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Resonances in9He and 10He
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The 10He nucleus, being a ‘‘maximal neutron-rich nucleus’’ in the ratio of neutrons to protons
(p:n51:4) among nuclei observed so far, is investigated within the8He1n1n model. The energy and decay
width of the three-body system are solved by applying the complex scaling method to the8He1n1n Hamil-
tonian, where the folding-type8He-n potential is carefully chosen through the analysis of the experimental
resonance energy 1.16 MeV of9He and in comparison with the9Li- n folding potential employed successfully
in the description of the loosely bound11Li system. The calculated result (Er51.8 MeV,G51.4 MeV! of the
10He ground state corresponds well to the observed values.@S0556-2813~97!05105-4#

PACS number~s!: 21.10.Dr, 21.45.1v, 21.60.Gx, 27.20.1n
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I. INTRODUCTION

Recently, many interesting properties of neutron-rich n
clei have been revealed by the development of radioac
nuclear beam experiments@1#. One of the most interesting
current topics is the observation of the10He nucleus by Kor-
sheninnikovet al. @2#. This nucleus is a ‘‘maximal neutron
rich nucleus’’ in the ratio of neutrons to proton
(p:n51:4) among nuclei observed so far. Since10He has
only one proton fewer than11Li which is a typical example
of neutron-rich nuclei, the simultaneous study of both nuc
10He and 11Li will give us more insight into the binding
mechanism of the neutron-rich nuclei.

The observed ground state of10He is an unbound stat
(S2n521.260.3 MeV! @2#, and decays to8He1n1n three-
body continuum states. As a similar but a loosely bou
system, 11Li has successfully been described by
9Li1n1n three-body model. Therefore,10He is also con-
sidered to be described by a8He1n1n three-body model. It
is very interesting and meaningful to understand the bind
mechanisms of10He and 11Li through a comparative stud
of those nuclei.

The 9Li1n1n and 8He1n1n systems have a differenc
only in their core clusters;9Li has one more proton com
pared with8He. Hence the difference should be described
the core-n interaction. Because of the lack of one proton f
9Li, the 8He-n interaction must have weaker binding abili
in comparison with the9Li- n interaction. Because of thi
weaker ability of the8He-n interaction, the8He1n1n sys-
tem is expected to have a more loosely bound or an unbo
resonance three-body structure, though the9Li1n1n sys-
tem has a loosely bound structure. Therefore, to unders
those properties in the binding mechanisms of8He1n1n
and 9Li1n1n systems consistently, we need a framewo
to treat not only three-body bound states, but also re
nances. However, the theoretical treatment of many-b
resonances becomes more complicated because of
boundary condition in the asymptotic region.

Recently, a very powerful method to calculate resona
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energies and widths of many-body resonances has been
veloped @3#. This method is called the complex scalin
method ~CSM! @4#. The most advantageous point of th
method is that we can solve many-body bound states
resonances on the same footing. This advantageous po
especially demonstrated in loosely bound nuclei such as
neutron-~proton-! rich nuclei or the hyper nuclei. Previou
applications of the CSM to several neutron-rich nuclei ha
succeeded in the explanations of the loosely bound and r
nance mechanisms@5–8#. Moreover, since many-body reso
nances which have large decay widths can also be solve
using this method, we can analyze the excited resonan
with large decay widths in addition to the ground state@7,8#.
Therefore, by using the CSM, we study more extensively
unbound ground and excited states of10He within the same
framework of the 8He1n1n model as that of the
9Li1n1n model for 11Li.
In the 9Li1n1n model, the folding potential has bee

used as the9Li- n interaction @8–10#. Recently, Katōand
Ikeda investigated the9Li- n folding potential based on the
new experimental data@11# of 10Li @8#. To understand the
binding mechanisms of9He and10He quantitatively, and to
compare the results with the detailed analyses of10Li and
11Li @8–10#, we use the same-type8He-n folding potential.
The purpose of this paper is to gain an understanding

the ground and excited resonances in9He and10He. We use
the CSM to solve the many-body resonances, and use
accumulated knowledge for10Li to investigate the8He-n
interaction. Characteristic points of our study are as follow
~i! We use a folding potential as a more realistic8He-n
interaction which can reproduce the resonance energy of
ground state of9He, ~ii ! we solve the ground state of10He as
a three-body resonance by using the CSM, and~iii ! we are
trying for the consistent understanding of the binding mec
nisms of 9He, 10He, 10Li, and 11Li explicitly.

In reference to the theoretical study of10He so far, the
most quantitative one has been performed with the hyp
spherical coordinate method based on the8He1n1n model
by Korsheninnikov, Danilin, and Zhukov@12#. Their ob-
tained ground state energies of10He are 0.7–0.9 MeV and
the decay widths are 150–300 keV. But their determinat
2379 © 1997 The American Physical Society
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2380 55S. AOYAMA, K. KATŌ , AND K. IKEDA
of the parameters of the8He-n potential is based on the rea
S-matrix theory, and this usually makes three-body syste
overbound in the three-body calculation based on the c
plex S-matrix theory.

In Sec. II, we only briefly explain the present cor
nucleus1 valence-neutrons model based on the cluster
bital shell model~COSM! @13# and complex scaling metho
~CSM! @4#, whose details have been given in our previo
papers@5,7,8#. In Sec. III, we analyze the difference betwe
the 8He-n interaction and the9Li- n interaction, and inves-
tigate the8He-n folding potential based on the analysis
the observed ground state of9He. In Sec. IV, we calculate
energies and widths of the excited states of9He based on the
8He1n model used for the ground state. In Sec. V, we a
lyze the ground and excited resonant states10He by using the
obtained8He-n folding potential. Section VI is devoted t
summary and conclusion.

II. MODEL AND METHOD

First, we explain the core-nucleus (8He! plus valence-
neutrons model. The Hamiltonian is given as

H5Tcore2Tc.m.1(
i51

n

@Ti1UJ~r i !1UF~r i !#1(
i. j

Vnn~r i j !,

~1!

whereTcore, Tc.m., andTi are kinetic energy operators of th
core nucleus, the center-of-mass of the total system, and
i neutron, respectively. For the potentialUJ between the core
nucleus and thei neutron, we employ a8He-n folding po-
tential. TheUF term is a pseudopotential to project out t
Pauli-forbidden states of the intercluster motion. For
neutron-neutron interaction Vnn , we employ the central par
of the Minnesota force@14# with an exchange paramete
u50.95.

We can get solutions of the Schro¨dinger equation with the
above Hamiltonian by solving an eigenvalue problem. W
expand the wave functions by the COSM bases@13#. They
are given as

FJM5 (
i1 ,l1 , j 1

(
i2 ,l2 , j 2

, . . . , (
i n ,l n , j n

ci1 ,l1 , j 1 , . . .

3A@f
l1 j 1

bi1 ~r1! ^ f
l2 j 2

bi2 ~r2! ^ •••^ f
l nj n

bi n ~rn!#JM ,

~2!

whereA is an antisymmetrization operator for valence ne
trons andci1 ,l1 , j 1 , . . . are coefficients for a linear combina
tion of products of Gaussian-type wave functions with s
parametersbi . The size parametersbi are given by a com-
mon geometric progressionb0g

( i21); i51, . . . ,nmax, where
b0, g, andnmax are the first term, the geometric ratio, and t
number of basis functions, respectively.

Next we explain the practical prescription how to sol
the resonance solutions by using the CSM. The comp
scaling is defined by the following transformation of a rad
coordinate~and its conjugate momentum!:

r→rexp~ iu! @p→pexp~2 iu!#, ~3!
s
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where u is a scaling parameter and real values should
taken. By doing this transformation for relative coordinat
between clusters, we obtain the complex scaled Hamilton
H(u).

According to the so-calledABC theorem@4#, we can ob-
tain resonance energies (Er) and widths (G) as eigenvalues
of the complex scaled Hamiltonian~non-Hermitian! H(u);
resonance eigenvalues should be complex numb
(Er2 iG/2) independent of the scaling paramet
u„. 1

2tan@G/(2Er)#…. Also, one of the very promising prop
erties of the CSM is that, independently ofu, the Hamil-
tonianH(u) gives the same bound-state~real and negative!
eigenvalues as those of the original~nonscaled! Hamiltonian.
All other eigenvalues ofH(u) except the ones of bound an
resonance solutions depend onu, and its dependence is regu
larly proportional to exp(22iu).

To obtain the resonance solutions by diagonalizing
matrix of H(u), some techniques might be needed beca
the ABC theorem is not necessary satisfied for a limit
number of basis functions. Since the three-body system
many degrees of freedom itself, it is impossible to emplo
large number of basis states for every degree of freedom

Even if we use a limited number of basis functions, w
can determine accurate resonance eigenvalues by sear
stationary points of the eigenvalues for the scaling an
u~‘‘ u-trajectory’’! @8#. In addition to the ‘‘u-trajectory’’
method to search for a stationary point, we can also de
mine the resonance position from theb0 dependence~‘‘ b
trajectory’’! of complex eigenvalues for the resonance so
tions @8#. See Refs.@7,8# for details of these methods t
obtain broad width resonance solutions.

III. 8He-n POTENTIAL

In the following, we explain the explicit form of the
8He-n folding potential and how to determine potential p
rameters. The folding potentialUJ(r ) is expressed by a sum
of central termUJ

cnt(r ) and spin-orbit termUJ
ls(r ):

UJ~r !5UJ
cnt~r !1UJ

ls~r !. ~4!

The central part of the folding potentialUJ(r ) is constructed
from a nucleon-nucleon interaction with a Gaussian form.
the present calculation, we use modified Hasegawa-Na
~MHN! potential and Hasegawa-Nagata No. 1~HN1! poten-
tial @15#. These nucleon-nucleon potentials have also b
used in the folding potential between9Li and a neutron@8#,
and the second-range strengthv2

0 has been slightly change
to v2

0(11d) @10#. The reason for tuning inv2
0 is that this

potential has been made for the normal nuclei based on
reaction-matrix calculation@15#. Therefore this potential may
be slightly modified for the unstable nuclei, especially t
unbound nuclei in this case. As will be discussed later,
will first use the exact same parameterd as in the case of the
9Li- n folding potential in the first place; we will next dete
mine the best parameter for the8He-n folding potential
based on the experimental data of9He @16,17#.

By using this Gaussian-type nucleon-nucleon interact

@(nvn
0(Wn1BnP

s1HnP
t1MnP

st)e2rnr
2
# and assuming a

neutron sub-closed-shell configuration (p3/2)
4 for the 8He

core, the8He-n central potential is calculated as
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UJ
cnt~r !5(

n
S 16

7ln116D
3/2

f n
cntSA8

9

r

bD
3expF2

9ln

7ln116SA8

9

r

bD
2G , ~5!

where

f n
cntSA8

9

r

bD 5vn
0F ~8Wn14Bn26Hn23Mn!

2
16ln

7ln116
~2Wn1Bn22Hn2Mn!

1~2Wn1Bn22Hn2Mn!

3
96~ln!

2

~7ln116!2SA8

9

r

bD
2G . ~6!

A size parameter ofb51.85 fm of the harmonic oscillato
~HO! wave function for 8He is here taken to fit the rm
matter radius of the experimental data (2.4960.04 fm! @18#
andln is given as 2rnb

2 with the nucleon-nucleon potentia
rangern . The parametersWn , Bn , Hn , andMn express the
exchange character of thenth range term in the nucleon
nucleon potential.

The spin-orbit part of the folding potentialUJ(r ) can be
constructed from a nucleon-nucleon spin-orbit potential i
similar way. But its calculation is rather cumbersome The
fore, as in the10Li case, we assume that its potential form
proportional to the gradient of the8He densityr(r ). This
leads to the form

UJ
ls~r !5 1

2 V0
ls@ j ~ j11!2 l ~ l11!2 3

4 # f ls~r !, ~7!

where

f ls~r !52
128

91A14pb3
expF2

8

7S rbD
2GF11

64

7 S rbD
2G . ~8!

We have parameters in the folding potentialUJ(r ): d in
UJ
cnt(r ) andV0

ls in UJ
ls(r ). First, we examine the8He-n so-

lutions by using the Katō-Ikeda parametrizations@8# based
on the recent experimental data of10Li @binding energy
(BE)520.42 MeV# @11#. The parameter set~I! is
d50.0442 andV0

ls544.20~MeV fm3) with the MHN poten-
tial. The parameter set~II ! is d50.0866 andV0

ls551.52
~MeV fm3) with the HN1 potential. In the10Li case, the
most favored one is set~I! with the MHN potential because
the potential~I! is able to reproduce not only the bindin
energy of the ground 11 state of 10Li but the observed first
excited 21 state which is considered to be the spin-doub
partner of the ground state. On the other hand, these s
doublet states almost degenerate in the result of the pote
~II ! @8#. This difference between the results of two potent
comes from the fact that the HN1 potential does not have
odd-state potential. More detailed discussion is given in R
@8#.

Moreover, we introduce a pseudopotentialUF(r ) @19# in
order to project out the Pauli-forbidden states between8He
and neutron. This pseudopotential is expressed as
a
-

t
in-
ial
l
n
f.

UF~r!5l@ u~0s1/2!&^~0s1/2!u1u~p3/2!&^~p3/2!u#, ~9!

whereu(0s1/2)& and u(p3/2)& are the HO wave functions oc
cupied by neutrons in the core nucleus, and the strengthl is
taken large~104–108) enough to project out the Paul
forbidden states into a high energy region.

By using these parameters,d andV0
ls, we calculated the

energy and width of the ground state of9He with the CSM.
The obtained results are shown in Table I in comparison w
the previous calculations of10Li. The obtained resonanc
energies of9He are higher than those of10Li and the decay
widths G are much larger. This result can easily be und
stood because the8He-n folding potential is shallower than
the 9Li- n one and the height of the centrifugal barrier
these nuclei is around 1 MeV. The resonance energie
9He are higher than the barrier height.
It can be seen at a glance that the results for9He given in

Table I are in good agreement with the experimental d
Er51.16 MeV. The differences of the resonance energies
0.2–0.4 MeV. When we take into account the experimen
error 0.1 MeV, we do not have to change the parame
values. However, the obtained resonance widths are v
large (;3 MeV!.

Experimentally, we usually observed resonances w
G/2Er!1 and it is very difficult to observe the states near
G/2Er51 ~de Broglie condition!. Although the decay width
has not yet been obtained experimentally, it is reasonabl
think the widthG may be smaller than 2 times the resonan
energyEr . Therefore, we examined the parameters to m
the width sharper by keeping the experimental resonance
ergy atEr51.16 MeV.

In Fig. 1, we show thed dependence of energy and wid
in the case of set~I!. The d dependence of the resonan
energy is not so strong; on the other hand, the resona
width shows the larged dependence. Therefore, we ca
make the width sharper without changing the resonance
ergy so much. The reason for the smalld dependence of the
resonance energy can be understood from the fact that
height of the centrifugal potential barrier is around 1 Me
which is the approximately same position as its resona
energy and depends little ond. In Fig. 2, we show the ex-
plicit form of the 8He-n folding potential with
\2l ( l11)/2mr 2 for the case ofd50.0442 andd50.102 in
the MHN potential. The parameterd changes the potentia
depth at 2–3 fm and does not have a large influence on
height but does influence the thickness of the potential b
rier.

The d parameters which reproduces the experimen
resonance energyEr51.16 ~MeV! @12# are 0.102 for the
MHN potential and 0.139 for the HN1 potential. The o
tained decay widthG is 1.62 MeV for the MHN potential

TABLE I. Energies and widths of the ground state of9He in
comparison with the previous calculations of10Li. See text for the
parameter sets~I! and ~II !.

Er
calc of 9He ~MeV! Er

calc of 10Li ~MeV!

I Er51.55,G53.08 Er50.420,G50.286a

II Er51.30,G52.85 Er50.422,G50.322a

aReference@8#.
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2382 55S. AOYAMA, K. KATŌ , AND K. IKEDA
and 2.03 MeV for the HN1 potential, respectively. Hereafte
we call these potentials with newly chosen parameterd sets
~I 8) and ~II 8).

We checked theb dependence (b is the HO size param-
eter of the8He wave function! of the folding potential on the
resonance energy and width of9He, but the results are little
changed the present calculation. Therefore, we fix
b51.85 fm which reproduces the experimental rms mat
radius (2.4960.04 fm! @18# of 8He as mentioned before.

IV. 8He1n EXCITED RESONANCES IN 9He

Experimentally, two excited resonances (Ex51.17 MeV,
Ex53.8 MeV! are observed as candidates fors- and
d-state excitation of a valence neutron@16#. It is very inter-
esting to study whether these states are explained
8He1n two-body resonances of9He. By using the CSM, we
also calculated the excited resonances of9He. The 8He-n
potential used in the calculation of the excited states is giv
by set~I 8).

The obtained results are presented in Table II. These
sults are very similar to those of10Li @8#. In the 10Li case,

FIG. 1. The d dependence of the energy and width for th
ground state of9He. The solid line and distance between dash
lines indicate the resonance energy and width, respectively.
using nucleon-nucleon interaction is the MHN potential.

FIG. 2. The 8He-n folding potential with the MHN potential.
The solid line shows thep1/2 potential which reproduces the exper
mental binding energy of9He. The dashed line shows thep1/2 po-
tential which has the same parameter as10Li @8#.
,
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by
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e-

we obtained eight resonances atEr56–7 MeV with the
widths ofG57–15 MeV. Both results of9He and10Li sug-
gest no sharp two-body resonances in the low energy re
(Ex,4 MeV!. The obtainedd5/2 and d3/2 resonances of
9He indicate the smalll •s splitting and their energies ar
reversed in comparison with those of usual bound sta
However, the results do not mean that the spin-orbit poten
is different from the usual one. The presentl •s potential for
the d3/2 state is also more repulsive than that for thed5/2
state, but the spin-orbit potential does not give a large in
ence on thed3/2 state because the wave function of thed3/2
state is more extended than that of thed5/2 state. Further-
more, we cannot obtains-wave resonances in9He as well as
in 10Li. Becauses states have no centrifugal barrier, the
are no resonances of sharp widths in the case of the sm
Gaussian-type potential. To examine the possibility of virtu
s states, we searched the parameter value ofd which barely
makes a bound state or not. Such a potential is found to
about 10% deeper in comparison with the present poten
depth.

V. RESONANCES IN 10He

We investigated the complex eigenvalues of the thr
body resonances of10He (Jp501) by using two paramete
sets~I! and ~I 8). Set~I 8) was obtained in the previous se
tion, Sec. III, to reproduce the observed resonance energ
9He @16#, and set~I! given in Ref.@8#.
First, in Fig. 3, we show the distribution of complex e

genvalues ofH(u50.50 rad.! with the 8He-n potential given
by set ~I 8). In this calculation, we employ the
@(p1/2)(p1/2)] 01 channel wave functions in the COSM. A
three-body resonance of10He is obtained at the region
aroundEr @5Re(E)]52.1 MeV andG @52Im(E)#51.9
MeV. After calculating so-calledu and b0 trajectories@8#,
we obtained more accurate valuesEr52.07 MeV and
G51.85 MeV.

d
he

TABLE II. Energies and widths ofd states for9He in the case
of set ~I 8).

l j Er ~MeV! G ~MeV!

d5/2 7.80 11.5
d3/2 7.46 20.2

FIG. 3. The 01 eigenvalue distribution of the complex scale
Hamiltonian withu50.50 rad.
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55 2383RESONANCES IN9He AND 10He
As seen in Table III, the resonance energies obtained
using the parameter sets~I! and ~I 8) are different by about
890 keV. This result reflects the stronger binding ability
the 8He-n interaction of set~I 8) in comparison with that of
set~I!. In this framework, we can obtain not only three-bo
resonances (10He! but two-body resonances (9He! at the
same time. We can also see the solution corresponding to
resonance of9He at Er51.16 MeV @G52Im(E)51.62
MeV# in Fig. 3, though another valence neutron is a co
tinuum state. Thus, it is confirmed that this three-body c
culation reproduces the two-body resonance of the s
system 9He at Er51.16 MeV obtained in the two-body
calculation.

Next, we examined the ground state energy of10He
within a larger model space in the COSM, to include t
higher partial wave effects and then-n pairing energy. As
we have discussed in our previous papers for6He and 11Li
@5,9#, these effects make the binding energy more;1 MeV
bound. The above obtained results for the binding energ
10He suggest a shortage by;0.8 MeV from that of experi-
mental data (BE521.260.3 MeV!. But in the 10He case,
the resonance energy is near the energy region of the
trifugal barrier. Therefore, we can easily see that the re
nance energy does not change so much~a few hundred keV
order! as the case of bound states in6He and11Li. However,
because of the three-body effect from then-n pairing inter-
action, the widthG will change.

We show the results of the resonance energies~solid line!
with the obtained decay widths~dotted line! in Fig. 4. The
obtained resonance energy isEr51.8 MeV and the decay
width G51.4 MeV for a 28-channel coupled equation. T
channels used here are (p1/2)0

21(d5/2)0
21(d3/2)0

2

1(s1/2)0
21( f 7/2)0

21•••1( l514,j527/2)0
2. We can evi-

dently see that three-body effects also appear in the obta
decay widthG. Because of then-n interaction, the decay
width G of 10He becomes sharper than9He. In other words,

TABLE III. Energies and widths of the10He ground state.

8He-n potential Channel Er ~MeV! G ~MeV!

~I! (p1/2)
2 2.96 4.25

~I 8) (p1/2)
2 2.07 1.85

FIG. 4. The ground state energy convergence for10He.
y

f

he

-
l-
b-

of

n-
o-

ed

the ground state of10He is stabler than9He, though the
calculation indicates that the resonance energy of10He is
above the9He1n threshold.

The present calculation has been done in a large mo
space. Even if a larger model space includingT-type basis
wave function@9# is employed, the binding energy of th
present calculation is estimated to increase by several 10
from the corresponding results of6He @5# and 11Li @9#. Fur-
thermore, we may also calculate in a larger model sp
including the core polarization of8He. Preliminary calcula-
tions of the core excitation effects on the binding energy
11Li within a 9Li*1n1n model indicate that11Li is more
bound by several 100 keV than that of the usual three-b
model. Those improvements for the model space will ma
the calculated binding energy of10He near to the experimen
tal one. However, taking into account the experimental er
of the binding energy of10He (60.3 MeV!, we think that the
present result is acceptable for this stage.

Moreover, we have calculated possible excited resonan
in 10He assuming one-neutron-excited configurations fr
the p1/2 orbit to s and d orbits. We obtain resonance solu
tions which have large decay widths. Here, we disc
a low-lying resonance solution of the@p1/2d5/2#3-
configuration which is solved atEr58.5 MeV andG511
MeV. These energy and width are reasonable and consis
with the results of9He. The calculated resonance energy
the 8He1n system isEr51.16 MeV for thep1/2 state and
Er57.80 MeV for the d5/2 state. So with one valence
neutron in thep1/2 orbit and another in thed5/2 orbit, the
resonance energy of the8He1n1n system is expected a
;8.96 MeV. Furthermore, this energy may be smaller due
the interaction between valence neutrons and a three-b
effect. The sharper decay width of the 32 state of 10He in
comparison with that of thed5/2 state of 9He is also under-
stood in the same way. Other resonance solutions are
obtained in the energy region of 7–8 MeV. A resonan
solution of the 12 state associated with a softE1 resonance
in this model space is predicted with the@(p1/2)(d3/2)] 12

channel basis function atEr58.7 MeV andG519 MeV.
We checked the solution assuming that t

@(s1/2)(s1/2)] 01 state is the ground state of10He. We did not
obtain the resonance pole of the10He by using the very
strong potential parameter which makes thes state of 10Li
barely bound. On the other hand, for the@(p1/2)(p1/2)] 01

state, by using the same potential, we obtained the bo
solution which is inconsistent with the experimental one.

VI. SUMMARY AND CONCLUSION

In this paper, we studied the8He-n folding potential
based on the analyses of the observed ground state of9He.
We used the folding potential between8He and a valence
neutron in the similar way as the analysis of10Li @8#. The
8He-n folding potential has two parameters as the9Li- n
folding potential does; one isd which tunes the strength o
the second range of the nucleon-nucleon potent
v2(11d), and the other is the strengthV0

ls of the spin-orbit
potential. For the exactly same parameterd andV0

ls as the
case of the9Li- n folding potential, we obtained the consis
tent result with the experimental binding energy of9He.
However, this result shows a little underbinding and havin



ne

ot
ite

in
t

c

n

be
ing

tron
at
cay

ce

ci-

2384 55S. AOYAMA, K. KATŌ , AND K. IKEDA
large decay width in comparison with the experimental o
Therefore, we researched the best parameterd of the
8He-n folding potential for the experimental data of9He
@16# in order to investigate the excited states of9He and the
ground and excited states of10He.

By using the obtained8He-n folding potential, we calcu-
lated resonance energies ofd states in9He at;7 MeV with
rather large decay widths. Buts-wave resonances were n
obtained in this calculation. Therefore, the observed exc
states atEx51.17 MeV andEx53.8 MeV cannot be ex-
plained by the simple two-body model. If we want to expla
these experimentally observed excited states, we mus
clude 8He core excitations such as neutron (p3/2)

21(p1/2)
configurations.

By using 28-channel basis functions in the COSM spa
we also calculated the ground state energy and width
10He. The obtained result isEr51.8 MeV andG51.4 MeV.
This result corresponds well to the experimental resona
.
-

a-

.

.

on
.

d

in-

e,
of

ce

energyEr51.2 MeV and widthG<1.2 MeV. Taking into
account the experimental error of the binding energy (60.3
MeV!, the present result is acceptable, although we may
able to do a larger model space calculation includ
T-type basis wave function. For the excited states of10He,
we calculated several resonances by using valence-neu
s, and d configurations. However, the results indicate th
while the resonance energies are a little high, the de
widths are very large.
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