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The scattering of heavy ions gives clear evidence of resonances which may be grouped in families like the
rotational bands. The classical Breit-Wigner theory makes use of fixed poles which describe locally the
resonances, but the global character of the rotational sequences is completely lost. Furthermore, the phenom-
enology shows that the rotational sequences evolve into surface waves. Again the classical Breit-Wigner
theory, in view of its local character, cannot describe this evolution. In this paper we describe the resonances
by the use of poles of the scattering amplitude in the complex angular-momentum plane: moving poles.
However, in order to interpolate a sequence of resonances belonging to the same family we must add to the
poles a term which takes into account the repulsive forces due to the Pauli principle and to the hard core. This
term describes the downward crossing, throwé®, of the phase shifts after each resonance. At higher energies
the effect of the exchange forces tends to vanish and simultaneously the resonances evolve towards diffractive
effects: we have the surface waves creeping around the target. This phenomenon is described in our theory by
the moving poles as the imaginary part of the angular momentum increases for increasing energy. Besides a
detailed study of this theory we present here an extensive analysis offf@a elastic scattering which gives
clear phenomenological support to the modi8D556-28187)02204-9

PACS numbgs): 25.70.Ef, 24.10.Ht, 25.55.e

[. INTRODUCTION earth(see[1]). It was then reconsidered by Levy-Keller and
others [2,3] and applied to the so-called ‘“geometrical-

In the classical theory of resonances in nuclear physicsliffraction theory.” Successively Regdd] proved certain
(Breit-Wigner theory each resonance is described by a fixedanalyticity properties of the scattering amplitude in the com-
pole (Breit-Wigner pole and accordingly we have only a plex angular-momentum plane for the class of Yukawian po-
local description of the phenomenon: i.e., in the neighbortentials. Starting from these results the Regge representation
hood of the energy position of the resonance. On the othawas then widely used to derive asymptotic behaviors of the
hand, the phenomenology of ion collisions, and even theross sections for high values of the energy.
hadron interactions, give clear evidence of bands of reso- Here we rather turn our attention to the applications
nances which should be regarded as a global phenomenomwhich were, in a certain sense, at the origin of the method:
As a typical example one could keep in mind the rotationalthe diffraction. More precisely we describe, at first, the elas-
bands ina-nuclei elastic scattering. We can remark, indeedtic resonances as poles of the scattering amplitude in the
that in the classical theory of resonances the properties afomplex angular-momentum plane in the sense of Regge.
analyticity of the scattering amplitude are not related to theBut we will show that if we really want to connect various
symmetry properties involved in nuclear models. Analo-resonances, belonging to the same family, with a pole trajec-
gously the classical theory, in view of the fact that it givestory, then we must take into account the effect of the echoes
only a local description of the phenomenon, is unable toof the resonances: the downward crossing of the phase shifts
describe the evolution from quantum-mechanical to semiacrossn/2, after a resonandseeg[5]). As we shall show the
classical phenomena. Returning once more to the example ethoes, in these nuclear collisions, are essentially due to the
a-nuclei elastic scattering, the experimental data show thagffects of the exchange and of the hard-core forces. We must
the widths of the resonances increase with increasing energiien modify the representation formula of the phase shifts
and the rotational resonances evolve smoothly into surfacébtained by projecting on the partial waves the complex
waves creeping around the target. This evolution is not deangular-momentum pole representation of the scattering am-
scribed in the classical theory. plitude) adding a term which takes into account the repulsive

In order to connect dynamics with symmetry in the caseforces due to the Pauli exchange effects and to the hard-core
of rotational bands, the singularities of the scattering ampliforces. All these questions will be treated in two subsections
tude should be located in the complex plane of the angulaof Sec. Il. As the energy increases we pass from a quantum-
momentum. In spite of a large number of papers devoted tanechanical to a semiclassical description of the interaction,
the analytical properties of the scattering amplitude, the variand the effect of the exchange forces tends to vanish. Simul-
ous applications related to the extension of the angular maaneously the resonances evolve into surface waves. We have
mentum to complex values remain disconnected and somehe diffractive effects which can be properly described by the
times rather obscure. The method originated long ago imse of the classical methods originally introduced by Watson
connection with the diffraction of radio waves around theand Sommerfeld1] for studying the diffraction of radio
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waves around the earth. We can then describe the smooth Py()(—cosd)
evolution of resonances into surface waves. These questions f(E,0)=g(E) s (E) 2
will be analyzed in the third subsection of Sec. Il.

The phenomenology will be illustrated in Sec. lll analyz- \where the indesx is superfluous and it has been omifted
ing the elastic scattering af particles by*®Ca. Finally, let From formula(2) one can derive a picture of the reso-
us mention that one of us has already analyzed, in two prenance in the complex angular-momentum plane, which dif-
vious paperg6,7], the rotational sequence of resonances irfers in a significant way from the classical one associated
the a-a elastic scatterind6] and the resonances in the jith the Breit-Wigner formalism. In this latter theory the
7" -p elastic collision[7], working with methods based on exponential decay law of the resonance is associated with the
the ideas illustrated above. Here we extend and complete thgidth of the resonance which is related to the imaginary part
theory; furthermore, the analysis af*°Ca scattering Shows of the location of the poléBreit-Wigner pol¢ in thek plane.
very clearly two trajectories of opposite signature, interpolat-Returning to our formalism let us note that the Legendre
ing one the rotational resonances of even parity, the othe{;nction P, (—cos) (A € C) corresponds to nonunitary rep-
those of odd parity, which at higher energy, where the semiresentations of the rotation group. Here the nonunitarity of
classi_cal aproximation holds true, evolve into surface waveshe rotation group describes the breaking of the angular sym-
creeping around the target. metry of the resonance, due to the fact that the resonance is
not stable, and accordingly we do not have angular isotropy
except in the case of collision of identical particlflsis case

Il. THEORY will be discussed below We are thus naturally led to intro-
A. Complex angular-momentum picture of a resonance duce a “spin-width” proper of the resonance. The “spin
in a Yukawian potential model width” tends to zero as the lifetime of the resonance tends to

) ) infinity and therefore the angular asymmetry proper of the
If the potentialV(r) belongs to the Yukawian class, then yegonance tends to vanish. It is, indeed, zero for the bound
the scattering amplitudg(E, 6) (whereE is the energy and  gates.

is the scattering angle in the center-of-mass sypiean be Let us note that even if the scattering amplitude given by
represented as followdRRegge representatinn the approximation2) diverges for=0, nevertheless the to-
i [-12ti% (20 +1)f, (E)P,(—cosd) tal cross section derived from formuld) is finite; indeed we
f(E,0)== f . dx have
2 ) _1p-iw sinTA
N H(E)
s gn(E)Py (—cosp) . T (i (E) 2" (33
+ n=1 Sln'ﬂ')\n ' ( )

H(E)=277|g(E)|2J |P\(—cos9)|?singdg,  (3b)
Here we denote b the extension of the angular momentum °
| to complex values and accordinglj,(E)=an(E)  and the integral on the rhs of formulab) converges in view
+iBn(E) give the locations of the poles of the partial scat-of the fact that the singularity d?, (—cosf) at =0 is loga-
tering amplitudes analytically continued in the complex half-rithmic.
plane Ra>-1/2, while g,(E) are the residues of these | et us now project the amplitudé?) on thelth partial
poles andP,(—cosd) denote the Legendre functions. The wayve obtaining
first term on the rhs of formulél) is called the “background

integral.” The second term is a sum over a finite number of e?i-1 g 1
poles which all lie in the first quadrant of the complix "=k Taarip(ariprrn @
plane.

Let us, now, suppose that at a certain energy and for ahere s, denotes théth phase shift.
specific value ofn, a,=Re\, crosses an integer, while Next, when the elastic unitarity condition may be applied,
Bn=Im\, is positive but much less than unifje., 0<pB, the following relationship among, «, and3 can be derived:
<1); then the corresponding term in the sum over poles
becomes very large: we have a pole dominance. However, in ™
view of the fact thatP, (—cosf) presents a logarithmic sin- 9=~ B2a+1) (5)
gularity at6=0 (seg[1]), the pole approximation cannot rep-
resent the amplitude forwards. &0 it is indeed necessary and finally we obtain the following approximation for the
to take into account the contribution of the background inte4th phase-shifts:
gral in order to make the amplitudéE, #) finite and regular.
On the contrary the pole approximation is worth trying back- B(2a+1)
wards, where the background integral receives much less {[(0—a)?+ B2][(I+ a+1)2+ B2} V%
contribution since (sim\)"! acts as a powerful cutoff for
high values of|\| while P,(—cos) is finite. In conclusion Let us note that approximatiof6) does not satisfy the
the following one-pole approximation can be used for de-asymptotic behavior proper of Yukawian phase shifts: i.e., an
scribing the scattering amplitude backwards in the neighborexponential decrease inof the termség, . This means that
hood of a sharp and isolated resonance: approximation(6) is faithful for low values ofl only. This

1
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defect, however, is not very serious at low energy where a B. Hard-core forces and echoes of resonances

few terms of the partial-wave expansion are sufficient to de-  there is clear phenomenological evidence that in the col-
scribe the scattering amplitude. The advantages of a reprggqn of jons the downward passage of the phaseshift through
sentation like that given by formul@) is due to the fact that 5 s related to the repulsive forces due to the Pauli exclu-
(i) at fixed energy it gives several phase shifts at differentjqn principle and to the hard core. In particular, in ther
values ofl, with an acceptable approximation for small val- g|5stic scattering a pure nonlocal potential, which represents

ues ofl; (i) a deper‘1ds on the enerdy [i.e., we have the | the effects of antisymmetrization and exchange of the
pole trajectorya(E)]; when a(E) equals the integelr (the  pclear interactions, is insufficient to reproduce the echoes

orbital angular momentumand 3 is very small, we have nq 4 repulsive hard core must be added in order to repro-
sing =1, i.e., we have a resonance. Therefore, form@la 4,ce the experimental dataee[8]).

can describe, in principle, a sequence of resonances in the | ot us then consider some properties of the phase shifts
various partial waves. In our case the possibility of connecty,qqyced by a pure hard-core potential. We recall, first of all,
ing several resonances with a pole trajecf@yillustrated in 4t thes function derived from the scattering by an impen-
point (ii)] deserves particular interest. But in order to guar-giraple sphere of radius, reads(see[9)):

antee that this connection really works, we must have more

information on the behavior of the pole trajectory itself.

From the standard theory of Regge poles, we obtain the Hf+1/2(kro)
following relationship: SINK) == o (8)
Hi 1 12(KTo)
BT ,  Where H (83 (kr,) are the Hankel functions of first and
da/dE 2’ @) second kind, respectively. By the use of the following de-

composition of the Hankel functions into Bessel and Neu-

. . . " mann functions,
whereT is the width of the resonance. dfw/dE is positive,

thenT is positive since the poles lie in the first quadrant of
the complexn plane and3 is positive. In such a case we can
associate witH" a lifetime r=1/T" (A=1), and we can speak ) ) .
of a physical resonance because the outgoing flux of particle[éﬂ refers to the first km_d and-) to the Z%&ogd kind of

is delayed with respect to the incoming fluxcan be inter-  ankel functiorj and recalling thas(x k) =& ", we ob-
preted as a time delay. It has been proved, however, that tH&'"

trajectories «(E) produced by Yukawian potentials turn

back towards the left half-plangt]. When «(E) turning SO0 LK) =tan I+ 12(KTo) (10)
back crosses an integer, thea/dE is negative and” is ’ Ny 1 1/2(Krg)’

negative too in view of the fact tha is positive. Sincd” is

negative, one cannot associate this phenomenon with a resethere J, . 15(krg) are the Bessel anl, . 1,(krg) are the
nance and a time delay, but rather it corresponds to th&leumann functions. Then from the asymptotic behavior of
downward passage of the phaseshift thromdflt we have an  the Neumann functions, for large valueskgfive deduce that
“echo” (see[5]) of the resonance. At this point we meet a the zeros olN, , 1,5(kro) are located approximately at

drastic difficulty if we pretend connecting several resonances

(like those encountered in-*°Ca systemby using approxi-

mation(2) [or equivalently Eq(6)] without adding any other 2

term. In fact, the phase shifts describing these interactions A=—kro—(2n+1) (n=013..) (13)
present ordered sequences of resonances and ecleacthe
section devoted to the phenomenological analysany
phase shift after a resonance presents the correspondi

echo. Now if we consider a pole trajectory derived from deed using for the Bessel functiond, . (kro) an

approximation(2) [or Eq. (6)] it could not connect two or asymptotic expression analogous to that used for the Neu-

more resonances, because after a first crossing GE) mann functionN, , 15(krg) we obtain the following behav-
through an integer corresponding to the angular momentum

of a resonanc&a/dE positive, the pole trajectory will rap- lor of the phase shifts for large values laf
idly turn back to reach the same integer, with negative de-

rivative, in order to describe the corresponding echo. Other-

wise if one supposes that a pole trajectory connects several SN, K)= —Krg+A
resonances in an ordered sequence, then this trajectory, turn- 2
ing to the left, cannot reproduce in order the sequence of the

echoes. But this fact is not surprising if we think that the Therefore when attains the value¢l1), we haved(\ k)
nuclear interactions cannot certainly be explained simply in=— 7/2 (modm); accordingly siRd(\,K)=1 and the cross
terms of Yukawian potentials. We must take into account thesection shows peaks which are not resonances, but echoes,
exchange effects due to Pauli exclusion principle as well asince the phase shifts are decreasing. If we consider integer
the hard-core forces. The next subsection is precisely deralues of\, corresponding to physical phase shifts and we
voted to these questions. put kro=[a(a+1)]*? then formula(10) reads as follows:

H{ {2 (kro) =3, 1 1a(Kro) =Ny 4 1o(Kro) 9

rrimd all lie on the real axis of the plane(for real values of
k?. The echoes correspond to the zerodNgf, 1,x(krg). In-

w

(12
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, ddle(at+ 1] - B(2a+1)

_ 1 — 1

e T ) SO R A VY (B (R Ve

and it describes a sequence of echoes in the various partial 4 Jiifla(at 1)]1’2}

waves, as +Ak)tan Nyl a(at+ 1)1 (18
[a(a+1)]Y%=[1+(2n+1)] T (1,n=0,1,2...). Let us note that in formul&l6) the first term is dominant in

2 the neighborhood of an isolated and sharp resonancey for

(14) =|; and in this region the second term is negligible. On the

It is very difficult and probably impossible to determine contrary, the second term is dominant in the neighborhood of
exactly the shape of the potential responsible of the interacan echo, where the first one tends to vanish. The behavior of
tion of ions, nevertheless one may reasonably assume #®rmula (16) corresponds precisely to the physical mecha-
knowing the behavior o¥(r) for r large enougtilet us say nism of the resonance and of the echo. The first one is pro-
the “asymptotic behavior) and the behavior of the potential duced at small values df and for larger: the particle is
near the origin. The former is related to the range of thdrapped for a while by the effective potential, and accord-
nuclear forces and one can assume that the potential preseingly we observe a peak in the cross section due to the fact
a Yukawian tail. The latter is related to the repulsive characthat sirf §=1 (i.e. &, is crossingw/2 with positive deriva-
ter of the nuclear forces at short distance and to the effects @fve). For increasing values df, when a~(1+1)=7/2, we
the Pauli exclusion principle. One is therefore tempted thave an echo in thith partial wave due to the fact that the
assume a hard-core repulsive potential close to the origin, I§th phase shift is now passing downward acra¢2. This
us say forr=rg, and then for large a Yukawian type po-  echo is due to the repulsive forc@2auli exchange and hard-
tential. As far as we know there does not exist a rigorougore force which are, in the present simplified scheme,
mathematical theory of the scattering from a potential of thisepresented by the hard-core forces only. Since the exchange
type. The only results obtainedee[10]) are essentially nu-  forces are a pure quantum-mechanical effect and tend to van-
merical and concern a potential of the following form: ish at the classical limit, the parametyin formula(16), is
not a constant, but decreases with energy. The transition
from quantum to semiclassical behavior is precisely given by

@ (0sr=ro), (153 the dependence on the energy@®andA: 8 is an increasing
V(r)= +oo e # 150 function of E(E=k?), while A is a decreasing function of
o o(p) r du  (r=ro). (15b E. In conclusion formulg16) may describe a band of reso-

nances and echoes in the various partial waves.

The author$10] show that we may still speak of poles of the  Let us now suppose that the colliding particles are identi-
scattering amplitude in the complex angular-momentuntal bosons: this is the case @fa scattering. In this situation
plane and of pole trajectories. Furthermore, the trajectoriethe collision will be described by the even partial waves
are unbounded or approach a finite limit point, but in eitheronly, and accordingly we shall observe a rotational band of
case remain only in one half-plane. In view of these considfesonances with even parity and angular momentuiy: 0
erations and of the arguments, which shall be illustrated be2*, 4*. In this case the scattering amplitude must be sym-
low, we simply glue together the approximati@) and for-  metrized and the representation of the phase stiiismust
mula (14) obtaining be modified accordingly, i.e.,

1+(-1) B(a+1)
2 {[(I-)*+2[(I+a+1)2+p2}"

1+(=1)" Jpyf[e(a+ 1)1V

S(k)=sin"* 2 NisyAf[e(a+1)]Y3 )

17

) +A(k)tan !

Remark: Let us note that in this case the symmetrization of the scattering amplitude requires the introduction, in approxi-
mation(2), of a Legendre function of the typge, (cos) [in addition toP, (—cosf)]. Then the approximation will fail not only
forwards, but also backwards, because we will have a logarithmic singularity not oéiyQatbut also aty= .

Analogously if the colliding particles are fermions, the scattering amplitude must be antisymmetrized, and the collision will
be described by the odd partial waves only. Then the representation of the phase shifts must be written as follows:

1-(-1) B(a+1)
2 {[(0-a)?+ B2 +a+1)*+p*}1"

1-(-1" J yf[e(a+1)]3
2 Nyuydla(e+1)]¥3)

5(k)=sin"?! ) +A(k)tan™! (18
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section. Then we evaluate the contribution of those diffracted
rays which describe an arc of geodesic around the obstacle or
turn around the sphere a certain number of times and emerge
in a certain directiord. Here we suppose that the mass of the
N incident particles is much less than the mass of the target;
then the massive scatterer suffers little recoil and acts prac-
tically as a fixed center of mass. Therefore, the c.m. scatter-
ing angle and the laboratory scattering angle can be taken

equal within a good approximation.
Let us now rewrite approximatiof2) in the following

FIG. 1. Diffracted rays emerging in directiah form:
Even if the colliding particles are distinguishable, as in the Py _15( —cosd)
case of thea-“°Ca collision, nevertheless the presence of f(E,0)=—0(E) — 7 (19)

exchange forces can clearly separate the even from the odd
partial-wave amplitudes: the even cannot be interpolatedvhere we have pui’=A+1/2. Then we introduce the
with the odd. We are then forced to fit the even phase shiftasymptotic =~ behavior of the Legendre function
with formula(17), and the odd phase shifts with formdle8) P, . _,,,(—cosf) for |\'|—, and|\'|(7— 6)>1 (see[11]):
(see the next section devoted to the phenomenological analy-
si9). e i\ (m=0) =74l | Gi[N (7= 0)—7l4]

Py —1/2( — cost) =

J2m\'sing
C. Surface wave theory and diffractive scattering
When the energy increases, inelastic and reaction chan- (0<o<m). (20

nels open, and the elastic unitarity condition does not hol

true; accordingly the potential acquires an imaginary part. A

we have seen in the previous subsection the effect of the o

exchange forces tends to vanish as we pass from a quantum- =26 ™' > (—1)MgiZm™  (Im\’>0).
m=0

ext we use the following relationship:

mechanical to a semiclassical description of the collision; cosm\’

accordinglyA(k) tends to zero for increasing values Bf (21)
=k?. On the other hand3 is an increasing function of the
energy and therefore, evendf(E) goes through an integer
value, nevertheless we do not observe sharp peaks in the
cross section sindsinm(a+i8)| 1=e~ "#. We have a tran- Py 12~ cos)
sition from sharp resonances to diffractive surface effects, cosmA’
which we want to illustrate in this subsection. Let us note e (2

that while the sharp resonances involve essentially only one % e f—jeh (20 22)
partial wave, on the contrary the diffractive surface effects J27N'sing

involve a certain packet of partial waves and consequently

there is a mixing of even and odd waves. We are then forcegve are thus led to consider the following series:

to return to approximatiori2) of the scattering amplitude,
rather than to the approximation representing the phase shifts ~ _ e

5. Now we try a picture of the physical process as it is > (—)melzmm .
described by approximatiof®). With this in mind we repre- m=0 vsing
sent the interaction region as a sphere weakly absorbing at

the center and with a thin transparent layer at the border. The

width of this transparent layer will reduce as the incident N
energy increases and it will tend to zero at the high-energy =1/ —ial4
limit (see Figs. 1 and)2The assumption of a relatively weak 2
absorption is very important as it will be clarified in the next (23

Therefore we obtain

2zei wl4 -1 mei2ﬂ-m>\’
SRR

ix’e_ieix’(zqrfa)

Py/ -1/ —c0s 6)

<0<1r).
cosm\’ (0< <)

The scattering angle/(0<6#<) is related to the surface
anglesf g , in the following way:

Ogm= 0+ 27rm, (243

Y
\Q_ om=2m—0+2mm (M=0,1,2..),  (24b

where 93,m refer to the counterclockwise traveling rays,
while 6 , refer to the clockwise ongsee Fig. 1 Then in
view of formulas(24a and (24b), the lhs of formula(23)
FIG. 2. Diffracted rays emerging in directighafter a shortcut. reads
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o el 0o m P, 1 —COS) angular distribution is still described, in the first approxima-
> (—1)™ ———==g'(\") Mz—, (25 tion, by the Legendréunction P, (—cosy), provided that we
m=0 NS cosmA limit to consider a sufficiently backward angular region.

‘ Therefore the interference effect of the various te@®$® at
[whereg'(\')= 777\'/29_'”/4]; If in formula (25 we put  g=17 gives rise to the anomalously large backward peaks. As
kR=Re\’, then the termg™ %m represent waves traveling the energy increases the width of the peripheral border de-
(counterclockwise and clockwis@long geodesics bending creases and the amplitudéE, ) tends to the asymptotic
the target. The imaginary part af gives the damping factor limit (27).
of these surface waves. Recalling thdt=\+1/2, we get
kR=Rex+1/2 in agreement with the semiclassical approxi- I1l. PHENOMENOLOGICAL ANALYSIS
mation which replaces the terhal +1) with (I +1/2)>. The
physical meaning of the factor(1)™ derives from the fact
that at each complete tour around the sphere, the ray crossesWe test our theory on the-4°Ca elastic scattering. The
two times the symmetry axis of the obstacle which is thereason for this choice is due to the fact that, in this case, the
caustic(see below. As is well known in optics, and it has phenomenology presents very clear evidence of rotational
been mathematically proved in semiclassical mechanicdands of resonances which then evolve, at higher energies,
each time the trajectory crosses the caustic, the phaseto anomalously large backward peaks. In particular, the
changes by a fact@ '™ v is called the Morse index and backangle anomaly is most pronounced for target nuclei with
it can be evaluated by the methods of differential geometrya shell closurdsee[13)]).
(see[12]). In our caser=1, and then at each complete tour  Langanke[13] has calculated the-4°Ca phase shifts by
we have a factor—1. It remains to consider the term the use of the resonating-group method. As one can easily
(sindg )~ Y2 The physical interpretation of this factor is observe, looking at the results [#3], the even phase shifts
more transparent if we look at the corresponding termcannot be mixed with the odd ones at low energy. We are
(sind) Y2 in the Ihs of formula(23). This term becomes in- then forced to fit the even phase shifts with form(d#), and
finity for =0 and#=r: i.e., along the symmetry axis of the the odd ones with formul§l8). Since the resonances of the
target. This is the caustic where the geometrical optic apsystemea-4°Ca form rotational bands, them(E) must sat-

A. Resonances

proximation becomes infinity and fails. isfy the following equation:
Let us now return to approximatid2), which we rewrite
f(E,0)=GO(E)P, (- cosh) (26) where | = uR? is the moment of inertia of the syster,

being the reduced mast;and C can then be determined

whereG(E) =g(E)/sinmA (E). As we said in the first sub- through the fitting. _ _

section,P, (—cosy) presents a logarithmic singularity 60 Remark: In the previous section we have putZu=1,
and therefore approximatici26) fails forwards. Atg=0 we ~ and accordingly we had#®=E; in this section it is more
have the so-called “diffraction peak” which is, indeed, pro- convenient tp use a slightly different system of units kgeplng
duced by the interference of the diffracted rays with the otheft =¢=1, while Zw is not put equal to 1. Consequently in the
geometrical contributions which can be represented by &resent section we have= (2uE)"2.

term like the background integral. Let us recall, in fact, that We do not know exactly the dependencefbbn the en-
the singularity ofP, (—cosd), at 6=0, is compensated by the ergy.'CglcuIatmns performed in the potenyal modste
contribution of the background integral. On the contrary, af14)) indicate, however, thg8(E) has a slow increaséess

9=, P,(—cos) is equal to 1 and then we have than lineay in the region of surface waves. Since we want to
see if it is possible to connect resonances with surface waves
g(E we shall try a fit taking foi8 a dependence on the energy of

f(E,m)=G'9(E)= m”g(E)e_ ™ (27)  square-root typdexactly as in the case af-a elastic scat-

tering, sed6)); i.e.,

which can be interpreted as an asymptotic limit satisfied only B(E)=y(E)12 (29)
for high values of the energy. Indeed, at lower energy, we Y '

observe the so-called "ALAS” effec(see[12]): anoma- \yherey is regarded as a fitting parameter. Finally, for what
Ious_ly _Iarge-_angle scattering peak, which is in apparent conggncerns the coefficiest in formulas(17) and(18), it could
tradiction with formula(27). The ALAS effect can be ex- pe taken constant in the first approximation. But in order to
plained by the transparent border of the target. In fact, ingproduce more faithfully the trend of the phase shifts, in
view of this transparent shell, some of the grazing rays mayheir downward passage througi2, we prefer to take for

be refracted and penetrate the peripheral corona. Some @f 3 Gaussian dependence loof the following type:
them can take one or more shortcuts and reemeee Fig.

2). Acco.r(.jing to this model approximatia27) should then A=A0e*a'2 (Ao, a constants (30)

be modified, and we havé(E,7)=3=]_,G(E), where

GP)(E) corresponds to the contributions of the rays whichThe fits are shown in Fig. 3 and 4.

have takenp shortcuts in the peripheral shell. In fact it is ~ Remark: In[13] the phase shifts are normalized according

possible to prove that, if we evaluate the contributions ofto the Swan generalization of the Levinson theorem for re-
those diffracted rays which take one or several shortcuts, theundant states. Here we return to the Levinson theorem in its



E{MeV)

FIG. 3. Phase shifts with evdnThe continuous lines represent
the phase shifts calculated[ib3]; the dotted lines represent the fits.

original formulation: the redundant states with negative ens,
ergy are to be counted, the ones with positive energy ar

resonances and do not contribute. The values of the fittinég
parameters aréa) for | even
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FIG. 4. Phase shifts with odd The continuous lines represent
the phase shifts calculated|ib3]; the dotted lines represent the fits.

e rotational bands. The energy positions and the widths of
e resonancethe former obtained by the use of formula
8), the latter by the use of formulég1)] are reported in
Tables | and li(for evenl values and odd values, respec-

|=5.5(MeV)~%, C=-57, tively), where they are compared with the corresponding val-
ues given in13].

y=0.08(MeV) 2 A,=0.16, a=0.05, Remark: In Figs. 3 and 4 the fit of the phase shifts is

limited to the values of between 0 and 6 fof even and
(b) for I odd between 1 and 7 fdr odd. This is motivated by the fact that

1 starting froml =8 (for the evenl values andl =9 (for the

1=5.01(Mev) %, C=-55, odd | values the downward trend of the phase shifts, after

y=0.1(MeV) "2 A,=0.26, a=0.015. TABLE I. The energy positions and the widths of the reso-

nances with even angular momentum. The resonance energies are

From the values of andC we can then determine the energy given in MeV, the resonance widths are given in keV.

positions of the resonances by the use of forn{@B). Next
by taking the derivative of both sides of E@8), we obtain E, T, E, T,

da/dE=21/(2a+1), and substituting this expression in Present work  Present work [13] [13]
formula (7) we finally get
0 5.18 32 5.09 70
B(E)(2a+1)  (2a+1)\E 2 5.72 173 5.69 120
I'= | - | ' (32) 4 7 345 7.09 260
6 9 565 9.48 480
where in the second equality relationsk®®) has been used. g 11.72 843 12.64 600

Formula(31) gives the energy dependence of the widths of.



2600 R. FIORAVANTI AND G. A. VIANO 55
TABLE II. The energy positions and the widths of the reso- interaction region, which is here pictured as a sphere weakly
nances with odd angular momentum. The resonance energies ag®sorbing at the center and with a thin transparent border
given in MeV, the resonance widths are given in keV. [see Sec. Il C; for what concerns the sharp edge of the inter-
action region see remarfk) in the next subsectignThenp

E T E I can be larger, equal to, or smaller thRn Accordingly we

! Present work _ Present work [13] [13] have three classes of trajectorisge alsd15]): (i) the tra-

1 5.7 143 5.6 190 jectories which correspond to those angular momenta such

3 6.7 362 6.6 320 that p>R, they are determined by the action of the sole

5 8.5 641 8.6 640 Coulomb field, and can be called “Coulomb trajectories”;

7 11.1 999 11.5 1150 (i) the trajectories which correspond go- R, they may un-

9 145 1446 15.53 1700 dergo diffraction and will be called “grazing trajectories”;

11 18.7 1987 20.64 1900 (i) the trajectories which correspond pe<R, they are re-
flected or refracted at the surface of the nuclear-interaction
sphere.

the resonance, is completely missing. This is due to the fact Let us start by considering the trajectories belonging to
that in this energy region we are rather close to the transitioglassesii) and(iii) neglecting, for the moment, the Coulomb
between resonances and surface waves. But still we hawdffects. In particular, we focus our attention on the refracted
resonances belonging to rotational bands. For this reason weajectories, which play a very important role in the*°Ca
still report in Tables | and Il the values & andT', (for | elastic scattering. In view of the fact that the absorption is
=8 and|=9, 11, respectivelyobtained by the use of for- relatively weak(even at the center of the interaction region
mulas(28) and (31). Let us, in fact, remark that in order to the trajectories withp<R, after a refraction at the surface,
obtain the energy positions and the widths of the resonancen penetrate the target and thereafter they may be deflected
only three fitting parameter@.e., I, C, ) are sufficient. by nuclear forces: the attractive nuclear force produces a
The agreement between our values of the positions and dfuclear deflection for small angular momefta]. When the
the widths of the resonances with those given[ig] is  modulus of the classical deflection angle has a maximum, as
satisfactory especially in the case of dddalues. We have, @ function of the angular momentum, the cross section pre-
indeed, two distinct rotational bands, one interpolating theseénts a singularity due to the fact that many angular mo-
resonances with even angular momentum, the other interpén€nta are focused to almost the same scattering angle: we
lating the resonances with odd angular momentum. Finallj?ave the phenomenon of nuclear rainbpi]. The maxi-
from the values of the moment of interfiawe can derive a mum modulus of the deflection angle will be called “rain-
value of R; we obtain:R=7.8 fm from the fitting of the bow angle” and denoted byr. For deflection angles whose
phase shifts with even angular momentum, &l 7.3 fm modulus is larger thafir, no classical trajectorgwithin the

from the fitting of the phase shifts with odd angular momen-class of refracted trajectories possible; however, we may
tum. still have complex-valued trajectorigse, complex rays

Accordingly the differential cross section decreases exponen-
tially for scattering angles larger than the rainbow scattering
angle. Therefore if we limit ourselves to consider the ex-
As the energy increases the effect of the echoes tends teemely backward angular region, beyond the rainbow scat-
vanish and accordingly the phase shifts do not present thiering angle, we can neglect the contribution of the refracted
standard downward trend, in particular the downward pasrays. We have, however, discussed at length the refracted
sage across/2. Simultaneously the widths of the resonancestrajectories in view of the fact that the-*°Ca elastic scat-
increase, as prescribed by formu(8l): the resonances tering, because of the weak absorption, provides one of the
evolve into surface effects. While the sharp resonances amdearest examples available in nuclear physics of nuclear
properly described in terms of phase shifts, since each one edinbows, as it has been remarked by McVoy and collabora-
them is precisely due to the dominance of one phase shiftors who have devoted to this problem and its interpretation
the surface effects involve several partial waves. Thereforahree very interesting paper$6—18. We shall return to this
rather than use fromulad7) and (18), we must try a fit of  point in the next subsection. In addition to the refracted rays
the differential cross section by taking the square of thave also have to consider the reflected ones. We shall call
modulus of the rhs of formul&6). Obviously the scattering “geometrical component” the set of trajectories composed
amplitude cannot be described exclusively in terms of surby the union of the reflected and the refracted rays.
face waves, neglecting all the others contributions. There- Let us, now, focus our attention on the “grazing trajecto-
fore, let us return once more to the description of the variousies.” These may simply describe an arc of geodesic around
processes involved in the collision. Passing from a quantunthe target or, being refracted, penetrate the interaction region.
mechanical to a semiclassical description of the interactionConcerning these latter we may assume that the main contri-
we can use the Hamilton-Jacobi formalism and introducebution backwards is due to those rays which, being critically
various classes of trajectories. We consider, first, the trajeaefracted, penetrate the widespread gallery formed by the
tory of a chargeZ,e under the action of the sole Coulomb thin transparent layer at the border of the spHee® Fig. 2
field of a pointlike charg&,e. It is straightforward to derive, These rays take one or more shortcuts and emerge back-
in the framework of the Hamilton-Jacobi theory, the expreswards. The others entering in the core of the interaction re-
sion of the aspidal distance from the origin. We can compargion are partially absorbe@ven in the assumption of weak
this distance, denoted hereafter fywith the radiusk of the  absorption and their contribution backwards can be ne-

B. Surface waves
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glected. The mechanism of the shortcut is necessary in order ;o 1.0
to explain the anomalously large backward peaks in the L(a) :
elastic-scattering cross sections; otherwise the exponential 0.8t 1

damping along the surface is too large to allow a strong 1.0
enhancement at large angles. The existence of shortcuts is
strictly related to the opaqueness of the target; this latter is 1.0

determined by the number of open channels. The isotope
effect in ALAS can then be explained by admitting the ex-
istence of shortcuts for closed-shell nuclei and their attenua-
tion, for a larger opagueness when one considers the iso-
topes. Analogously the opaqueness increases toward larger
energies, and this could explain the fact that the anomalous
backward peaks tend to become normal for greater values of
the energy. We can then conclude that the grazing trajecto-
ries give rise to the surface waves. s B T TN )
These surface waves interfere with the geometrical com- 120 140 160 180
ponent. In particular, we recall once more that the function
P,(—cos)) presents a logarithmic singularity af=0,
whereas the scattering amplitude is finite. In a potential ) . o a0
model this singularity is compensated by the contribution of FIG- 5. Elastic scattering angular distribution for the™"Ca
the background integréee the previous sectiprThis com- _system. The co_ntlnuous Ilnf repr_esentszthe dlme_nsm_nless normal-
pensation can be interpreted, from a physical viewpoint, alZ€9 €ross sectionda/dQ2) =[P\ C°39)|j the solid circles de-
the interference between surface waves and the geometric& e the_Observed datel g tfken from(19]; (&) Ec.;m=37.8MeV,
component which produces the forward “diffraction peak.” Eom=45 MeV, (¢) Ecm=48.6 MeV.
Let us, however, note that this interference is not only rel-
evant forwards but in a large angular range. But we have . ) ] .
already observed that the real-valued refracted rays do nétid- 5. The reason of this particular choice of the energy is
emerge in an angular region beyond the rainbow scatterinfiotivated by the fact that at lower energy the interference
angle; there remain the reflected rays. Their effects can b@ith the reflected rays cannot be neglected and it obscures
neglected as well in the extremely backward angular regioshe effect of the surface waves even backwards. On the con-
at sufficiently high energy. In order to control that this latter trary, in the fits reported in Fig. 5, the accord with the ex-
approximation is correct, we must assume that the edge grerimental data is satisfactory in a.vx{lde angular range. Con-
the interaction region is not sharp, as in our primitive model Sequently the values of the two fitting parametersRex
but we must suppose more realistically that its surface has @dB=Im\ can be taken with good confidence and they are
certain diffuseness. Then one can evaluate the contributiofgPorted in Table lli(second and third columns, respec-
of the reflected componefgee, e.g[12]) and one can easily tively). In the same table these values @fare compared
check that it is decreasing as the surface diffuseness and tMath those(reported in the fourth columrobtained evaluat-
bombarding energy are increasing. ing 8 by the use of formulg29) putting y=0.1 (MeV)
It remains to Spend a few words on the effects of the(Wh|Ch is the numerical value obtained by the fit of the phase
Coulomb field. First of all we neglect the Coulomb trajecto- Shifts with odd angular momentym . '
ries [trajectories belonging to clag$)] by subtracting the Finally let us note that we fit the differential cross
Rutherford amplitude; nevertheless, the Coulomb field act§ection measured by Delbaetal. [i.e., o(6)/or(6),
also on the other classes of trajectories, in particular, the'r(f)=Rutherford cross sectigiby the use of formuld32).
grazing ones. The first modification is due to the fact thatThis amounts to neglecting the facfair’(6/2)]*. This ap-
now the incident rays are not straight lines parallel to the axi®roximation, however, is legitimate in the extremely back-
of the target, and according|y the grazing ang|es Change’ d@tard angular region which is the domain of interest for our
pending on the Sommerfeld parameter uZ,Z,e%/k (4  analysis.
=1), which tends to zero ds— . Therefore, at energy suf- We can conclude that the agreement between the values
ficiently high, these modifications can be neglected agai®btained by fitting the backward cross section at high energy
(see alsq15]). At this point we can try a fit of the backward
differential cross section, at fixed energy, by a formula of the TABLE Ill. Values of the complex angular momentum (

do/de

O, .. (de9)

following type: +iB) determined by formulé32) (second and third columjisval-

ues ofB obtained by formulg29), putting y=0.1 (MeV)~*? (fourth

(d—o)qu (—cosd)|2 (32 coumn.
dQ A '
a B B

Here we take the constant equal to 1 [recall that E.m MeV Surface waves Surface waves Resonances
P, (—cosm)=1]. Then we fit the dimensionless differential 37.8 13.7 0.61 0.61
cross section, measured by Dellsral. [19], with the for- 45 16.6 0.7 0.67
mula |P, (— cos)|>. The fits at three different values of the 48.6 16.9 0.78 0.69

energy, in the neighborhood &f. ,,=45 MeV are shown in
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(surface waves and those obtained by extrapolating the fitstive description of the phenomena, and the class of potentials

of the resonances is satisfactory see Table Ill. admitting a representation of the scattering amplitude in
terms of poles in the complex angular-momentum plane. As
C. Remarks and conclusions we have seen in Sec. Il, the class of potentials admitting a
_ _ Watson resummation leading to a Regge representation of
The main results of our paper are the following. type (1) is limited to the Yukawian class and therefore it is

(1) The theoretical analysis and the phenomenologicatather restricted. In particular, the potentials of compact sup-
evidence of two trajectories of Regge poles which interpolatgort as well as the Woods-Saxon potentials do not belong to
two rotational sequences of resonances, respectively, of evehis clasg23]. But if we limit ourselves to consider a param-
and odd parity. etrization, and accordingly an approximation of the scatter-

(2) The representations of the phase shifts given by foring amplitude in terms of poles in the complex angular-
mulas(17) and (18), which take into account the effects of momentum plane, without pretending that the background
the repulsive forces due to the Pauli exchange effects and fategral runs along a parallel to the imaginary axis, as in
the hard core. The interpolation of resonangeaint (1)] is  formula (1), then the class of admitted potentials is much
realized by the use of formuld&7) and(18). larger including more realistic prototypes. Following Tamura

(3) The theoretical and phenomenological proof thatand Wolter{ 23] we note that in low-energy physics the com-
these poles, extrapolated to high enerdie, in particular, plex angular-momentum parametrizations may in general be
Table Ill) give rise to surface waves emerging in the diffrac-regarded as a method to separate the dominant pole contri-

tive backward peaks. bution from a smooth background term. From these consid-
In connection with point3) some remarks are, however, erations it follows that the validity of our approximation, and
necessary. in particular the fitting formulg32), is not restricted to the

(i) In order to obtain a pictorial representation of the sur-simplified model illustrated in Sec. Il C, but it can be justi-
face waves we have used a simplified model of the interacfied in a larger and more realistic class of potentials.
tion region, at high energies, represented by a weakly ab- (ii) The data of Delbaet al. [19] show in a very clear
sorbing sphere with a thin transparent border. This modelvay the three fundamental phenomena present in the
allows us to derive easily a picture of the waves creepingy-“°Ca elastic scattering in the energy range between 35 and
around the targdisee formula25)] and to describe qualita- 60 MeV (in the Laboratory system(a) forward diffractive
tively the phenomena. Let us, however, remark that a sharpeaks,(8) rainbow dips,(y) backward diffractive peaks and
edge of the interaction region is not realistic, as we haveALAS. We have only considered the last o(w the three
already noted in connection with the evaluation of the conphenomena indicated abgysince it can be directly related
tribution of the reflected rays. This model corresponds, irto the rotational resonances as shown by Fig. 5 and Table Il
fact, to a potential of compact support which represents a todccordingly we have fitted the differential cross section in
drastic approximation, and it cannot be used for fitting thean angular region beyond the rainbow dips. Let us, however,
experimental data. In the older analyses the form of the opmention that the data of Delbast al. present spectacular
tical potential chosen was generally of the Woods-Saxomexamples of nuclear rainbow@&s we have already notgd
type; more recently many modifications have been proposegharticularly evident at 49.5 MeVin the laboratory system
like to take a Woods-Saxon squared form fadt2@], or to  These rainbows prove, without any ambiguity, that the ab-
introduce an angular-momentum-dependent absorpfidh  sorption in the interaction region is weak. The rainbows are,
Furthermore, let us recall that within the optical-potentialin fact, generated by the refracted rays which penetrate the
framework some models for explaining the surface wavesnteraction region without being absorbed. In spite of the
have been proposed, like the model of Briekal. [22],  great relevance of these effects, we do not treat these phe-
which is particularly refined. At this point, however, we must nomena in the present paper, and the interested reader is
distinguish between a model, useful for obtaining a qualitareferred to[16—18.
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