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Nature of the first excited state of “He
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We study the first excited state 8He in a microscopi¢®H+ p,3He+n} cluster model, includingH and
3He distortions. The phenomenologicss, H+ p scattering phase shift is reasonably well reproduced. We
localize a complex pole of th& matrix between the’H+p and *He+n thresholds. The corresponding
resonance parameters &e=93 keV position relative tdH+ p, andT =390 keV width. A pole search is also
performed in an extendeR-matrix method, and a resonance is found with paramefers114 keV and
I'=392 keV. TheR-matrix approach gives several additional poles, some of which may be connected with an
enhanced threshold effe¢60556-28187)03505-X]

PACS numbgs): 21.45+v, 27.10+h, 21.60.Gx, 25.16:s

[. INTRODUCTION “breathing” excitation of the ground state. In R¢8] it was
found that the charge radius of thg Gtate is significantly
“He is the lightest nucleus with a well-established Speciarger than that of the p ground state, while th®-state
trum of excited states. Thus it is an excellent testing grounghrobabilities are similar. The authors interpreted these find-
for nuclear many-body models. Exact four-body Ca'CU'atiOﬂSngS as support for the breathing-mode interpreta’[ion_
with realistic nucleon-nucleonN-N) interactions have been  Recently a series of calculations have been performed for
performed for the O ground state of'He by using varia-  4He and for other light nuclei in large, no-core shell models,
tional [1] and Green’s function Monte Car(@] techniques, using interactions derived from realisth-N forces [10].
by solving the Yakubovsky equatiofi8], and by using the The model reproduced the experimerftile spectrum rather
correlated hyperspherical harmonic expansion mefAddA  yel|, except for the § state[10]. This state was not the first

few excited "He states have also been studied by a variagycited state in that model as its excitation energy exceeded
tional Monte Carlo methob]. However, these latter calcu- the experimental one by more than 10 MeV in facd shell-

Iatipns were performed with_out the Coulomb interaction, ;o 4el space. In larger model spaces theddate gradually
which fact made the theoretical, as well as the Coulomb-

; 0 ‘ moved toward lower energies, and in && calculation it
corrected experimental,0state particle stable. So, the reso- 1< found to be the second excited state, some 1.5 MeV

nant nature of this state could not be studied. igher in energy than experimentallg1]. Its position rela-
_The nuclear shell-model offers another fundamental ancCive to the 3+1 thresholds could not be determined because
in principle, exact approach to calculate nuclear spectrane starting-energy dependence of the model made compari-
Equy sheII_-modeI calclulatlons, restncted to-i((l_)ﬁ-w EXCl-  sons between the energies of different nuclei rather ambigu-
tations, failed to prowde.a satisfactory d'esc_:rlpnon of both, ;5. Recently the starting-energy dependence was removed
the ground-state properties and the excitation spectrum Gf,m that model, thus allowing excited states to be refer-
“He[6]. It was realized that higherw excitations play im- enced to breakup thresholfE2]. The 0) state was found to
portant roles in*He, especially in the excited statgq. The be the second excited state situated above 3Hetn
shell-model calculations were substantially improved by USinreshold of that model12]. Thus, its shell-model descrip-

ing a 10 @ model space with variousl-N interactiong 8]. tion still needs improvemeﬁts. '

Those authors extensively studied the question of whether™,, ", 014 like to emphasize here that shell-model calcu-

the ground (@) and first excited () states can be de- |5ions use unphysical boundary conditions for scattering
scribed simultaneously in a consistent way. It turned out thaf 4. /e functiong 13]. It means that by increasing the shell-
using a harmonic-oscillator-size parameter that is optimal fof, g e space, the energy of an unbound state converges not
the ground state in the calculations for thg 8xcited state g the resonance energy, but to the lowest two-body thresh-
made the excitation energy either several MeV too large op|q [13], or to 3H+ p in the present case. In such a case, the
too small depending on the-N interaction. The usual reso- ghell-model wave function describes a situation where three
nance prescription puts this (first excited state between the nycleons stay close to each other forming a triton, while the
®H+ p and *He+ n thresholds aE, =395 keV (all energies  fourth nucleon(proton is far away.
are given in this paper in the center-of-mass frame, relative The shell-model wave function mimics a scattering wave
to the 3H+p threshold [9]; thus, delicate effects of few- function that has a node at the spatial range of the last shell-
body dynamics are expected to play an important role. Thenodel basis function. If the phase shift in the two-body chan-
0, state is generally viewed as a one-particle—one-holeel shows a sharp increase at a given energy, which is a sign
of a resonance, then the shell-model energy is almost stable
with respect to large variations of the spatial range of the
*Electronic address: csoto@gmc.lanl.gov basis, i.e., the size of the shell-model space. This means that
Electronic address: gmh@t2.lanl.gov the shell-model energy has as a function of the size of the
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model space a plateau, from which, in principle, the position Ny
and width of the resonance can be extradtbd]. Pli=> A}j ¢‘B_, i=1,2,... N,
The origin of the great difficulties of the shell model to =1 :
reproduce the § state at the correct excitation energy, be- Ny,
3 3 1 :
tween the®H+p and "He+n thresholds, is obvious. The q)hizz Aihj ¢2,-’ i=1,2,... Ny,

closeness of this state to those two-body channels means that
the most relevant degrees of freedom are fie+p and
3He+n relative motions. Thus, configurations that describe Nqg

the 3H+p and ®He+n clustering have large weight in the 4= AleS, i=12,...Ng. 2
wave function. It is known that wave functions which explic- =1 :
itly contain two-body(or three-body clustering, correspond
to shell-model states with very highw excitationg15]. The
shell model treats all degrees of freedom equally, so it re

quires very large model spaces to correctly reproduce th ) e M )
two-cluster correlations. eters are to be determined by minimizing the energies of the
free clusterg18]. Our choice ofL, S, N;, N,, and Ny

In the present work we study the; Ostate of “He in a ; X . :
microscopic cluster model. Contrary to the shell-model, thisWIII pe_dlscussed I.ater. P}Jtt|ng qu.) into the four-nucleon
chralinger equation which contains a two-nucleon strong

approach emphasizes the two-cluster correlations by buiIding d Coulomb int i ¢ tion for the int
up the wave function from configurations with two-body dy- nd toulomb Interaction, we get an equation for the inter-
namical degrees of freedom. Recently the spectrurfiH cluster relative motion functiong. For bound states, these
has been extensively studied in a cluster mddel. We do relative motion functions are expanded in terms of square-
not repeat here all those calculations. Our prime target is th@tegrable tempered Gaussian functighS], and the expan-

07 state, and we also study thé @round state. The nature sion coefflqlents are determined from a va,rlatlon_al_method.
4 . . For scattering states, we employ a Kohn-Hufthariational
of the 0; state is not well understood. For example[9 it

method for theS matrix, which uses square-integrable basis

was speculated that this state m|.ght originate from aYunctions matched with the correct scattering asymptotics
S-matrix pole far away from the physical region, and severat ]

MeV higher in energy than its 395 keV experimental excita-
tion energy would suggest. In the present work we study the

problem at complex energies, and try to reveal the pole struc- lll. RESULTS AND DISCUSSION
ture of theS matrix. The same method has recently been A. RGM

used to study the 372and 1/2" low-lying states of°He and
SLi [17]. Some further details can be found there.

Here ¢tﬁj, ¢L}j, and ¢%j are translationally invariant ©

harmonic-oscillator shell-model wave functionstofh, and
d, respectively, with size parametgf, and theA;; param-

For theN-N force we use the Minnesot®IN) effective
interaction[20] together with the tensor force ¢21]. The
MN interaction reproduces the deuteron binding energy in a
33, model space without thB state, which means that the
IIl. RESONATING GROUP MODEL (RGM) interaction is too strong in théS, partial wave[22]. For the

We use a microscopic two-cluster resonating group modeground and first excited”=0" states we us& =S=0 in

(RGM) approach to*He. The trial function of the four-body the *H+p and *He+n configurations, and.=S=0 and
system is L=S=2 in thed+d configurationgthe deuteron spin is)1

Thed+d configurations contaifS; N-N states, so we can
expect that a model space which contains these configura-
N tions leads to unphysical overbinding. We use four different
A{[[(QtiQP)]SX‘Lip(ptp)]JM} model spaces(i) N(=Np=1 and there is nal+d compo-
=1stL nent; (i) N;=N,=3 and there is na+d componentiii)
h N;=Ny=3, Ny=1 and only thd.=S=0 state is present in
+ highNy Ty MM the d+d channel; (iv) N;=N,=3, Ny=1 and both the
i=1 SL ALLE@HD I (o) Jow L=S=0 andL=S=2 states are present in tldet-d chan-
N nel. TheE,—Ey, threshold energy difference is 0.768 and
di g di did; 0.745 MeV for the N;=N,=1 and N;=N,=3 model
+i,j 15L AT poa) ot (1) spaces, respectively. It is to be compared to the 0.763 MeV
experimental value. Oud+d threshold is 6.8 MeV above
the *H+p one in theN,=N,=3 model, while the experi-
whereA is the intercluster antisymmetrizer, tpevectors are  mental value is 4.0 MeV.
the various intercluster Jacobi coordinatesand S is the Due to the3S, overbinding problem, model spacés)
total angular momentum and spin, respectively, oind.]  and (iv) are rather unphysical. We use them only for test
denotes angular momentum coupling. Whil€ and®"isa  purposes; that is why we do not allow for distortions in the
neutron and proton spin-isospin eigenstate, respectively, th@euteron clusters in E42). We note, that Ref.16] used an
antisymmetrized ground state<£1) and continuum excited N-N interaction which was free from the above defect, so the
distortion states i(>1) of the t, h, and d clusters model worked in a ful{*He+ p,*He+n,d+d} space with-
(t=3H, h=3He, andd=2H) are represented by the wave out any problem. Our main purpose is to localize the 0
functions state. Test calculations for other systems, for instance for the
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150 T y which are below all the breakup thresholds, i.e., below the
3H+p threshold in the present problem. For states above
this threshold, this is a bound state approximation, like in the
100/ shell-model. In Table | we show the positions of the two

S lowest 0" states in the various model spaces together with
AN the amounts of clustering of the various configurations. This
latter quantity gives the probability that the wave function is

| entirely in the given subspad@5,26. Thus it is a useful

Y e R measure of the relative importance of nonorthogonal chan-
nels.

The O ground state is slightly overbound compared to
the E, = —19.815 MeV experimental valy®]. Each model
space predicts the j0 state between the®H+p and
3He+n thresholds. One can see from the amounts of clus-
tering of the various configurations, that in the ground state
the ®H+ p and He+ n clusterizations are equally important,
while 05 is predominantly &H+ p state. The small amount
of (L,S)=(2,2) d+d clustering in Table | shows that the
3/2" state of °He [23,24], show that in order to reproduce inclusion of thed+d channel, and thus the state, is rather
experimental resonance parameters, one really needs to 1gshematic in our model, because of the Qature of our
produce only the relevant experimental phase shifts. This igeuteron. We mention that the role of the tensor force and
true even if the description of the free clusters is highly un-that of theD state in the ground state 6He was thoroughly
physical, e.g., if they are unbounh4]. studied, e.g., if27]. The results of those works show that

The most relevant phase shift in the present problem ishe full inclusion of thed+d channel(with D states in the
that for 'S, H+p. In Fig. 1 we show this phase shift com- deuterons would be a major improvement in our model,
ing from the various model spaces. We note that both thespecially in the ¢ ground state.
phase shifts and the binding energies are almost totally in- The point nucleon rms radius of the ground state is around
sensitive to the mixing parametarof the N-N interaction. 1.6 fm in our model, only slightly larger than the 1.48 fm
We useu=0.98 and the corresponding variationally stabi-experimental value. However, the radius corresponding to
lized oscillator size parameters for the clusters. One can sehe 0, state is huge, being around 40 fm. This is an unphysi-
in Fig. 1 that the effect of the’H and He distortions is cal value, which shows that the bound state approximation to
significant, and that the model spaces which conthind  a state which is above breakup thresholds might not make
components show the overbinding effect, as expected. Thusuch sens¢13]. So, the conclusions of Rgf8] concerning
our best model is modéli) with N,=N,,=3 and without the the breathing mode are questionable.
d+d configurations. For a reliable localization of a state above breakup thresh-

First we perform calculations faf"=0" states by apply- olds, the correct scattering asymptotics in the various chan-
ing bound state asymptotics in E(.). This wave function nels must be imposed. Then one can search for resonant
satisfies the correct physical asymptotics only for statestates either by studying the phase shifts, or by exploring the
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FIG. 1. 'S, phase shifts for’H+ p scattering, coming from
model spacesgi)—dotted line, (ii)—solid line, (iii)—dash-dotted
line, and(iv)—dashed line. Model spacés—(iv) are defined in the
text. The solid dots come from @-matrix analysis of the experi-
mental datd 16].

TABLE I. Energies(relative to®H+ p) of the 0 and O states of*He, and the amounts of clustering of
the various cluster configurations in these states in model sggedi/), defined in the text. The three
numbers in parentheses are for the thfékor 3He states, in the case of,=3 or N,=3. In thed+d
channels thel(,S) values are also given.

07 0;
Model E (MeV) Amount of clustering E (MeV) Amount of clustering
0) —20.83 SH+p 97.5 0.54 SH+p 90.0
SHe+n 97.3 SHe+n 11.9
(i) —20.53 SH+p (94.8,10.5,0.0p 0.34 SH+p (80.4,16.5,0.07
SHe+n (94.5,11.5,0.0p SHe+n (27.8,19.7,0.08
(i) —20.66 SH+p (94.6,10.5,0.0% 0.24 SH+p (76.2,20.0,0.08
SHe+n (94.2,11.5,0.0p SHe+n (32.6,23.3,0.0p
d+d (0,0) 59.5 d+d (0,0) 27.2
(iv) —21.63 SH+p (93.1,10.7,0.0¢ 0.15 SH+p (73.8,22.9,0.0p
SHe+n (92.7,11.7,0.0% SHe+n (36.1,26.2,0.0p
d+d (0,0) 58.3 d+d (0,0) 30.4
d+d (2,2) 1.4 d+d (2,2) 0.3
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pole structure of the scattering matrix. In order to avoid anydistortions, the continuum excited distortion states represent
ambiguity in the recognition of a resonance in the phaséigh-lying channels, e.g., in model spa@® we have six
shift, we choose here the latter method. We solve the Schrahannels: {t;+p,t,+p,ts+p,h;+n,h,+n,hz+n}. The
dinger equation for the relative motion functiogsn Eq. (1) dominant Riemann sheets are those where the distortion
at complex energies with the following boundary conditionschannels all have bound state characte) (rather than an-

for p— tibound state character~(). In the case of modsii) these
ab B . dominant sheets are[++++++], [+++—++],
Xt (&,pap)—HL (Kpap) = S.(e)H| (Kpap). @ [—+++++], and [—-++—++]. Numerical studies

show[24] that if there is anS-matrix pole on one of these
Heree andk are thecomplexenergies and wave numbers of sheets, then the corresponding pole on a sheet, where the
the relative motions between clustersandb, andH™ and  character of at least one distortion channel is,” is situ-
H™ are the incoming and outgoing Coulomb functions, re-ated almost exactly at the same complex energy position as
spectively. We search for the poles 8fby extending the the original pole. Since these latter sheets are much farther
coupled channel scattering approach of R&@] to complex  from the physical region than the four dominant ones, their
energie423,17. The complex Coulomb functions are calcu- poles have negligible observable effect. That is why we set
lated by using Ref.28]. The resulting complex energiesof  the character of all distortion channels te-* and give only
the poles are connected to the resonance parameters via the characters of those channels that contain the ground
states of the clusters; e..——] meang[—++—++] in
e=E—il'/2, (4)  model spacii).
In model spacdi) we do not find any pole, while in the
whereE, is the position of the resonance, ahds its width. (i), (iii), and (iv) model spaces we find one pole on the
In the case of am-channel scattering problem, the com-[—+1], [—++], and [—++] sheets, respectively at
plex channel wave numbers, k;, ... ky, which deter- (0.093-i0.195), (0.085i0.071), and (0.053i0.021)
mine the character of a stafbound state, scattering state, MeV complex energies, respectivelfNote that the thresh-
resonancecan be mapped by a one-to-one mapping to theolds of the twod+d channels coincide, so the character of
2N-sheeted Riemann surface of the complex channel enethe fourth channel is always the same as that of the third
gieseq,e,, . .. ,en [29]. The sheets of this surface can be one) One can see the effect of tH&, overbinding problem
labeled by arN-term sign string given by the signs of the in the pole positions in théiii) and (iv) models. In each
imaginary parts of the channel wave numbersmodel space the pole is on the Riemann sheet which is clos-
[sgn(Ink,),sgn(Ink,), ... ,(Imky)]. It has been shown estto the physical sheet, i.e., it is a conventional pole. We do
[29,30 that in the case of Hermitian potentials, a complexnot find any other pole on any other sheet in the vicinity of
pole of theS matrix that would appear in one of thd  the 3H+p and 3He+n channel thresholds.
channels in a single-channel problem, gives rise to 2 To recap the results of the RGM calculations, our best
poles on different Riemann sheets in thechannel problem.  model with *H and 3He distortions predicts the Ostate to
The proof of this statement is based on the fact that in thpe a conventional resonance B{=93 keV above the
zero-coupling limit, when the only coupling is the energy 3H+ p threshold, with 390 keV width.
conservation, theNXN Fredholm determinant of an
N-channel scattering problem reduces to the produch of
one-channel Fredholm determinants. However, the situation
is different if there are nonorthogonal channels, like the The RGM results encouraged us to search again for this
(L,S)=(0,0) ones in the present case. Such channels atate as anS-matrix pole in the charge-independent
inherently coupled, and the zero-coupling limit cannot beR-matrix analysis of reactions in thd=4 system reported
taken. In such cases one does not know the number and Refs.[9] and[16]. The state was visible & =395 keV
location of the poles, so one has to search all energy sheetsccording to the usual resonance-parameter prescription, but
Following [29], the poles lying on the sheet closest to thedid not appear to give a low-lyin§matrix pole using the
physical sheet[(+ +--- +]) at a given energy, are called “extended” R-matrix prescriptiorf31,17. This prescription
conventional poles, while the others are called shadow pole#volves first fitting the available experimental data in terms
Usually only the conventional poles have observable effectsf the conventionaR-matrix parametrization at real energies
causing the appearance of conventional resonances. Hown the physical sheet, then using this parametrization to con-
ever, there are exceptions where the effects of shadow poleisue theS matrix onto other sheets of the Riemann energy
are non-negligible or even dominant. We mention here th&urface in order to study its analytic structyBd], in very
examples of theH(d,n)*He reactior{31,23 and the struc- much the same way as discussed above.
ture of 8Be[32]. Shadow poles play an important role also in ~ The channel configuration and the distribution by reaction
atomic physics, in laser ionization processes, because of thef data included in théd=4 R-matrix analysis are summa-
large number of channels and relatively low energies rerized in Table IlI, taken from Ref.16]. In general, all types
quired for ionization[33]. In Ref.[9] it was speculated that of cross-section and polarization measurements were used,
the 0; state of*He might come from a shadow pole, which but the ones that showed most clearly the f@sonance and
fact could partly explain the difficulties encountered by theits associated threshold effect were excitation functions of
shell model in reproducing this state at the correct energy. the H(p,p)3H differential elastic cross sectiof84—3§.
In order to explore this possibility, we searched all energySome of those measurements are shown compared with the
sheets for poles. In model spaces that inclddeand ®He  R-matrix calculation in Fig. 2. The resonance peak occurs at

B. R-matrix
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TABLE II. Channel configuratiorftop) and data summargbottom) for each reaction in théHe system
R-matrix analysis. The maximum orbital angular momentum allowed for each arrangement is given by
I max» While a; is the channel radius.

Channel I max a. (fm)
H+p 3 4.9
SHe+n 3 4.9
d+d 3 7.0
Reaction Energy rang@MeV) No. observable types No. data points
3H(p,p)3H E,=0—-11 3 1382
3H(p,n)%He + 3He(n,p)3H E,=0—-11 5 726
3He(n,n)3He E,=0-10 2 126
2H(d,p)®H Eq=0-10 6 1382
2H(d,n)3He Eq=0-10 6 700
2H(d,d)2H Eq=0-10 6 336

Totals: 28 4652

about 350 keV, and the threshold stepEat 764 keV is It is interesting to note that all of th&-matrix structure

especially striking at this angled ,=120°). The resulting described above comes predominantly from the samé®

s, H+p phase shift, represented by the dots in Fig. 1level in theR matrix, located approximately 6 MeV above

serves as the “experimental” data to which the RGM resultsthe *H+p threshold. The position of this level depends on

are compared. the boundary conditions, which are taken to be the shift func-
We find an S-matrix pole on the[—++] sheet at tjons in the various channélgvaluated at the ground-state

(0.114-i0.196) MeV, corresponding to a conventional reso-energy of *He, so that the lowest 0 R-matrix level coin-

nance atE,=114 keV above the®H+p threshold, with  ciges identically with the*He ground state. One can then

I'=392 keV width, in good agreement Wig_" the parameter§nagine the 6-MeV level to be associated with a small-basis
obtained from the RGM. At the time of theHe level com-  ga)| model wave function, since these states, like the inter-

pilation reported ir9], this pole had not been found becausenal R-matrix eigenfunctions, are expected to represent the

the step size of the automat_ed search algorithm was 986 wave function of the scattering system only in a limited
large, leading to the speculation that the resonance mlghre ion of space. The point is that, when such an expansion is
actually be associated with higher-lying shadow poles in the 9 pace. P ' P

0* state. These shadow poles occur at energies betweé(]]\atChed to the correct asymptotic scattering solution, it pro-

about 3.0 and 3.6 MeV, with widths in the range 8 MeV uces a low-lyingS-matrix pole in the correct position for
on the Riemann shee{’s—++] [~ -] [+--] anéj the resonance associated with the first excited stattHef

[+—+]. In addition, there is another resonance ateven though the energy eigenvalue of the structure state is far
&=(7.68-13.57) MeV on thd — — —] sheet, with an asso- aboye the resonance energy. Of course, as was discussed
ciated shadow pole ak=(8.43-i3.43) i\/IeV on the earlier, enlarging the sheII—modeI basis wou.Id make the en-
[~ — +] sheet ergy of the state decrease until, at some point, it Woglq pass
’ through the resonance energy on the way to attaining its
minimum value(the 3H+ p threshold energy However, the
correct information about the resonance asSanatrix pole
o Balashko may already be contained in the small-basis shell-model
o Jarmie ] states.
i As was noted earlier, the additional poles above the
3He+n threshold were not found in the RGM approach.
Compared to th&®-matrix model, our RGM approach is less
realistic, mainly because the description of the¢ d chan-
nels is rather schematic due to th®, force problem. On the
other hand, th&®-matrix approach embodies some aspects of
channel orthogonality in the region outside the nuclear sur-
0.15 y ' face that might increase the likelihood of having multiple

0.0 0.5 1.0 1.5 . X .
E_ (MeV) poles (cf. the discussion about the number of poles in an

025 |

do/dQ (b/sr)
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S

FIG. 2. Differential cross section foiH(p,p)3H elastic scatter-
ing at #.,~120°. The solid curve is thR-matrix calculation, and The boundary condition used in the-3 channels is actually the
the data are from Ref$34,35 (solid circles, [37] (open circley average of thé’H+p and 3He+n shifts, in order to preserve the
and|[38] (solid triangles. charge-independent model.
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N-channel scattering problemThe nature of these addi- 3H+p threshold. We have searched fSmatrix poles at
tional states in theR-matrix spectrum will require further complex energies using the same model space, and found
investigation. However, they appear to be necessary in ordejne at (0.093-i0.195) MeV energy, relative to théH+p
to enhance the strong threshold step that is seen in the megreshold. Our model predicts that thig Gtate is the first
sured °H+p cross-section excitation functions. excited state of*He, and is a conventional resonance at
Both calculations are in substantial agreement that thg =93 keVv with I'=390 keV width. While in the ground
first excited state offHe is 0; , a conventional resonance state both the®H+p and the 3He+n configurations have
lying between the®H+p and °He+n thresholds, with roughly the same weight, thejOstate is dominated by the
E,~100 keV energy relative tdH+p, and [ ~400 keV. 3H+ p configuration.
Since the real-energy resonance parameters for this state, \nje have also localized the Ostate in an extended
E,=395 keV andl'=500 keV[9], were obtained from the g matrix model. Its parameter§, =114 keV andl’ =392
sameR-matrix parameters as used here, the differences comg.y are in good agreement with the RGM parameters. The
entirely from the relation of resonance parameters deterz_ matrix model produces several additiondl Poles. While
mined from real- and complex-energy scattering quantitieSyhe ynderstanding of these structures will require further the-
respectively, as discussed in REE7]. oretical investigation, their role in producing a strong thresh-

old effect is already clearly seen.
IV. CONCLUSION

In summary, we have described th¢ @nd G, states of
“He in a microscopi¢®H+ p,3He+n} RGM approach. The
effective interaction did not allow us to fully includg+d This work was performed under the auspices of the U.S.
configurations into the model. We have found ti&t and  Department of Energy. Early stages of this work were done
3He cluster distortions play important roles if one wants toat the National Superconducting Cyclotron Laboratory at
reproduce the relevantS, ®H-+p phase shift. Our best Michigan State University, supported by NSF Grant Nos.
model, which satisfactorily reproduced this phase shift, puPHY92-53505 and PHY94-03666. Support from OTKA
the ground state ofHe at —20.53 MeV relative to the Grant No. F019701 is also acknowledged.
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