/2(kr0) are located approximately at

l5
2

p
kr02~2n11! ~n50,1,2,...! ~11!

and all lie on the real axis of thel plane~for real values of
k!. The echoes correspond to the zeros ofNl11/2(kr0). In-
deed using for the Bessel functionsJl11/2(kr0) an
asymptotic expression analogous to that used for the N
mann functionsNl112(kr0) we obtain the following behav-
ior of the phase shifts for large values ofk:

d~l,k!52kr01l
p

2
. ~12!

Therefore whenl attains the values~11!, we haved(l,k)
52p/2 ~modp!; accordingly sin2d(l,k)51 and the cross
section shows peaks which are not resonances, but ech
since the phase shifts are decreasing. If we consider int
values ofl, corresponding to physical phase shifts and
put kr05@a(a11)#1/2, then formula~10! reads as follows:
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2596 55R. FIORAVANTI AND G. A. VIANO
d l~k!5tan21
Jl11/2$@a~a11!#1/2%

Nl11/2$@a~a11!#1/2%
~13!

and it describes a sequence of echoes in the various pa
waves, as

@a~a11!#1/25@ l1~2n11!#
p

2
~ l ,n50,1,2,...!.

~14!

It is very difficult and probably impossible to determin
exactly the shape of the potential responsible of the inte
tion of ions, nevertheless one may reasonably assum
knowing the behavior ofV(r ) for r large enough~let us say
the ‘‘asymptotic behavior’’! and the behavior of the potentia
near the origin. The former is related to the range of
nuclear forces and one can assume that the potential pre
a Yukawian tail. The latter is related to the repulsive char
ter of the nuclear forces at short distance and to the effec
the Pauli exclusion principle. One is therefore tempted
assume a hard-core repulsive potential close to the origin
us say forr<r 0 , and then for larger a Yukawian type po-
tential. As far as we know there does not exist a rigoro
mathematical theory of the scattering from a potential of t
type. The only results obtained~see@10#! are essentially nu-
merical and concern a potential of the following form:

V~r !5H ` ~0<r<r 0!, ~15a!

E
m0

1`

s~m!
e2mr

r
dm ~r.r 0!. ~15b!

The authors@10# show that we may still speak of poles of th
scattering amplitude in the complex angular-moment
plane and of pole trajectories. Furthermore, the trajecto
are unbounded or approach a finite limit point, but in eith
case remain only in one half-plane. In view of these cons
erations and of the arguments, which shall be illustrated
low, we simply glue together the approximation~6! and for-
mula ~14! obtaining
tial
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d l~k!.sin21S b~2a11!

$@~ l2a!21b2#@~ l1a11!21b2#%1/2D
1A~k!tan21

Jl11/2$@a~a11!#1/2%

Nl11/2$@a~a11!#1/2%
. ~16!

Let us note that in formula~16! the first term is dominant in
the neighborhood of an isolated and sharp resonance, fa
. l ; and in this region the second term is negligible. On t
contrary, the second term is dominant in the neighborhoo
an echo, where the first one tends to vanish. The behavio
formula ~16! corresponds precisely to the physical mech
nism of the resonance and of the echo. The first one is p
duced at small values ofk and for larger : the particle is
trapped for a while by the effective potential, and acco
ingly we observe a peak in the cross section due to the
that sin2 dl.1 ~i.e. d l is crossingp/2 with positive deriva-
tive!. For increasing values ofk, whena'( l11)p/2, we
have an echo in thel th partial wave due to the fact that th
l th phase shift is now passing downward acrossp/2. This
echo is due to the repulsive forces~Pauli exchange and hard
core forces!, which are, in the present simplified schem
represented by the hard-core forces only. Since the excha
forces are a pure quantum-mechanical effect and tend to
ish at the classical limit, the parameterA, in formula ~16!, is
not a constant, but decreases with energy. The trans
from quantum to semiclassical behavior is precisely given
the dependence on the energy ofb andA: b is an increasing
function of E(E5k2), while A is a decreasing function o
E. In conclusion formula~16! may describe a band of reso
nances and echoes in the various partial waves.

Let us now suppose that the colliding particles are ide
cal bosons: this is the case ofa-a scattering. In this situation
the collision will be described by the even partial wav
only, and accordingly we shall observe a rotational band
resonances with even parity and angular momentum:1,
21, 41. In this case the scattering amplitude must be sy
metrized and the representation of the phase shifts~16! must
be modified accordingly, i.e.,
pproxi-

ion will
d l~k!.sin21S 11~21! l

2

b~2a11!

$@~ l2a!21b2#@~ l1a11!21b2#%1/2D1A~k!tan21S 11~21! l

2

Jl11/2$@a~a11!#1/2%

Nl11/2$@a~a11!#1/2% D . ~17!

Remark: Let us note that in this case the symmetrization of the scattering amplitude requires the introduction, in a
mation~2!, of a Legendre function of the typePl~cosu! @in addition toPl~2cosu!#. Then the approximation will fail not only
forwards, but also backwards, because we will have a logarithmic singularity not only atu50, but also atu5p.

Analogously if the colliding particles are fermions, the scattering amplitude must be antisymmetrized, and the collis
be described by the odd partial waves only. Then the representation of the phase shifts must be written as follows:

d l~k!.sin21S 12~21! l

2

b~2a11!

$@~ l2a!21b2#@~ l1a11!21b2#%1/2D1A~k!tan21S 12~21! l

2

Jl11/2$@a~a11!#1/2%

Nl11/2$@a~a11!#1/2% D . ~18!
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Even if the colliding particles are distinguishable, as in t
case of thea- 40Ca collision, nevertheless the presence
exchange forces can clearly separate the even from the
partial-wave amplitudes: the even cannot be interpola
with the odd. We are then forced to fit the even phase sh
with formula~17!, and the odd phase shifts with formula~18!
~see the next section devoted to the phenomenological an
sis!.

C. Surface wave theory and diffractive scattering

When the energy increases, inelastic and reaction ch
nels open, and the elastic unitarity condition does not h
true; accordingly the potential acquires an imaginary part.
we have seen in the previous subsection the effect of
exchange forces tends to vanish as we pass from a quan
mechanical to a semiclassical description of the collisi
accordinglyA(k) tends to zero for increasing values ofE
5k2. On the other hand,b is an increasing function of the
energy and therefore, even ifa(E) goes through an intege
value, nevertheless we do not observe sharp peaks in
cross section sinceusinp(a1 ib)u21.e2pb. We have a tran-
sition from sharp resonances to diffractive surface effe
which we want to illustrate in this subsection. Let us no
that while the sharp resonances involve essentially only
partial wave, on the contrary the diffractive surface effe
involve a certain packet of partial waves and conseque
there is a mixing of even and odd waves. We are then for
to return to approximation~2! of the scattering amplitude
rather than to the approximation representing the phase s
d l . Now we try a picture of the physical process as it
described by approximation~2!. With this in mind we repre-
sent the interaction region as a sphere weakly absorbin
the center and with a thin transparent layer at the border.
width of this transparent layer will reduce as the incide
energy increases and it will tend to zero at the high-ene
limit ~see Figs. 1 and 2!. The assumption of a relatively wea
absorption is very important as it will be clarified in the ne

FIG. 1. Diffracted rays emerging in directionu.

FIG. 2. Diffracted rays emerging in directionu after a shortcut.
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section. Then we evaluate the contribution of those diffrac
rays which describe an arc of geodesic around the obstac
turn around the sphere a certain number of times and em
in a certain directionu. Here we suppose that the mass of t
incident particles is much less than the mass of the tar
then the massive scatterer suffers little recoil and acts p
tically as a fixed center of mass. Therefore, the c.m. sca
ing angle and the laboratory scattering angle can be ta
equal within a good approximation.

Let us now rewrite approximation~2! in the following
form:

f ~E,u!.2g~E!
Pl821/2~2cosu!

cospl8
, ~19!

where we have putl85l11/2. Then we introduce the
asymptotic behavior of the Legendre functio
Pl821/2(2cosu) for ul8u→`, and ul8u~p2u!@1 ~see@11#!:

Pl821/2~2cosu!.
e2 i @l8~p2u!2p/4#1ei @l8~p2u!2p/4#

A2pl8sinu

~0,u,p!. ~20!

Next we use the following relationship:

1

cospl8
52eipl8 (

m50

`

~21!mei2pml8 ~ Iml8.0!.

~21!

Therefore we obtain

Pl821/2~2cosu!

cospl8
.2eip/4(

m50

`

~21!mei2pml8

3
eil8u2 ieil8~2p2u!

A2pl8sinu
. ~22!

We are thus led to consider the following series:

(
m50

`

~2 !mei2pml8
eil8u2 ieil8~2p2u!

Asinu

.Apl8

2
e2 ip/4

Pl821/2~2cosu!

cospl8
~0,u,p!.

~23!

The scattering angleu~0,u,p! is related to the surface
anglesu 0,m

6 in the following way:

u0,m
1 5u12pm, ~24a!

u0,m
2 52p2u12pm ~m50,1,2,...!, ~24b!

where u 0,m
1 refer to the counterclockwise traveling ray

while u 0,m
2 refer to the clockwise ones~see Fig. 1!. Then in

view of formulas~24a! and ~24b!, the lhs of formula~23!
reads
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(
m50

`

~21!m
eil8u0,m

6

Asinu0,m6
.g8~l8!

Pl821/2~2cosu!

cospl8
~25!

@whereg8(l8)5Apl8/2e2 ip/4#. If in formula ~25! we put

kR5Rel8, then the termseil8u0,m
6

represent waves travelin
~counterclockwise and clockwise! along geodesics bendin
the target. The imaginary part ofl8 gives the damping facto
of these surface waves. Recalling thatl85l11/2, we get
kR5Rel11/2 in agreement with the semiclassical appro
mation which replaces the terml ( l11) with (l11/2)2. The
physical meaning of the factor (21)m derives from the fact
that at each complete tour around the sphere, the ray cro
two times the symmetry axis of the obstacle which is
caustic~see below!. As is well known in optics, and it ha
been mathematically proved in semiclassical mechan
each time the trajectory crosses the caustic, the ph
changes by a factore2 inp/2; n is called the Morse index an
it can be evaluated by the methods of differential geome
~see@12#!. In our casen51, and then at each complete to
we have a factor21. It remains to consider the term
~sinu 0,m

6 )21/2. The physical interpretation of this factor
more transparent if we look at the corresponding te
(sinu)21/2 in the lhs of formula~23!. This term becomes in
finity for u50 andu5p : i.e., along the symmetry axis of th
target. This is the caustic where the geometrical optic
proximation becomes infinity and fails.

Let us now return to approximation~2!, which we rewrite
as follows:

f ~E,u!.G~0!~E!Pl~2cosu!, ~26!

whereG0(E)5g(E)/sinpl(E). As we said in the first sub
section,Pl~2cosu! presents a logarithmic singularity atu50
and therefore approximation~26! fails forwards. Atu50 we
have the so-called ‘‘diffraction peak’’ which is, indeed, pr
duced by the interference of the diffracted rays with the ot
geometrical contributions which can be represented b
term like the background integral. Let us recall, in fact, th
the singularity ofPl~2cosu!, at u50, is compensated by th
contribution of the background integral. On the contrary,
u5p, Pl~2cosu! is equal to 1 and then we have

f ~E,p!.G~0!~E!5
g~E!

sinpl~E!
'g~E!e2pb ~27!

which can be interpreted as an asymptotic limit satisfied o
for high values of the energy. Indeed, at lower energy,
observe the so-called ‘‘ALAS’’ effect~see @12#!: anoma-
lously large-angle scattering peak, which is in apparent c
tradiction with formula~27!. The ALAS effect can be ex-
plained by the transparent border of the target. In fact
view of this transparent shell, some of the grazing rays m
be refracted and penetrate the peripheral corona. Som
them can take one or more shortcuts and reemerge~see Fig.
2!. According to this model approximation~27! should then
be modified, and we havef (E,p).( p50

n G(p)(E), where
G(p)(E) corresponds to the contributions of the rays wh
have takenp shortcuts in the peripheral shell. In fact it
possible to prove that, if we evaluate the contributions
those diffracted rays which take one or several shortcuts,
-
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angular distribution is still described, in the first approxim
tion, by the Legendre` functionPl~2cosu!, provided that we
limit to consider a sufficiently backward angular regio
Therefore the interference effect of the various termsG(p) at
u5p gives rise to the anomalously large backward peaks.
the energy increases the width of the peripheral border
creases and the amplitudef (E,p) tends to the asymptotic
limit ~27!.

III. PHENOMENOLOGICAL ANALYSIS

A. Resonances

We test our theory on thea-40Ca elastic scattering. The
reason for this choice is due to the fact that, in this case,
phenomenology presents very clear evidence of rotatio
bands of resonances which then evolve, at higher energ
into anomalously large backward peaks. In particular,
backangle anomaly is most pronounced for target nuclei w
a shell closure~see@13#!.

Langanke@13# has calculated thea-40Ca phase shifts by
the use of the resonating-group method. As one can ea
observe, looking at the results of@13#, the even phase shift
cannot be mixed with the odd ones at low energy. We
then forced to fit the even phase shifts with formula~17!, and
the odd ones with formula~18!. Since the resonances of th
systema-40Ca form rotational bands, thena(E) must sat-
isfy the following equation:

a~a11!52IE1C, ~28!

where I5mR2 is the moment of inertia of the system,m
being the reduced mass;I and C can then be determine
through the fitting.

Remark: In the previous section we have put\52m51,
and accordingly we hadk25E; in this section it is more
convenient to use a slightly different system of units keep
\5c51, while 2m is not put equal to 1. Consequently in th
present section we havek5(2mE)1/2.

We do not know exactly the dependence ofb on the en-
ergy. Calculations performed in the potential model~see
@14#! indicate, however, thatb(E) has a slow increase~less
than linear! in the region of surface waves. Since we want
see if it is possible to connect resonances with surface wa
we shall try a fit taking forb a dependence on the energy
square-root type~exactly as in the case ofa-a elastic scat-
tering, see@6#!; i.e.,

b~E!5g~E!1/2, ~29!

whereg is regarded as a fitting parameter. Finally, for wh
concerns the coefficientA in formulas~17! and~18!, it could
be taken constant in the first approximation. But in order
reproduce more faithfully the trend of the phase shifts,
their downward passage throughp/2, we prefer to take for
A a Gaussian dependence onl of the following type:

A5A0e
2al2 ~A0 , a constants!. ~30!

The fits are shown in Fig. 3 and 4.
Remark: In@13# the phase shifts are normalized accordi

to the Swan generalization of the Levinson theorem for
dundant states. Here we return to the Levinson theorem in
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original formulation: the redundant states with negative e
ergy are to be counted, the ones with positive energy
resonances and do not contribute. The values of the fitt
parameters are~a! for l even

I55.5 ~MeV!21, C5257,

g50.08~MeV!21/2, A050.16, a50.05,

~b! for l odd

I55.01~MeV!21, C5255,

g50.1 ~MeV!21/2, A050.26, a50.015.

From the values ofI andC we can then determine the energ
positions of the resonances by the use of formula~28!. Next
by taking the derivative of both sides of Eq.~28!, we obtain
da/dE52I /(2a11), and substituting this expression i
formula ~7! we finally get

G5
b~E!~2a11!

I
5g

~2a11!AE
I

, ~31!

where in the second equality relationship~29! has been used
Formula~31! gives the energy dependence of the widths

FIG. 3. Phase shifts with evenl . The continuous lines represen
the phase shifts calculated in@13#; the dotted lines represent the fits
-
re
g

f

the rotational bands. The energy positions and the widths
the resonances@the former obtained by the use of formul
~28!, the latter by the use of formula~31!# are reported in
Tables I and II~for even l values and oddl values, respec-
tively!, where they are compared with the corresponding v
ues given in@13#.

Remark: In Figs. 3 and 4 the fit of the phase shifts
limited to the values ofl between 0 and 6 forl even and
between 1 and 7 forl odd. This is motivated by the fact tha
starting froml58 ~for the evenl values! and l59 ~for the
odd l values! the downward trend of the phase shifts, aft

FIG. 4. Phase shifts with oddl . The continuous lines represen
the phase shifts calculated in@13#; the dotted lines represent the fits

TABLE I. The energy positions and the widths of the res
nances with even angular momentum. The resonance energie
given in MeV, the resonance widths are given in keV.

l
El

Present work
G l

Present work
El

@13#
G l

@13#

0 5.18 32 5.09 70
2 5.72 173 5.69 120
4 7 345 7.09 260
6 9 565 9.48 480
8 11.72 843 12.64 600
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the resonance, is completely missing. This is due to the
that in this energy region we are rather close to the transi
between resonances and surface waves. But still we h
resonances belonging to rotational bands. For this reaso
still report in Tables I and II the values ofEl andG l ~for l
58 and l59, 11, respectively! obtained by the use of for
mulas~28! and ~31!. Let us, in fact, remark that in order t
obtain the energy positions and the widths of the resonan
only three fitting parameters~i.e., I , C, g! are sufficient.

The agreement between our values of the positions an
the widths of the resonances with those given by@13# is
satisfactory especially in the case of oddl values. We have
indeed, two distinct rotational bands, one interpolating
resonances with even angular momentum, the other inte
lating the resonances with odd angular momentum. Fin
from the values of the moment of intertiaI , we can derive a
value of R; we obtain:R57.8 fm from the fitting of the
phase shifts with even angular momentum, andR57.3 fm
from the fitting of the phase shifts with odd angular mome
tum.

B. Surface waves

As the energy increases the effect of the echoes tend
vanish and accordingly the phase shifts do not present
standard downward trend, in particular the downward p
sage acrossp/2. Simultaneously the widths of the resonanc
increase, as prescribed by formula~31!: the resonances
evolve into surface effects. While the sharp resonances
properly described in terms of phase shifts, since each on
them is precisely due to the dominance of one phase s
the surface effects involve several partial waves. Theref
rather than use fromulas~17! and ~18!, we must try a fit of
the differential cross section by taking the square of
modulus of the rhs of formula~26!. Obviously the scattering
amplitude cannot be described exclusively in terms of s
face waves, neglecting all the others contributions. The
fore, let us return once more to the description of the vari
processes involved in the collision. Passing from a quan
mechanical to a semiclassical description of the interact
we can use the Hamilton-Jacobi formalism and introdu
various classes of trajectories. We consider, first, the tra
tory of a chargeZ1e under the action of the sole Coulom
field of a pointlike chargeZ2e. It is straightforward to derive
in the framework of the Hamilton-Jacobi theory, the expr
sion of the aspidal distance from the origin. We can comp
this distance, denoted hereafter byr, with the radiusR of the

TABLE II. The energy positions and the widths of the res
nances with odd angular momentum. The resonance energie
given in MeV, the resonance widths are given in keV.

l
El

Present work
G l

Present work
El

@13#
G l

@13#

1 5.7 143 5.6 190
3 6.7 362 6.6 320
5 8.5 641 8.6 640
7 11.1 999 11.5 1150
9 14.5 1446 15.53 1700
11 18.7 1987 20.64 1900
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interaction region, which is here pictured as a sphere wea
absorbing at the center and with a thin transparent bo
@see Sec. II C; for what concerns the sharp edge of the in
action region see remark~i! in the next subsection#. Thenr
can be larger, equal to, or smaller thanR. Accordingly we
have three classes of trajectories~see also@15#!: ~i! the tra-
jectories which correspond to those angular momenta s
that r.R, they are determined by the action of the so
Coulomb field, and can be called ‘‘Coulomb trajectories
~ii ! the trajectories which correspond tor5R, they may un-
dergo diffraction and will be called ‘‘grazing trajectories’
~iii ! the trajectories which correspond tor,R, they are re-
flected or refracted at the surface of the nuclear-interac
sphere.

Let us start by considering the trajectories belonging
classes~ii ! and~iii ! neglecting, for the moment, the Coulom
effects. In particular, we focus our attention on the refrac
trajectories, which play a very important role in thea-40Ca
elastic scattering. In view of the fact that the absorption
relatively weak~even at the center of the interaction regio!
the trajectories withr,R, after a refraction at the surface
can penetrate the target and thereafter they may be defle
by nuclear forces: the attractive nuclear force produce
nuclear deflection for small angular momenta@12#. When the
modulus of the classical deflection angle has a maximum
a function of the angular momentum, the cross section p
sents a singularity due to the fact that many angular m
menta are focused to almost the same scattering angle
have the phenomenon of nuclear rainbow@12#. The maxi-
mum modulus of the deflection angle will be called ‘‘rain
bow angle’’ and denoted byuR. For deflection angles whos
modulus is larger thanuR , no classical trajectory~within the
class of refracted trajectories! is possible; however, we ma
still have complex-valued trajectories~i.e, complex rays!.
Accordingly the differential cross section decreases expon
tially for scattering angles larger than the rainbow scatter
angle. Therefore if we limit ourselves to consider the e
tremely backward angular region, beyond the rainbow sc
tering angle, we can neglect the contribution of the refrac
rays. We have, however, discussed at length the refra
trajectories in view of the fact that thea-40Ca elastic scat-
tering, because of the weak absorption, provides one of
clearest examples available in nuclear physics of nuc
rainbows, as it has been remarked by McVoy and collabo
tors who have devoted to this problem and its interpretat
three very interesting papers@16–18#. We shall return to this
point in the next subsection. In addition to the refracted ra
we also have to consider the reflected ones. We shall
‘‘geometrical component’’ the set of trajectories compos
by the union of the reflected and the refracted rays.

Let us, now, focus our attention on the ‘‘grazing traject
ries.’’ These may simply describe an arc of geodesic aro
the target or, being refracted, penetrate the interaction reg
Concerning these latter we may assume that the main co
bution backwards is due to those rays which, being critica
refracted, penetrate the widespread gallery formed by
thin transparent layer at the border of the sphere~see Fig. 2!.
These rays take one or more shortcuts and emerge b
wards. The others entering in the core of the interaction
gion are partially absorbed~even in the assumption of wea
absorption! and their contribution backwards can be n

are
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glected. The mechanism of the shortcut is necessary in o
to explain the anomalously large backward peaks in
elastic-scattering cross sections; otherwise the expone
damping along the surface is too large to allow a stro
enhancement at large angles. The existence of shortcu
strictly related to the opaqueness of the target; this latte
determined by the number of open channels. The isot
effect in ALAS can then be explained by admitting the e
istence of shortcuts for closed-shell nuclei and their atten
tion, for a larger opaqueness when one considers the
topes. Analogously the opaqueness increases toward la
energies, and this could explain the fact that the anoma
backward peaks tend to become normal for greater value
the energy. We can then conclude that the grazing traje
ries give rise to the surface waves.

These surface waves interfere with the geometrical co
ponent. In particular, we recall once more that the funct
Pl~2cosu! presents a logarithmic singularity atu50,
whereas the scattering amplitude is finite. In a poten
model this singularity is compensated by the contribution
the background integral~see the previous section!. This com-
pensation can be interpreted, from a physical viewpoint
the interference between surface waves and the geome
component which produces the forward ‘‘diffraction peak
Let us, however, note that this interference is not only r
evant forwards but in a large angular range. But we h
already observed that the real-valued refracted rays do
emerge in an angular region beyond the rainbow scatte
angle; there remain the reflected rays. Their effects can
neglected as well in the extremely backward angular reg
at sufficiently high energy. In order to control that this latt
approximation is correct, we must assume that the edg
the interaction region is not sharp, as in our primitive mod
but we must suppose more realistically that its surface h
certain diffuseness. Then one can evaluate the contribu
of the reflected component~see, e.g.,@12#! and one can easily
check that it is decreasing as the surface diffuseness an
bombarding energy are increasing.

It remains to spend a few words on the effects of
Coulomb field. First of all we neglect the Coulomb traject
ries @trajectories belonging to class~i!# by subtracting the
Rutherford amplitude; nevertheless, the Coulomb field a
also on the other classes of trajectories, in particular,
grazing ones. The first modification is due to the fact t
now the incident rays are not straight lines parallel to the a
of the target, and accordingly the grazing angles change,
pending on the Sommerfeld parameterh5mZ1Z2e

2/k ~\
51!, which tends to zero ask→`. Therefore, at energy suf
ficiently high, these modifications can be neglected ag
~see also@15#!. At this point we can try a fit of the backwar
differential cross section, at fixed energy, by a formula of
following type:

S ds

dV D.CuPl~2cosu!u2. ~32!

Here we take the constantC equal to 1 @recall that
Pl~2cosp!51#. Then we fit the dimensionless differenti
cross section, measured by Delbaret al. @19#, with the for-
mula uPl(2cosu)u2. The fits at three different values of th
energy, in the neighborhood ofEc.m.545 MeV are shown in
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Fig. 5. The reason of this particular choice of the energy
motivated by the fact that at lower energy the interferen
with the reflected rays cannot be neglected and it obsc
the effect of the surface waves even backwards. On the c
trary, in the fits reported in Fig. 5, the accord with the e
perimental data is satisfactory in a wide angular range. C
sequently the values of the two fitting parametersa[Rel
andb[Iml can be taken with good confidence and they
reported in Table III~second and third columns, respe
tively!. In the same table these values ofb are compared
with those~reported in the fourth column! obtained evaluat-
ing b by the use of formula~29! putting g50.1 ~MeV!21/2

~which is the numerical value obtained by the fit of the pha
shifts with odd angular momentum!.

Finally let us note that we fit the differential cros
section measured by Delbaret al. @i.e., s(u)/sR(u),
sR~u!5Rutherford cross section# by the use of formula~32!.
This amounts to neglecting the factor@sin4(u/2)#21. This ap-
proximation, however, is legitimate in the extremely bac
ward angular region which is the domain of interest for o
analysis.

We can conclude that the agreement between the va
obtained by fitting the backward cross section at high ene

FIG. 5. Elastic scattering angular distribution for thea-40Ca
system. The continuous line represents the dimensionless nor
ized cross section (ds/dV)5uPl(2cosu)u2, the solid circles de-
note the observed datas/sR taken from@19#; ~a! Ec.m.537.8MeV,
~b! Ec.m.545 MeV, ~c! Ec.m.548.6 MeV.

TABLE III. Values of the complex angular momentum (a
1 ib) determined by formula~32! ~second and third columns!; val-
ues ofb obtained by formula~29!, puttingg50.1 ~MeV!21/2 ~fourth
column!.

Ec.m. MeV
a

Surface waves
b

Surface waves
b

Resonances

37.8 13.7 0.61 0.61
45 16.6 0.7 0.67
48.6 16.9 0.78 0.69
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2602 55R. FIORAVANTI AND G. A. VIANO
~surface waves!, and those obtained by extrapolating the fi
of the resonances is satisfactory see Table III.

C. Remarks and conclusions

The main results of our paper are the following.
~1! The theoretical analysis and the phenomenolog

evidence of two trajectories of Regge poles which interpo
two rotational sequences of resonances, respectively, of
and odd parity.

~2! The representations of the phase shifts given by
mulas~17! and ~18!, which take into account the effects o
the repulsive forces due to the Pauli exchange effects an
the hard core. The interpolation of resonances@point ~1!# is
realized by the use of formulas~17! and ~18!.

~3! The theoretical and phenomenological proof th
these poles, extrapolated to high energies~see, in particular,
Table III! give rise to surface waves emerging in the diffra
tive backward peaks.

In connection with point~3! some remarks are, howeve
necessary.

~i! In order to obtain a pictorial representation of the s
face waves we have used a simplified model of the inte
tion region, at high energies, represented by a weakly
sorbing sphere with a thin transparent border. This mo
allows us to derive easily a picture of the waves creep
around the target@see formula~25!# and to describe qualita
tively the phenomena. Let us, however, remark that a sh
edge of the interaction region is not realistic, as we ha
already noted in connection with the evaluation of the c
tribution of the reflected rays. This model corresponds,
fact, to a potential of compact support which represents a
drastic approximation, and it cannot be used for fitting
experimental data. In the older analyses the form of the
tical potential chosen was generally of the Woods-Sa
type; more recently many modifications have been propo
like to take a Woods-Saxon squared form factor@20#, or to
introduce an angular-momentum-dependent absorption@21#.
Furthermore, let us recall that within the optical-potent
framework some models for explaining the surface wa
have been proposed, like the model of Brinket al. @22#,
which is particularly refined. At this point, however, we mu
distinguish between a model, useful for obtaining a qual
i,
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tive description of the phenomena, and the class of poten
admitting a representation of the scattering amplitude
terms of poles in the complex angular-momentum plane.
we have seen in Sec. II, the class of potentials admittin
Watson resummation leading to a Regge representatio
type ~1! is limited to the Yukawian class and therefore it
rather restricted. In particular, the potentials of compact s
port as well as the Woods-Saxon potentials do not belon
this class@23#. But if we limit ourselves to consider a param
etrization, and accordingly an approximation of the scatt
ing amplitude in terms of poles in the complex angula
momentum plane, without pretending that the backgrou
integral runs along a parallel to the imaginary axis, as
formula ~1!, then the class of admitted potentials is mu
larger including more realistic prototypes. Following Tamu
and Wolter@23# we note that in low-energy physics the com
plex angular-momentum parametrizations may in genera
regarded as a method to separate the dominant pole co
bution from a smooth background term. From these con
erations it follows that the validity of our approximation, an
in particular the fitting formula~32!, is not restricted to the
simplified model illustrated in Sec. II C, but it can be jus
fied in a larger and more realistic class of potentials.

~ii ! The data of Delbaret al. @19# show in a very clear
way the three fundamental phenomena present in
a-40Ca elastic scattering in the energy range between 35
60 MeV ~in the Laboratory system!: ~a! forward diffractive
peaks,~b! rainbow dips,~g! backward diffractive peaks an
ALAS. We have only considered the last one~of the three
phenomena indicated above!, since it can be directly related
to the rotational resonances as shown by Fig. 5 and Table
Accordingly we have fitted the differential cross section
an angular region beyond the rainbow dips. Let us, howe
mention that the data of Delbaret al. present spectacula
examples of nuclear rainbows~as we have already noted!,
particularly evident at 49.5 MeV~in the laboratory system!.
These rainbows prove, without any ambiguity, that the
sorption in the interaction region is weak. The rainbows a
in fact, generated by the refracted rays which penetrate
interaction region without being absorbed. In spite of t
great relevance of these effects, we do not treat these
nomena in the present paper, and the interested read
referred to@16–18#.
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.

@1# A. Sommerfeld,Partial Differential Equations in Physics
~Academic Press, New York, 1964!.

@2# B. R. Levy and J. B. Keller, Commun. Pure Appl. Math.12,
159 ~1959!.

@3# D. Ludwig, Commun. Pure Appl. Math.29, 215 ~1966!.
@4# V. De Alfaro and T. Regge,Potential Scattering~North-

Holland, Amsterdam, 1965!.
@5# K. W. McVoy, Ann. Phys.~N.Y.! 43, 91 ~1967!.
@6# G. A. Viano, Phys. Rev. C36, 933 ~1987!.
@7# G. A. Viano, Phys. Rev. C37, 1660~1988!.
@8# S. Okai and S. C. Park, Phys. Rev.145, 787 ~1966!.
@9# H. M. Nussenzveig, Ann. Phys.~N.Y.! 34, 23 ~1965!.

@10# W. Durso and P. Signell, J. Math. Phys.~N.Y.! 5, 350 ~1964!.
@11# A. Erdelyi, W. Magnus, F. Oberhettingher, and F.G. Tricom
Higher Transcendental Functions~McGraw-Hill, New York,
1953!, Vol. 1.

@12# D. M. Brink, Semiclassical Methods for Nucleus-Nucleus Sc
tering ~Cambridge University Press, Cambridge, Englan
1985!.

@13# K. Langanke, Nucl. Phys.A377, 53 ~1982!.
@14# M. H. Nussenzveig, J. Math. Phys.~N.Y.! 10, 82 ~1969!; 10,

125 ~1969!.
@15# E. Di Salvo and G. A. Viano, Nuovo Cimento A71, 261

~1982!.
@16# H. M. Khalil, K. W. McVoy, and M. M. Shalaby, Nucl. Phys

A455, 110 ~1986!.
@17# K. W. McVoy, H. M. Khalil, M. M. Shalaby, and G. R.

Satchler, Nucl. Phys.A455, 118 ~1986!.



.
S.
ys

55 2603ROTATIONAL BANDS AND SURFACE WAVES INa- . . .
@18# K. W. McVoy, Nucl. Phys.A455, 141 ~1986!.
@19# Th. Delbar, Gh. Gre`goire, G. Paic, R. Ceuleneer, F. Michel, R

Vanderpoorten, A. Budzanowski, L. Friendl, K. Grotowski,
Micek, R. Planeta, A. Strzalkowski, and K. A. Eherhard, Ph
Rev. C18, 1237~1978!.
.

@20# F. Michel and R. Vanderpoorten, Phys. Rev. C16, 142~1977!.
@21# K. A. Eberhard, Phys. Lett.33B, 343 ~1970!.
@22# D. M. Brink and N. Takigawa, Nucl. Phys.A279, 159 ~1977!.
@23# T. Tamura and H. H. Wolter, Phys. Rev. C6, 1976~1972!.


