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Compressibility of nuclear matter and breathing mode of finite nuclei
in relativistic random phase approximation
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Isoscalar monopole modes in finite nuclei are studied in the framework of relativistic models currently used
in ground state calculations. Response functions in the random phase approximation are calculated with
nonlinear models for the first time. It is found that some effective Lagrangians having a bulk compression
modulus in the range 280–350 MeV can predict correctly breathing mode energies in medium and heavy
nuclei. It is pointed out that the parametrization NL1 (K`5211 MeV) leads to an anomalous behavior of the
monopole response.@S0556-2813~97!05405-8#

PACS number~s!: 21.10.Re, 21.60.Jz, 21.65.1f, 24.30.Cz
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The issue of determining the value of the compress
modulusK` of nuclear matter is of great importance f
obtaining the nuclear equation of state. From the experim
tal side, the main information at our disposal comes fr
energy systematics of the breathing mode measured in m
nuclei across the Periodic Table. Yet, it is only possible
the present stage to ascertain the value ofK` to belong to the
200–350 MeV interval@1# if one tries to avoid model-
dependent analyses and deduceK` from anA21/3 expansion
of the finite nucleus compressibilityKA . Thus, one has to
introduce some degree of model dependence in order to
tablish a link between the energy of the isoscalar gi
monopole resonance~GMR! in finite nuclei and the nuclea
matter incompressibility. This has been done already
quite some time in the nonrelativistic framework, and t
commonly accepted value ofK`5210630 MeV was de-
duced by Blaizot@2# by calculating nuclear matter propertie
with effective interactions which could describe satisfac
rily the GMR in Hartree-Fock random phase approximat
~RPA! models.

In recent years the relativistic many-body theory has m
great success in predicting ground state properties of fi
nuclei including unstable ones up to the nucleon drip lin
Since the early work of Walecka@3# several parametrization
of effective Lagrangians containing self-interaction terms
the meson fields or density-dependent coupling const
have been proposed@4–9#, all of them aiming at a good
description of nuclear ground states in a relativistic me
field, i.e., Dirac-Hartree framework. It turns out that the v
ues ofK` that they predict can span a wide range, fro
about 200 MeV up to above 500 MeV. However, one do
not know what monopole energies in finite nuclei these n
linear or density-dependent models would give. Only a f
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attempts have been made to predict with relativistic mod
the GMR energies in nuclei, either by using the relativis
RPA ~RRPA! method @10,11# or the constrained Dirac
Hartree method@12#. In both cases, however, the investig
tions were limited to the linear model with the parameter
of Horowitz and Serot@13# ~HS! which corresponds toK`

5545 MeV and consequently it was found that GMR en
gies in medium and heavy nuclei are overestimated.

The purpose of this work is to examine the more recen
proposed effective Lagrangians including nonlinear ter
from the point of view of their GMR predictions in nucle
The RRPA is the appropriate framework to extend the re
tivistic mean field description to the nuclear excitations.
deed, in a way similar to the nonrelativistic case, the RR
can be seen as the small amplitude limit of the tim
dependent Dirac-Hartree theory and therefore the same
fective Lagrangian should be able to describe ground st
and giant resonances as well. Effective Lagrangians o
used successfully in Dirac-Hartree calculations all belong
the class of non-linear models with self-interaction terms
thes field and also sometimes in thev field. We are thus led
to calculate the linear response function of nuclei in RR
with nonlinear models. We shall discuss the GMR energ
obtained with three nonlinear models often found in the
erature, namely the NL-SH model of Sharmaet al. @7#, TM1
of Sugahara and Toki@8#, and NL1 of Reinhardet al. @4#.

We start from an effective Lagrangian of the form

L5C̄~ igm]m2MN2gss2gvgmvm2grtagmrm
a !C

1
1

2
]ms]ms2Us~s!2

1

4
WmnWmn1Uv~v!
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1

2
mr
2ramrm

a2
1
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RamnRmn

a 2C̄egmAm

1

2
~12t3!C

2
1

4
FmnFmn , ~1!

where

.
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Wmn[]mvn2]nvm,

Ramn[]mran2]nram1greabcrbmrcn,

Fmn[]mAn2]nAm, ~2!

Us~s!5
1

2
ms
2s21

1

3
g2s

31
1

4
g3s

4,

Uv~v!5
1

2
mv
2vmvm1

1

4
c3~vmvm!2. ~3!

In this Lagrangian there appear the nucleon fieldC, the me-
son fieldss, vm , rm

a , and the photon fieldAm . This general
form contains the three nonlinear parametrizations~NL-SH,
TM1, NL1! and also the linear parametrization~HS! as a
special case. The coupling constantsgs , gv , gr , thes me-
son massms and the parametersg2 , g3 , andc3 entering the
self-interaction termsUs andUv are adjusted to reproduc
bulk properties of nuclear matter and ground state prope
of finite nuclei. We note that the four models HS, NL-S
TM1, and NL1 correspond to decreasing incompressibilit
the values ofK` being 545, 355, 281, and 211 MeV, respe
tively.

The present calculation of the nuclear response func
in finite systems follows the method described in detail
Ref. @10#. Here, we shall only recall the main points in ord
to explain how the RRPA can be carried out in the case
nonlinear models. In Ref.@10# one introduced the Hartree, o
unperturbed polarization operatorP0(P,Q;k,k8;E) and the
RRPA, or perturbed polarization operatorP(P,Q;k,k8;E).
These polarization operators depend on some general
body operatorsP andQ, transferred momentak andk8, and
excitation energyE. For a given operatorQ and momentum
transfer k the Hartree and RRPA response functions
given by

R0~Q;k,E!5
1

p
Im P0~Q,Q;k,k;E!,

R~Q;k,E!5
1

p
Im P~Q,Q;k,k;E!. ~4!

These response functions describe the distributions of tra
tion strengths of the operatorQ. Since the unperturbed
ground state is treated in Hartree approximation, i.e.,
change interactions are omitted, the RRPA correspond
the ring approximation and therefore,P andP0 are related
by the usual integral equation@14,15#:

P~P,Q;k,k8,E!5P0~P,Q;k,k8,E!

2(
i
gi
2E d3k1d

3k2P0~P,G
i ;k,k1 ,E!

3Di~k12k2 ,E!P~G i ,Q;k2 ,k8,E!. ~5!

In this equation the indexi runs overs, v, andr mesons,
gi andDi are the corresponding coupling constants and m
son propagators,G i51 for s andG i5gm,gmtW for v andr,
respectively.
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The meson propagators can be constructed in the foll
ing way. The meson fields in the Lagrangian can be
panded around their mean~classical! values. In the same
manner that the first-order variations of the action with
spect to each meson field give the field equation~Klein-
Gordon equation! satisfied by that meson, the second-ord
variations give the inverse of the meson propagator@16#.
This amounts, in practice, to take the second derivative
the Lagrangian with respect to the meson field. For instan
for thes propagator in coordinate space we have

S ]m]m1
]2Us~s!

]s2 DDs~x,y!52d~x2y!. ~6!

Taking the Fourier transform of Eq.~6!, we come to the
expression of the propagator in momentum space:

~E22k2!Ds~k2k8,E!2
1

~2p!3

3E Ss~k2k1!Ds~k12k8,E!d3k15~2p!3d~k2k8!,

~7!

where Ss(k2k8) is the Fourier transform of
]2Us(s)/]s2:

Ss~k2k8!5E e2 i ~k2k8!•r@ms
212g2s~r !13g3s

2~r !#d3r ,

~8!

s(r ) being the classical value of thes field at pointr . In the
limit of the linear model one recovers the usual mes
propagator which is a local function in momentum space

In this work we are concerned with the isoscalar GM
where the isovectorr meson plays practically no role in th
residual particle-hole interaction. Therefore, in the integ
equation ~5! we keep only thes and v propagators. Of
course, ther meson plays an essential role at the mean fi
level inNÞZ nuclei and its contributions must be kept in th
Dirac-Hartree field when one builds the unperturbed po
ization operatorP0 @10#.

The above scheme is used to calculate the isoscalar m
pole strength distributions in the closed-shell nuclei16O,
40Ca, 90Zr, and 208Pb. Assuming spherical symmetry, th
Dirac-Hartree mean fields are calculated in coordinate sp
Then, the unperturbed polarization operatorP0 is con-
structed in momentum space. Equations~5! and~7! are mul-
tipole expanded and solved on a grid in momentum spa
The continuous single-particle spectrum is discretized by
method of Ref. @10# and an averaging parameterD
52 MeV is used to smooth out the response functions. T
is easily done by replacing the excitation energyE by
E1 iD/2 in all expressions. All other parameters concern
the harmonic oscillator basis used for continuum discreti
tion, the grid in momentum space, the energy cutoffs can
found in Ref@10#. The response functions are calculated
the operatorQ5r 2Y00g

0.
We first concentrate on medium and heavy nuclei wh

the GMR is clearly located experimentally@1#. In Fig. 1 are
shown response functions calculated for90Zr and 208Pb us-
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ing the HS, NL-SH, and TM1 models. The theoretical a
experimental GMR energies are indicated in Table I. It c
be seen that the GMR appears as a clear collective excita
in these nuclei. Indeed, the unperturbed strengths
strongly shifted downwards by the particle-hole interact
and the distributions become rather narrow, especially
208Pb. This collective effect is, however, less marked w
the HS model which has a high incompressibility than w
the two nonlinear models and one can see that the RR
response with HS exhibits structures reminiscent of the
perturbed spectrum. More quantitatively, we can characte
the degree of collectivity by the Landau damping wid
GLandauof the GMR. The present calculations do not take in
account any escape nor multi-particle-hole damping effe
and therefore, the width of the GMR is entirely due to t
Landau damping and to the averaging parameterD we have
used. Correcting for the effect ofD, the values ofGLandaucan

FIG. 1. Isoscalar monopole response functionsR0(E) ~Dirac-
Hartree, dashed curves! andR(E) ~RRPA, solid curves! calculated
in 90Zr and 208Pb using HS, NL-SH, and TM1 models. Arrow
indicate experimental energies of the GMR.

TABLE I. Peak energiesEpeak, centroid energiesĒ, inverse
energy-weighted momentsm21 , and Landau widths for finite nu
clei. The values for16O and 40Ca are calculated withD55 MeV.
The units ofEpeak, Ē andG are MeV, andm21 is in fm4 MeV21.

Epeak Ē m21 GLandau

HS 16.0 16.4 2862 2.1
NL-SH 13.0 13.7 3998 0.9

208Pb TM1 12.8 13.3 4160 0.9
EXP 13.760.40
HS 21.2 21.4 388 5.1

NL-SH 17.4 18.9 494 2.3
90Zr TM1 17.4 18.2 518 2.0

EXP 16.260.50
HS 24.5 24.6 86.3 8.7

40Ca NL-SH 22.0 23.4 90.7 4.6
TM1 21.5 22.8 94.7 4.5
HS 23.0 24.9 20.3 8.5

16O NL-SH 24.0 25.9 17.5 6.2
TM1 23.0 25.3 18.3 6.9
n
on
re

in

A
-
e

ts

be deduced from the full width at half maximum of the di
tributions. These values are indicated in Table I and th
show that NL-SH and TM1 predict similarGLandauwhereas
HS is markedly different. It is worth noting that the valu
GLandau50.9 MeV in 208Pb is consistent with what we know
experimentally about the total width and escape width of
GMR @17# and the fact that its calculated spreading width
small @18#.

A comparison of calculated peak energies with expe
ment shows that NL-SH and TM1 are doing fairly well wit
a slight underestimate in208Pb and overestimate in90Zr
while HS predicts too high values as already found in Re
@10,12#. Clearly, a lowering of the value ofK` is necessary
to obtain agreement with experiment but the link betwe
K` and GMR energies in finite nuclei is not obvious sin
NL-SH (K`5355 MeV) and TM1 (K`5281 MeV) are not
very different in these two nuclei. The finite nucleus incom
pressibility KA differs from K` by many correction terms
~surface, curvature, symmetry, Coulomb! which are neither
small nor model independent@1,2#. Thus, the GMR energy in
208Pb predicted by the HS model is only 1.25 times that
TM1 while the ratio ofK`

1/2 is 1.39.
Calculations have also been performed with HS, NL-S

and TM1 in lighter nuclei. In Fig. 2 are shown the isosca
monopole strength distributions in16O, 40Ca, 90Zr, and
208Pb calculated with TM1. When going from heavy
lighter systems, the trend is that collectivity becom
weaker, correlated and uncorrelated responses are close
Landau damping becomes predominent. Hence, it beco
difficult, in a nucleus like40Ca to define theoretically a GMR
energy or width. This finding completely agrees with expe
ment @1#. Peak energies, centroid energies of the distri
tions, inverse energy-weighted moments and Landau wid
are reported in Table I. In order to give a quantitative d
scription of those quantities for light nuclei, the values f
16O, 40Ca given in Table I are calculated withD55 MeV.
For the case of the NL1 model, our calculations f

40Ca, 90Zr, and 208Pb give extremely low centroid energie
and a dramatic loss of energy-weighted strength as comp
with the unperturbed distribution. This might be a sign th
part of the monopole strength has been shifted to the en
region below the ground state. In other words, if one dia
nalizes the RRPA matrix in configuration space there wo
appear imaginary eigenvalues. This can be confirmed by
culating the inverse energy-weighted moment:

FIG. 2. Same as Fig. 1, for16O, 40Ca, 90Zr, and 208Pb calcu-
lated with TM1.
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m21[(
n

u^0uQun&u2

En2E0
5
1

2
ReP~Q,Q;k,k;E50!, ~9!

where$un&,En% are the RRPA excited states and energies
the case of the other models~HS, NL-SH, TM1! we have
actually calculatedm21 either by relating it to the real part o
the polarization operator at zero energy~they are the values
shown in Table I! or by integrating the strength distribution
We generally find for the three models that the two meth
agree within 2–3%. However, for the NL1 model we fin
that Eq.~9! gives negative values ofm21 for

40Ca, 90Zr, and
208Pb. In a recent work@19# Vretenaret al.have also exam-
ined the question of isoscalar monopole energies in nu
using a time-dependent relativistic mean field approa
They also noticed that the NL1 excitation energies are s
tematically lower than those of other parametrizations
though the deviations are less dramatic in their case.
origin of the differences between the two methods dese
more investigation.

In conclusion, we have investigated the isoscalar mo
pole properties of finite nuclei predicted by various nonline
relativistic models frequently used in mean field calculatio
J

n,

B

n

s

ei
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l-
e
es
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The RRPA equations for Lagrangians containing se
interaction terms have been solved for the first time.
studied models can describe correctly static ground s
properties~binding energies, radii, etc.! of nuclei but not all
of them are able to predict the breathing mode in those nu
with success. We find that for some models such as TM1
NL-SH the GMR energies in medium and heavy nuclei a
correctly reproduced although their bulk incompressibilit
may differ by more than 20%. For other models like NL1 t
fact that the compression modulus is close to the commo
accepted value is no guarantee that the compressibility
finite nuclei will be satisfactory. This comes as a surprise a
a warning that the relation between compressibilities in b
and finite systems must be complex in the relativistic a
proach.
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@18# G. Colò, P. F. Bortignon, N. Van Giai, A. Bracco, and R. A

Broglia, Phys. Lett. B276, 279 ~1992!.
@19# D. Vretenar, G. A. Lalazissis, R. Behnsch, W. Po¨schl, and P.

Ring, Los Alamos Report nucl-th/96120242.


