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The °He nucleus, being a “maximal neutron-rich nucleus” in the ratio of neutrons to protons
(p:n=1:4) among nuclei observed so far, is investigated within%He+ n+n model. The energy and decay
width of the three-body system are solved by applying the complex scaling method &dehen+n Hamil-
tonian, where the folding-typ€He-n potential is carefully chosen through the analysis of the experimental
resonance energy 1.16 MeV &fe and in comparison with th&L_i- n folding potential employed successfully
in the description of the loosely bourtdLi system. The calculated resuE(=1.8 MeV,I'=1.4 MeV) of the
%He ground state corresponds well to the observed vajG&556-28187)05105-4

PACS numbds): 21.10.Dr, 21.45tv, 21.60.Gx, 27.20:n

[. INTRODUCTION energies and widths of many-body resonances has been de-

veloped [3]. This method is called the complex scaling

Recently, many interesting properties of neutron-rich numethod (CSM) [4]. The most advantageous point of this
clei have been revealed by the development of radioactivg’ethod is that we can solve many-body bound states and
nuclear beam experimenf&]. One of the most interesting 'éSonances on the same footing. This advantageous point is
current topics is the observation of tA@He nucleus by Kor- especially demonstrated in loosely bound nuclei such as the

heninnikovet al. [2]. Thi | o imal i neutron-(protony rich nuclei or the hyper nuclei. Previous
sheninnikovet al. [2]. ThiS nucleus 1s a “maximal neutron- applications of the CSM to several neutron-rich nuclei have

rich nucleus” in the ratio of neutrons to protons gcceeded in the explanations of the loosely bound and reso-
(p:n=1:4) among nuclei observed so far. SintHe has  nance mechanisnf§—8§|. Moreover, since many-body reso-
only one proton fewer than'Li which is a typical example nances which have large decay widths can also be solved by
of neutron-rich nuclei, the simultaneous study of both nucleusing this method, we can analyze the excited resonances
0He and Li will give us more insight into the binding with large decay widths in addition to the ground s{ate3].
mechanism of the neutron-rich nuclei. Therefore, by using the CSM, we study more extensively the
The observed ground state &fHe is an unbound state Unbound ground and excited states'8fle within the same

8
(S,n=—1.2+0.3 MeV) [2], and decays t§He+n+ n three- framework of the °He+n+n model as that of the

9 i 11
body continuum states. As a similar but a loosely bound Lllx?hznglinﬁdrﬂrfr?rmg(;el the folding potential has been
system, Li has successfully been described by a ! ’ ng p !

o e used as the’Li-n interaction[8-10. Recently, Katoand
Li+n-+n three-body model. ThereforéHe is also con- oz investigated théLi- n folding potential based on the
sidered to be described by?le+ n+ n three-body model. It new experimental datfl1] of °Li [8]. To understand the

is very interesting and meaningful to understand the bindingyinging mechanisms ofHe and °He quantitatively, and to
mechanisms of ®He and '!Li through a comparative study compare the results with the detailed analyses®f and
of those nuclei. 1 [8—10], we use the same-typtHe-n folding potential.

The °Li + n+n and 8He+ n+ n systems have a difference  The purpose of this paper is to gain an understanding of
only in their core clusters’Li has one more proton com- the ground and excited resonancesite and*’°He. We use
pared with®He. Hence the difference should be described bythe CSM to solve the many-body resonances, and use the
the coren interaction. Because of the lack of one proton foraccumulated knowledge fot’Li to investigate the®He-n
%Li, the 8He-n interaction must have weaker binding ability interaction. Characteristic points of our study are as follows:
in comparison with the’Li- n interaction. Because of this (i) We use a folding potential as a more realisfide-n
weaker ability of theBHe-n interaction, the®He+n+n sys-  interaction which can reproduce the resonance energy of the
tem is expected to have a more loosely bound or an unbourground state oPHe, (i) we solve the ground state éfHe as
resonance three-body structure, though the+n+n sys- a three-body resonance by using the CSM, &g we are
tem has a loosely bound structure. Therefore, to understartdying for the consistent understanding of the binding mecha-
those properties in the binding mechanisms®efe+n+n  nisms of °He, %He, °Li, and Li explicitly.
and °Li+n+n systems consistently, we need a framework In reference to the theoretical study &He so far, the
to treat not only three-body bound states, but also resomost quantitative one has been performed with the hyper-
nances. However, the theoretical treatment of many-bodgpherical coordinate method based on i+ n-+n model
resonances becomes more complicated because of thy Korsheninnikov, Danilin, and Zhuko{12]. Their ob-
boundary condition in the asymptotic region. tained ground state energies YHe are 0.7-0.9 MeV and

Recently, a very powerful method to calculate resonancéhe decay widths are 150—300 keV. But their determination
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of the parameters of thBHe-n potential is based on the real Where 6 is a scaling parameter and real values should be
S-matrix theory, and this usually makes three-body system#aken. By doing this transformation for relative coordinates
overbound in the three-body calculation based on the comPetween clusters, we obtain the complex scaled Hamiltonian
plex S-matrix theory. H(6).

In Sec. Il, we only briefly explain the present core- According to the so-calledBC theorem[4], we can ob-
nucleus+ valence-neutrons model based on the cluster ortain resonance energieg,) and widths (") as eigenvalues
bital shell modelCOSM) [13] and complex scaling method of the complex scaled Hamiltoniamon-Hermitian H(#6);
(CSM) [4], whose details have been given in our previousresonance eigenvalues should be complex numbers
paperd5,7,9. In Sec. Ill, we analyze the difference between (E,—iI'/2) independent of the scaling parameter
the 8He-n interaction and théLi- n interaction, and inves- (> 3tar{T'/(2E,)]). Also, one of the very promising prop-
tigate the ®He-n folding potential based on the analysis of erties of the CSM is that, independently 6f the Hamil-
the observed ground state 8He. In Sec. IV, we calculate tonianH(#6) gives the same bound-staieal and negative
energies and widths of the excited stateSide based on the eigenvalues as those of the origitabnscalegiHamiltonian.
8He+ n model used for the ground state. In Sec. V, we anaAll other eigenvalues oH(6) except the ones of bound and
lyze the ground and excited resonant stadféte by using the resonance solutions depend @rend its dependence is regu-
obtained®He-n folding potential. Section VI is devoted to larly proportional to expf 2i6).

summary and conclusion. To obtain the resonance solutions by diagonalizing the
matrix of H(#), some techniques might be needed because
1. MODEL AND METHOD the ABC theorem is not necessary satisfied for a limited

number of basis functions. Since the three-body system has
First, we explain the core-nucleu§He) plus valence- many degrees of freedom itself, it is impossible to employ a
neutrons model. The Hamiltonian is given as large number of basis states for every degree of freedom.
Even if we use a limited number of basis functions, we
can determine accurate resonance eigenvalues by searching
H:Tcore_Tc.m.*'i:E1 [Ti+UJ(ri)+UF(ri)]+iE>. Van(Tij);  stationary points of the eigenvalues for the scaling angle
. (1) 0(* 6-trajectory”) [8]. In addition to the ‘B-trajectory”
method to search for a stationary point, we can also deter-
whereTqoe, Tem, andT; are kinetic energy operators of the mine the resonance position from thg dependencé™ b
core nucleus, the center-of-mass of the total system, and tHeajectory”) of complex eigenvalues for the resonance solu-
i neutron, respectively. For the potenti&j between the core tions [8]. See Refs[7,8] for details of these methods to
nucleus and thé neutron, we employ &He-n folding po-  ©obtain broad width resonance solutions.
tential. TheUg term is a pseudopotential to project out the
Pauli-forbidden states of the intercluster motion. For the ll. °He-n POTENTIAL
neutron-neutron interaction \,, we employ the central part
of the Minnesota forcd14] with an exchange parameter In the following, we explain the explicit form of the
u=0.95. 8He-n folding potential and how to determine potential pa-
We can get solutions of the Scluinger equation with the rameters. The folding potenti&l,(r) is expressed by a sum
above Hamiltonian by solving an eigenvalue problem. Weof central termUS™(r) and spin-orbit ternU'Js(r):
expand the wave functions by the COSM bagE3]. They

n

are given as UJ(r):Ugnt(r)‘*'U!]S(r)- (4)
The central part of the folding potentitll;(r) is constructed
Oiy= > X ..., > civlnine from a nucleon-nucleon interaction with a Gaussian form. In
EYER NP APHP in-Insin the present calculation, we use modified Hasegawa-Nagata
b; by by (MHN) potential and Hasegawa-Nagata No(HN1) poten-
XAl 5 ()@ 5 ()@@ 12 (M) om, tial [15]. These nucleon-nucleon potentials have also been

5 used in the folding potential betweéhi and a neutrori8],
) and the second-range stren@t‘gw has been slightly changed

O . . o . .
where A is an antisymmetrization operator for valence neu-0 v2(1+ ) [10]. The reason for tuning im; is that this
trons andc'1''11: - - are coefficients for a linear combina- Potential has been made for the normal nuclei based on the

tion of products of Gaussian-type wave functions with size®@ction-matrix calculatiofiL5]. Therefore this potential may

parameterd, . The size parametels are given by a com- be slightly modified for the unstable nuclei, especially the

mon geomeltric progressid%y(i—l). i=1 n where unbound nuclei in this case. As will be discussed later, we
L] y = imax:

bo, v, andn,,.are the first term, the geometric ratio, and the‘g"',I first use the exact same paramegas in the case of the
number of basis functions, respectively. L_|- n folding potential in the first place; we wlll next de_:ter-
Next we explain the practical prescription how to solve Mine the best parameter for théHe-n folding potential
the resonance solutions by using the CSM. The compIeJEkased on the experimental data e [16,17. _ _
scaling is defined by the following transformation of a radial  BY using this Gaussian-type nucleop-nucleon Interaction
coordinate(and its conjugate momentym [20d(W,+B,P°+H,P™+M,P e "] and assuming a
neutron sub-closed-shell configuratiopsf)* for the 8He
r—rexpid) [p—pexp—if)], 3 core, the®He-n central potential is calculated as
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A size parameter ob=1.85 fm of the harmonic oscillator
(HO) wave function for®He is here taken to fit the rms
matter radius of the experimental data (2:4R04 fm) [18]
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TABLE |. Energies and widths of the ground state %e in
comparison with the previous calculations 8Ei. See text for the
parameter setd) and(ll).

E@° of °He (MeV) ESC of 1% (MeV)

E,=1.55,'=3.08
I E,=1.30,'=2.85

E,=0.420,'=0.286
E,=0.422,'=0.322

®Referencd8].

Ur(r)=N[[(0819)){(081) | + (P32 ){(P3)|],  (9)

where|(0s,/,)) and|(ps;)) are the HO wave functions oc-
cupied by neutrons in the core nucleus, and the strexngsh
taken large(10%°-108) enough to project out the Pauli-
forbidden states into a high energy region.

By using these parameter§,and V'(f, we calculated the
energy and width of the ground state Yfle with the CSM.
The obtained results are shown in Table | in comparison with
the previous calculations of’Li. The obtained resonance
energies of’He are higher than those dfLi and the decay
widths I" are much larger. This result can easily be under-

and\, is given as 2,b? with the nucleon-nucleon potential stood because théHe-n folding potential is shallower than

rangep,. The parameterg/,,, B,, H,, andM, express the
exchange character of theth range term in the nucleon-
nucleon potential.

The spin-orbit part of the folding potenti&l;(r) can be

the °Li-n one and the height of the centrifugal barrier of
these nuclei is around 1 MeV. The resonance energies of
%He are higher than the barrier height.

It can be seen at a glance that the results’fée given in

constructed from a nucleon-nucleon spin-orbit potential in @Table | are in good agreement with the experimental data
similar way. But its calculation is rather cumbersome There£, =1.16 MeV. The differences of the resonance energies are
fore, as in the'®Li case, we assume that its potential form is 0.2-0.4 MeV. When we take into account the experimental

proportional to the gradient of thBHe densityp(r). This
leads to the form

US(H=3VELiG+D—1(0+1)-21f'r), (7
where

o= sz Sl S

(= o1/ia0: " " 7lb 7\b/] |

We have parameters in the folding potentibj(r): & in
US"(r) andV§ in U'S(r). First, we examine th&He-n so-
lutions by using the Katdkeda parametrization8] based
on the recent experimental data ofLi [binding energy
(BE)=—0.42 MeV] [11]. The parameter set(l) is
5=0.0442 and/ = 44.20(MeV fm?3) with the MHN poten-
tial. The parameter sefll) is 6§=0.0866 andV{)S=51.52
(MeV fm?3) with the HN1 potential. In the®Li case, the
most favored one is sét) with the MHN potential because

error 0.1 MeV, we do not have to change the parameter
values. However, the obtained resonance widths are very
large (~3 MeV).

Experimentally, we usually observed resonances with
I'/2E,<1 and it is very difficult to observe the states near to
I'/2E, =1 (de Broglie condition Although the decay width
has not yet been obtained experimentally, it is reasonable to
think the widthI" may be smaller than 2 times the resonance
energyE, . Therefore, we examined the parameters to make
the width sharper by keeping the experimental resonance en-
ergy atE,=1.16 MeV.

In Fig. 1, we show the& dependence of energy and width
in the case of setl). The § dependence of the resonance
energy is not so strong; on the other hand, the resonance
width shows the larged dependence. Therefore, we can
make the width sharper without changing the resonance en-
ergy so much. The reason for the smalllependence of the
resonance energy can be understood from the fact that the
height of the centrifugal potential barrier is around 1 MeV,

the potential(l) is able to reproduce not only the binding which is the approximately same position as its resonance

energy of the ground "1 state of 1°Li but the observed first

excited 2 state which is considered to be the spin-doubletplicit

energy and depends little of In Fig. 2, we show the ex-
form of the °®He-n folding potential with

partner of the ground state. On the other hand, these spif-2l(I+1)/2ur? for the case ofs=0.0442 ands=0.102 in
doublet states almost degenerate in the result of the potentitie MHN potential. The parameter changes the potential
(I1) [8]. This difference between the results of two potentialdepth at 2—3 fm and does not have a large influence on the
comes from the fact that the HN1 potential does not have aheight but does influence the thickness of the potential bar-
odd-state potential. More detailed discussion is given in Reftier.

[8].

Moreover, we introduce a pseudopotentigl(r) [19] in
order to project out the Pauli-forbidden states betwéee
and neutron. This pseudopotential is expressed as

The 6 parameters which reproduces the experimental
resonance energf,=1.16 (MeV) [12] are 0.102 for the
MHN potential and 0.139 for the HN1 potential. The ob-
tained decay widtH™ is 1.62 MeV for the MHN potential
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6.0 . . : : : . TABLE II. Energies and widths ofl states for’He in the case
/:; 5.0l of set(l').
§ £O0F — Ect/2 1 | E, (MeV) I (MeV)
~— 3.0 T o b
o~ a0l 5 e o dsy; 7.80 115
ST dar 7.46 20.2
-li 0.0F gt g-mneem e S e R b _ _ _
€2l . E-T'/2 | we obtained eight resonances Bt=6-7 MeV with the
~1.0} g
- | widths of '=7-15 MeV. Both results ofHe and°Li sug-
ﬁj‘ —2.0r gest no sharp two-body resonances in the low energy region
3.0 0 0.0z o004 006 008 o010 012 (Ex<4 MeV). The obtainedds, and dg, resonances of

5 He indicate the small-s splitting and their energies are
reversed in comparison with those of usual bound states.
_ However, the results do not mean that the spin-orbit potential
FIG. 1. The & dependence of the energy and width for the is gitfarent from the usual one. The preséns potential for
ground state o’He. The solid line and distance between daShedthe dy;, State is also more repulsive than that for the,
lines indicate the resonance energy and width, respectively. Thgtatesﬁut the spin-orbit potential does not give a large influ-
using nucleon-nucleon interaction is the MHN potential. ence,on thely, state because the wave function of the,
state is more extended than that of tthg, state. Further-
more, we cannot obtaig-wave resonances itHe as well as
in 1%i. Becauses states have no centrifugal barrier, there
are no resonances of sharp widths in the case of the smooth
Gaussian-type potential. To examine the possibility of virtual
s states, we searched the parameter valué which barely
makes a bound state or not. Such a potential is found to be
?:\bout 10% deeper in comparison with the present potential
depth.

and 2.03 MeV for the HN1 potential, respectively. Hereafter,
we call these potentials with newly chosen paraméteets
(1" and(ll ).

We checked thé dependencel is the HO size param-
eter of the®He wave functionof the folding potential on the
resonance energy and width &fle, but the results are little
changed the present calculation. Therefore, we fix a
b=1.85 fm which reproduces the experimental rms matte
radius (2.490.04 fm) [18] of 8He as mentioned before.

V. RESONANCES IN °He

IV. 8He+n EXCITED RESONANCES IN °He . . .
We investigated the complex eigenvalues of the three-

Experimentally, two excited resonancds,£1.17 MeV,  body resonances of’He (J”=0") by using two parameter
E,=3.8 MeV) are observed as candidates fer and sets(l) and(l’). Set(I') was obtained in the previous sec-
d-state excitation of a valence neutrtt6]. It is very inter-  tion, Sec. lll, to reproduce the observed resonance energy of
esting to study whether these states are explained byHe[16], and set(l) given in Ref.[8].
8He+ n two-body resonances 8He. By using the CSM, we First, in Fig. 3, we show the distribution of complex ei-
also calculated the excited resonances’d@e. The He-n genvalues of (= 0.50 rad) with the 8He-n potential given
potential used in the calculation of the excited states is givethy set (1’). In this calculation, we employ the
by set(l’). [(p12)(P12)]o+ channel wave functions in the COSM. A

The obtained results are presented in Table Il. These reahree-body resonance of’He is obtained at the region
sults are very similar to those dfLi [8]. In the °Li case, aroundE, [=Re(E)]=2.1 MeV andI’ [=2Im(E)]=1.9
MeV. After calculating so-called and b, trajectories|8],
we obtained more accurate valués=2.07 MeV and

6.0
'=1.85 MeV.
4.0}
O 2.0f 0.0 ; . , .
> ~~
%‘) 0.0 % 0.5} 10He
-2.0
S— g/ -1.0 o ¢ .
~~—4.0F E=2.1-0.9 (MeV)
S—i N oo
;_6.0_ \%—1.5— o g
-8.0 . bo -2.0f
10 0 1 L 1 1 1 1 1 1 1 CG
~ 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 g 25 1
f ]
r (fm) s . . .
0.0 1.0 2.0 3.0 4.0 5.0
FIG. 2. The®He-n folding potential with the MHN potential. Real(E) (MeV
The solid line shows thp,,, potential which reproduces the experi-
mental binding energy ofHe. The dashed line shows theg,, po- FIG. 3. The 0 eigenvalue distribution of the complex scaled

tential which has the same parameter'ds [8]. Hamiltonian with 6= 0.50 rad.
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TABLE lIl. Energies and widths of thé’He ground state. the ground state of°He is stabler than’He, though the
calculation indicates that the resonance energy%fe is
®He-n potential Channel  E; (MeV) I' (MeVv) above the®He+n threshold.
0 (P1)? 296 4.95 The present calculation has been QOne in a large model
, 2 space. Even if a larger model space includiidype basis
" (P12 2.07 1.85

wave function[9] is employed, the binding energy of the
present calculation is estimated to increase by several 10 keV

om the corresponding results 8He [5] and *Li [9]. Fur-
hermore, we may also calculate in a larger model space
sincluding the core polarization diHe. Preliminary calcula-
tions of the core excitation effects on the binding energy of
1 i within a °Li* +n+n model indicate thatLi is more

As seen in Table lll, the resonance energies obtained b
using the parameter seth and (I') are different by about
890 keV. This result reflects the stronger binding ability o
the 8He-n interaction of sefl’) in comparison with that of

set(l). In this framework, we can obtain not only three-body
resonances PHe) but two-body resonances’He) at the bound by several 100 keV than that of the usual three-body

same time. We can also see the solution corresponding to tjB°del- Those improvements for the model space will make

resonance of°He at E,=1.16 MeV [['=2Im(E)=1.62 the calculated binding energy éfHe near to the experimen-

MeV] in Fig. 3 thoughr another valence neutron is a Ccm_tal one. However, taking into account the experimental error
" L . . 0 .

tinuum state. Thus, it is confirmed that this three-body cal°f the binding energy ofHe (+0.3 MeV), we think that the

culation reproduces the two-body resonance of the supRresent result is acceptable for this stage.
system °He at E,=1.16 MeV obtained in the two-body Moreover, we have calculated possible excited resonances
=1

calculation. in 1%e assuming one-neutron-excited configurations from
Next, we examined the ground state energy 'Ofe the p4/, orbit to s andd orbits. We obtain resonance solu-
within a larger model space in the COSM, to include thetionS which have large decay widths. Here, we discuss
higher partial wave effects and then pairing energy. As @ 10W-lying  resonance _solution of = the[py0s,]3-
we have discussed in our previous papers‘de and *Li configuration which is solved &,=8.5 MeV andl'=11
[5,9], these effects make the binding energy mere MeV MeV. These energy and width are reasonable and consistent
bound. The above obtained results for the binding energy o\f‘”thsthe results of’He. The calculated resonance energy of
109e suggest a shortage by0.8 MeV from that of experi- the *He+n system isE,=1.16 MeV for thepl,z state and
mental data (BE —1.2+0.3 MeV). But in the 1®He case, E,=7.80_ MeV for th(_a ds,, state. So_ with one v_aIence—
the resonance energy is near the energy region of the ceff€ulron in thepy, orbit g_r;d another in thels, orbit, the
trifugal barrier. Therefore, we can easily see that the resgléSonance energy of theHe+n+n system is expected at
nance energy does not change so mafew hundred keV ~8.96 MeV. Furthermore, this energy may be smaller due to
ordel as the case of bound statesSife and*!Li. However the interaction between valence neutrons and a three-body

because of the three-body effect from then pairing inter- ~ €ffect. The sharper decay width of the 3tate of **He in
action, the widthl" will change. comparison with that of thel, state of °He is also under-

We show the results of the resonance energielid line) stood in the same way. Other resonance solutions are also
with the obtained decay width@lotted ling in Fig. 4. The °btained in the energy region of 7-8 MeV. A resonance
obtained resonance energy Bs=1.8 MeV and the decay solution of the T state associated with a sdtl resonance

width T'=1.4 MeV for a 28-channel coupled equation. The!n this model space is predicted with thigp;)(ds)]s-
channels used here are p1(2)3+(d5/2)(2)+(d3/2)3 channel basis function &,=8.7 MeV andl'=19 MeV.

+(S10)2+ (f9)2+ - - +(1=14j=27/2¢. We can evi- We checked the solution assuming that the

dently see that three-body effects also appear in the obtain%gm)(sl”)]o* state is the ground state oftHe. We did not

decay widihl". Because of the-n interaction, the decay strg:::g E)r:)?[eﬁ;ﬁnrianrg?nggrexgiéh rt:z\kte))é gﬂssl?agtetr;? 1gfiry
; 10
width I of 1°He becomes sharper thdhle. In other words, barely bound. On the other hand, for the.,)(Py)]o:

state, by using the same potential, we obtained the bound

’>‘\ 4.0 T T T T T T T solution which is inconsistent with the experimental one.
L 3.5} 1
;_/ 3.0fo | VI. SUMMARY AND CONCLUSION
Q 2.5 1 \““"ﬁna--....]‘?f’.l?./.z ......... Gememecemnnnae a In this paper, we studied théHe-n folding potential
— Lol oo E | based on the ana_lyses of th_e observed ground stafelef
H We used the folding potential betweéitle and a valence
LT ] neutron in the similar way as the analysis ¥ti [8]. The
oo 'E"Eﬁ“ﬂ"ﬁm"ﬁl‘f}é ---------- . e 8He-n folding potential has two parameters as tfig-n
ook ' i folding potential does; one 8 which tunes the strength of
= the second range of the nucleon-nucleon potential,
O T e 6 5 10 12 14 16 15 20 27 24 26 28 %0 v,o(1+ 68), and the other is the strengtff$ of the spin-orbit
potential. For the exactly same paramefeand V'OS as the
Channel No. [Il] case of the’Li- n folding potential, we obtained the consis-

tent result with the experimental binding energy fle.
FIG. 4. The ground state energy convergencefbfe. However, this result shows a little underbinding and having a
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large decay width in comparison with the experimental oneenergyE,=1.2 MeV and widthI'<1.2 MeV. Taking into
Therefore, we researched the best parameieof the  account the experimental error of the binding energy0(3
8He-n folding potential for the experimental data 8He  MeV), the present result is acceptable, although we may be
[16] in order to investigate the excited states®fe and the able to do a larger model space calculation including
ground and excited states diHe. T-type basis wave function. For the excited states-®fe,

By using the obtainedHe-n folding potential, we calcu- we calculated several resonances by using valence-neutron
lated resonance energiescbtates in’He at~7 MeV with 5 andd configurations. However, the results indicate that

rather large decay widths. Bstwave resonances were not while the resonance energies are a little high, the decay
obtained in this calculation. Therefore, the observed excitegyidths are very large.

states atE,=1.17 MeV andE,=3.8 MeV cannot be ex-
plained by the simple two-body model. If we want to explain

these E:axperlmentall_y qbserved excited states, y\l/e must in- ACKNOWLEDGMENTS
clude *He core excitations such as neutropgf) ~~(p1/)
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