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Nature of the first excited state of 4He
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We study the first excited state of4He in a microscopic$3H1p,3He1n% cluster model, including3H and
3He distortions. The phenomenological1S0

3H1p scattering phase shift is reasonably well reproduced. We
localize a complex pole of theS matrix between the3H1p and 3He1n thresholds. The corresponding
resonance parameters areEr593 keV position relative to3H1p, andG5390 keV width. A pole search is also
performed in an extendedR-matrix method, and a resonance is found with parametersEr5114 keV and
G5392 keV. TheR-matrix approach gives several additional poles, some of which may be connected with an
enhanced threshold effect.@S0556-2813~97!03505-X#

PACS number~s!: 21.45.1v, 27.10.1h, 21.60.Gx, 25.10.1s
ec
n
n
n

ria
-
n
b
o-

n
tr

th

us

th
-
h
fo

o
-
e

tiv
-
h
o

nd-

for
ls,

t
ded

eV

se
pari-
igu-
oved
er-

-

cu-
ing
ll-
not
sh-
the
ree
the

ve
ell-
n-
sign
able
the
that
the
I. INTRODUCTION

4He is the lightest nucleus with a well-established sp
trum of excited states. Thus it is an excellent testing grou
for nuclear many-body models. Exact four-body calculatio
with realistic nucleon-nucleon (N-N) interactions have bee
performed for the 01 ground state of4He by using varia-
tional @1# and Green’s function Monte Carlo@2# techniques,
by solving the Yakubovsky equations@3#, and by using the
correlated hyperspherical harmonic expansion method@4#. A
few excited 4He states have also been studied by a va
tional Monte Carlo method@5#. However, these latter calcu
lations were performed without the Coulomb interactio
which fact made the theoretical, as well as the Coulom
corrected experimental 02

1 state particle stable. So, the res
nant nature of this state could not be studied.

The nuclear shell-model offers another fundamental a
in principle, exact approach to calculate nuclear spec
Early shell-model calculations, restricted to (011)\v exci-
tations, failed to provide a satisfactory description of bo
the ground-state properties and the excitation spectrum
4He @6#. It was realized that higher\v excitations play im-
portant roles in4He, especially in the excited states@7#. The
shell-model calculations were substantially improved by
ing a 10\v model space with variousN-N interactions@8#.
Those authors extensively studied the question of whe
the ground (01

1) and first excited (02
1) states can be de

scribed simultaneously in a consistent way. It turned out t
using a harmonic-oscillator-size parameter that is optimal
the ground state in the calculations for the 02

1 excited state
made the excitation energy either several MeV too large
too small depending on theN-N interaction. The usual reso
nance prescription puts this 02

1 first excited state between th
3H1p and 3He1n thresholds atEr5395 keV~all energies
are given in this paper in the center-of-mass frame, rela
to the 3H1p threshold! @9#; thus, delicate effects of few
body dynamics are expected to play an important role. T
02

1 state is generally viewed as a one-particle–one-h
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‘‘breathing’’ excitation of the ground state. In Ref.@8# it was
found that the charge radius of the 02

1 state is significantly
larger than that of the 01

1 ground state, while theD-state
probabilities are similar. The authors interpreted these fi
ings as support for the breathing-mode interpretation.

Recently a series of calculations have been performed
4He and for other light nuclei in large, no-core shell mode
using interactions derived from realisticN-N forces @10#.
The model reproduced the experimental4He spectrum rather
well, except for the 02

1 state@10#. This state was not the firs
excited state in that model as its excitation energy excee
the experimental one by more than 10 MeV in a 4\v shell-
model space. In larger model spaces the 02

1 state gradually
moved toward lower energies, and in a 8\v calculation it
was found to be the second excited state, some 1.5 M
higher in energy than experimentally@11#. Its position rela-
tive to the 311 thresholds could not be determined becau
the starting-energy dependence of the model made com
sons between the energies of different nuclei rather amb
ous. Recently the starting-energy dependence was rem
from that model, thus allowing excited states to be ref
enced to breakup thresholds@12#. The 02

1 state was found to
be the second excited state situated above the3He1n
threshold of that model@12#. Thus, its shell-model descrip
tion still needs improvements.

We would like to emphasize here that shell-model cal
lations use unphysical boundary conditions for scatter
wave functions@13#. It means that by increasing the she
model space, the energy of an unbound state converges
to the resonance energy, but to the lowest two-body thre
old @13#, or to 3H1p in the present case. In such a case,
shell-model wave function describes a situation where th
nucleons stay close to each other forming a triton, while
fourth nucleon~proton! is far away.

The shell-model wave function mimics a scattering wa
function that has a node at the spatial range of the last sh
model basis function. If the phase shift in the two-body cha
nel shows a sharp increase at a given energy, which is a
of a resonance, then the shell-model energy is almost st
with respect to large variations of the spatial range of
basis, i.e., the size of the shell-model space. This means
the shell-model energy has as a function of the size of
2366 © 1997 The American Physical Society
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55 2367NATURE OF THE FIRST EXCITED STATE OF4He
model space a plateau, from which, in principle, the posit
and width of the resonance can be extracted@14#.

The origin of the great difficulties of the shell model
reproduce the 02

1 state at the correct excitation energy, b
tween the3H1p and 3He1n thresholds, is obvious. Th
closeness of this state to those two-body channels means
the most relevant degrees of freedom are the3H1p and
3He1n relative motions. Thus, configurations that descr
the 3H1p and 3He1n clustering have large weight in th
wave function. It is known that wave functions which expli
itly contain two-body~or three-body! clustering, correspond
to shell-model states with very high\v excitations@15#. The
shell model treats all degrees of freedom equally, so it
quires very large model spaces to correctly reproduce
two-cluster correlations.

In the present work we study the 02
1 state of 4He in a

microscopic cluster model. Contrary to the shell-model, t
approach emphasizes the two-cluster correlations by build
up the wave function from configurations with two-body d
namical degrees of freedom. Recently the spectrum of4He
has been extensively studied in a cluster model@16#. We do
not repeat here all those calculations. Our prime target is
02

1 state, and we also study the 01
1 ground state. The natur

of the 02
1 state is not well understood. For example, in@9# it

was speculated that this state might originate from
S-matrix pole far away from the physical region, and seve
MeV higher in energy than its 395 keV experimental exci
tion energy would suggest. In the present work we study
problem at complex energies, and try to reveal the pole st
ture of theS matrix. The same method has recently be
used to study the 3/22 and 1/22 low-lying states of5He and
5Li @17#. Some further details can be found there.

II. RESONATING GROUP MODEL „RGM …

We use a microscopic two-cluster resonating group mo
~RGM! approach to4He. The trial function of the four-body
system is

C5(
i51

Nt

(
S,L
A$@@~F t iFp!#SxL

ti p~rtp!#JM%

1(
i51

Nh

(
S,L
A$@@~FhiFn!#SxL

hin~rhn!#JM%

1 (
i , j51

Nd

(
S,L
A$@@~FdiFdj !#SxL

didj~rdd!#JM%, ~1!

whereA is the intercluster antisymmetrizer, ther vectors are
the various intercluster Jacobi coordinates,L and S is the
total angular momentum and spin, respectively, and@ . . . #
denotes angular momentum coupling. WhileFp andFn is a
neutron and proton spin-isospin eigenstate, respectively
antisymmetrized ground state (i51) and continuum excited
distortion states (i.1) of the t, h, and d clusters
(t53H, h53He, andd52H! are represented by the wav
functions
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h , i51,2, . . . ,Nh ,

Fdi5(
j51

Nd

Ai j
dfb j

d , i51,2, . . . ,Nd . ~2!

Here fb j

t , fb j

h , and fb j

d are translationally invariant 0s

harmonic-oscillator shell-model wave functions oft, h, and
d, respectively, with size parameterb j , and theAi j param-
eters are to be determined by minimizing the energies of
free clusters@18#. Our choice ofL, S, Nt , Nh , and Nd
will be discussed later. Putting Eq.~1! into the four-nucleon
Schrödinger equation which contains a two-nucleon stro
and Coulomb interaction, we get an equation for the int
cluster relative motion functionsx. For bound states, thes
relative motion functions are expanded in terms of squa
integrable tempered Gaussian functions@19#, and the expan-
sion coefficients are determined from a variational meth
For scattering states, we employ a Kohn-Hulthe´n variational
method for theSmatrix, which uses square-integrable ba
functions matched with the correct scattering asympto
@19#.

III. RESULTS AND DISCUSSION

A. RGM

For theN-N force we use the Minnesota~MN! effective
interaction@20# together with the tensor force of@21#. The
MN interaction reproduces the deuteron binding energy i
3S1 model space without theD state, which means that th
interaction is too strong in the3S1 partial wave@22#. For the
ground and first excitedJp501 states we useL5S50 in
the 3H1p and 3He1n configurations, andL5S50 and
L5S52 in thed1d configurations~the deuteron spin is 1!.
Thed1d configurations contain3S1 N-N states, so we can
expect that a model space which contains these config
tions leads to unphysical overbinding. We use four differe
model spaces:~i! Nt5Nh51 and there is nod1d compo-
nent; ~ii ! Nt5Nh53 and there is nod1d component;~iii !
Nt5Nh53, Nd51 and only theL5S50 state is present in
the d1d channel; ~iv! Nt5Nh53, Nd51 and both the
L5S50 andL5S52 states are present in thed1d chan-
nel. TheEtp2Ehn threshold energy difference is 0.768 an
0.745 MeV for the Nt5Nh51 and Nt5Nh53 model
spaces, respectively. It is to be compared to the 0.763 M
experimental value. Ourd1d threshold is 6.8 MeV above
the 3H1p one in theNt5Nh53 model, while the experi-
mental value is 4.0 MeV.

Due to the 3S1 overbinding problem, model spaces~iii !
and ~iv! are rather unphysical. We use them only for te
purposes; that is why we do not allow for distortions in t
deuteron clusters in Eq.~2!. We note, that Ref.@16# used an
N-N interaction which was free from the above defect, so
model worked in a full$3He1p,3He1n,d1d% space with-
out any problem. Our main purpose is to localize the2

1

state. Test calculations for other systems, for instance for
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2368 55ATTILA CSÓTÓ AND G. M. HALE
3/21 state of 5He @23,24#, show that in order to reproduc
experimental resonance parameters, one really needs t
produce only the relevant experimental phase shifts. Thi
true even if the description of the free clusters is highly u
physical, e.g., if they are unbound@24#.

The most relevant phase shift in the present problem
that for 1S0

3H1p. In Fig. 1 we show this phase shift com
ing from the various model spaces. We note that both
phase shifts and the binding energies are almost totally
sensitive to the mixing parameteru of theN-N interaction.
We useu50.98 and the corresponding variationally sta
lized oscillator size parameters for the clusters. One can
in Fig. 1 that the effect of the3H and 3He distortions is
significant, and that the model spaces which containd1d
components show the overbinding effect, as expected. T
our best model is model~ii ! with Nt5Nh53 and without the
d1d configurations.

First we perform calculations forJp501 states by apply-
ing bound state asymptotics in Eq.~1!. This wave function
satisfies the correct physical asymptotics only for sta

FIG. 1. 1S0 phase shifts for3H1p scattering, coming from
model spaces~i!—dotted line, ~ii !—solid line, ~iii !—dash-dotted
line, and~iv!—dashed line. Model spaces~i!–~iv! are defined in the
text. The solid dots come from anR-matrix analysis of the experi
mental data@16#.
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which are below all the breakup thresholds, i.e., below
3H1p threshold in the present problem. For states ab
this threshold, this is a bound state approximation, like in
shell-model. In Table I we show the positions of the tw
lowest 01 states in the various model spaces together w
the amounts of clustering of the various configurations. T
latter quantity gives the probability that the wave function
entirely in the given subspace@25,26#. Thus it is a useful
measure of the relative importance of nonorthogonal ch
nels.

The 01
1 ground state is slightly overbound compared

theEr5219.815 MeV experimental value@9#. Each model
space predicts the 02

1 state between the3H1p and
3He1n thresholds. One can see from the amounts of cl
tering of the various configurations, that in the ground st
the 3H1p and 3He1n clusterizations are equally importan
while 02

1 is predominantly a3H1p state. The small amoun
of (L,S)5(2,2) d1d clustering in Table I shows that th
inclusion of thed1d channel, and thus theD state, is rather
schematic in our model, because of the 0s nature of our
deuteron. We mention that the role of the tensor force a
that of theD state in the ground state of4He was thoroughly
studied, e.g., in@27#. The results of those works show th
the full inclusion of thed1d channel~with D states in the
deuterons! would be a major improvement in our mode
especially in the 01

1 ground state.
The point nucleon rms radius of the ground state is aro

1.6 fm in our model, only slightly larger than the 1.48 f
experimental value. However, the radius corresponding
the 02

1 state is huge, being around 40 fm. This is an unphy
cal value, which shows that the bound state approximatio
a state which is above breakup thresholds might not m
much sense@13#. So, the conclusions of Ref.@8# concerning
the breathing mode are questionable.

For a reliable localization of a state above breakup thre
olds, the correct scattering asymptotics in the various ch
nels must be imposed. Then one can search for reso
states either by studying the phase shifts, or by exploring
f
TABLE I. Energies~relative to3H1p) of the 01
1 and 02

1 states of4He, and the amounts of clustering o
the various cluster configurations in these states in model spaces~i!–~iv!, defined in the text. The three
numbers in parentheses are for the three3H or 3He states, in the case ofNt53 or Nh53. In the d1d
channels the (L,S) values are also given.

01
1 02

1

Model E ~MeV! Amount of clustering E ~MeV! Amount of clustering

~i! 220.83 3H1p 97.5 0.54 3H1p 90.0
3He1n 97.3 3He1n 11.9

~ii ! 220.53 3H1p ~94.8,10.5,0.05! 0.34 3H1p ~80.4,16.5,0.07!
3He1n ~94.5,11.5,0.05! 3He1n ~27.8,19.7,0.08!

~iii ! 220.66 3H1p ~94.6,10.5,0.04! 0.24 3H1p ~76.2,20.0,0.08!
3He1n ~94.2,11.5,0.05! 3He1n ~32.6,23.3,0.09!

d1d (0,0) 59.5 d1d (0,0) 27.2
~iv! 221.63 3H1p ~93.1,10.7,0.04! 0.15 3H1p ~73.8,22.9,0.09!

3He1n ~92.7,11.7,0.04! 3He1n ~36.1,26.2,0.09!
d1d (0,0) 58.3 d1d (0,0) 30.4
d1d (2,2) 1.4 d1d (2,2) 0.3
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55 2369NATURE OF THE FIRST EXCITED STATE OF4He
pole structure of the scattering matrix. In order to avoid a
ambiguity in the recognition of a resonance in the ph
shift, we choose here the latter method. We solve the Sc¨-
dinger equation for the relative motion functionsx in Eq. ~1!
at complex energies with the following boundary conditio
for r→`

xL
ab~«,rab!→HL

2~krab!2SL~«!HL
1~krab!. ~3!

Here« andk are thecomplexenergies and wave numbers
the relative motions between clustersa andb, andH2 and
H1 are the incoming and outgoing Coulomb functions,
spectively. We search for the poles ofS by extending the
coupled channel scattering approach of Ref.@19# to complex
energies@23,17#. The complex Coulomb functions are calc
lated by using Ref.@28#. The resulting complex energies« of
the poles are connected to the resonance parameters vi

«5Er2 iG/2, ~4!

whereEr is the position of the resonance, andG is its width.
In the case of anN-channel scattering problem, the com

plex channel wave numbersk1 ,k2 , . . . ,kN , which deter-
mine the character of a state~bound state, scattering stat
resonance! can be mapped by a one-to-one mapping to
2N-sheeted Riemann surface of the complex channel e
gies «1 ,«2 , . . . ,«N @29#. The sheets of this surface can b
labeled by anN-term sign string given by the signs of th
imaginary parts of the channel wave numbe
@sgn(Imk1),sgn(Imk2), . . . ,(ImkN)#. It has been shown
@29,30# that in the case of Hermitian potentials, a compl
pole of theS matrix that would appear in one of theN
channels in a single-channel problem, gives rise to 2N21

poles on different Riemann sheets in theN-channel problem.
The proof of this statement is based on the fact that in
zero-coupling limit, when the only coupling is the ener
conservation, theN3N Fredholm determinant of an
N-channel scattering problem reduces to the product oN
one-channel Fredholm determinants. However, the situa
is different if there are nonorthogonal channels, like t
(L,S)5(0,0) ones in the present case. Such channels
inherently coupled, and the zero-coupling limit cannot
taken. In such cases one does not know the number
location of the poles, so one has to search all energy sh

Following @29#, the poles lying on the sheet closest to t
physical sheet (@11••• 1#) at a given energy, are calle
conventional poles, while the others are called shadow po
Usually only the conventional poles have observable effe
causing the appearance of conventional resonances. H
ever, there are exceptions where the effects of shadow p
are non-negligible or even dominant. We mention here
examples of the3H(d,n)4He reaction@31,23# and the struc-
ture of 8Be @32#. Shadow poles play an important role also
atomic physics, in laser ionization processes, because o
large number of channels and relatively low energies
quired for ionization@33#. In Ref. @9# it was speculated tha
the 02

1 state of4He might come from a shadow pole, whic
fact could partly explain the difficulties encountered by t
shell model in reproducing this state at the correct energ

In order to explore this possibility, we searched all ene
sheets for poles. In model spaces that include3H and 3He
y
e
o

-

e
r-

e

n
e
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e
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ts.

s.
s,
w-
les
e
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y

distortions, the continuum excited distortion states repres
high-lying channels, e.g., in model space~ii ! we have six
channels: $t11p,t21p,t31p,h11n,h21n,h31n%. The
dominant Riemann sheets are those where the distor
channels all have bound state character (1), rather than an-
tibound state character (2). In the case of model~ii ! these
dominant sheets are@111111#, @111211#,
@211111#, and @211211#. Numerical studies
show @24# that if there is anS-matrix pole on one of these
sheets, then the corresponding pole on a sheet, where
character of at least one distortion channel is ‘‘2,’’ is situ-
ated almost exactly at the same complex energy position
the original pole. Since these latter sheets are much far
from the physical region than the four dominant ones, th
poles have negligible observable effect. That is why we
the character of all distortion channels to ‘‘1 ’’ and give only
the characters of those channels that contain the gro
states of the clusters; e.g.,@22# means@211211# in
model space~ii !.

In model space~i! we do not find any pole, while in the
~ii !, ~iii !, and ~iv! model spaces we find one pole on th
@21#, @211#, and @211# sheets, respectively a
(0.0932 i0.195), (0.0852 i0.071), and (0.0532 i0.021)
MeV complex energies, respectively.~Note that the thresh-
olds of the twod1d channels coincide, so the character
the fourth channel is always the same as that of the th
one.! One can see the effect of the3S1 overbinding problem
in the pole positions in the~iii ! and ~iv! models. In each
model space the pole is on the Riemann sheet which is c
est to the physical sheet, i.e., it is a conventional pole. We
not find any other pole on any other sheet in the vicinity
the 3H1p and 3He1n channel thresholds.

To recap the results of the RGM calculations, our b
model with 3H and 3He distortions predicts the 02

1 state to
be a conventional resonance atEr593 keV above the
3H1p threshold, with 390 keV width.

B. R-matrix

The RGM results encouraged us to search again for
state as anS-matrix pole in the charge-independe
R-matrix analysis of reactions in theA54 system reported
in Refs. @9# and @16#. The state was visible atE5395 keV
according to the usual resonance-parameter prescription
did not appear to give a low-lyingS-matrix pole using the
‘‘extended’’ R-matrix prescription@31,17#. This prescription
involves first fitting the available experimental data in term
of the conventionalR-matrix parametrization at real energie
on the physical sheet, then using this parametrization to c
tinue theS matrix onto other sheets of the Riemann ener
surface in order to study its analytic structure@31#, in very
much the same way as discussed above.

The channel configuration and the distribution by react
of data included in theA54 R-matrix analysis are summa
rized in Table II, taken from Ref.@16#. In general, all types
of cross-section and polarization measurements were u
but the ones that showed most clearly the 01 resonance and
its associated threshold effect were excitation functions
the 3H(p,p)3H differential elastic cross section@34–38#.
Some of those measurements are shown compared with
R-matrix calculation in Fig. 2. The resonance peak occurs



en by

2370 55ATTILA CSÓTÓ AND G. M. HALE
TABLE II. Channel configuration~top! and data summary~bottom! for each reaction in the4He system
R-matrix analysis. The maximum orbital angular momentum allowed for each arrangement is giv
lmax, while ac is the channel radius.

Channel lmax ac ~fm!

3H1p 3 4.9
3He1n 3 4.9
d1d 3 7.0

Reaction Energy range~MeV! No. observable types No. data points

3H(p,p)3H Ep50211 3 1382
3H(p,n)3He 1 3He(n,p)3H Ep50211 5 726
3He(n,n)3He En50210 2 126
2H(d,p)3H Ed50210 6 1382
2H(d,n)3He Ed50210 6 700
2H(d,d)2H Ed50210 6 336

Totals: 28 4652
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about 350 keV, and the threshold step atE5764 keV is
especially striking at this angle (uc.m.5120°). The resulting
1S0

3H1p phase shift, represented by the dots in Fig.
serves as the ‘‘experimental’’ data to which the RGM resu
are compared.

We find an S-matrix pole on the@211# sheet at
(0.1142 i0.196) MeV, corresponding to a conventional res
nance atEr5114 keV above the3H1p threshold, with
G5392 keV width, in good agreement with the paramet
obtained from the RGM. At the time of the4He level com-
pilation reported in@9#, this pole had not been found becau
the step size of the automated search algorithm was
large, leading to the speculation that the resonance m
actually be associated with higher-lying shadow poles in
01 state. These shadow poles occur at energies betw
about 3.0 and 3.6 MeV, with widths in the range 628 MeV,
on the Riemann sheets@211#, @212#, @122#, and
@121#. In addition, there is another resonance
«5(7.682 i3.57) MeV on the@222# sheet, with an asso
ciated shadow pole at«5(8.432 i3.43) MeV on the
@221# sheet.

FIG. 2. Differential cross section for3H(p,p)3H elastic scatter-
ing atuc.m.'120°. The solid curve is theR-matrix calculation, and
the data are from Refs.@34,35# ~solid circles!, @37# ~open circles!,
and @38# ~solid triangles!.
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It is interesting to note that all of theS-matrix structure
described above comes predominantly from the sameT50
level in theR matrix, located approximately 6 MeV abov
the 3H1p threshold. The position of this level depends
the boundary conditions, which are taken to be the shift fu
tions in the various channels1 evaluated at the ground-sta
energy of 4He, so that the lowest 01 R-matrix level coin-
cides identically with the4He ground state. One can the
imagine the 6-MeV level to be associated with a small-ba
shell-model wave function, since these states, like the in
nal R-matrix eigenfunctions, are expected to represent
true wave function of the scattering system only in a limit
region of space. The point is that, when such an expansio
matched to the correct asymptotic scattering solution, it p
duces a low-lyingS-matrix pole in the correct position fo
the resonance associated with the first excited state of4He,
even though the energy eigenvalue of the structure state i
above the resonance energy. Of course, as was discu
earlier, enlarging the shell-model basis would make the
ergy of the state decrease until, at some point, it would p
through the resonance energy on the way to attaining
minimum value~the 3H1p threshold energy!. However, the
correct information about the resonance as anS-matrix pole
may already be contained in the small-basis shell-mo
states.

As was noted earlier, the additional poles above
3He1n threshold were not found in the RGM approac
Compared to theR-matrix model, our RGM approach is les
realistic, mainly because the description of thed1d chan-
nels is rather schematic due to the3S1 force problem. On the
other hand, theR-matrix approach embodies some aspects
channel orthogonality in the region outside the nuclear s
face that might increase the likelihood of having multip
poles ~cf. the discussion about the number of poles in

1The boundary condition used in the 311 channels is actually the
average of the3H1p and 3He1n shifts, in order to preserve the
charge-independent model.



i-
r
rd
m

th
e

ta

om
te
ie

to
t
pu

und

at

he

he-
h-

.S.
ne
at
s.
A

55 2371NATURE OF THE FIRST EXCITED STATE OF4He
N-channel scattering problem!. The nature of these add
tional states in theR-matrix spectrum will require furthe
investigation. However, they appear to be necessary in o
to enhance the strong threshold step that is seen in the
sured3H1p cross-section excitation functions.

Both calculations are in substantial agreement that
first excited state of4He is 02

1 , a conventional resonanc
lying between the 3H1p and 3He1n thresholds, with
Er'100 keV energy relative to3H1p, and G'400 keV.
Since the real-energy resonance parameters for this s
Er5395 keV andG5500 keV @9#, were obtained from the
sameR-matrix parameters as used here, the differences c
entirely from the relation of resonance parameters de
mined from real- and complex-energy scattering quantit
respectively, as discussed in Ref.@17#.

IV. CONCLUSION

In summary, we have described the 01
1 and 02

1 states of
4He in a microscopic$3H1p,3He1n% RGM approach. The
effective interaction did not allow us to fully included1d
configurations into the model. We have found that3H and
3He cluster distortions play important roles if one wants
reproduce the relevant1S0

3H1p phase shift. Our bes
model, which satisfactorily reproduced this phase shift,
the ground state of4He at 220.53 MeV relative to the
c

e

c

.

C
.

J

.

er
ea-

e

te,

e
r-
s,

t

3H1p threshold. We have searched forS-matrix poles at
complex energies using the same model space, and fo
one at (0.0932 i0.195) MeV energy, relative to the3H1p
threshold. Our model predicts that this 02

1 state is the first
excited state of4He, and is a conventional resonance
Er593 keV with G5390 keV width. While in the ground
state both the3H1p and the 3He1n configurations have
roughly the same weight, the 02

1 state is dominated by the
3H1p configuration.
We have also localized the 02

1 state in an extended
R-matrix model. Its parametersEr5114 keV andG5392
keV are in good agreement with the RGM parameters. T
R-matrix model produces several additional 01 poles. While
the understanding of these structures will require further t
oretical investigation, their role in producing a strong thres
old effect is already clearly seen.
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