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Broken SU(3) symmetry in deformed even-even nuclei
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A collective vector-boson model with broken 8) symmetry, in which the ground-state band and the
lowest y band belong to the same irreducible representation but are nondegenerate, is applied to several
deformed even-even nuclei. The model description of groundjabednds together with the corresponding
B(E2) transition probabilities is investigated within a broad range of33Ureducible representation(s,w).

The calculations show that th@,u) characteristics of rotational nuclei depend to a great extent on the
magnitude of the S(B) splitting between the ground andbands. It is found that for weakly split spectra, the
ground-+y band coupling scheme is realized relevantly within narrow regions of “favor@di) multiplets,

while in the cases of strong splitting a description in which the ground band is situated alone in an irreducible
representation is favored. The obtained results are analyzed in terms of the band-mixing interactions. The
possibility for a transition between the different collective(SJuschemes is discussed.
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PACS numbgs): 21.60.Fw, 21.60.Ev, 27.78q, 27.90+b

I. INTRODUCTION include SU3) as a DS group which can be associated with
the rotational limit of nuclear collective motion.
The SU3) symmetry group, which was introduced ini-  Various model realizations of a broken &)Y symmetry

tially in nuclear theory as the symmetry group fl-shell  have been applied to the nuclei of the rare earth and actinide
nuclei[1], has also been given meaning in the framework ofregions by using appropriately selected(Slrreps. A mi-
the dynamical symmetryDS) concept[2-5]. Based on the croscopically justified one is the pseudo (8Umodel[hav-
DS concept, it has been supposed that thé3gsymmetry is  ing an SUY3) abstract symmetily in which the SW3) irrep
inherent for the well-deformed even-even nuclei, so that thg\,u) used for a given nucleus depends on the filling of the
low-lying (L=<10) collective states of these nuclei could be Nilsson pseudo-oscillator levelgl9]. An alternative pre-
united into one or several §8) multiplets, labeled by the scription for fixing the SB) quantum numbers and u is
irreducible representationigreps (\,u) of the group S(3) used in[20,21] and is based on the original Elliott modél.
[6]. The collective rotational Hamiltonian reduces this sym-In fact, the two schemes involve different &) irreps for
metry to the rotational group @) and thus the energy spec- one the same nucleus, indicating that with respect to the
trum of the nucleus is generated. In particular, it has beembstract S(B) symmetry(beyond the particular realizatipn
shown that in the rare-earth nuclei the ground-state banthe choice of an adequate,,u) multiplet for the given
(gsb and the firsty-excited band can be united into one split nucleus is not unique. The above circumstance naturally
(\,2) multiplet appearing in a collective vector-boson leads to the question of whether the theoretically determined
scheme with broken S@3) symmetry[6]. This scheme gives SU(3) irrep provides the best model description of the spec-
a satisfactory description of the energy levels and of therum and how the pattern changes with varylgnd u. It is
B(E2) transition ratios within and between the bands. Thetherefore of interest to understand whether the appropriate
success of the S(3) scheme has inspired the extension ofirreps can be established directly on the basis of the available
the concept of DS in nuclei to the noncompact groupexperimental data and whether they reflect the respective
Sp6,R) [4,7-11], which contains S(B) as a maximal com- systematic behavior of the ground andband rotational
pact subgroup. Alternatively, boson and fermion realizationstructure of deformed nuclei.
of dynamical symmetries have been used in the interacting In order to clarify these questions one should include in
boson mode(IBM) [having an overall (B) symmetry [12—  the study a large variety dh,u) multiplets and try to deter-
15] and the fermion dynamical symmetry modphith mine the ones favored by comparison to the experimental
Sp6,R)XSU(2) and S@8)XSU(2) overall symmetries data. Such an approach can be naturally applied in the frame-
[17,18, respectively. In spite of the different realizations work of the vector-boson model schef®22,23, in which
these extended algebraic schemes in the appropriate limihe possible S(B) multiplets are not restricted by the under-
lying theory. This suggests that the &Jquantum numbers
N\ andu are external parameters of the model scheme, allow-
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the discussion of the physical meaning of the vector-bosofowest y band belong to the same irrep but are nondegener-
scheme. ate. The lowesi3 band is not contained in the same irrep.
An important characteristic of the $8) multiplets is the  The situation differs drastically from that of the &) limit
energy splitting of the even angular momentum states int®f IBM [14], in which a pure S(B) symmetry is the starting
the respective states belonging to the gsb andythand.  point, the ground-state band sitting alone in an irrep, with the
The splitting is due to the reduction of the @Ysymmetry lowesty and 8 bands belonging to the next irrep and being
in the nucleus and characterizes the mutual disposition of théegenerate. The degeneracy of the even angular-momentum
two rotational bands within the multiplet. Thus one could €vels of the lowesB andy bands is a hallmark of the 38)
expect that the possible existence of favored®Urreps ~SYmmetry of IBM. o
will depend on the energy splitting as well as on the intrinsic_ [N Sec. Il the vector-boson scheme, which in the lowest
rotational structure of the bands. SU(3) irreps(A,2) allows one to derive analytical expressions
In this paper we report a global study of the broken®U for the energy Ieve'ls anq transit'ion prpbabilit[@, is ex-
symmetry in deformed even-even nuclei, implemented€nded for calculations in the higher irreps wigh>2. In
through the use of the vector-boson formali§6)22,23. Sec. _III we describe the nL_Jme_ncaI procedure and estimate
Motivated by the above considerations, we suppose that for i€ Significance of the Hamiltonian parameters for the model
given rotational nucleus the physically significant features off€SCription. The obtained results and the corresponding the-
this symmetry should be sought in certain regions ofBU oretical 'anaIyS|s are presented in Sec. IV while in Sec. V the
irreps instead of a single fixed irrep. The aims of this workconclusions are given.
are concentrated on the following items.
(i) To study whether in the framework of the vector-boson Il. THE VECTOR-BOSON MODEL
scheme the available experimental information on the energy WITH A BROKEN SU (3) SYMMETRY
levels and transition probabilities could be used to estimate
the SU3) symmetry characteristics of the nucleus, in par-
ticular to outline the physically favored regions in theu) The present realization of the $) dynamical symmetry
plane. is founded on the assumption that the low-lying collective
(i) To study how the picture changes in the various nu-states of the nuclear system can be constructed effectively
clei, where different energy splittings between the groundwith the use of two distinct kinds of vector bosons, whose
state band and the firgtexcited band are observed, and if creation operatorg* and »* are Q3) vectors and in addi-
the SU3) nuclei could be systematized accordingly. tion transform according to two independent (SJrreps of
(iii) To investigate the principal limits of applicability of the type §,u)=(1,0). The vector bosons are interpreted as
the SU3) symmetry in nuclei by analyzing the band-mixing the quanta of the elementary collective excitations of the
interactions in terms of the vector-boson formalism. nucleus. The basic states corresponding to the reduction
We have considered eight rare-earth nucleichain
(164Dy, 164-16§ 1681737y 176.1784f) and one actinide
nucleus £38U) for which the model descriptions of the gsb
and y-band energy levels and the concomit&{E2) tran- . .
sition ratios have been evaluatéid the form of root-mean- €&n be constructed as polynomials in the vectpfsand
square fitsin SU(3) irreps within the range 3A<160 and  7» (v=1,0,—1) acting on the vacuum state. The set of these
2<u<8. These nuclei represent regions of (3Uspectra  States, usually denoted as
with different magnitudes of energy splitting between the

A. Basis and Hamiltonian

SU(3)D0(3)D0(2) 1)

gsb and the firsty-band. Though some other nuclei could (A, p) > 2

also be included in the study, we shall see that the considered a,L,M/”

ones are sufficient to trace the most important features of ) ]

SU(3) DS in collective rotational regions. is known as the basis of Bargmann and Moshing2§,29.
A few comments and clarifications are in place at thisSince the chair(l) is not canonical, i.e., in a given $8)

point. irrep (\,i) more than one @) irreps (L,M) appear, an ad-

(i) The vector bosons used in the vector-boson mpelel ditipnal quantum numbea is introduced in order to distin-
do not possess any underlying physical content, in contrast t@uish the states with equal angular momentahe quantum
the bosons used in the interacting boson mdm) [16], number « is related to the Elliott quantum numbé&r as
which are understood as correlated fermion pésee[24] «=(rn—K)/2[22]. The basis vectorf2) are not orthogonal
and references therginThe vector bosons are the building With respect tax and could be orthonormalized by means of
blocks of the vector-boson model and the brokeri@ym-  the Hilbert-Schmidt proceduf@2]. For a giverlL, the quan-
metry, which do have a physical content, as it will be seerfum numbere runs over all integers in the intervg22,29
later. There is no contradiction between the last two state-
ments. The situation is similar to that of the Schwinger boson max0,5(x—L)}<a<=min{3(u—B),5(A+u—L—B)},
realization of SW2) [25—-27: The bosons used for the real- (©)]
ization do not bear any particular physical content them-
selves, but the S(2) operators built out of them are the Where
physically meaningful angular-momentum operators.

(i) The SU3) symmetry discussed in this paper is a bro- _]0, At+u—L even,
ken SU3) symmetry, in which the ground-state band and the B= 1, N+u—L odd. )
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The values|aj}j-;_g With aj<e;.; determined in Eq(3) B. Energies andB(E2) transition probabilities

label the different bands in which the angular momentum The eigenstate of the effective Hamiltonigs) with given
appears and, is the multiplicity of the @3) irrep (L,M) in  angular momentunL and energyw- can be constructed
the decompositior(1). Thus, in the case of the\(u=4)  from the highest-weighthw) basis stategwith M=L) as
multiplet (\>u;\,u even), the numberry labels the follows:

ground state band with=0,2,4... \; ag -1 labels they d,
band withL=2,3,... A +2; ag -2 corresponds to a band ‘ OL"'“) >:z cL.
with L=4,5,... A+ 4, etc. In the casé\,2) the above scheme wsLLf =
provides only two bands, the gsb and tpeand, labeled by Then the standard problem for eigenfunctions and eigenval-

the quantum numbers,=1 anda,=0, respectively. _ues reduces to the following homogeneous set of equations
The collective Hamiltonian of the vector-boson scheme is, . : . e Lo
ritten in matrix form) for the coefficientC ;:

based on the experimentally supported view that in deformegN
even-even nuclei the nuclear effective interaction is domi- L L P .

: o Vii—w- 8 ;)(C,.,)=0, j,j'=1+d_, 11
nated by the collective quadrupole mode. Thus, it is assumed (Vijrm@79)(C, ;) I - (1)
that the basic collective properties of these nuclei are dete{ynere
mined by their angular and quadrupole momenta, which are

(10

(N, u)
a]-,L,L ’

naturally incorporated within the framework of the QU (N, ) (N, )
DS. The effective S(B) symmetry-breaking Hamiltonian VJ,J’E< aj,L,L| " aj ,|_,|_>
which should be an @) invariant[30,31] is constructed by
using three basic @) scalars as follow$23]: are the matrix elements of the Hamiltoniés) between the
hw basis states and::(:,j,) is a vector column. The eigen-
V=g;L%+g,L-Q-L+g;ATA, (5) valuesw! ,i=1-d, (with w;<w;,,) are determined by
de(V,; — "8 ;) =0. (12)

whereg, , g,, andg; are the parameters of the modeland
Q are the angular-momentum and quadrupole operators, re¢n the low-dimensional cases with= 2,4, whered, =2,3,
spectively, in the vector-boson realization: Eg. (12) can be solved analyticallj6], while in the cases
with u>4 one should finduiL by numerical diagonalization
of the matrix /; ;). We remark that the interaction mixes
Lm:_‘/?EV C},Tl,,(§;§y+ n.m), mM=0x1 (6) only basis st(\a/{és) with neighboring values of the quantum
M' numbera so that the matrix\; ;-) is tridiagonal. The ana-
lytical form of the matrix elements of the operatdrsQ- L
_ 2k + + —0+1 + andA*A is given in Table I. Since the basis of Bargmann
Q \/EMEV Clun(Eudot mum), k=0=122,(7) and Moshinsky is nonorthogonal, the matri¥;() is not
Hermitian. This fact does not affect the obtaining of real
eigenvalues when the model parametgss g,, andg; are
real. After obtaining the eigenvalued‘, one is able to de-
rive the corresponding coefficientsCi;=C,

with C:'rmm, denoting the Clebsch-Gordan coefficients; the

termA™ A introduced originally in32] is constructed by the

operator i L)
=1-d, . Below we show how this can be done easily even
b et ? 42 e 42 in the cases with large dimension. For a given eigenvalue
Al=g =& ) B 4L we introduce the coefficients
and its Hermitian conjugaté. The physical content of hij=Crj/Cf;, j=1-d,, 13

A*A is discussed if23] by assuming that the vectos _ _

and " form a “pseudospin” doublet. This allows one to With hi,;=1. Thus the sefl11) is reduced to a nonhomoge-
label the SW3) multiplets by the numbers N,T) (N Eeoug setd of dhL_1 .equimon%' for ':hfe cmf—:‘ffrl]ments
_ C T AN IN_ 1 AN . i.j» ]=2=d_. Then using the tridiagonal form of the ma-
)\0'1’2"" T=2N,2N—-1.2N-2,...), which are related to trix (Vjj-), we derive the solution of this s¢tor arbitrary
(\,u) as d,) in the following recursive form:

N=\+2u, T+A/2. 9) hij=—{Vj_1j_2hi 2+ (Vj_1j_1— oD o1 Vj_q

The numbem corresponds to the number of vector bosons j=3-d., (14

(interpreted as related to the number of excitation quanta igiip

the nucleusandT is the “pseudospin” of the system df

vector bosons. It has been shown that in these terms the hi = — (V11— [ )/Vy 5. (15)
operatorA™ can be considered as a creation operator of four

particles withL=0 and T=0. In this way the operator After obtaining the coefficienth; ; and using the orthonor-
A*A has been interpreted as the number operator @f “ malization of the eigenfunctiofi0) we find the first coeffi-
like” configurations in nuclei. cientCtl:
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TABLE I. Matrix elements of the operatots- Q-L andA™ A between the basis states of E).

s () ()
<a+sLLL‘}LaLL>
0 4a[L(L+1)—3(L+2a—pu+B)?]

—2(\+pu—L—B—2a)[L(L+1)-3(u—2a)?]
—(L—2u+4a+B)(2L+3)(L+1+3p)

1 —6(+ L~ B~ 20) (u— 20— B)(u—2a— 1)
-1 120(L+2a—p)(L+2a—p—1)
s ) | (ML)>
a+sL,L all
0 -3 af(a—1)[L(L+1)-3(L+2a— u+pB)?]

—(N+u—L—B-2a)[L(L+1)-3(n—2a)?]
— 3 (L—2u+4a+B)(2L+3)(L+1+38)}
+30 (N +H2u+3—4K)[(A+2u+3-4K)2+3— 2 L(L+1)-A(A+2)]

1 (\+pu—L—B—2a)(u—2a-B)(n—2a—B—1)(L+\+u+2a+B+2)
-1 —4a(a—1)(L+2a—u)(L+2a—u—1)
i d
) | (N ) (A, ) )\ S kLt
22 ,2-1 i i <aj,L,L ajr,L,L w5 LKL 20 wf L, L _,2‘1 Ci,Jsgfﬂ AR sir
—12 (18
N, N,
_E hi 1< \ Ifldi_ ( IfLi_> ' (16
aj, L. Lo, L, wherei, i’ andk take the values=1-d,; i'=1-d .,

andk=0,1,2; the matrixC" is determined for the states with

where the analytical form of the overlap integrals angular momenturh by Eqs.(13—(16) and the matribR" is

) | o) defined asR-=(C“)"'. The most general form of the
a LLlao L L> B(E2) reduced transition probability witAL =k between
U the level corresponding to the eigenvalug and the level

is given in[22]. The remaining coefficient€];, j=2-d_  corresponding taos, " is
are then determined through E@3). In such a way, apply-

ing the above procedure for all eigenvaluds, i =1-d_we 1 L+k 2 L\~
obtain the matrix CL.) which transforms the space of the B(E2; ; L wnt I()
b ! 2L+1\ -L 0 L
basis functions
() )\ [?
(N w) ,
. ﬁLL o L+k L Qlwb L L

aJ 1 1 l
into the space of the physical stat@gth determined ener- (19
gies

(N ) Il. PARAMETERS AND NUMERICAL CALCULATIONS

ot ,L,L> We have realized numerically the general model scheme,

given in the previous section. Thus, in a particu(aru)

In order to obtain thd3(E2) transition probabilities in a multiplet (\>x; A, u even we diagonalize the matrix
given multiplet(\, ) one can use the action of the operator(V; ;) for the various angular momenta. The gsb and

Qo (7) on the hw basis state yuband Ievels with everL are then determined aEg(L)
(N, ) (N ) —wl w® andE (L) = a)'ﬁ P, respectively, where»1 and
Qo L L> 2 ak i L+k L) 17 w5 are the lowest and the next larger Hamiltonian eigenval-
@b “ou? ars ’ ues, respectively, an@°=gyu?(\+u+1)? is the zero-

level eigenvalue. The-band energies with odd are deter-
where the coefficienta‘g are given in[23]. Then the matrix mined asEy(L)=wk— °.
elements ofQ, between the states with determined energy By using Eq.(19) for the obtained energy levels, we cal-

values(10) can be derived in the form culated the followingB(E2) interband transition ratios:
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_ B(E2;L,—Ly) —6L(L—1)}, (27)
Rlb)=BrE2L -2 - o
Vo,=0:L(L+1)—g{(2A+5)L(L+1)—6L(L—1)}
BIE2;L,—(L+2),] . 2_
— g3[4(AN+3)°—2L(L+1)], (28
Ra B(E2iL, oL, ' - °ven ’
while the off-diagonal ones are
Ru(L) B[E2;L,—(L+1)g] L odd -
s(L)= B[E2;L,—(L—1)g]’ odd, (20 Vi,=0212L(L—1), (29
and the gsb intraband ratios: V21=926[ — (20 +5)+(2L+1)]
+g32(N+L+4)(A—L+2). (30)

BIE2;Ly—(L—2),]

RuL)= B[E2;(L—2)g—(L—4)g]’ @D

one finds(see Table)l

where the indicegg and vy label the gsb and the~band
levels, respectively. In the actinide nuclei the experimental
information on the interband transitions does not suffice to
provide any fits, so that in these cas@s particular in

At this point it is important to estimate the significance of
the Hamiltonian parameters,, g,, and g; for the model

Vi11=0;L(L+1)—0g,(2N+5)[L(L+1)—12].

In the case of odd. [in which =1 according to Eq(4)]

(31)

The gsb andy-band energy levels are then obtained in the
238J) we consider only the intraband rati¢&1). form

Eg(L)=AL(L+1)—B{\[1+CL(L+1)?+Df(L)—1},

calculations. The first parametey;, applies only to the di- (32
agonal matrix elements of the Hamiltonian and contributes
only to the rotational part of the energy levels. The second E,(L®*)=2B+AL(L+1)
and third terms|-Q-L andA™ A, have diagonal as well as B
nondiagonal matrix elementsee Table), so that the pa- +B{V[1+CL(L+1)]+DF(L)— 1},
rametergy, andgs are significant for the rotational structure (33
of the levels as well as for the band-mixing interaction. On
the other hand, the diagonal contribution of the latter terms is E(L%=2B+AL(L+1), (34)
responsible for the energy differences between the levels
with equal angular momenta and different quantum numbers/here
a, which means thag, and g; are also significant for the
splitting of the SW3) multiplet. A=0;—(2\+5)g2— 03, (35
In order to illustrate the above considerations, we refer to
the particular case of th@\,2) irreps. In a given\,2) irrep B=6(2\+5)g,—2(A +3)?g3, (36
and for a giverL the general form of the Hamiltonian matrix
elements is 1 Os3
3 3 ) C=6r+5) g, 37
Vij=(ai|V]a))=g1(ai|L? aj) + gx(ai|L- Q- L|a))
JATAl o 12
+as(alATAlay), (22 D= 57 [395-029s]. (38)
where the indices,j= 1,2 label the twax values:a;=0 and
a,=1. Thus we have and
V1,=(a=0|V|a=0), (23 f(L)=L(L—21)(L+2)(L+2). (39
V,,=({a=1v|a=1), (24) These levels have been obtained with respect to the zero-
' level eigenvaluew®=4g;(\+3)?, as explained in the be-
Vi,=(a=0|V|a=1), (25) ginning of Sec. Ill.
The linear combination of parametefscould be inter-
V, =(a=1|V|a=0). (26)  preted as the inertia term, corresponding to the nonmixed

Hence for the calculation 0f, ; one needs from Table | the
valuesa=0, s=0; for V,, one needsx=1, s=0; for V,,

one needsyr=1, s=—1; for V,, one needsyr=0, s=1.

In this way one can easily see that in the casé dkeing
even [in which =0 according to Eq.(4)] the diagonal

terms of the Hamiltonian arésee Table)l

Vi1=0:L(L+1)—g{(2N+5)[L(L+1)—12]

part of the energy levels. The quantitl has the meaning of
the y-band bandhead, whilé andD contribute to the mixed
part of the energy levels. Note thi¢L) coincides with the
square of theAK=2 band-mixing term of the Bohr-
Mottelson mode[57].

The above expressions indicate two specific features of
the present model in th@,2) case.

(i) The odd y-band levels, which in this case are not
mixed with any other levels, exhibit a rigid rotor behavior.
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(ii) In the particular casgs/g,=3 the quantityD van-
ishes, so that despite the splitting both the gsb and thend
contain only terms which are powers lofL+1).
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them. This is implemented by using thg minimization
procedure based on the direction @towell’'s) method
(DSM) [34]. The quality of the energy fits is measured by

It is also useful to rewrite Eq$32) and (33) in the form

11 ) 1D oe= \/ (Une) X [EYL-EYHLP (44
E,(L)=|z—=+=—=]|L(L+1)+ — =< f(L v
which is the standard energy rms deviation with being
+i L2(L+1)2 (40) equal to the number of the levels used in the fit and
200 ' =g,y labeling the gsb and the-band levels, respectively.
. By analogy, the quality of the fit of the transition ratios is
wherelL is even,y =g,y and measured by
1
Jo=2A" “1 o8= \/ (1hg) X [RYL)-RZLIP, (45
_ 1 1 which is the rms deviation of the transition ratios of E2(),
A=gc|1* 28 AE(L))’ 42 with ng being the number of the ratios used in the fit and
. =1,2,3,4 labeling the different types of ratios defined in Egs.
with (20) and (21). The experimental data on energy levels are
1 taken from[35]. The data on electromagnetic transitions are
16 16 16
AE(L)=E,(L)— =—— L(L+1). 43) taken as follows:*%“Dy [36—39, %“Er [38,39, %%Er [40-

27 42], 1%8r [43-45, %8b [45,46, '2Yb [47-49, Y7OHf
[50,51], 178Hf [52,53, 238U [54]. In this method weight fac-
The first term in Eq.(40) corresponds to the energy of a tors are used in order to account for the different orders of
nonrigid rotor, the moment of inertia of which is angular- magnitude of the energy levels and the transition ratios,
momentum dependent. This dependence is similar to the onghich are fitted simultaneously. The direction geowell’s)
occurring in the variable moment of inertiMI) model  method(DSM) [34] used here does not involve any compu-
[33]. The other(higher-ordey terms also depend on the an- tation of the gradient of any function and is directly appli-
gular momentum througAE(L). In such a way Eq(40)  cable to the numerical realization of the present model. In
indicates that the influence of the Hamiltonian parameters oaddition we have tested an alternative fitting procedure in-
the energy characteristics of the model is essentially nonlinyolving numerical derivation, in which the differences be-
ear. tween the model predictions and the experimental data are
Now, regarding the transition probabilities, we considerminimized with the use of an iterational procedure of Gauss-
the recursive equationd4) and(15). We remark that since Newton(GN) type[55]. In this method the energy levels and
g: enters only in the diagonal part of the Hamiltonian, thethe transition ratios are again fitted simultaneously, but this
subtraction Vj—l,j—l—wiL) in Eg. (14) eliminates its contri-  time with equal(unit) weight factors. In this way we have
bution to the determination of the eigenfunctions and consefound that the independent application of both fitting proce-
quently of the transition probabilities. More precisely, thedures, DSM and GN, in a given $8) irrep (\,u) leads to
contribution of the diagonal matrix elements to the eigenvalthe same values for the Hamiltonian parameters. This fact
ues is not affected by the diagonalization procedure. Alsshows that the theoretical scheme developed in the previous
one can deduce easily that the eigenvalues, as solutions séction provides a numerically stable model description. It
Eqg. (12), should be homogeneous functions of the paramfollows that in the various S(3) multiplets the differing
etersg, andgj, so that after dividing both the numerators accuracy of the model description should be due only to the
and the denominators of Eq4.4) and(15) by g, (org;) one  particular SU3) symmetry properties of the considered
concludes that the wave-function coefficients and the transirucleus.
tion probabilities should depend only on the radig/g, (or At this point we should mention that the simultaneous
0,/g3). Thus, while the energy description requires appro-itting of energy levels and transition probabilities is advan-
priate values of all Hamiltonian parameters, the inclusion ottageous for our analyses. In order to estimate the significance
the transition probabilities in the fitting procedure only fixes of such a procedure we refer to the calculations carried out in
the ratiogs/g, (or g,/d;). We also remark that if one sets the framework of the pseudo $8 model[19]. In [19] only
g (or g,) equal to zero, which means to neglect the termthe ground and-band energy levels are used in the fits. The
ATA (or L-Q-L), the transition probabilities will obtain B(E2) transition probabilities are determined using the wave
some constantnonadjustablevalues. It follows that both functions obtained from the energy diagonalizations. As a
symmetry-breaking terms are necessary for a reasonable deesult the energy levels and the gsb intraband transition prob-
scription of the B(E2) transition probabilities within the abilities of the nuclei 1°0-16py, 164-16%, 166168
present S(B) scheme. 232Th, and 24-2%Y are described satisfactorily. However,
For obtaining the model description in a given@Uirrep  the obtained interband transition probabiliti@sables 6 and
(\,,u) we have adjusted the Hamiltonian parameters to th& of [19]) do not reproduce accurately the experimental data.
low-lying experimental gsb angi-band energy leveleup to  For example, in the case of%%r, the interband ratio
L=8-10 and to the available transition ratios betweenR;(L) [Eq. (20)] obtains the valuek;(2)=1.43, Ry (4)
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=3.0, Ry(6)=3.72, while the experimental data give 20
R1(2)=1.78, Ry(4)=4.81, Ry (6)=10.6 [40,41], i.e., for i
L=4 the experimentaR,(L) ratios are not reproduced. Be-
low we shall see that in our calculatiofisith simultaneous 15
fitting of energy levels and transition probabilifiehe same -
ratio for the same nucleus obtains the valig$2)=1.81, %
R.(4)=5.34,R,(6)=10.31, which are in very good agree- =10
&=
o

LI 1 I R |

168
Er

ment with the experimental data. Simultaneous energy

B(EZ2) fits have, in addition, been used in the framework of

the pseudosymplectic modg39], the advantages of such a 5
procedure becoming clear also in this case. In addition, we

remark that the interband transitions play an important role

in our study, sincéas will be commented belovthey carry | PR TN NS FE R EE TN RN SRNE ST
information about the coupling of the gsb amdands into 1020 30 40 5; 60 70 80 90

one SU3) multiplet.

In_ the end of this section we shogld me'.‘“o” that the FIG. 1. The energy rms factarg [Eq. (44)], obtained for the
resfriction on the energy levels us.ed in the f'ts to angular?1ucleu5168Er, is plotted as a function of the quantum numheat
momentgm_vglues up th=8-10 is appropriate becquse u=2 (circlets, u=4 (squarel x=6 (triangles, andu=8 (aster-
below this limit almost all gsb ang-band levels of the in- isks).
vestigated nuclei are observed experimentally. Such a restric-
tion allows one to study the systematic behavior of the bro-
ken SU3) symmetry in the various nuclei on the basis of theog~11-12 keV, without the presence of any minimum.
same angular-momentum values. Thus we ensure that ifhus, Fig. 1 shows that fol®®Er the model scheme provides
most of the considered nuclei the even-spin levels belonging clearly outlined region of “favored” multiplets in the
to the gsb are described together with theiband counter- (\,u) plane, includingh = 14—20 andu=2,4,6. Outside this
parts. The splitting of the even-spin states as well as theegiono increases gradually with the increasenond for
band-mixing strengths are then correctly taken into account >40 it saturates towards the values obtained in (&)

An exception is the nucleu$®U for which we consider the multiplets. It is also clear that the best description of the
gsb up toL =18 and they band up toL =5, due to the lack energy levels corresponds to the multigl2®,2, which pro-
of further data on they band. vides the absolutez minimum observed in the considered
variety of (\,.) multiplets(see Table . In addition, we see
that with the increase of the quantum numbethe corre-
spondingog minima increase in value and are shifted to
A. Nuclei with small SU(3) energy splitting smaller\ values. Regarding the transition probabilities, we
éemark that theB(E2) ratios[Egs.(20) and(21)] are repro-
duced with almost equal accuracy in the whole variety of
multiplets, where the rms facterg changes within very nar-
row limits (oz=0.25-0.3). Actually the differences in the
AE,=(E,+—Ey+)/Ey+, (46) o values obtained in the different multiplets are of the order
2 oo of the experimental uncertainties. This result is due to the
) fact that in the present model scheme BifgE2) transition
where E,+ and E,: are the experimentally measured 2 probabilities depend only on the ratig/g,, which can be
energy levels, belonging to the gsb and thband, respec- adjusted almost equally well in the various irreps. The same
tively. In the rare-earth region this ratio varies within the behavior ofcog is observed in all investigated nuclei.
limits 7<AE,=<18, while in the actinides one observes val- Consider now the parameter values obtained for the
ues in the range BAE,<25. nucleus '%€r in the various irreps, plotted in Fig. 2 as a

We start with the nuclei in which a small band splitting function of the quantum numbar. One see$Fig. 2(@)] that
ratio AE,~8-10 is observed. The three Er isotopesin the (\,2) multipletsg, obtains only positive values which
164-16%r and the nuclef®*Dy and 'yb are representatives increase gradually with the increaseofind saturate tg,
of this group of nuclei. As a typical example let us consider~10 keV. In the irreps withu=4,6,8, g, starts with nega-
the 1°%Er case, wherd E,=9.3. For this nucleus the model tive values [g;~—13keV in the irrep (12,4; g;~
calculations are implemented in the @Virreps within the  —44 keV in the irrep(12,9], but with increasing\ it goes to
range 16sA<90 andu=2,4,6,8. The results obtained for positive values and saturates towards the values obtained in
the description of the energy levels are shown in Fig. 1the (\,2) multiplets. The parameterg, and g5 obtain only
where the corresponding rms factosg are plotted as a negative values, as it is shown in Figgbpand Zc). One
function of the quantum numbar One finds that in thé\,2) also finds that both parameters decrease in absolute value
irreps o exhibits a well-pronounced minimum at=20  with increasing\ and saturate towards zero.
with oz=3.2 keV. In the(\,4) irreps the minimum is found Two comments should be made at this point.
at \ =16, with o=3.8 keV, while in the(\,6) multiplets it (i) The smallg, and g; absolute values obtained in the
is obtained ah =14, with 0g=5.8 keV. One also finds that largex region,\>40, do not reduce the respective contribu-
in the (\,8) multiplets o obtains almost constant values, tions of the second and the third terms of the Hamiltonian to

T T T T T ]

IV. RESULTS AND DISCUSSION

We have grouped the nuclei under study according to th
magnitude of the S(B) energy splitting. As a measure of the
splitting we use the ratio
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TABLE II. The parameters of the fits of the energy levels and the transition ff&ips (20) and(21)] of
the nuclei investigated are listed for tkge,u) multiplets which provide the best model descriptions. The
Hamiltonian parameterg;, g,, andgs [Eq. (5)] are given in keV. The quantitiesg (in keV) and og
(dimensionlessrepresent the enerd¥q. (44)] and the transitiodEq. (45)] rms factors, respectively. The
splitting ratiosAE, [Eq. (46), dimensionleskand the vector-boson numbexs[Eqg. (9)] are also given.

Nucl AE, N OE 0B 91 92 93 N

164Dy 9.4 16,2 14.1 0.52 —1.159 -0.321 —0.590 20
o4y 8.4 18,2 8.1 0.14 3.625 —0.238 —0.513 22
166y 8.8 16,2 5.8 0.47 2.942 —0.235 —0.572 20
168 9.3 20,2 3.2 0.28 4.000 -0.181 —-0.401 24
168yh 10.2 20,2 7.9 0.27 0.500 -0.271 —0.501 24
172y 17.6 =80,2 6.8 0.12 9.875 —0.017 —0.052 84
176f 14.2 =70,2 15.0 0.17 9.547 —0.030 —0.062 74
178 11.6 34,2 7.0 0.86 8.322 —0.083 -0.213 38
23y 22.6 =60,2 1.6 0.08 —37.697 —0.360 —0.098 64

the energy levels, since the matrix elements of the operatotthe inertial term the valué=11.3 keV, which is reasonable
L-Q-L andA™A increase in absolute value asincreases for nuclei in the rare-earth region.

(see Table)l Thus one should not consider eitherQ- L or Furthermore in Fig. @) the ratiogs/g, is plotted as a

N . . . i
AT A as small perturbations to the collective rotational en function of\. One finds thag; /g, decreases with increasing

eray. \. The change of this ratio compensates for the fact that the

(i) As a consequence ¢if), the diagonal contributions of ", - . ; o i
the termsL-Q-L andA*A may dominate in the rotational AT A matrix elements increase more rapidly with increasing

structure of the energy levels. Therefore, the coefficient of* than the matrix elements of the operatoiQ- L (below we
theL2 term, g, , should not be thought of as the usual inertial shall further discuss th& dependence of these matrix e.Ie—
parameter. Actually, we have already shown that in(hg) ~ Ments, see also Tablg In such a way the smooth behavior
case the inertial term is determined as a linear combinatioff 91, 92, g3, andgs/g, obtained in the(\,u) plane indi-

of all of the Hamiltonian parametefsee Eq.(35)]. This is  cates that the present model scheme allows a consistent
why the negative values af; [as in Fig. 2a)] should not be  renormalization of the Hamiltonian parameters for the differ-
considered as a surprise. For example, in the multije ent SU3) irreps. For that reason one obtains reasonable
the set of parameters{g;,0,,05}={—1.159-0.321, model descriptions even in the multiplets outside the favored

—0.59@ (given in Table Il for the nucleus®Dy) gives for  region.

) 1 —

FIG. 2. The Hamiltonian pa-
rametersg;,9,,95 [Eq. (5)] and
- dadabaaa b aasalaaaad s lassateasalaassl th t / d t d f th

59020 30 40 50 80 70 80 90 4020 30 40 50 60 70 80 90 it ;f;teeo[i: r(a) ©
A A (b), (c), and (d), respectively as
functions of the quantum number
N at wu=2 (circlety, u=4
(squares w=6 (triangles, and
u=38 (asterisks

—2{0 20 30 40 5£ 60 70 80 90 10 20 30405)(\) 860 70 80 90
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A A
FIG. 3. The same as Fig. 1 but for the nucldd&r. O T ]
Almost the same picture has been obtained in the other [ (b) %8y ]
nuclei with small SU3) energy splittings. For each of them . i
we found a clearly outlined region of favored multiplets as —~ 15 .
for 1%%Er. Thus in the!®®Er case the favored multiplets are o 1
located within the region =12-16 andu=2,4,6, while the = ]
best model description is obtained in the irr€f6,2) (see .

Fig. 3. For the nucleus!®Er the favored multiplets are © ]
found within the region. =14-18 andu=2,4,6 and the best ]
description corresponds to the irrép8,2 (see Fig. 4. For | )
the nuclei 1*Dy and 1%8vb the best model descriptions are L ]
established in the multiplet&l6,2 and (20,2, respectively 5 e ey Sre e e T
[see Figs. &) and 8b)]. The rms factorgrg andog and the 10 20 30 40 %0 )\60 70 80 90 100

corresponding values of the parameters obtained in the

“best” irreps are listed in Table Il. We remark that in these £, 5. The energy rms factars [Eq. (44)], obtained for the
irreps very good agreement between theory and experimeRt,clej Dy and %3vb [shown in (a) and (b), respectively, is
is found. Also, we should mention that for all the nuclei piotted as a function of the quantum numbeat x= 2.
considered the parameters of the Hamiltonian exhibit the

same numerical behavior in tha (x) plane as the one ob-  On the so far presented results the following comments
served for%er. apply.
As a typical example of results given by the broken($U (i) Although the considered SB) scheme allows an ap-

symmetry for nuclei with small S(3) energy splitting we propriate renormalization of the Hamiltonian parameters
give in Table Il the energy levels and transition ratios cal-which leads to reasonable model descriptions in(&lw)
culated for the nuclet®Dy, 84-18€r, and!®®b and com- multiplets under study, the calculations for the nuclei
pare them to the corresponding experimental data. The pa®4-1r clearly outline corresponding regions of favored
rameter values corresponding to these results are the ongulltiplets, where the descriptions of the energy levels are
given in Table II. Very good agreement between theory andbtained essentially better than in the other irreps. Since
experiment is observed. these regions are determined on the basis of the experimental

gsb andy-band characteristics, the above result can be inter-

L e L B B B B e preted as a natural physical signature of the brokeri3sU

symmetry in these nuclei.

(ii) For the nuclei with small bandsplitting, the best model
descriptions are obtained in the multiplets wjil+2. Gen-
erally one findgsee Figs. 1, 3, and)4hat for a fixed quan-
tum number\ the (\,2) irreps give better results than the
ones withu>2. Note that while the]\,2) multiplets only
two bands(the gsb and thes band, the higher SB) irreps
with ©u=4,6,8... predict the presence of additional higher
rotational bands. Thus, for example, the4) multiplets pre-
dict an additional rotational band built on & 4tate, which

in the considered Er isotopes should be observed in the en-
T T Y T T ergy region of 3—-4 MeV. Indeed if®-°Er nuclei such
A 4% states are observed experimentally, but their energies are
measured near 2 Mepb6], which excludes the possibility of
FIG. 4. The same as Fig. 1 but for the nucle8ér. describing them together with the gsb and jhigands within

164
Er

LI R

T S VO S T T I
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llllll
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TABLE lll. Theoretical and experimental energy levels and transition rgfs. (20) and (21)] for the

nuclei %Dy, 164-16%r and8yb. The corresponding\,u) values are also given. The experimental data
(used in the fits for the energy levels are taken frof85], while the data for th&e2 transitions are from

[36-39 (for 1%“Dy), [38,39 (for Er), [40—47 (for 5%Er), [43-4F (for %), [45,46 (for %8YDb). The
numbers in brackets refer to the uncertainties in the last digits of the experimental ratios.

Nucleus(\, )

L E'éh ngpt Et,? Eixpt RELh REXpt thh Rgxpt Rt; Rgxpt th RiXpt
%Dy (16,2

2 712 734 7737 7618 213 2@® 0.11 0.082 - - - -

3 - - 837.9 828.2 - - - - 0.95 0.62 - -

4 237.2 2422 9243 961.0 8.73 9.10 0.26 0.26 - - 1.39 (130

5 - - 1030.5 1024.6 - - - - 2.31 0.83 - -

6 496.1 501.3 1162.6 1154.0 31.54 - 0.45 - - - 1.05 @&u

7 - - 1309.6 - - - - - 491 - - -

8 845.3 843.7 14925 - 407.5 - 0.66 - - - 0.97 35
164y (18,2

2 86.5 914 8689 860.3 1.88 2(@4) 0.088 0.115) - - - -

3 - - 949.2 946.3 - - - - 0.74 0.89) - -

4 288.0 299.5 1056.6 1058.3 5.92 - 0.20 - - - 1.40 338

5 - - 1190.2 1197.5 - - - - 152 148 - -

6 604.1 6144 1352.1 1358.8 12.69 - 0.33 - - - 1.06 -

7 - - 1538.3 1545.1 - - - - 2.65 - - -

8 1033.8 1024.6 1756.5 1744.6 29.59 - 0.48 - - - 0.98 -
168y (16,2

2 76.8 80.6 7909 7859 1.83 1(@86) 0.08 0.0978) - - - -

3 - - 860.8 859.3 - - - - 0.70 0.78) - -

4 255.8 265.0 954.2 956.2 547 532 0.20 0.267) - - 1.39 1.4%30

5 - - 1070.6 1075.3 - - - - 141 148 - -

6 536.6 5454 1211.4 12159 10.72 1225 0.32 0.28 - - 1.05 1.1B5)

7 - - 1373.6 1376.0 - - - - 2.36 - - -

8 918.4 911.2 1563.0 1557.7 21.28 288 0.48 - - - 0.96 1.085)
1881 (20,2

2 777 798 8237 8212 181 1(18 0.082 0.06616) - - - -

3 - - 896.5 895.8 - - - - 0.68 0.68) - -

4 258.8 264.1 993.8 994.7 534 488 0.18 0.0780 - - 1.40 15318

5 - - 1115.1 1117.6 - - - - 1.34 1.0 - -

6 543.1 548.7 1261.6 1263.9 10.31 12 0.29 0.192) - - 1.06 -

7 - - 1430.9 14329 - - - - 219 1.6p6) - -

8 929.9 928.3 1627.5 1624.5 19.94 - 0.42 - - - 0.99 -
168yph (20,2

2 82.3 87.7 990.0 9838 197 2@6 0.81 0.6719 - - - -

3 - - 1066.3 1066.9 - - - - 0.80 - - -

4 273.9 286.6 1168.4 1171.2 6.82 6X25 1.76 1.1840 - - 1.40 -

5 - - 1295.1 1302.3 - - - - 1.75 - - -

6 574.1 585.3 1449.6 1445.1 17.26 143 0.36 - - - 1.07 -

7 - - 1624.7 - - - - - 3.23 - - -

8 9815 970.1 1833.9 - 57.15 - 0.52 - - - 1.00 -

the present model scheme. This fact indicates that in the (iii) The obtained results can be discussed in terms of the

considered nuclei the broken 8) symmetry is naturally

relationship between the collective model shape parameters

revealed in the lowest\,2)] irreps, where, besides the gsb'’s 3,
and they bands, no other bands are predicted. Hence the

inclusion of other rotational bands should be implemented by

an extension of the present model scheme to a more general
DS group, such as $HR).

v [57] and the SWB) irrep labels(\,u) [58]:
BP~[N*+Au+p?+3(N+p)+3],

y=tan {v3(u+1)/(2N+u+3)],

(47)

(48)
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whereB and y characterize the axial and the nonaxial quad- Y
rupole deformations of the nucleus, respectively. Equations ]
(47) and (48) are derived by requiring a correspondence be- 25 72y 3
tween the invariants of the triaxial rotor grodp/\SO(3) . ]
and these of the group $8) (for more details sef58]). We —~ 20F 3
should remark that while 58] the above relationship is > F ]
considered in a microscopishell model aspec{via (\,u)], = sk h
in the present studies it could be used on a phenomenological @ F .
level. Thus, we are able to make some estimates for the S joF 3
nuclear quadrupole deformations in terms of the favored n ]
SU(3) irreps. As an example consider the favofagu) re- sC _-
gion obtained for the nucleu¥®r (Fig. 1). One finds that . ]
for the multiplets(20,2, (16,4, and (14,6 Eq. (48) gives Py SR R RS N T SR SR
10 30 50 70 90 110 130 150

vy=6.6°, y=12.5°, y=18.1°, respectively. It is clear that N
the best model descriptidthe multiplet(20,2] corresponds

to relatively small nonaxial deformation of the nucleus. Such FIG. 6. The energy rms factarg [Eq. (44)], obtained for the
estimates can be made for the irreps appearing in the altepucleus'’?vb, is plotted as a function of the quantum numheat
native SU3) models. In the pseudo $8) model[19] and in ~ «=2 (circlets, n=4 (squarel andu=6 (triangles.

its pseudosymplectic extensipb9], the SU3) irrep used for

the nucleust®Er is (30,8, while in [21] the same nucleus is (48) one finds that the strongly splitted &) spectra should
associated with the multipl€#8,10. We see that although correspond to small¥<2°) nonaxial deformations.

these multiplets lie outside the empirically favoredw) re- It is also interesting to consider the nucled&Hf in
gion, the corresponding values of the angley=12.4° for  which one observes a transition value of the band-splitting
(30,8 andy=6.5° for(78,10] are very close to the ones for ratio AE,=11.6. In Fig. 8 theog values obtained for this
(16,4 and (20,2, respectively. We have obtained similar nucleus are plotted for thé,2) multiplets in the range 10
estimates for the other nuclei considered. In all cases wesA<<100. One sees thatg, which starts with the value
found that the experimental information on the energy levelsrg~24 keV at\ =12, decreases with increasikgnd in the
and the transition probabilities implicitly indicates the pres-region 36sA=<40 obtains a slightly expressed minimum

ence of small nonaxial deformations. where og~7 keV. Further on,og increases slowly withh

B. Nuclei with medium and large SU3) energy splitting 25 ; i y T T T

Let us now turn to nuclei in which large band-splitting - (a) 1761 1
ratios AE,>14—15 are observed. The nucle?Yb, 17Hf, - ]
and 28 are characterized by such largé€, values. As a 2ok ]
typical example consider th&?Yb case where\E,=17.6. % L _
In Fig. 6 the rms factorsrg obtained for this nucleus are A F 1
given for the(\,u) multiplets in the range ¥\ <160 and 0 '
un=2,4,6. Here, compared with the previously considered © 5L 1
nuclei, we find an essentially different picture. We see that in L 4
the (\,2) multiplets theog factor, which starts with 29 keV - .
at A=12, decreases with increasing and further at\ i '
>80-90 saturates gradually to a constant valug o1 1 . l L]
~6.5 keV without reaching any minimum. In the higher ir- 10 30 50 70 90 110 130 150
reps withu>2, o exhibits almost the same dependence A
and theo values obtained fox >80-90 lie on the average 6 ; . . . . . .
0.1 keV above the ones obtained in the correspon@in®)
multiplets. It follows that in the larga’s (A ~100) all con- 5L (b) ®u |
sidered multiplets practically provide equally accurate model
descriptions. A similar picture is observed in the nuclei —~ 4 .
1764f (with AE,=14.2 and 28U (with AE,=22.6). This is o
illustrated in Fig. 7 for the(\,2) multiplets. In "%Hf we = 3t ]
found that for largex values {>70-80) o saturates to the @
value oz~ 14.8 keV[see Fig. 7a)] and in the nucleug®U © o .
[Fig. 7(b)] o obtains the valuesrg~1.6 keV (see also * -
Table lI). It is clear that in the nuclei with large band split- 1+ -
ting the calculations indicate the presence of a wide lower
limit of the quantum numbex mstead of a narrow region of 95 a‘o 5'0 710 9'0 110 1:30 15;0 0
favored multiplets. Therefore in these nuclei one could make A

only rough estimates of the nuclear collective characteristics.
Thus taking into account that in genekal 60 and using Eg. FIG. 7. The same as Fig. 5 but fof®Hf (a) and 2% (b).
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the dimension of the Hamiltonian matrix @& =2. From the
analytical expressions given in Table | and E(&7)—(30)
we can estimate the dependence of the total contribution of
the second and third terms of the HamiltonianQ- L and
ATA, in the diagonal and off-diagonal matrix elements. In
the largex limit the diagonal matrix elementg; ; andV, ,
increase in absolute value, with the increasing. 0is\ and
N2, respectively. The lower off-diagonal matrix element
V,, increases as?, while the upper oneY,,, does not
depend on\. Hence the total contribution of the diagonal
matrix elements in the eigenvalue equat{@f) increases as
o A3, while the total contribution of the off-diagonal ones in-
10 20 30 40 50 80 70 80 90 100 creases aa?. It follows then that in the larga- limit the

A relative contribution of the off-diagondband-mixing ma-
FIG. 8. The same as Fig. 5 but for the nucléd&f. trix elements of the operatots Q- L andA* A (compared to
the diagonal ongslecreases asX/ We note that in the case

of multiplets with x>2 this contribution decreases even
and neam\ =100 grows up to the value~8 keV. Such a more rapidly.

result indicates that the glob#k,u) characteristics of the The above estimates show that the increase in the quan-
broken SU3) symmetry are changed gradually from the nu-,m numben is connected with the corresponding decrease
clei with small band splitting to the nuclei where the splitting ;, 1,0 mixing interaction between the gsb and théand

is large. s
. . within the framework of the S(3) symmetry. Hence for the
As a typical example of results provided by the brokennuclei with small band splitting'e“Dy, 164-15%r, 168yp) the

SrL]J é?éysgr;:mi?\t;yngrg?\?; Iﬁ: _\I/_v;tgl eml\e/dm;n eanr;drglj rlge(\e/ei)]an drelatively small\ values Q\~1§—20) indicate that_the gsb
transition ratios calculated for the nucléfdyb, 176-17¢f,  and they.bz_indSYare stlr;)nglyzgmxed. In the mfde' with a large
and 2% and compare them to the corresponding experimen22nd splitting {"?Yb, Y"Hf, 2*) the large\’s correspond
tal data. The parameter values corresponding to these resuffs@ Weak interaction between the two bands. This means that
are the ones given in Table Il. Good agreement betweefPr the latter nuclei the rotational character of the gsb and the
theory and experiment is observed. v bands should be better developed. Indeed the case of the
The following overall picture of the vector-boson model Nucleus®*®U with a very large splitting ratic\ E,=22.6 and
description in deformed nuclei can now be drawn. In thed Well-pronounced rotational structure of the gsb supports
nuclei where the band splitting is smalAE,~8-10 the above supposition.
(*6“Dy, 164-16% 168yph) the best model descriptions are  The obtained\,u) characteristics of deformed nuclei al-
found in clearly outlined regions of favoréa,w) irreps with  low one to gain a physical insight into the vector-boson re-
relatively small values of the quantum number(16<\ alization of a broken S(B) symmetry. To illustrate this, we
=<20) as well as of the quantum number (2<u=<6). Fur-  refer to the number of vector bosomé determined for a
ther with the increase of the splitting energy, as in the case ajiven(\,x) multiplet through Eq(9). We see that our results
the nucleus!®Hf (with AE,=11.6), the favored multiplets give a possibility to estimate the numbhir for the nuclei
are shifted gradually to largervalues § ~40) with slightly  under study. Thus we find that in the cases of small band
expressedre minimum. In the nuclei where large band split- splitting the favored(\,u) regions imply relatively small
ting is observed, AE,~14-22 ("?b, "*Hf, %), the  vector-boson numberl~20—30, while for the strongly
present theoretical scheme provides almost equally 900§|plitted SU3) spectra one has~80—100. Then taking into
model descriptions in all\,.) multiplets withA>60 Up t0  5ccount then dependence of the Hamiltonian matrix ele-
A=160 andu=6. The estimates of the shape parametergnents one deduces that the increast ain be connected to
show tha't the Increasing magnitude of SWsplitting |r_1d|- the decrease in the band-mixing interaction. In these terms
cates an increase in the axi@, Eq.(47)] and decrease in the the largex limit (A—) boils down to the limitN—o,

nonaxially, Eq.(48)] deformations of nuclei. which corresponds to an asymptotical decrease of the band
interaction to zero. Thereby the multiplet splits into distinct
noninteracting rotational bands and the (SUsymmetry

The above picture can be analyzed in terms of the collecgradually disappears. This situation is equivalent to the
tive SU(3) Hamiltonian and the respective band-mixing in- group contraction process in which the @Walgebra re-
teractions. For this purpose we study thdependence of the duces to the algebra afs0SO(3) [58]. In such a way the
Hamiltonian matrix elements and estimate their contributionSU(3) symmetry goes to that of the rotator. Note that an
to the energy spectrum in the largdimit. (Since the physi- analogous transition is inherent in the IBM4] and corre-
cally significant values of the quantum numherdo not sponds to an infinite number of bosons. However one should
exceedu =8-10, the larges limit is of no practical inter- not make any analogy between teeandd bosons of the
est) IBM and the vector bosons since the latter are introduced as

Let us consider the case of tiie,2) multiplets (without  quanta of elementary collective excitations and cannot be
restriction on the higher irrepsvhere in the even-spin states treated as coupled nucleon pairs.
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C. Band-mixing interactions



55

BROKEN SU3) SYMMETRY IN DEFORMED EVEN-EVEN . ..

2357

TABLE IV. The same as Table Il but for the nucléf?Yb, "®Hf, %f, 2%%U. The experimental data for the energy levels are taken
from [35], while the data for th&2 transitions are fronid7—49 (for 172Yb), [50,51] (for *"®Hf), [52,53 (for 178Hf), [54] (for 23&V).

Nucleus(\, )

L E;h ngpt Et; E?yxpt Rtlh RiXpt thh Rgxpt Rgh Rgxpt th RiXpt
172yp (=80,2)
2 76.5 78.7 1480.4 1465.7 1.50 189 0.05 0.10%13 - - - -
3 - - 1556.2 1549.2 - - - - 0.43 0.%9) - -
4  256.0 260.1 1657.4  1657.9 3.18 343 0.10 - - - 143 1.6B1
5 - - 1783.8 1792.3 - - - - 0.65 - - -
6 5355 539.8  1933.3 - 4.22 - 0.13 - - - 1.10 Q4B
7 - - 2111.3 - - - - - 0.79 - - -
8 917.9 911.3 2314.8 - 4.97 - 0.15 - - - 1.04 120
84f (=70,2)
2 84.2 88.4 1361.4 1341.3 1.54 128 0.06 0.135) - - - -
3 - - 14449 1445.8 - - - - 0.48 0.613 - -
4 280.8 290.2 1556.2 1540.2 3.56 - 0.11 - - - 1.43 -
5 - - 1695.3 1727.7 - - - - 0.76 - - -
6 589.6 597.0 1862.3 1861.9 5.04 - 0.15 - - - 1.10 -
7 - - 2047.6 - - - - - 0.99 - - -
8 10107  998.0 2270.0 - 6.40 - 0.19 - - - 1.04 -
84f (34,2
2 88.9 93.2 1180.2 1174.8 1.60 1B3 0.06 0.116) - - - -
3 - - 1266.6 1268.9 - - - - 051 0.8 - -
4 296.4 306.6 1381.8 1384.6 3.84 @9 0.13  0.298) - - 1.42 -
5 - - 1525.7 1533.6 - - - - 0.86 0.6%) - -
6 6225 632.2 1698.5 1691.4 571 4280 0.18 - - - 1.09 -
7 - - 1899.0 - - - - - 1.16 - - -
8 10670 1058.6 2129.2 - 7.61 - 0.23 - - - 1.03 -
28 (=60,2)
2 44.9 449 1062.2 1060.3 5.83 - 0.24 - - - - -
3 - - 1105.9 1105.7 - - - - 4.57 - - -
4 148.6 148.4  1165.9 1168.0 92.66 - 0.69 - - - 1.43 -
5 - - 1235.2 - - - - - 91.86 - - -
6 308.1 307.2 1329.9 - 5.14 - 1.25 - - - 1.10 -
7 - - 1425.2 - - - - - 114.5 - - -
8 5194 518.3 1563.1 - 1.83 - 1.80 - - - 1.04 -
9 - - 1673.8 - - - - - 19.41 - - -
10 7771 775.7 1868.3 - 1.00 - 2.25 - - - 1.02 1110
12 1076.5 1076.5 - - - - - - - - 1.01 1.(m25
14 14134 14153 - - - - - - - - 1.00 o0.eB8
16 1785.9 1788.2 - - - - - - - - 1.00 1.88
18 21939 2190.7 - - - - - - - - 1.00 0.6

cuss the applicability and the limitations of the broken($U

D. Discussion

yrast bang On the other hand, the narrow limits of the fa-
The so far presented results and analyses allow us to di¥°red regions suggest relatively well-determined values of

the shape characteristi¢s,y). These considerations indicate

symmetry in nuclei. In addition the relevance of the ggb— that for the nuclei witlAE,~8-10, both the gsb and the
band coupling scheme can be clarified in terms of the invesdand are united into one $8) multiplet in a consistent way.
tigated SW3) multiplets. First, consider the weakly splitted In the strongly split spectra the situation is quite different.
spectra. In these cases the established regions of favorddie lack of any upper limit for the quantum numbesug-

(\,u) irreps suggest a cutoff in the gsb nelar 16-—20,

gests the presence of high angular momehta60—80

which in general is in agreement with the experimental pic-which are not reasonable in the low-spin regime of nuclear
ture observed in rare-earth nuclei. We note that since theollective motion. For the same reason one could not obtain

present model is addressed to the low-lying spe@teow

clear estimates for the nuclear shape parameters as in the

the backbending one should not try to discuss the higher- cases of favored\,u) regions. Furthermore, the largeval-
energy levelgin our studies we consider the gsb and not theues correspond to excessively lar@auli forbidden axial
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deformations of nucldisee Eq(47)]. The above facts show break the exact S(3) symmetry. This can be achievésee
that for nuclei with a large splitting ratid E,>14 the gsb— [24] and references thergiby using in the usual IBM-1
y-band coupling scheme comes up against basic difficultieslamiltonian of the S(B) limit

in the consistent treatment of nuclear collective characteris-

tics. At least these nuclei should be referred to the limiting Hsua= —#(Q-Q)+«'(L-L), (49
case in which the two bands are weakly coupled in the[he operator

framework of one SIB) multiplet. This is a worth-

mentioning finding which could be interpreted as an indica- Q= (d*S+ S+a)fn+)((d+ ®'a)§” (50)

tion for a possible rearrangement of the collective rotational
bands in different S(B) irreps. We can point out two experi- where « and « are the model parameters, asd, d*
mental pieces of evidence supporting this supposition. (s,d) are the creatiorfannihilatior) operators for thes and
(i) For the nuclei with a large 2 splitting the number of d bosons, witf§=s and'&mz(—l)md,m. In the case ofy
the experimentally observed gsignterband transitions is :_ﬁ/z,Q is a generator of S(3) and the exact S(3)
essentially smaller than the one in the nuclei whiEe, is Hamiltonian is obtained. If¢=0, Q is a generator of (&)
small. Moreover in the nucleu$®U such transitions have and the Hamiltonian of Eq49) is not an SW3) Hamiltonian
not been observed. anymore. The case 7/2<Q<0 corresponds to a broken
(i) Consider the mutual disposition of the secorid@|-  SU(3) symmetry. Theg and y bands then belong to one
lective levels E22+ (the y~band bandheadand the corre- splitted(\,2) multiplet. In such a way th@-y band coupling

sponding second 0 levels Eo; (the B-band bandheadof scheme of the IBM becomes very similar to the present

) ) o gsb-y scheme.
rotational nuclei[35]. Note that for the nuclei with small The same problem can also be solved by adding to
AE, (**Dy, '*'%r, 1%%Db) one observeE2;<E02+ (for Hsuy(s) some higher-order interaction terms. Such a term is
example, for %%Er one hasE,:=0.821 MeV and Eg;

the so-called @) scalar shift operator which corresponds to

—1.217 MeV. For the nucleust’f, which has a transi- @ three-body interactiof60]. This operator, usually denoted

tional AE, value, both energies are almost equély{ by Q, possesses a realization in termsa&ndd bosons and
o 2 is equivalent to the second term of the vector-boson Hamil-

=1.175 MeV, E02+=1.199 MeV). For the nuclei with large

27" splitting (*"2Yb, 1"®Hf, 2%8J) one findsE,+>Eq; (for

tonian[Eg. (5)]. It is not diagonal in the Elliot basigl], its
eigenvalues in thé\,2) irreps being 60]
example, for ’?Yb one hasE,:=1.466 MeV andEq;

=1.042 Me\). The latter observation indicates that in the (@)=Ve[L(L+1)~12](2A+5), L=odd, (51
nuclei with AE,>14 the gsb and the band could be situ- _ _
ated in distinct SB) multiplets. (@) \/E{(L 2)(L+3)(2A+5)

We remark that our analysis is consistent with the results +6JL(L+1)(L—1)(L+2)+(2\+5)%},
obtained for the nucleu$®U in the framework of the pseudo
SU(3) and pseudo symplectic schen{d®,59. It is shown L=even, (52)

that the “leading” irrep appearing for this nucleus(64,0,

which indicates that in this case the gsb probably belongs taith (Q)=0 for L=0. The double sign in Eq52) breaks

a separate irrep. Actually, the obtained systematic propertieie degeneracy between the levels of ghand y bands and
of the SU3) symmetry in deformed nuclei could be inter- thus the multiplet is splitted. Again we find that the situation
preted as the manifestation of a more general DS in nucleag very similar to that of the present $8) symmetry model.
collective motion. In this respect the gsp-band coupling Moreover, if we consider the vector-boson Hamiltonji&a,.
schemes and the IBM collective scheme could be considere@)] with g,=1 andg;=0, the square-root terms of Egs.
rather as complementary than as alternative schemes. Thg2) and (33) coincide exactly with the square-root term in
dynamical mechanism causing the rearrangement of rotaq. (52). Thus in this case thg-y band coupling scheme of
tional bands in the various $B) irreps could receive atten- the IBM and the gsby scheme of the present model are

tion in the framework of a larger DS group. characterized by the same analytical expression for the en-
A more detailed comparison between the features of thergy splitting:

present scheme and these of the interacting boson model
|E,(L)—E,(L)|~Vf(L)+(2x+5)% L=even, (53)

(IBM) is now in place. As has already been mentioned, in
irrep (2N—4,2), while the gsb remains alone in the mostwherev labels the gskin the present modgbr the 8 band

IBM the lowest y and 8 bands belong to the same &Y
symmetric irrep (N,0) (whereN is the total number of ac-

(in IBM), andf(L) is defined in Eq(39). Note that while in

tive bosons Formally both band coupling schemes, thethe gsby scheme thg+) sign in Eg.(52) always corre-

gsb-y scheme(of the present modgland 8-y scheme(of
IBM) could be referred to S(3) multiplets of the typeX,2).
However, in the exact S@3@) limit of the original IBM-1[14]

sponds to they band and thé—) sign always corresponds to
the gsh(i.e., the gsb levels are always below the respective
v-band level§ in the 8-y scheme the: correspondence de-

the appearing\,2) multiplets are degenerate with respect topends on the mutual displacement of the levels and may be

the Elliott quantum numbeK. This degeneracywhich is

generally in disagreement with the experimental situation

changed.
A comment concerning the transition probabilities in the

can be removed in several ways. One possible way is twector-boson model and in the IBM can be made here. While
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in the first model they-gsb interbandE2 transitions are natu- In these nuclei the applied $8) scheme allows only rough
rally incorporated, in the second o the exact S(B) estimates of nuclear collective properties. These nuclei are
limit] they are forbidden. This type of transition can be al-very good rotators, so that a pure @Uscheme, like the one
lowed in IBM by modifying the quadrupole transition opera- of IBM, appears as more appropriate.
tor similarly to Eq.(50), i.e., by breaking the exact $8) In such a way we find that the violation of the &Y
symmetry(see[24] and references thergin symmetry, measured by the splitting rathE, [defined in

It should also be mentioned that the laigealues appear- Eq. (24)], determines to a great extent the most important
ing in our work for the nuclei with largE, splitting cor-  SU(3) properties of deformed nuclei.
respond to the largg values obtained with the introduction A systematic analysis of the ggpband-mixing interac-
of g bosons in the framework of tred g-IBM [61,62, where  tion on the basis of the collective vector-boson model leads
the band cutoffs are shifted towards higher angular momentdo the following conclusions: Increasing number of vector

The above considerations illustrate some differences bebosonsN corresponds to the increase in the splitting of the
tween the present model and the IBM, as well as some commultiplet and leads to decrease in the band-mixing interac-
mon schematic features of both models. The present analysi®n within the framework of the S(3) symmetry. In these
also allows one to estimate the relative appropriateness a@aérms the largex limit corresponds toN—« and has the
these model schemes for a particular rotational nucleus aneaning of SWB) group contraction. In the limiting case the
group of nuclei. Our results suggest that for nuclei with smallSU(3) symmetry is completely destroyed and the bands can-
AE, splitting ratio the gsby band coupling scheme of the not be united anymore in one $) multiplet. Following the
vector-boson model is more appropriate thanghgscheme above analysis, we conclude that the strongly split spectra
of IBM. As a typical example for this case we consider theshould be considered as special cases in which the gsb and
nucleus '%%r, in which a large number of-gsb interband the y bands are weakly coupled. Furthermore the experimen-
E2 transitions are observed0—42. For the nuclei with tal and theoretical examples given for these spectra indicate
large gsby splitting the 8-y coupling scheme of IBM seems the possibility for rearrangement of the two bands into dis-
to be more appropriate. As a typical example for this case wénct irreps. This finding suggests the presence of a transition
consider the nucleu$*®U. from the gsby band coupling schemén the nuclei with

In conclusion, the indicated rearrangement of the rotasmall AE,) to an alternative collective schen(ia the cases
tional bands in various SB3) multiplets can be interpreted as of largeAE,), in which the gsb is situated in a separate irrep.
an interplay between the different DS schemes of the vectotn other words the broken SB) scheme is favored in the
boson model and the IBM. The dynamical mechanism causcase of weak 2 splitting, while strong 2 splitting favors
ing this rearrangement should be considered in the frameSU(3) schemes like the one of the IBM, in which the gsb is

work of the DS of a group larger than &3). situated in a separate irrep.
The collective dynamical mechanism causing such a tran-
V. CONCLUSIONS sition from the broken S(B) of the present model to the

] ) pure SU3) of the IBM could be sought in the framework
In this paper we have studied the broken(Ssymmetry  of the more general DS group &3R). In such a framework
in deformed even-even nuclei via the formalism of the col-the |owest g-band, absent from the broken &Y model
lective vector-boson model. We assume that the physicallgonsidered here, could be included, belonging to an irrep
meaningful properties of this symmetry are developed in ceryitferent from the one in which the gsb and the lowsst

tain regions of(\,u) irreps, instead of one fixed irrep. In this pangd are located. These will be the subjects of a future in-
way there is no microscopic input in the determination of theyestigation.

(\,w) irrep of SU3) suitable for each nucleus, the quantum
numbers\ and u being treated as free parameters and fitted
to the experimental data. The available experimental infor-
mation on energy levels and transition probabilities allows
one to identify two kinds of nuclei with S@3) symmetry. The authors are thankful to S. Pittel for illuminating dis-
(i) The nuclei with weak 2 splitting [AE,<12, defined cussions and for a careful reading of the manuscript. This
in Eq. (24)], for which we obtain narrow regions of favored work was supported in part by the Bulgarian National Fund
SU(3) irreps(in general one has ¥\ <20 and < u<6). for Scientific Research under Contract Nos. F-547 and
In these regions the gspband coupling scheme gives good F-415. One of the author®.B.) was supported by the EU
model estimates of the nuclear collective characteristics urunder Contract No. ERBCHBGCT930467 and by the Greek
der study. General Secretariat of Research and Technology under Con-
(i) The nuclei with strong 2 splitting[AE,>12, defined tract No. PENED95/1981. Another auth@.P.R) was sup-
in Eqg. (24)], for which the successful model description re- ported by the Istituto Nazionale di Fisica Nucled&FN)
quires large values of the quantum number(A>60-80) and the Italian Ministero dell’ Universita della Ricerca Sci-
without any presence of particular regions of favored irrepsentifica e TecnologicdMURST).
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