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Compressibility of nuclear matter and breathing mode of finite nuclei
in relativistic random phase approximation
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Isoscalar monopole modes in finite nuclei are studied in the framework of relativistic models currently used
in ground state calculations. Response functions in the random phase approximation are calculated with
nonlinear models for the first time. It is found that some effective Lagrangians having a bulk compression
modulus in the range 280-350 MeV can predict correctly breathing mode energies in medium and heavy
nuclei. It is pointed out that the parametrization NIKL. (=211 MeV) leads to an anomalous behavior of the
monopole responsgS0556-2818@7)05405-9

PACS numbgs): 21.10.Re, 21.60.Jz, 21.65f, 24.30.Cz

The issue of determining the value of the compressiorattempts have been made to predict with relativistic models
modulusK,, of nuclear matter is of great importance for the GMR energies in nuclei, either by using the relativistic
obtaining the nuclear equation of state. From the experimerRPA (RRPA method [10,11] or the constrained Dirac-
tal side, the main information at our disposal comes fromHartree method12]. In both cases, however, the investiga-
energy systematics of the breathing mode measured in maﬁpns were limited to the linear model with the parameter set
nuclei across the Periodic Table. Yet, it is only possible a®f Horowitz and Serof13] (HS) which corresponds té.,
the present stage to ascertain the valui.oto belong to the =545 MeV and consequently it was found that GMR ener-
200-350 MeV interval[1] if one tries to avoid model- 9i€S in medium and heavy nuclei are overestimated.
dependent analyses and ded#cefrom anA~Y3 expansion The purpose of this work is to examine the more recently

of the finite nucleus compressibilitd,. Thus, one has to proposed effective Lagrangians including nonlinear terms

introduce some degree of model dependence in order to e om the point of view of their GMR predictions in nuclei

tablish a link between the energy of the isoscalar gianhhe RRPA is the appropriate framework to extend the rela-

monopole resonano@MR) in finite nuclei and the nuclear vistic mean field description to the nuclear excitations. In-
P deed, in a way similar to the nonrelativistic case, the RRPA

matter incompressibility. This has been done already forCan be seen as the small amplitude limit of the time-
quite some time in the nonrelativistic framework, and thedependent Dirac-Hartree theory and therefore the same ef-
commonly accepted value df..=210=30 MeV was de- fective Lagrangian should be able to describe ground states
duced by Blaizof2] by calculating nuclear matter properties anq giant resonances as well. Effective Lagrangians often
with effective interactions which could describe SatiSfaCtO'used Successfu”y in Dirac-Hartree calculations all be|0ng to
rily the GMR in Hartree-Fock random phase approximationthe class of non-linear models with self-interaction terms in
(RPA) models. the o field and also sometimes in thefield. We are thus led

In recent years the relativistic many-body theory has meto calculate the linear response function of nuclei in RRPA
great success in predicting ground state properties of finitevith nonlinear models. We shall discuss the GMR energies
nuclei including unstable ones up to the nucleon drip linesobtained with three nonlinear models often found in the lit-
Since the early work of WalecK#8] several parametrizations erature, namely the NL-SH model of Sharetaal.[7], TM1
of effective Lagrangians containing self-interaction terms ofof Sugahara and TokB], and NL1 of Reinhardt al. [4].
the meson fields or density-dependent coupling constants We start from an effective Lagrangian of the form
have been proposeld—9|, all of them aiming at a good L
gescr!ptlon _of nuclear ground states in a relativistic mean L=V(iy*d,~My—g,0—0, Y ®,— 0,y p)¥
ield, i.e., Dirac-Hartree framework. It turns out that the val-
ues of K, that they predict can span a wide range, from
about 200 MeV up to above 500 MeV. However, one does
not know what monopole energies in finite nuclei these non-
linear or density-dependent models would give. Only a few
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WHY= gt ¥ — 9” o, The meson propagators can be constructed in the follow-
ing way. The meson fields in the Lagrangian can be ex-
R3V= ghpdV— gV pk 4 g e3PCpPrCY panded around their mealassical values. In the same
P . .. . .
manner that the first-order variations of the action with re-
FHrY= gAY — 9V AH, 2) spect to each meson field give the field equat{étein-
Gordon equationsatisfied by that meson, the second-order
1 1 1 variations give the inverse of the meson propagfdd].
Ug(o)= 5 mi02+ 3 g0+ 2 gs0*, This amounts, in practice, to take the second derivative of

the Lagrangian with respect to the meson field. For instance,
for the o propagator in coordinate space we have

U, (o)
do?

1 1
U, (w)= > miw“w#-i— 7 C3(w'“wlu)2. (€))

(a“&,ﬁ )D(,(x,y):—é(x—y). (6)
In this Lagrangian there appear the nucleon fiéldthe me-
son fieldso, w,,, pi, and the photon field, . This general
form contains the three nonlinear parametrizatidik-SH,
TM1, NL1) and also the linear parametrizatigHS) as a
special case. The coupling constagts g,,, 9,, the o me-
son massn, and the parameters,, g;, andc; entering the  (E2—k?)D(k—k’,E)—
self-interaction term#J , andU , are adjusted to reproduce
bulk properties of nuclear matter and ground state properties
of finite nuclei. We note that the four models HS, NL-SH, Xf S,(k—kq)D,(ky—k',E)d%k;=(2m)35(k—k’),
TM1, and NL1 correspond to decreasing incompressibilities,
the values oK, being 545, 355, 281, and 211 MeV, respec- ()
tively. no _

The present calculation of the nuclear response functioN"zhere S,,(I2<—k ) is the Fourier transform of
in finite systems follows the method described in detail in? Uy(0)/ o
Ref.[10]. Here, we shall only recall the main points in order
to explain how the RRPA can be carried out in the case OfSU(k—k’)=f e (k=KD" m2 4 2g,0(r) +3g4a(r)]d°r,
nonlinear models. In Ref10] one introduced the Hartree, or
unperturbed polarization operatbiy(P,Q;k,k’;E) and the 8
RRPA, or perturbed polarization operatidi(P,Q;k,k’;E).
These polarization operators depend on some general on
body operator$ andQ, transferred momentaandk’, and

Taking the Fourier transform of Eq6), we come to the
expression of the propagator in momentum space:

(2m)°

g(r) being the classical value of thefield at pointr. In the
ﬁmit of the linear model one recovers the usual meson

excitation energyE. For a given operata® and momentum propagator which is a local function in momentum space.

. In this work we are concerned with the isoscalar GMR
transfer k the Hartree and RRPA response functions are h he | | icall le in th
given by where the isovectop meson plays practically no role in the

residual particle-hole interaction. Therefore, in the integral
1 equation (5) we keep only thes and w propagators. Of
Ro(Q;k,E)=— Im I15(Q,Q;k,k;E), course, thep meson plays an essential role at the mean field
m level inN# Z nuclei and its contributions must be kept in the
1 Dirac-Hartree field when one builds the unperturbed polar-
R(Q:k,E)=— Im I1(Q,Q:k,k:E). (4) ization operatodl, [10]_. _
™ The above scheme is used to calculate the isoscalar mono-
, , o pole strength distributions in the closed-shell nuctéD,
T_hese response functions describe Fhe distributions of transkoc, 907~ anq 298pp, Assuming spherical symmetry, the
tion strengths of the operatd®. Since the unperturbed pjrac-Hartree mean fields are calculated in coordinate space.
ground state is treated in Hartree approximation, i.e., €XThen, the unperturbed polarization operafdg is con-
chan'ge mteract.lons' are omitted, the RRPA corresponds @ cted in momentum space. Equati¢sisand (7) are mul-
the ring approximation and_ thereforH, and Il are related tipole expanded and solved on a grid in momentum space.
by the usual integral equatidi4,15: The continuous single-particle spectrum is discretized by the
oL e o, method of Ref. [10] and an averaging parametek
II(P,Q:k.k",B)=1Io(P,Q:k,k",E) =2 MeV is used to smooth out the response functions. This
o s s _ is easily done by replacing the excitation energyby
-2 g f d°k, 0%k I1o(P, I Kk, Ky, E) E+iA/2 in all expressions. All other parameters concerning
' the harmonic oscillator basis used for continuum discretiza-
X Dj(ky—kq,E)II(T;,Q:ko,k’,E). (5) tion, the grid in momentum space, the energy cutoffs can be
found in Ref[10]. The response functions are calculated for
In this equation the indek runs overo, w, andp mesons, the operatoQ=r?2Y)°.
g; andD; are the corresponding coupling constants and me- We first concentrate on medium and heavy nuclei where
son propagatord;' =1 for o andI'' = y*,y*7 for w andp,  the GMR is clearly located experimentallg]. In Fig. 1 are
respectively. shown response functions calculated f8zr and 2°Pb us-
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FIG. 1. Isoscalar monopole response functiGfgE) (Dirac- be deduced from the full width at half maximum of the dis-
Hartree, dashed cunjeandR(E) (RRPA, solid curvescalculated  tributions. These values are indicated in Table | and they
in °9Zr and 2°®%b using HS, NL-SH, and TM1 models. Arrows show that NL-SH and TM1 predict simild?,,qa, Whereas
indicate experimental energies of the GMR. HS is markedly different. It is worth noting that the value

I angai= 0.9 MeV in 2%%Ph is consistent with what we know
ing the HS, NL-SH, and TM1 models. The theoretical andexperimentally about the total width and escape width of the
experimental GMR energies are indicated in Table I. It canGMR [17] and the fact that its calculated spreading width is
be seen that the GMR appears as a clear collective excitaticsmall[18].
in these nuclei. Indeed, the unperturbed strengths are A comparison of calculated peak energies with experi-
strongly shifted downwards by the particle-hole interactionment shows that NL-SH and TM1 are doing fairly well with
and the distributions become rather narrow, especially i slight underestimate if°®Pb and overestimate if°zr
20%h. This collective effect is, however, less marked withwhile HS predicts too high values as already found in Refs.
the HS model which has a high incompressibility than with[10,12. Clearly, a lowering of the value d&., is necessary
the two nonlinear models and one can see that the RRP# obtain agreement with experiment but the link between
response with HS exhibits structures reminiscent of the unkK,, and GMR energies in finite nuclei is not obvious since
perturbed spectrum. More quantitatively, we can characterizslL-SH (K,,=355 MeV) and TM1 K, =281 MeV) are not
the degree of collectivity by the Landau damping width very different in these two nuclei. The finite nucleus incom-
I' andauOf the GMR. The present calculations do not take intopressibility K4 differs from K,, by many correction terms
account any escape nor multi-particle-hole damping effectésurface, curvature, symmetry, Coulombhich are neither
and therefore, the width of the GMR is entirely due to thesmall nor model independeft,2]. Thus, the GMR energy in
Landau damping and to the averaging paramatere have  2%Pb predicted by the HS model is only 1.25 times that of
used. Correcting for the effect af, the values o' jhgauCan  TM1 while the ratio ofkK2? is 1.39.

o Calculations have also been performed with HS, NL-SH,

TABLE |. Peak energiesE ey, centroid energie€, inverse  and TM1 in lighter nuclei. In Fig. 2 are shown the isoscalar
energy-weighted moments_,, and Landau widths for finite nu- monopole strength distributions ir®0, 4°Ca, °°zr, and
clei. The values for'®0 and “°Ca are calculated with=5MeV.  2%Pp calculated with TM1. When going from heavy to

The units OfE peqy, E andl” are MeV, andm_; is in fm* Mev ™% lighter systems, the trend is that collectivity becomes
— weaker, correlated and uncorrelated responses are closer and
Epeak E m_; I andau Landau damping becomes predominent. Hence, it becomes

difficult, in a nucleus like*°Ca to define theoretically a GMR

HS 16.0 6.4 2862 21 energy or width. This finding completely agrees with experi-
208, N_'IjN?lH 113;'% 1133; ii%% %‘Z ment [;]. Peak energies! centroid energies of the distr_ibu—
: : : tions, inverse energy-weighted moments and Landau widths
EXp  13.7-0.40 are reported in Table I. In order to give a quantitative de-
HS 212 214 388 5.1 scription of those quantities for light nuclei, the values for
NL-SH  17.4 18.9 494 2.3 160, 40Ca given in Table | are calculated with="5 MeV.
zr ™1 17.4 18.2 518 2.0 For the case of the NL1 model, our calculations for
EXP 16.2-0.50 40ca, %9Zr, and 2°%Pb give extremely low centroid energies
HS 24.5 24.6 86.3 8.7 and a dramatic loss of energy-weighted strength as compared
“ca NL-SH 220 23.4 90.7 4.6 with the unperturbed distribution. This might be a sign that
T™M1 215 22.8 94.7 45 part of the monopole strength has been shifted to the energy
HS 23.0 24.9 20.3 8.5 region below the ground state. In other words, if one diago-
%0 NL-SH  24.0 25.9 17.5 6.2 nalizes the RRPA matrix in configuration space there would
T™M1 23.0 25.3 18.3 6.9 appear imaginary eigenvalues. This can be confirmed by cal-

culating the inverse energy-weighted moment:
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[(0|QIny|? 1 The RRPA equations for Lagrangians containing self-
m—lE; E_g. 7 RAlQQkKE=0), (9 interaction terms have been solved for the first time. Al
noo studied models can describe correctly static ground state

where{|n),E,,} are the RRPA excited states and energies. IfProperties(binding energies, radii, etcof nuclei but not all

the case of the other mode(slS, NL-SH, TM1) we have of them are able to predict the breathing mode in those nuclei
actually calculatedn_ ; either by relating it to the real part of with success. We find that for some models such as TM1 and
the polarization operator at zero eneiglyey are the values NL-SH the GMR energies in medium and heavy nuclei are

shown in Table) or by integrating the strength distributions. correctly reproduced although their bulk incompressibilities

We generally find for the three models that the two methodsnay differ by more than 20%. For other models like NL1 the

agree within 2—3%. However, for the NL1 model we find fact that the compression modulus is close to the commonly
that Eq.(9) gives negative values ofi_; for “°Ca, °Zr, and  accepted value is no guarantee that the compressibility in
29%p. In a recent work19] Vretenaret al. have also exam- finite nuclei will be satisfactory. This comes as a surprise and
ined the question of isoscalar monopole energies in nuclei warning that the relation between compressibilities in bulk

using a time-dependent relativistic mean field approachand finite systems must be complex in the relativistic ap-
They also noticed that the NL1 excitation energies are SySproach.

tematically lower than those of other parametrizations al-

though the deviations are less dramatic in their case. The We wish to thank Hideo Suganuma and Toshio Suzuki for

origin of the differences between the two methods deserveselpful discussions. Z.M. and N.V.G. acknowledge the COE

more investigation. program for enabling them to stay at RCNP-Osaka, where
In conclusion, we have investigated the isoscalar monothis work was carried out. D.P.T. of IPN-Orsay is a Unite

pole properties of finite nuclei predicted by various nonlinearRecherche des UniversiteParis X| et Paris VI asso@eau

relativistic models frequently used in mean field calculationsCNRS.
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