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Broken SU„3… symmetry in deformed even-even nuclei
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A collective vector-boson model with broken SU~3! symmetry, in which the ground-state band and the
lowest g band belong to the same irreducible representation but are nondegenerate, is applied to several
deformed even-even nuclei. The model description of ground andg bands together with the corresponding
B(E2) transition probabilities is investigated within a broad range of SU~3! irreducible representations~l,m!.
The calculations show that the~l,m! characteristics of rotational nuclei depend to a great extent on the
magnitude of the SU~3! splitting between the ground andg bands. It is found that for weakly split spectra, the
ground-g band coupling scheme is realized relevantly within narrow regions of ‘‘favored’’~l,m! multiplets,
while in the cases of strong splitting a description in which the ground band is situated alone in an irreducible
representation is favored. The obtained results are analyzed in terms of the band-mixing interactions. The
possibility for a transition between the different collective SU~3! schemes is discussed.
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I. INTRODUCTION

The SU~3! symmetry group, which was introduced in
tially in nuclear theory as the symmetry group ofs,d-shell
nuclei @1#, has also been given meaning in the framework
the dynamical symmetry~DS! concept@2–5#. Based on the
DS concept, it has been supposed that the SU~3! symmetry is
inherent for the well-deformed even-even nuclei, so that
low-lying (L<10) collective states of these nuclei could
united into one or several SU~3! multiplets, labeled by the
irreducible representations~irreps! ~l,m! of the group SU~3!
@6#. The collective rotational Hamiltonian reduces this sy
metry to the rotational group O~3! and thus the energy spec
trum of the nucleus is generated. In particular, it has b
shown that in the rare-earth nuclei the ground-state b
~gsb! and the firstg-excited band can be united into one sp
~l,2! multiplet appearing in a collective vector-boso
scheme with broken SU~3! symmetry@6#. This scheme gives
a satisfactory description of the energy levels and of
B(E2) transition ratios within and between the bands. T
success of the SU~3! scheme has inspired the extension
the concept of DS in nuclei to the noncompact gro
Sp~6,R! @4,7–11#, which contains SU~3! as a maximal com-
pact subgroup. Alternatively, boson and fermion realizatio
of dynamical symmetries have been used in the interac
boson model~IBM ! @having an overall U~6! symmetry# @12–
15# and the fermion dynamical symmetry model@with
Sp~6,R!3SU~2! and SO~8!3SU~2! overall symmetries#
@17,18#, respectively. In spite of the different realization
these extended algebraic schemes in the appropriate
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include SU~3! as a DS group which can be associated w
the rotational limit of nuclear collective motion.

Various model realizations of a broken SU~3! symmetry
have been applied to the nuclei of the rare earth and acti
regions by using appropriately selected SU~3! irreps. A mi-
croscopically justified one is the pseudo SU~3! model @hav-
ing an SU~3! abstract symmetry#, in which the SU~3! irrep
~l,m! used for a given nucleus depends on the filling of t
Nilsson pseudo-oscillator levels@19#. An alternative pre-
scription for fixing the SU~3! quantum numbersl andm is
used in@20,21# and is based on the original Elliott model@1#.
In fact, the two schemes involve different SU~3! irreps for
one the same nucleus, indicating that with respect to
abstract SU~3! symmetry~beyond the particular realization!,
the choice of an adequate~l,m! multiplet for the given
nucleus is not unique. The above circumstance natur
leads to the question of whether the theoretically determi
SU~3! irrep provides the best model description of the sp
trum and how the pattern changes with varyingl andm. It is
therefore of interest to understand whether the appropr
irreps can be established directly on the basis of the avail
experimental data and whether they reflect the respec
systematic behavior of the ground andg band rotational
structure of deformed nuclei.

In order to clarify these questions one should include
the study a large variety of~l,m! multiplets and try to deter-
mine the ones favored by comparison to the experime
data. Such an approach can be naturally applied in the fra
work of the vector-boson model scheme@6,22,23#, in which
the possible SU~3! multiplets are not restricted by the unde
lying theory. This suggests that the SU~3! quantum numbers
l andm are external parameters of the model scheme, all
ing one to vary them so as to obtain the SU~3! irreps in
which the experimental energies and transition probabili
are reproduced most accurately. Once such ‘‘favored’’ SU~3!
irreps are found, one can apply them to the analysis of
collective dynamical characteristics of nuclei as well as
2345 © 1997 The American Physical Society
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the discussion of the physical meaning of the vector-bo
scheme.

An important characteristic of the SU~3! multiplets is the
energy splitting of the even angular momentum states
the respective states belonging to the gsb and theg band.
The splitting is due to the reduction of the SU~3! symmetry
in the nucleus and characterizes the mutual disposition of
two rotational bands within the multiplet. Thus one cou
expect that the possible existence of favored SU~3! irreps
will depend on the energy splitting as well as on the intrin
rotational structure of the bands.

In this paper we report a global study of the broken SU~3!
symmetry in deformed even-even nuclei, implemen
through the use of the vector-boson formalism@6,22,23#.
Motivated by the above considerations, we suppose that f
given rotational nucleus the physically significant features
this symmetry should be sought in certain regions of SU~3!
irreps instead of a single fixed irrep. The aims of this wo
are concentrated on the following items.

~i! To study whether in the framework of the vector-bos
scheme the available experimental information on the ene
levels and transition probabilities could be used to estim
the SU~3! symmetry characteristics of the nucleus, in p
ticular to outline the physically favored regions in the~l,m!
plane.

~ii ! To study how the picture changes in the various n
clei, where different energy splittings between the grou
state band and the firstg-excited band are observed, and
the SU~3! nuclei could be systematized accordingly.

~iii ! To investigate the principal limits of applicability o
the SU~3! symmetry in nuclei by analyzing the band-mixin
interactions in terms of the vector-boson formalism.

We have considered eight rare-earth nuc
(164Dy, 164–168Er, 168,172Yb, 176,178Hf) and one actinide
nucleus (238U) for which the model descriptions of the gs
andg-band energy levels and the concomitantB(E2) tran-
sition ratios have been evaluated~in the form of root-mean-
square fits! in SU~3! irreps within the range 10<l<160 and
2<m<8. These nuclei represent regions of SU~3! spectra
with different magnitudes of energy splitting between t
gsb and the firstg-band. Though some other nuclei cou
also be included in the study, we shall see that the consid
ones are sufficient to trace the most important features
SU~3! DS in collective rotational regions.

A few comments and clarifications are in place at t
point.

~i! The vector bosons used in the vector-boson model@6#
do not possess any underlying physical content, in contra
the bosons used in the interacting boson model~IBM ! @16#,
which are understood as correlated fermion pairs~see@24#
and references therein!. The vector bosons are the buildin
blocks of the vector-boson model and the broken SU~3! sym-
metry, which do have a physical content, as it will be se
later. There is no contradiction between the last two sta
ments. The situation is similar to that of the Schwinger bos
realization of SU~2! @25–27#: The bosons used for the rea
ization do not bear any particular physical content the
selves, but the SU~2! operators built out of them are th
physically meaningful angular-momentum operators.

~ii ! The SU~3! symmetry discussed in this paper is a br
ken SU~3! symmetry, in which the ground-state band and
n
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lowestg band belong to the same irrep but are nondegen
ate. The lowestb band is not contained in the same irre
The situation differs drastically from that of the SU~3! limit
of IBM @14#, in which a pure SU~3! symmetry is the starting
point, the ground-state band sitting alone in an irrep, with
lowestg andb bands belonging to the next irrep and bei
degenerate. The degeneracy of the even angular-mome
levels of the lowestb andg bands is a hallmark of the SU~3!
symmetry of IBM.

In Sec. II the vector-boson scheme, which in the low
SU~3! irreps~l,2! allows one to derive analytical expressio
for the energy levels and transition probabilities@6#, is ex-
tended for calculations in the higher irreps withm.2. In
Sec. III we describe the numerical procedure and estim
the significance of the Hamiltonian parameters for the mo
description. The obtained results and the corresponding
oretical analysis are presented in Sec. IV while in Sec. V
conclusions are given.

II. THE VECTOR-BOSON MODEL
WITH A BROKEN SU „3… SYMMETRY

A. Basis and Hamiltonian

The present realization of the SU~3! dynamical symmetry
is founded on the assumption that the low-lying collecti
states of the nuclear system can be constructed effecti
with the use of two distinct kinds of vector bosons, who
creation operatorsj1 andh1 are O~3! vectors and in addi-
tion transform according to two independent SU~3! irreps of
the type (l,m)5(1,0). The vector bosons are interpreted
the quanta of the elementary collective excitations of
nucleus. The basic states corresponding to the reduc
chain

SU~3!.O~3!.O~2! ~1!

can be constructed as polynomials in the vectorsjn
1 and

hn
1(n51,0,21) acting on the vacuum state. The set of the

states, usually denoted as

U ~l,m!

a,L,M L , ~2!

is known as the basis of Bargmann and Moshinsky@28,29#.
Since the chain~1! is not canonical, i.e., in a given SU~3!
irrep ~l,m! more than one O~3! irreps (L,M ) appear, an ad-
ditional quantum numbera is introduced in order to distin-
guish the states with equal angular momentaL. The quantum
numbera is related to the Elliott quantum numberK as
a5(m2K)/2 @22#. The basis vectors~2! are not orthogonal
with respect toa and could be orthonormalized by means
the Hilbert-Schmidt procedure@22#. For a givenL, the quan-
tum numbera runs over all integers in the interval@22,29#

max$0,12 ~m2L !%<a<min$ 1
2 ~m2b!, 12 ~l1m2L2b!%,

~3!

where

b5 H0,1, l1m2L even,
l1m2L odd . ~4!
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The values$a j% j51–dL
with a j,a j11 determined in Eq.~3!

label the different bands in which the angular momentumL
appears anddL is the multiplicity of the O~3! irrep (L,M ) in
the decomposition~1!. Thus, in the case of the (l,m>4)
multiplet (l.m;l,m even), the numberadL

labels the

ground state band withL50,2,4,...,l; adL
21 labels theg

band with L52,3,...,l12; adL
22 corresponds to a ban

with L54,5,...,l14, etc. In the case~l,2! the above scheme
provides only two bands, the gsb and theg band, labeled by
the quantum numbersa251 anda150, respectively.

The collective Hamiltonian of the vector-boson scheme
based on the experimentally supported view that in deform
even-even nuclei the nuclear effective interaction is do
nated by the collective quadrupole mode. Thus, it is assu
that the basic collective properties of these nuclei are de
mined by their angular and quadrupole momenta, which
naturally incorporated within the framework of the SU~3!
DS. The effective SU~3! symmetry-breaking Hamiltonian
which should be an O~3! invariant @30,31# is constructed by
using three basic O~3! scalars as follows@23#:

V5g1L
21g2L•Q•L1g3A

1A, ~5!

whereg1 , g2 , andg3 are the parameters of the model;L and
Q are the angular-momentum and quadrupole operators
spectively, in the vector-boson realization:

Lm52&(
m,n

C1m1n
1m ~jm

1jn1hm
1hn!, m50,61, ~6!

Qk5A6(
m,n

C1m1n
2k ~jm

1jn1hm
1hn!, k50,61,62, ~7!

with Clmlm8
LM denoting the Clebsch-Gordan coefficients; t

termA1A introduced originally in@32# is constructed by the
operator

A15j12
h12

2~j1
•h1!2 ~8!

and its Hermitian conjugateA. The physical content o
A1A is discussed in@23# by assuming that the vectorsj1

andh1 form a ‘‘pseudospin’’ doublet. This allows one t
label the SU~3! multiplets by the numbers (N,T) ~N

50,1,2,...; T5 1
2N,

1
2N21,12N22,...!, which are related to

~l,m! as

N5l12m, T1l/2. ~9!

The numberN corresponds to the number of vector boso
~interpreted as related to the number of excitation quant
the nucleus! andT is the ‘‘pseudospin’’ of the system ofN
vector bosons. It has been shown that in these terms
operatorA1 can be considered as a creation operator of f
particles with L50 and T50. In this way the operato
A1A has been interpreted as the number operator ofa-
like’’ configurations in nuclei.
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B. Energies andB„E2… transition probabilities

The eigenstate of the effective Hamiltonian~5! with given
angular momentumL and energyvL can be constructed
from the highest-weight~hw! basis states~with M5L! as
follows:

U ~l,m!

vL,L,L L 5(
j51

dL

Cv, j
L U ~l,m!

a j ,L,L
L . ~10!

Then the standard problem for eigenfunctions and eigen
ues reduces to the following homogeneous set of equat
~written in matrix form! for the coefficientsCv, j

L :

~Vj , j 82vLd j , j 8!~Cv, j 8
L

!50, j , j 8514dL , ~11!

where

Vj , j 8[ K ~l,m!

a j ,L,L
UVU ~l,m!

a j 8 ,L,L
L

are the matrix elements of the Hamiltonian~5! between the
hw basis states and (Cv, j 8

L ) is a vector column. The eigen
valuesv i

L ,i51–dL ~with v i,v i11! are determined by

det~Vj , j 82vLd j , j 8!50. ~12!

In the low-dimensional cases withm52,4, wheredL52,3,
Eq. ~12! can be solved analytically@6#, while in the cases
with m.4 one should findv i

L by numerical diagonalization
of the matrix (Vj , j 8). We remark that the interactionV mixes
only basis states with neighboring values of the quant
numbera so that the matrix (Vj , j 8) is tridiagonal. The ana-
lytical form of the matrix elements of the operatorsL•Q•L
andA1A is given in Table I. Since the basis of Bargman
and Moshinsky is nonorthogonal, the matrix (Vj , j 8) is not
Hermitian. This fact does not affect the obtaining of re
eigenvalues when the model parametersg1 , g2 , andg3 are
real. After obtaining the eigenvaluesv i

L , one is able to de-
rive the corresponding coefficientsCi , j

L [Cv i , j
L , i , j

51–dL . Below we show how this can be done easily ev
in the cases with large dimension. For a given eigenva
v i
L we introduce the coefficients

hi , j5Ci , j
L /Ci ,1

L , j51–dL , ~13!

with hi ,151. Thus the set~11! is reduced to a nonhomoge
neous set of dL21 equations for the coefficient
hi , j , j52–dL . Then using the tridiagonal form of the ma
trix (Vj , j 8), we derive the solution of this set~for arbitrary
dL) in the following recursive form:

hi , j52$Vj21,j22hi , j221~Vj21,j212v i
L!hi , j21%/Vj21,j ,

j53–dL , ~14!

with

hi ,252~V1,12v i
L!/V1,2. ~15!

After obtaining the coefficientshi , j and using the orthonor
malization of the eigenfunction~10! we find the first coeffi-
cientCi ,1

L :
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TABLE I. Matrix elements of the operatorsL•Q•L andA1A between the basis states of Eq.~2!.

s K ~l,m!

a1s,L,LUL•Q•LU~l,m!

a,L,LL
0 4a@L(L11)23(L12a2m1b)2#

22(l1m2L2b22a)@L(L11)23(m22a)2#
2(L22m14a1b)(2L13)(L1113b)

1 26~l1m2L2b22a!~m22a2b!~m22a2b21!

21 12a(L12a2m)(L12a2m21)

s K ~l,m!

a1s,L,L
UA1A U~l,m!

a,L,LL
0 2

4
3 a$(a21)@L(L11)23(L12a2m1b)2#

2(l1m2L2b22a)@L(L11)23(m22a)2#

2
1
2 (L22m14a1b)(2L13)(L1113b)%

1(k51
a (l12m1324k)@(l12m1324k)2132

3
4 L(L11)2l(l12)#

1 (l1m2L2b22a)(m22a2b)(m22a2b21)(L1l1m12a1b12)

21 24a(a21)(L12a2m)(L12a2m21)
e

to

rg

h

me,

al-

l-
Ci ,1
L 5S 2(

j51

dL

(
j 851

j

hi , jhi , j 8K ~l,m!

a j ,L,L
U ~l,m!

a j 8 ,L,L
L

2(
j51

dL

hi , j
2 K ~l,m!

a j ,L,L
U ~l,m!

a j ,L,LL D 21/2

, ~16!

where the analytical form of the overlap integrals

K ~l,m!

a j ,L,L
U ~l,m!

a j 8 ,L,L
L

is given in @22#. The remaining coefficientsCi , j
L , j52–dL

are then determined through Eq.~13!. In such a way, apply-
ing the above procedure for all eigenvaluesv i

L , i51–dL we
obtain the matrix (Ci , j

L ) which transforms the space of th
basis functions

U ~l,m!

a j ,L,LL
into the space of the physical states~with determined ener-
gies!

U ~l,m!

vL,L,LL .
In order to obtain theB(E2) transition probabilities in a

given multiplet~l,m! one can use the action of the opera
Q0 ~7! on the hw basis state

Q0U ~l,m!

a,L,L L 5 (
k50,1,2
s50,61

as
kU ~l,m!

a1s,L1k,LL , ~17!

where the coefficientsas
k are given in@23#. Then the matrix

elements ofQ0 between the states with determined ene
values~10! can be derived in the form
r

y

K ~l,m!

v i 8
L1k ,L1k,LUQ0U ~l,m!

v i
L ,L,L L 5(

j51

dL

Ci , j
L (
s50,61

as
kRa j1s,i 8

L1k ,

~18!

where i , i 8 and k take the valuesi51–dL ; i 851–dL1k ,
andk50,1,2; the matrixCL is determined for the states wit
angular momentumL by Eqs.~13!–~16! and the matrixRL is
defined asRL5(CL)21. The most general form of the
B(E2) reduced transition probability withDL5k between
the level corresponding to the eigenvaluev i

L and the level
corresponding tov i 8

L1k is

B~E2;v i
L→v i 8

L1k
!5

1

2L11 S L1k 2 L

2L 0 L D 22

3U K ~l,m!

v i 8
L1k ,L1k,LUQ0U ~l,m!

v i
L ,L,L L U2.

~19!

III. PARAMETERS AND NUMERICAL CALCULATIONS

We have realized numerically the general model sche
given in the previous section. Thus, in a particular~l,m!
multiplet ~l.m; l, m even! we diagonalize the matrix
(Vj , j 8) for the various angular momentaL. The gsb and
g-band levels with evenL are then determined asEg(L)
5v1

L2v0 andEg(L)5v2
L2v0, respectively, wherev1

L and
v2
L are the lowest and the next larger Hamiltonian eigenv

ues, respectively, andv05g3m
2(l1m11)2 is the zero-

level eigenvalue. Theg-band energies with oddL are deter-
mined asEg(L)5v1

L2v0.
By using Eq.~19! for the obtained energy levels, we ca

culated the followingB(E2) interband transition ratios:
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R1~L !5
B~E2;Lg→Lg!

B@E2;Lg→~L22!g#
, L even,

R2~L !5
B@E2;Lg→~L12!g#

B~E2;Lg→Lg!
, L even,

R3~L !5
B@E2;Lg→~L11!g#

B@E2;Lg→~L21!g#
, L odd, ~20!

and the gsb intraband ratios:

R4~L !5
B@E2;Lg→~L22!g#

B@E2;~L22!g→~L24!g#
, ~21!

where the indicesg and g label the gsb and theg-band
levels, respectively. In the actinide nuclei the experimen
information on the interband transitions does not suffice
provide any fits, so that in these cases~in particular in
238U! we consider only the intraband ratios~21!.
At this point it is important to estimate the significance

the Hamiltonian parametersg1 , g2 , and g3 for the model
calculations. The first parameter,g1 , applies only to the di-
agonal matrix elements of the Hamiltonian and contribu
only to the rotational part of the energy levels. The seco
and third terms,L•Q•L andA1A, have diagonal as well a
nondiagonal matrix elements~see Table I!, so that the pa-
rametersg2 andg3 are significant for the rotational structur
of the levels as well as for the band-mixing interaction. O
the other hand, the diagonal contribution of the latter term
responsible for the energy differences between the le
with equal angular momenta and different quantum numb
a, which means thatg2 and g3 are also significant for the
splitting of the SU~3! multiplet.

In order to illustrate the above considerations, we refe
the particular case of the~l,2! irreps. In a given~l,2! irrep
and for a givenL the general form of the Hamiltonian matri
elements is

Vi , j5^a i uVua j&5g1^a i uL2ua j&1g2^a i uL•Q•Lua j&

1g3^a i uA1Aua j&, ~22!

where the indicesi , j51,2 label the twoa values:a150 and
a251. Thus we have

V1,15^a50uVua50&, ~23!

V2,25^a51uvua51&, ~24!

V1,25^a50uVua51&, ~25!

V2,15^a51uVua50&. ~26!

Hence for the calculation ofV1,1 one needs from Table I th
valuesa50, s50; for V2,2 one needsa51, s50; for V1,2
one needsa51, s521; for V2,1 one needsa50, s51.

In this way one can easily see that in the case ofL being
even @in which b50 according to Eq.~4!# the diagonal
terms of the Hamiltonian are~see Table I!.

V1,15g1L~L11!2g2$~2l15!@L~L11!212#
l
o

s
d

is
ls
rs

o

26L~L21!%, ~27!

V2,25g1L~L11!2g2$~2l15!L~L11!26L~L21!%

1g3@4~l13!222L~L11!#, ~28!

while the off-diagonal ones are

V1,25g212L~L21!, ~29!

V2,15g26@2~2l15!1~2L11!#

1g32~l1L14!~l2L12!. ~30!

In the case of oddL @in which b51 according to Eq.~4!#
one finds~see Table I!

V1,15g1L~L11!2g2~2l15!@L~L11!212#. ~31!

The gsb andg-band energy levels are then obtained in t
form

Eg~L !5AL~L11!2B$A@11CL~L11!#21Df ~L !21%,
~32!

Eg~Leven!52B1AL~L11!

1B$A@11CL~L11!#21Df ~L !21%,

~33!

Eg~Lodd!52B1AL~L11!, ~34!

where

A5g12~2l15!g22g3 , ~35!

B56~2l15!g222~l13!2g3 , ~36!

C5
1

6~2l15!

g3
g2
, ~37!

D5
12

B2 @3g2
22g2g3#, ~38!

and

f ~L !5L~L21!~L11!~L12!. ~39!

These levels have been obtained with respect to the z
level eigenvaluev054g3(l13)2, as explained in the be
ginning of Sec. III.

The linear combination of parametersA could be inter-
preted as the inertia term, corresponding to the nonmi
part of the energy levels. The quantity 2B has the meaning o
theg-band bandhead, whileC andD contribute to the mixed
part of the energy levels. Note thatf (L) coincides with the
square of theDK52 band-mixing term of the Bohr-
Mottelson model@57#.

The above expressions indicate two specific features
the present model in the~l,2! case.

~i! The odd g-band levels, which in this case are n
mixed with any other levels, exhibit a rigid rotor behavior
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~ii ! In the particular caseg3 /g253 the quantityD van-
ishes, so that despite the splitting both the gsb and theg band
contain only terms which are powers ofL(L11).

It is also useful to rewrite Eqs.~32! and ~33! in the form

En~L !5S 1

2J0
1

1

2JLDL~L11!1
1

2JL
D

C
f ~L !

1
C

2JL
L2~L11!2, ~40!

whereL is even,v5g,g and

J05
1

2A
, ~41!

JL5
1

BC S 11
1

2B
DE~L ! D , ~42!

with

DE~L !5En~L !2
1

2J0
L~L11!. ~43!

The first term in Eq.~40! corresponds to the energy of
nonrigid rotor, the moment of inertia of which is angula
momentum dependent. This dependence is similar to the
occurring in the variable moment of inertia~VMI ! model
@33#. The other~higher-order! terms also depend on the a
gular momentum throughDE(L). In such a way Eq.~40!
indicates that the influence of the Hamiltonian parameters
the energy characteristics of the model is essentially non
ear.

Now, regarding the transition probabilities, we consid
the recursive equations~14! and ~15!. We remark that since
g1 enters only in the diagonal part of the Hamiltonian, t
subtraction (Vj21,j212v i

L) in Eq. ~14! eliminates its contri-
bution to the determination of the eigenfunctions and con
quently of the transition probabilities. More precisely, t
contribution of the diagonal matrix elements to the eigenv
ues is not affected by the diagonalization procedure. A
one can deduce easily that the eigenvalues, as solution
Eq. ~12!, should be homogeneous functions of the para
etersg2 andg3 , so that after dividing both the numerato
and the denominators of Eqs.~14! and~15! by g2 ~or g3! one
concludes that the wave-function coefficients and the tra
tion probabilities should depend only on the ratiog3 /g2 ~or
g2 /g3!. Thus, while the energy description requires app
priate values of all Hamiltonian parameters, the inclusion
the transition probabilities in the fitting procedure only fix
the ratiog3 /g2 ~or g2 /g3!. We also remark that if one set
g3 ~or g2! equal to zero, which means to neglect the te
A1A ~or L•Q•L!, the transition probabilities will obtain
some constant~nonadjustable! values. It follows that both
symmetry-breaking terms are necessary for a reasonable
scription of theB(E2) transition probabilities within the
present SU~3! scheme.

For obtaining the model description in a given SU~3! irrep
~l,m! we have adjusted the Hamiltonian parameters to
low-lying experimental gsb andg-band energy levels~up to
L58–10! and to the available transition ratios betwe
ne
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them. This is implemented by using thex2 minimization
procedure based on the direction set~Powell’s! method
~DSM! @34#. The quality of the energy fits is measured by

sE5A~1/nE!(
L,n

@En
th~L !2En

expt~L !#2, ~44!

which is the standard energy rms deviation withnE being
equal to the number of the levels used in the fit andn
5g,g labeling the gsb and theg-band levels, respectively
By analogy, the quality of the fit of the transition ratios
measured by

sB5A~1/nB!(
L,t

@Rt
th~L !2Rt

expt~L !#2, ~45!

which is the rms deviation of the transition ratios of Eq.~20!,
with nB being the number of the ratios used in the fit andt
51,2,3,4 labeling the different types of ratios defined in E
~20! and ~21!. The experimental data on energy levels a
taken from@35#. The data on electromagnetic transitions a
taken as follows:164Dy @36–38#, 164Er @38,39#, 166Er @40–
42#, 168Er @43–45#, 168Yb @45,46#, 172Yb @47–49#, 176Hf
@50,51#, 178Hf @52,53#, 238U @54#. In this method weight fac-
tors are used in order to account for the different orders
magnitude of the energy levels and the transition rati
which are fitted simultaneously. The direction set~Powell’s!
method~DSM! @34# used here does not involve any comp
tation of the gradient of any function and is directly app
cable to the numerical realization of the present model.
addition we have tested an alternative fitting procedure
volving numerical derivation, in which the differences b
tween the model predictions and the experimental data
minimized with the use of an iterational procedure of Gau
Newton~GN! type @55#. In this method the energy levels an
the transition ratios are again fitted simultaneously, but t
time with equal~unit! weight factors. In this way we have
found that the independent application of both fitting proc
dures, DSM and GN, in a given SU~3! irrep ~l,m! leads to
the same values for the Hamiltonian parameters. This
shows that the theoretical scheme developed in the prev
section provides a numerically stable model description
follows that in the various SU~3! multiplets the differing
accuracy of the model description should be due only to
particular SU~3! symmetry properties of the considere
nucleus.

At this point we should mention that the simultaneo
fitting of energy levels and transition probabilities is adva
tageous for our analyses. In order to estimate the significa
of such a procedure we refer to the calculations carried ou
the framework of the pseudo SU~3! model@19#. In @19# only
the ground andg-band energy levels are used in the fits. T
B(E2) transition probabilities are determined using the wa
functions obtained from the energy diagonalizations. As
result the energy levels and the gsb intraband transition p
abilities of the nuclei 160–164Dy, 164–168Er, 166,168Yb,
232Th, and 234–238U are described satisfactorily. Howeve
the obtained interband transition probabilities~Tables 6 and
7 of @19#! do not reproduce accurately the experimental da
For example, in the case of168Er, the interband ratio
R1(L) @Eq. ~20!# obtains the valuesR1(2)51.43, R1(4)
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53.0, R1(6)53.72, while the experimental data giv
R1(2)51.78, R1(4)54.81, R1(6)510.6 @40,41#, i.e., for
L>4 the experimentalR1(L) ratios are not reproduced. Be
low we shall see that in our calculations~with simultaneous
fitting of energy levels and transition probabilities! the same
ratio for the same nucleus obtains the valuesR1(2)51.81,
R1(4)55.34,R1(6)510.31, which are in very good agree
ment with the experimental data. Simultaneous ene
B(E2) fits have, in addition, been used in the framework
the pseudosymplectic model@59#, the advantages of such
procedure becoming clear also in this case. In addition,
remark that the interband transitions play an important r
in our study, since~as will be commented below! they carry
information about the coupling of the gsb andg bands into
one SU~3! multiplet.

In the end of this section we should mention that t
restriction on the energy levels used in the fits to angu
momentum values up toL58–10 is appropriate becaus
below this limit almost all gsb andg-band levels of the in-
vestigated nuclei are observed experimentally. Such a res
tion allows one to study the systematic behavior of the b
ken SU~3! symmetry in the various nuclei on the basis of t
same angular-momentum values. Thus we ensure tha
most of the considered nuclei the even-spin levels belong
to the gsb are described together with theirg-band counter-
parts. The splitting of the even-spin states as well as
band-mixing strengths are then correctly taken into acco
An exception is the nucleus238U for which we consider the
gsb up toL518 and theg band up toL55, due to the lack
of further data on theg band.

IV. RESULTS AND DISCUSSION

A. Nuclei with small SU„3… energy splitting

We have grouped the nuclei under study according to
magnitude of the SU~3! energy splitting. As a measure of th
splitting we use the ratio

DE25~E2
2
12E2

1
1!/E2

1
1, ~46!

where E2
1
1 and E2

2
1 are the experimentally measured 21

energy levels, belonging to the gsb and theg band, respec-
tively. In the rare-earth region this ratio varies within th
limits 7<DE2<18, while in the actinides one observes va
ues in the range 13<DE2<25.

We start with the nuclei in which a small band splittin
ratio DE2;8–10 is observed. The three Er isotop
164–168Er and the nuclei164Dy and 168Yb are representative
of this group of nuclei. As a typical example let us consid
the 168Er case, whereDE259.3. For this nucleus the mode
calculations are implemented in the SU~3! irreps within the
range 10<l<90 andm52,4,6,8. The results obtained fo
the description of the energy levels are shown in Fig.
where the corresponding rms factorssE are plotted as a
function of the quantum numberl. One finds that in the~l,2!
irreps sE exhibits a well-pronounced minimum atl520
with sE53.2 keV. In the~l,4! irreps the minimum is found
at l516, withsE53.8 keV, while in the~l,6! multiplets it
is obtained atl514, withsE55.8 keV. One also finds tha
in the ~l,8! multiplets sE obtains almost constant value
y
f

e
e

r-

ic-
-

in
g

e
t.

e

r

,

sE;11–12 keV, without the presence of any minimum
Thus, Fig. 1 shows that for168Er the model scheme provide
a clearly outlined region of ‘‘favored’’ multiplets in the
~l,m! plane, includingl514–20 andm52,4,6. Outside this
regionsE increases gradually with the increase ofl and for
l.40 it saturates towards the values obtained in the~l,8!
multiplets. It is also clear that the best description of t
energy levels corresponds to the multiplet~20,2!, which pro-
vides the absolutesE minimum observed in the considere
variety of ~l,m! multiplets~see Table II!. In addition, we see
that with the increase of the quantum numberm the corre-
spondingsE minima increase in value and are shifted
smallerl values. Regarding the transition probabilities, w
remark that theB(E2) ratios@Eqs.~20! and~21!# are repro-
duced with almost equal accuracy in the whole variety
multiplets, where the rms factorsB changes within very nar-
row limits (sB50.25–0.3). Actually the differences in th
sB values obtained in the different multiplets are of the ord
of the experimental uncertainties. This result is due to
fact that in the present model scheme theB(E2) transition
probabilities depend only on the ratiog3 /g2 , which can be
adjusted almost equally well in the various irreps. The sa
behavior ofsB is observed in all investigated nuclei.

Consider now the parameter values obtained for
nucleus 168Er in the various irreps, plotted in Fig. 2 as
function of the quantum numberl. One sees@Fig. 2~a!# that
in the ~l,2! multipletsg1 obtains only positive values which
increase gradually with the increase ofl and saturate tog1
;10 keV. In the irreps withm54,6,8, g1 starts with nega-
tive values @g1;213 keV in the irrep ~12,4!; g1;
244 keV in the irrep~12,8!#, but with increasingl it goes to
positive values and saturates towards the values obtaine
the ~l,2! multiplets. The parametersg2 andg3 obtain only
negative values, as it is shown in Figs. 2~b! and 2~c!. One
also finds that both parameters decrease in absolute v
with increasingl and saturate towards zero.

Two comments should be made at this point.
~i! The smallg2 and g3 absolute values obtained in th

large-l region,l.40, do not reduce the respective contrib
tions of the second and the third terms of the Hamiltonian

FIG. 1. The energy rms factorsE @Eq. ~44!#, obtained for the
nucleus168Er, is plotted as a function of the quantum numberl at
m52 ~circlets!, m54 ~squares!, m56 ~triangles!, andm58 ~aster-
isks!.
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TABLE II. The parameters of the fits of the energy levels and the transition ratios@Eqs.~20! and~21!# of
the nuclei investigated are listed for the~l,m! multiplets which provide the best model descriptions. T
Hamiltonian parametersg1 , g2 , and g3 @Eq. ~5!# are given in keV. The quantitiessE ~in keV! and sB

~dimensionless! represent the energy@Eq. ~44!# and the transition@Eq. ~45!# rms factors, respectively. The
splitting ratiosDE2 @Eq. ~46!, dimensionless# and the vector-boson numbersN @Eq. ~9!# are also given.

Nucl DE2 l,m sE sB g1 g2 g3 N

164Dy 9.4 16,2 14.1 0.52 21.159 20.321 20.590 20
164Er 8.4 18,2 8.1 0.14 3.625 20.238 20.513 22
166Er 8.8 16,2 5.8 0.47 2.942 20.235 20.572 20
168Er 9.3 20,2 3.2 0.28 4.000 20.181 20.401 24
168Yb 10.2 20,2 7.9 0.27 0.500 20.271 20.501 24
172Yb 17.6 >80,2 6.8 0.12 9.875 20.017 20.052 84
176Hf 14.2 >70,2 15.0 0.17 9.547 20.030 20.062 74
178Hf 11.6 34,2 7.0 0.86 8.322 20.083 20.213 38
238U 22.6 >60,2 1.6 0.08 237.697 20.360 20.098 64
to
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the energy levels, since the matrix elements of the opera
L•Q•L andA1A increase in absolute value asl increases
~see Table I!. Thus one should not consider eitherL•Q•L or
A1A as small perturbations to the collective rotational e
ergy.

~ii ! As a consequence of~i!, the diagonal contributions o
the termsL•Q•L andA1A may dominate in the rotationa
structure of the energy levels. Therefore, the coefficient
theL2 term,g1 , should not be thought of as the usual inert
parameter. Actually, we have already shown that in the~l,2!
case the inertial term is determined as a linear combina
of all of the Hamiltonian parameters@see Eq.~35!#. This is
why the negative values ofg1 @as in Fig. 2~a!# should not be
considered as a surprise. For example, in the multiplet~16,2!
the set of parameters$g1 ,g2 ,g3%5$21.159,20.321,
20.590% ~given in Table II for the nucleus164Dy! gives for
rs

-

f
l

n

the inertial term the valueA511.3 keV, which is reasonabl
for nuclei in the rare-earth region.

Furthermore in Fig. 2~d! the ratiog3 /g2 is plotted as a
function ofl. One finds thatg3 /g2 decreases with increasin
l. The change of this ratio compensates for the fact that
A1A matrix elements increase more rapidly with increas
l than the matrix elements of the operatorL•Q•L ~below we
shall further discuss thel dependence of these matrix el
ments, see also Table I!. In such a way the smooth behavio
of g1 , g2 , g3 , andg3 /g2 obtained in the~l,m! plane indi-
cates that the present model scheme allows a consis
renormalization of the Hamiltonian parameters for the diff
ent SU~3! irreps. For that reason one obtains reasona
model descriptions even in the multiplets outside the favo
region.
r

FIG. 2. The Hamiltonian pa-
rametersg1 ,g2 ,g3 @Eq. ~5!# and
the ratio g3 /g2 , adjusted for the
nucleus168Er, are plotted@in ~a!,
~b!, ~c!, and ~d!, respectively# as
functions of the quantum numbe
l at m52 ~circlets!, m54
~squares!, m56 ~triangles!, and
m58 ~asterisks!.



th

as
e

t

re

th
e
e

lei
th
-

al

p
on
n

nts

-
ers

lei
d
are
nce
ental
ter-

el

e

er

en-

are
f

55 2353BROKEN SU~3! SYMMETRY IN DEFORMED EVEN-EVEN . . .
Almost the same picture has been obtained in the o
nuclei with small SU~3! energy splittings. For each of them
we found a clearly outlined region of favored multiplets
for 168Er. Thus in the168Er case the favored multiplets ar
located within the regionl512–16 andm52,4,6, while the
best model description is obtained in the irrep~16,2! ~see
Fig. 3!. For the nucleus164Er the favored multiplets are
found within the regionl514–18 andm52,4,6 and the bes
description corresponds to the irrep~18,2! ~see Fig. 4!. For
the nuclei 164Dy and 168Yb the best model descriptions a
established in the multiplets~16,2! and ~20,2!, respectively
@see Figs. 5~a! and 5~b!#. The rms factorssE andsB and the
corresponding values of the parameters obtained in
‘‘best’’ irreps are listed in Table II. We remark that in thes
irreps very good agreement between theory and experim
is found. Also, we should mention that for all the nuc
considered the parameters of the Hamiltonian exhibit
same numerical behavior in the (l,m) plane as the one ob
served for168Er.

As a typical example of results given by the broken SU~3!
symmetry for nuclei with small SU~3! energy splitting we
give in Table III the energy levels and transition ratios c
culated for the nuclei164Dy, 164–168Er, and168Yb and com-
pare them to the corresponding experimental data. The
rameter values corresponding to these results are the
given in Table II. Very good agreement between theory a
experiment is observed.

FIG. 3. The same as Fig. 1 but for the nucleus166Er.

FIG. 4. The same as Fig. 1 but for the nucleus164Er.
er

e
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e
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d

On the so far presented results the following comme
apply.

~i! Although the considered SU~3! scheme allows an ap
propriate renormalization of the Hamiltonian paramet
which leads to reasonable model descriptions in all~l,m!
multiplets under study, the calculations for the nuc
164–168Er clearly outline corresponding regions of favore
multiplets, where the descriptions of the energy levels
obtained essentially better than in the other irreps. Si
these regions are determined on the basis of the experim
gsb andg-band characteristics, the above result can be in
preted as a natural physical signature of the broken SU~3!
symmetry in these nuclei.

~ii ! For the nuclei with small bandsplitting, the best mod
descriptions are obtained in the multiplets withm52. Gen-
erally one finds~see Figs. 1, 3, and 4! that for a fixed quan-
tum numberl the ~l,2! irreps give better results than th
ones withm.2. Note that while the~l,2! multiplets only
two bands~the gsb and theg band!, the higher SU~3! irreps
with m54,6,8,... predict the presence of additional high
rotational bands. Thus, for example, the~l,4! multiplets pre-
dict an additional rotational band built on a 41 state, which
in the considered Er isotopes should be observed in the
ergy region of 3–4 MeV. Indeed in164–168Er nuclei such
41 states are observed experimentally, but their energies
measured near 2 MeV@56#, which excludes the possibility o
describing them together with the gsb and theg bands within

FIG. 5. The energy rms factorsE @Eq. ~44!#, obtained for the
nuclei 164Dy and 168Yb @shown in ~a! and ~b!, respectively#, is
plotted as a function of the quantum numberl at m52.
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TABLE III. Theoretical and experimental energy levels and transition ratios@Eqs.~20! and~21!# for the
nuclei 164Dy, 164–168Er, and 168Yb. The corresponding~l,m! values are also given. The experimental da
~used in the fits! for the energy levels are taken from@35#, while the data for theE2 transitions are from
@36–38# ~for 164Dy!, @38,39# ~for 164Er!, @40–42# ~for 166Er!, @43–45# ~for 168Er!, @45,46# ~for 168Yb!. The
numbers in brackets refer to the uncertainties in the last digits of the experimental ratios.

Nucleus~l,m!

L Eg
th Eg

expt Eg
th Eg

expt R1
th R1

expt R2
th R2

expt R3
th R3

expt R4
th R4

expt

164Dy ~16,2!
2 71.2 73.4 773.7 761.8 2.13 2.08~40! 0.11 0.082 - - - -
3 - - 837.9 828.2 - - - - 0.95 0.62 - -
4 237.2 242.2 924.3 961.0 8.73 9.10 0.26 0.26 - - 1.39 1.30~17!
5 - - 1030.5 1024.6 - - - - 2.31 0.83 - -
6 496.1 501.3 1162.6 1154.0 31.54 - 0.45 - - - 1.05 1.14~28!
7 - - 1309.6 - - - - - 4.91 - - -
8 845.3 843.7 1492.5 - 407.5 - 0.66 - - - 0.97 0.97~34!

164Er ~18,2!
2 86.5 91.4 868.9 860.3 1.88 2.04~31! 0.088 0.11~5! - - - -
3 - - 949.2 946.3 - - - - 0.74 0.89~7! - -
4 288.0 299.5 1056.6 1058.3 5.92 - 0.20 - - - 1.40 1.18~33!
5 - - 1190.2 1197.5 - - - - 1.52 1.43~13! - -
6 604.1 614.4 1352.1 1358.8 12.69 - 0.33 - - - 1.06 -
7 - - 1538.3 1545.1 - - - - 2.65 - - -
8 1033.8 1024.6 1756.5 1744.6 29.59 - 0.48 - - - 0.98 -

168Er ~16,2!
2 76.8 80.6 790.9 785.9 1.83 1.86~10! 0.08 0.097~8! - - - -
3 - - 860.8 859.3 - - - - 0.70 0.72~6! - -
4 255.8 265.0 954.2 956.2 5.47 5.72~47! 0.20 0.26~7! - - 1.39 1.45~30!
5 - - 1070.6 1075.3 - - - - 1.41 1.43~15! - -
6 536.6 545.4 1211.4 1215.9 10.72 12.25~75! 0.32 0.28 - - 1.05 1.12~65!
7 - - 1373.6 1376.0 - - - - 2.36 - - -
8 918.4 911.2 1563.0 1557.7 21.28 20.9~45! 0.48 - - - 0.96 1.05~95!

168Er ~20,2!
2 77.7 79.8 823.7 821.2 1.81 1.78~18! 0.082 0.066~16! - - - -
3 - - 896.5 895.8 - - - - 0.68 0.62~6! - -
4 258.8 264.1 993.8 994.7 5.34 4.81~78! 0.18 0.078~20! - - 1.40 1.53~18!
5 - - 1115.1 1117.6 - - - - 1.34 1.02~20! - -
6 543.1 548.7 1261.6 1263.9 10.31 10.6~20! 0.29 0.19~2! - - 1.06 -
7 - - 1430.9 1432.9 - - - - 2.19 1.62~16! - -
8 929.9 928.3 1627.5 1624.5 19.94 - 0.42 - - - 0.99 -

168Yb ~20,2!
2 82.3 87.7 990.0 983.8 1.97 2.06~36! 0.81 0.67~19! - - - -
3 - - 1066.3 1066.9 - - - - 0.80 - - -
4 273.9 286.6 1168.4 1171.2 6.82 6.72~135! 1.76 1.18~40! - - 1.40 -
5 - - 1295.1 1302.3 - - - - 1.75 - - -
6 574.1 585.3 1449.6 1445.1 17.26 17.3~42! 0.36 - - - 1.07 -
7 - - 1624.7 - - - - - 3.23 - - -
8 981.5 970.1 1833.9 - 57.15 - 0.52 - - - 1.00 -
th

’s
th
b
ne

the
ters
the present model scheme. This fact indicates that in
considered nuclei the broken SU~3! symmetry is naturally
revealed in the lowest@~l,2!# irreps, where, besides the gsb
and theg bands, no other bands are predicted. Hence
inclusion of other rotational bands should be implemented
an extension of the present model scheme to a more ge
DS group, such as Sp~6,R!.
e

e
y
ral

~iii ! The obtained results can be discussed in terms of
relationship between the collective model shape parame
b, g @57# and the SU~3! irrep labels~l,m! @58#:

b2;@l21lm1m213~l1m!13#, ~47!

g5tan21@)~m11!/~2l1m13!#, ~48!
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whereb andg characterize the axial and the nonaxial qua
rupole deformations of the nucleus, respectively. Equati
~47! and ~48! are derived by requiring a correspondence
tween the invariants of the triaxial rotor groupT5`SO(3)
and these of the group SU~3! ~for more details see@58#!. We
should remark that while in@58# the above relationship is
considered in a microscopic~shell model! aspect@via ~l,m!#,
in the present studies it could be used on a phenomenolo
level. Thus, we are able to make some estimates for
nuclear quadrupole deformations in terms of the favo
SU~3! irreps. As an example consider the favored~l,m! re-
gion obtained for the nucleus168Er ~Fig. 1!. One finds that
for the multiplets~20,2!, ~16,4!, and ~14,6! Eq. ~48! gives
g56.6°, g512.5°, g518.1°, respectively. It is clear tha
the best model description@the multiplet~20,2!# corresponds
to relatively small nonaxial deformation of the nucleus. Su
estimates can be made for the irreps appearing in the a
native SU~3! models. In the pseudo SU~3! model@19# and in
its pseudosymplectic extension@59#, the SU~3! irrep used for
the nucleus168Er is ~30,8!, while in @21# the same nucleus i
associated with the multiplet~78,10!. We see that although
these multiplets lie outside the empirically favored~l,m! re-
gion, the corresponding values of the angleg @g512.4° for
~30,8! andg56.5° for ~78,10!# are very close to the ones fo
~16,4! and ~20,2!, respectively. We have obtained simil
estimates for the other nuclei considered. In all cases
found that the experimental information on the energy lev
and the transition probabilities implicitly indicates the pre
ence of small nonaxial deformations.

B. Nuclei with medium and large SU„3… energy splitting

Let us now turn to nuclei in which large band-splittin
ratiosDE2.14–15 are observed. The nuclei172Yb, 176Hf,
and 238U are characterized by such largeDE2 values. As a
typical example consider the172Yb case whereDE2517.6.
In Fig. 6 the rms factorssE obtained for this nucleus ar
given for the~l,m! multiplets in the range 10<l<160 and
m52,4,6. Here, compared with the previously conside
nuclei, we find an essentially different picture. We see tha
the ~l,2! multiplets thesE factor, which starts with 29 keV
at l512, decreases with increasingl and further atl
.80–90 saturates gradually to a constant valuesE
;6.5 keV without reaching any minimum. In the higher
reps withm.2, sE exhibits almost the samel dependence
and thesE values obtained forl.80–90 lie on the averag
0.1 keV above the ones obtained in the corresponding~l,2!
multiplets. It follows that in the largel’s (l;100) all con-
sidered multiplets practically provide equally accurate mo
descriptions. A similar picture is observed in the nuc
176Hf ~with DE2514.2! and 238U ~with DE2522.6!. This is
illustrated in Fig. 7 for the~l,2! multiplets. In 176Hf we
found that for largel values (l.70–80)sE saturates to the
valuesE;14.8 keV@see Fig. 7~a!# and in the nucleus238U
@Fig. 7~b!# sE obtains the valuessE;1.6 keV ~see also
Table II!. It is clear that in the nuclei with large band spli
ting the calculations indicate the presence of a wide low
limit of the quantum numberl instead of a narrow region o
favored multiplets. Therefore in these nuclei one could m
only rough estimates of the nuclear collective characterist
Thus taking into account that in generall.60 and using Eq.
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~48! one finds that the strongly splitted SU~3! spectra should
correspond to small (g,2°) nonaxial deformations.

It is also interesting to consider the nucleus178Hf in
which one observes a transition value of the band-splitt
ratio DE2511.6. In Fig. 8 thesE values obtained for this
nucleus are plotted for the~l,2! multiplets in the range 10
<l<100. One sees thatsE , which starts with the value
sE;24 keV atl512, decreases with increasingl and in the
region 30<l<40 obtains a slightly expressed minimu
wheresE;7 keV. Further on,sE increases slowly withl

FIG. 6. The energy rms factorsE @Eq. ~44!#, obtained for the
nucleus172Yb, is plotted as a function of the quantum numberl at
m52 ~circlets!, m54 ~squares!, andm56 ~triangles!.

FIG. 7. The same as Fig. 5 but for176Hf ~a! and 238U ~b!.
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and nearl5100 grows up to the valuesE;8 keV. Such a
result indicates that the global~l,m! characteristics of the
broken SU~3! symmetry are changed gradually from the n
clei with small band splitting to the nuclei where the splittin
is large.

As a typical example of results provided by the brok
SU~3! symmetry for nuclei with medium and large SU~3!
energy splitting we give in Table IV the energy levels a
transition ratios calculated for the nuclei172Yb, 176–178Hf,
and 238U and compare them to the corresponding experim
tal data. The parameter values corresponding to these re
are the ones given in Table II. Good agreement betw
theory and experiment is observed.

The following overall picture of the vector-boson mod
description in deformed nuclei can now be drawn. In t
nuclei where the band splitting is small,DE2;8–10
( 164Dy, 164–168Er, 168Yb), the best model descriptions a
found in clearly outlined regions of favored~l,m! irreps with
relatively small values of the quantum numberl (16<l
<20) as well as of the quantum numberm (2<m<6). Fur-
ther with the increase of the splitting energy, as in the cas
the nucleus178Hf ~with DE2511.6!, the favored multiplets
are shifted gradually to largerl values (l;40) with slightly
expressedsE minimum. In the nuclei where large band spl
ting is observed,DE2;14–22 (172Yb, 176Hf, 238U), the
present theoretical scheme provides almost equally g
model descriptions in all~l,m! multiplets withl.60 up to
l5160 andm56. The estimates of the shape paramet
show that the increasing magnitude of SU~3! splitting indi-
cates an increase in the axial@b, Eq.~47!# and decrease in th
nonaxial@g, Eq. ~48!# deformations of nuclei.

C. Band-mixing interactions

The above picture can be analyzed in terms of the col
tive SU~3! Hamiltonian and the respective band-mixing i
teractions. For this purpose we study thel dependence of the
Hamiltonian matrix elements and estimate their contribut
to the energy spectrum in the large-l limit. ~Since the physi-
cally significant values of the quantum numberm do not
exceedm58–10, the large-m limit is of no practical inter-
est.!

Let us consider the case of the~l,2! multiplets ~without
restriction on the higher irreps! where in the even-spin state

FIG. 8. The same as Fig. 5 but for the nucleus178Hf.
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the dimension of the Hamiltonian matrix isdL52. From the
analytical expressions given in Table I and Eqs.~27!–~30!
we can estimate thel dependence of the total contribution o
the second and third terms of the Hamiltonian,L•Q•L and
A1A, in the diagonal and off-diagonal matrix elements.
the large-l limit the diagonal matrix elementsV1,1 andV2,2

increase in absolute value, with the increasing ofl, asl and
l2, respectively. The lower off-diagonal matrix eleme
V2,1 increases asl2, while the upper one,V1,2, does not
depend onl. Hence the total contribution of the diagon
matrix elements in the eigenvalue equation~12! increases as
l3, while the total contribution of the off-diagonal ones in
creases asl2. It follows then that in the large-l limit the
relative contribution of the off-diagonal~band-mixing! ma-
trix elements of the operatorsL•Q•L andA1A ~compared to
the diagonal ones! decreases as 1/l. We note that in the case
of multiplets with m.2 this contribution decreases eve
more rapidly.

The above estimates show that the increase in the q
tum numberl is connected with the corresponding decrea
in the mixing interaction between the gsb and theg band
within the framework of the SU~3! symmetry. Hence for the
nuclei with small band splitting (164Dy, 164–168Er, 168Yb) the
relatively smalll values (l;16–20) indicate that the gs
and theg bands are strongly mixed. In the nuclei with a lar
band splitting (172Yb, 176Hf, 238U) the largel’s correspond
to a weak interaction between the two bands. This means
for the latter nuclei the rotational character of the gsb and
g bands should be better developed. Indeed the case o
nucleus238U with a very large splitting ratioDE2522.6 and
a well-pronounced rotational structure of the gsb suppo
the above supposition.

The obtained~l,m! characteristics of deformed nuclei a
low one to gain a physical insight into the vector-boson
alization of a broken SU~3! symmetry. To illustrate this, we
refer to the number of vector bosonsN determined for a
given~l,m! multiplet through Eq.~9!. We see that our result
give a possibility to estimate the numberN for the nuclei
under study. Thus we find that in the cases of small ba
splitting the favored~l,m! regions imply relatively small
vector-boson numbersN;20–30, while for the strongly
splitted SU~3! spectra one hasN;80–100. Then taking into
account thel dependence of the Hamiltonian matrix el
ments one deduces that the increase ofN can be connected to
the decrease in the band-mixing interaction. In these te
the large-l limit ( l→`) boils down to the limitN→`,
which corresponds to an asymptotical decrease of the b
interaction to zero. Thereby the multiplet splits into distin
noninteracting rotational bands and the SU~3! symmetry
gradually disappears. This situation is equivalent to
group contraction process in which the SU~3! algebra re-
duces to the algebra ofT5∧SO(3) @58#. In such a way the
SU~3! symmetry goes to that of the rotator. Note that
analogous transition is inherent in the IBM@14# and corre-
sponds to an infinite number of bosons. However one sho
not make any analogy between thes and d bosons of the
IBM and the vector bosons since the latter are introduced
quanta of elementary collective excitations and cannot
treated as coupled nucleon pairs.
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TABLE IV. The same as Table III but for the nuclei172Yb, 176Hf, 178Hf, 238U. The experimental data for the energy levels are tak
from @35#, while the data for theE2 transitions are from@47–49# ~for 172Yb!, @50,51# ~for 176Hf!, @52,53# ~for 178Hf!, @54# ~for 238U!.

Nucleus~l,m!

L Eg
th Eg

expt Eg
th Eg

expt R1
th R1

expt R2
th R2

expt R3
th R3

expt R4
th R4

expt

172Yb (>80,2)
2 76.5 78.7 1480.4 1465.7 1.50 1.60~22! 0.05 0.105~13! - - - -
3 - - 1556.2 1549.2 - - - - 0.43 0.50~6! - -
4 256.0 260.1 1657.4 1657.9 3.18 3.12~48! 0.10 - - - 1.43 1.61~31!
5 - - 1783.8 1792.3 - - - - 0.65 - - -
6 535.5 539.8 1933.3 - 4.22 - 0.13 - - - 1.10 0.98~41!
7 - - 2111.3 - - - - - 0.79 - - -
8 917.9 911.3 2314.8 - 4.97 - 0.15 - - - 1.04 1.20~47!

176Hf (>70,2)
2 84.2 88.4 1361.4 1341.3 1.54 1.28~21! 0.06 0.13~5! - - - -
3 - - 1444.9 1445.8 - - - - 0.48 0.61~23! - -
4 280.8 290.2 1556.2 1540.2 3.56 - 0.11 - - - 1.43 -
5 - - 1695.3 1727.7 - - - - 0.76 - - -
6 589.6 597.0 1862.3 1861.9 5.04 - 0.15 - - - 1.10 -
7 - - 2047.6 - - - - - 0.99 - - -
8 1010.7 998.0 2270.0 - 6.40 - 0.19 - - - 1.04 -

178Hf ~34,2!
2 88.9 93.2 1180.2 1174.8 1.60 1.63~22! 0.06 0.11~6! - - - -
3 - - 1266.6 1268.9 - - - - 0.51 0.46~8! - -
4 296.4 306.6 1381.8 1384.6 3.84 5.9~10! 0.13 0.29~8! - - 1.42 -
5 - - 1525.7 1533.6 - - - - 0.86 0.66~26! - -
6 622.5 632.2 1698.5 1691.4 5.71 4.76~210! 0.18 - - - 1.09 -
7 - - 1899.0 - - - - - 1.16 - - -
8 1067.0 1058.6 2129.2 - 7.61 - 0.23 - - - 1.03 -

238U (>60,2)
2 44.9 44.9 1062.2 1060.3 5.83 - 0.24 - - - - -
3 - - 1105.9 1105.7 - - - - 4.57 - - -
4 148.6 148.4 1165.9 1168.0 92.66 - 0.69 - - - 1.43 -
5 - - 1235.2 - - - - - 91.86 - - -
6 308.1 307.2 1329.9 - 5.14 - 1.25 - - - 1.10 -
7 - - 1425.2 - - - - - 114.5 - - -
8 519.4 518.3 1563.1 - 1.83 - 1.80 - - - 1.04 -
9 - - 1673.8 - - - - - 19.41 - - -
10 777.1 775.7 1868.3 - 1.00 - 2.25 - - - 1.02 1.17~110!
12 1076.5 1076.5 - - - - - - - - 1.01 1.11~125!
14 1413.4 1415.3 - - - - - - - - 1.00 0.93~118!
16 1785.9 1788.2 - - - - - - - - 1.00 1.00~68!
18 2193.9 2190.7 - - - - - - - - 1.00 0.98~65!
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D. Discussion

The so far presented results and analyses allow us to
cuss the applicability and the limitations of the broken SU~3!
symmetry in nuclei. In addition the relevance of the gsb–g-
band coupling scheme can be clarified in terms of the inv
tigated SU~3! multiplets. First, consider the weakly splitte
spectra. In these cases the established regions of fav
~l,m! irreps suggest a cutoff in the gsb nearL516–20,
which in general is in agreement with the experimental p
ture observed in rare-earth nuclei. We note that since
present model is addressed to the low-lying spectra~below
the backbending!, one should not try to discuss the highe
energy levels~in our studies we consider the gsb and not
is-

s-

red

-
e

e

yrast band!. On the other hand, the narrow limits of the f
vored regions suggest relatively well-determined values
the shape characteristics~b,g!. These considerations indicat
that for the nuclei withDE2;8–10, both the gsb and theg
band are united into one SU~3! multiplet in a consistent way
In the strongly split spectra the situation is quite differe
The lack of any upper limit for the quantum numberl sug-
gests the presence of high angular momentaL;60–80
which are not reasonable in the low-spin regime of nucl
collective motion. For the same reason one could not ob
clear estimates for the nuclear shape parameters as in
cases of favored~l,m! regions. Furthermore, the largel val-
ues correspond to excessively large~Pauli forbidden! axial
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deformations of nuclei@see Eq.~47!#. The above facts show
that for nuclei with a large splitting ratioDE2.14 the gsb–
g-band coupling scheme comes up against basic difficu
in the consistent treatment of nuclear collective characte
tics. At least these nuclei should be referred to the limit
case in which the two bands are weakly coupled in
framework of one SU~3! multiplet. This is a worth-
mentioning finding which could be interpreted as an indi
tion for a possible rearrangement of the collective rotatio
bands in different SU~3! irreps. We can point out two exper
mental pieces of evidence supporting this supposition.

~i! For the nuclei with a large 21 splitting the number of
the experimentally observed gsb–g-interband transitions is
essentially smaller than the one in the nuclei whereDE2 is
small. Moreover in the nucleus238U such transitions have
not been observed.

~ii ! Consider the mutual disposition of the second 21 col-
lective levelsE2

2
1 ~the g-band bandhead! and the corre-

sponding second 01 levels E0
2
1 ~the b-band bandhead! of

rotational nuclei@35#. Note that for the nuclei with smal
DE2 (

164Dy, 164–168Er, 168Yb) one observesE2
2
1,E0

2
1 ~for

example, for 168Er one hasE2
2
150.821 MeV andE0

2
1

51.217 MeV!. For the nucleus178Hf, which has a transi-
tional DE2 value, both energies are almost equal (E2

2
1

51.175 MeV,E0
2
151.199 MeV). For the nuclei with large

21 splitting (172Yb, 176Hf, 238U) one findsE2
2
1.E0

2
1 ~for

example, for 172Yb one hasE2
2
151.466 MeV andE0

2
1

51.042 MeV!. The latter observation indicates that in th
nuclei withDE2.14 the gsb and theg band could be situ-
ated in distinct SU~3! multiplets.

We remark that our analysis is consistent with the res
obtained for the nucleus238U in the framework of the pseud
SU~3! and pseudo symplectic schemes@19,59#. It is shown
that the ‘‘leading’’ irrep appearing for this nucleus is~54,0!,
which indicates that in this case the gsb probably belong
a separate irrep. Actually, the obtained systematic prope
of the SU~3! symmetry in deformed nuclei could be inte
preted as the manifestation of a more general DS in nuc
collective motion. In this respect the gsb–g-band coupling
schemes and the IBM collective scheme could be consid
rather as complementary than as alternative schemes.
dynamical mechanism causing the rearrangement of r
tional bands in the various SU~3! irreps could receive atten
tion in the framework of a larger DS group.

A more detailed comparison between the features of
present scheme and these of the interacting boson m
~IBM ! is now in place. As has already been mentioned
IBM the lowestg and b bands belong to the same SU~3!
irrep (2N24,2), while the gsb remains alone in the mo
symmetric irrep (2N,0) ~whereN is the total number of ac
tive bosons!. Formally both band coupling schemes, t
gsb-g scheme~of the present model! and b-g scheme~of
IBM ! could be referred to SU~3! multiplets of the type~l,2!.
However, in the exact SU~3! limit of the original IBM-1 @14#
the appearing~l,2! multiplets are degenerate with respect
the Elliott quantum numberK. This degeneracy~which is
generally in disagreement with the experimental situati!
can be removed in several ways. One possible way is
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break the exact SU~3! symmetry. This can be achieved~see
@24# and references therein! by using in the usual IBM-1
Hamiltonian of the SU~3! limit

HSU~3!52k~Q•Q!1k8~L•L !, ~49!

the operator

Qm5~d1s̃1s1d̃!m
2 1x~d1

^ d̃!m
2 , ~50!

where k and k8 are the model parameters, ands1, d1

(s,d) are the creation~annihilation! operators for thes and
d bosons, withs̃5s and d̃m5(21)md2m . In the case ofx
52A7/2,Q is a generator of SU~3! and the exact SU~3!
Hamiltonian is obtained. Ifx50, Q is a generator of O~6!
and the Hamiltonian of Eq.~49! is not an SU~3! Hamiltonian
anymore. The case2A7/2,Q,0 corresponds to a broke
SU~3! symmetry. Theb and g bands then belong to on
splitted~l,2! multiplet. In such a way theb-g band coupling
scheme of the IBM becomes very similar to the pres
gsb-g scheme.

The same problem can also be solved by adding
HSU(3) some higher-order interaction terms. Such a term
the so-called O~3! scalar shift operator which corresponds
a three-body interaction@60#. This operator, usually denote
by V, possesses a realization in terms ofs andd bosons and
is equivalent to the second term of the vector-boson Ham
tonian @Eq. ~5!#. It is not diagonal in the Elliot basis@1#, its
eigenvalues in the~l,2! irreps being@60#

^V&5A6@L~L11!212#~2l15!, L5odd, ~51!

^V&5A6$~L22!~L13!~2l15!

66AL~L11!~L21!~L12!1~2l15!2%,

L5even, ~52!

with ^V&50 for L50. The double sign in Eq.~52! breaks
the degeneracy between the levels of theb andg bands and
thus the multiplet is splitted. Again we find that the situati
is very similar to that of the present SU~3! symmetry model.
Moreover, if we consider the vector-boson Hamiltonian@Eq.
~5!# with g251 and g350, the square-root terms of Eq
~32! and ~33! coincide exactly with the square-root term
Eq. ~52!. Thus in this case theb-g band coupling scheme o
the IBM and the gsb-g scheme of the present model a
characterized by the same analytical expression for the
ergy splitting:

uEg~L !2En~L !u;Af ~L !1~2l15!2, L5even, ~53!

wheren labels the gsb~in the present model! or theb band
~in IBM !, and f (L) is defined in Eq.~39!. Note that while in
the gsb-g scheme the~1! sign in Eq. ~52! always corre-
sponds to theg band and the~2! sign always corresponds t
the gsb~i.e., the gsb levels are always below the respect
g-band levels!, in theb-g scheme the6 correspondence de
pends on the mutual displacement of the levels and may
changed.

A comment concerning the transition probabilities in t
vector-boson model and in the IBM can be made here. W
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in the first model theg-gsb interbandE2 transitions are natu
rally incorporated, in the second one@in the exact SU~3!
limit # they are forbidden. This type of transition can be
lowed in IBM by modifying the quadrupole transition oper
tor similarly to Eq. ~50!, i.e., by breaking the exact SU~3!
symmetry~see@24# and references therein!.

It should also be mentioned that the largel values appear-
ing in our work for the nuclei with largeDE2 splitting cor-
respond to the largel values obtained with the introductio
of g bosons in the framework of thesdg-IBM @61,62#, where
the band cutoffs are shifted towards higher angular mome

The above considerations illustrate some differences
tween the present model and the IBM, as well as some c
mon schematic features of both models. The present ana
also allows one to estimate the relative appropriatenes
these model schemes for a particular rotational nucleu
group of nuclei. Our results suggest that for nuclei with sm
DE2 splitting ratio the gsb-g band coupling scheme of th
vector-boson model is more appropriate than theb-g scheme
of IBM. As a typical example for this case we consider t
nucleus168Er, in which a large number ofg-gsb interband
E2 transitions are observed@40–42#. For the nuclei with
large gsb-g splitting theb-g coupling scheme of IBM seem
to be more appropriate. As a typical example for this case
consider the nucleus238U.

In conclusion, the indicated rearrangement of the ro
tional bands in various SU~3! multiplets can be interpreted a
an interplay between the different DS schemes of the vec
boson model and the IBM. The dynamical mechanism ca
ing this rearrangement should be considered in the fra
work of the DS of a group larger than SU~3!.

V. CONCLUSIONS

In this paper we have studied the broken SU~3! symmetry
in deformed even-even nuclei via the formalism of the c
lective vector-boson model. We assume that the physic
meaningful properties of this symmetry are developed in c
tain regions of~l,m! irreps, instead of one fixed irrep. In th
way there is no microscopic input in the determination of
~l,m! irrep of SU~3! suitable for each nucleus, the quantu
numbersl andm being treated as free parameters and fit
to the experimental data. The available experimental in
mation on energy levels and transition probabilities allo
one to identify two kinds of nuclei with SU~3! symmetry.

~i! The nuclei with weak 21 splitting @DE2,12, defined
in Eq. ~24!#, for which we obtain narrow regions of favore
SU~3! irreps ~in general one has 16<l<20 and 2<m<6!.
In these regions the gsb-g band coupling scheme gives goo
model estimates of the nuclear collective characteristics
der study.

~ii ! The nuclei with strong 21 splitting @DE2.12, defined
in Eq. ~24!#, for which the successful model description r
quires large values of the quantum numberl (l.60–80)
without any presence of particular regions of favored irre
-
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In these nuclei the applied SU~3! scheme allows only rough
estimates of nuclear collective properties. These nuclei
very good rotators, so that a pure SU~3! scheme, like the one
of IBM, appears as more appropriate.

In such a way we find that the violation of the SU~3!
symmetry, measured by the splitting ratioDE2 @defined in
Eq. ~24!#, determines to a great extent the most import
SU~3! properties of deformed nuclei.

A systematic analysis of the gsb-g band-mixing interac-
tion on the basis of the collective vector-boson model le
to the following conclusions: Increasing number of vec
bosonsN corresponds to the increase in the splitting of t
multiplet and leads to decrease in the band-mixing inter
tion within the framework of the SU~3! symmetry. In these
terms the large-l limit corresponds toN→` and has the
meaning of SU~3! group contraction. In the limiting case th
SU~3! symmetry is completely destroyed and the bands c
not be united anymore in one SU~3! multiplet. Following the
above analysis, we conclude that the strongly split spe
should be considered as special cases in which the gsb
theg bands are weakly coupled. Furthermore the experim
tal and theoretical examples given for these spectra indi
the possibility for rearrangement of the two bands into d
tinct irreps. This finding suggests the presence of a transi
from the gsb-g band coupling scheme~in the nuclei with
smallDE2! to an alternative collective scheme~in the cases
of largeDE2!, in which the gsb is situated in a separate irre
In other words the broken SU~3! scheme is favored in the
case of weak 21 splitting, while strong 21 splitting favors
SU~3! schemes like the one of the IBM, in which the gsb
situated in a separate irrep.

The collective dynamical mechanism causing such a tr
sition from the broken SU~3! of the present model to the
pure SU~3! of the IBM could be sought in the framewor
of the more general DS group Sp~6,R!. In such a framework
the lowestb-band, absent from the broken SU~3! model
considered here, could be included, belonging to an ir
different from the one in which the gsb and the lowestg
band are located. These will be the subjects of a future
vestigation.
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