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Restoration of the Ikeda sum rule in self-consistent quasiparticle random-phase approximation
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The so-called self-consistent quasiparticle random phase approximation, accounting for a better treatment of
ground-state correlations, is applied to a schematic Hamiltonian, describing the Fermi beta decay process. The
self-consistent procedure coupling the BCS minimum with the quantum fluctuations yields an exact fulfillment
of the Ikeda sum rule. The role of the ground-state correlations is analyzed in the case of the double beta decay
process.@S0556-2813~97!02405-9#

PACS number~s!: 21.60.Jz, 23.40.Hc
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The interest in beta decay was renewed in the last dec
mainly by the prediction of neutrinoless double beta de
(0nbb) in the frame of some grand unification models@1#
and by new spectroscopy in the neutron-rich area@2#. An
important test for nuclear current matrix elements~ME’s! is
given by the experimentally measured double beta de
process with emission of two neutrinos (2nbb). The main
tool to estimate nuclear ME’s of this process in medium a
heavy nuclei is the random phase approximation in a qu
particle representation~QRPA!. The standard QRPA diago
nalization procedure takes place in two steps. First one
termines the static minimum, using the quasiparti
representation. In the second step one finds the eigenva
describing small vibrations around this minimum, by usi
different procedures to linearize the equations of motion
the simplest quasiboson approximation~QBA! one considers
bosonlike pairs of fermions, while different variants of th
renormalized boson approximation~RBA! @3–6# account
more exactly for the Pauli corrections.

Usually the two steps are considered separately bot
the QBA and RBA. In spite of the fact that, for instance, t
RBA corrects the collapse of the 2nbb amplitude versus
particle-particle correlations@7,8# it was shown that the
Ikeda sum rule@9# is violated@10#. Higher RPA corrections
computed within the boson expansion technique also vio
the sum rule@11# by a comparable amount.

In this paper we will remove this drawback by conside
ing a simultaneous treatment of the BCS and QRPA vacu
applying the so-called self-consistent QRPA~SCQRPA!,
which better accounts for Pauli corrections. This is the g
eralization of the scheme proposed in Refs.@12,13# to
proton-neutron systems. In this way one obtains a substa
correction of the collapse in the 2nbb transition rate with
increasing particle-particle correlations.

For the sake of simplicity let us consider a schema
Hamiltonian, describing the gross properties of the de
processes in the simplest case of the monopole Fermi tra
tions. It describes a system of protons~p! and neutrons
(n), filling shells with the same spinj :
550556-2813/97/55~5!/2340~5!/$10.00
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H5~ep2lp!Npp1~en2ln!Nnn2
Gp

4
Ppp
† Ppp

2
Gn

4
Pnn
† Pnn1

x

2V
@gph~NpnNnp1NnpNpn!

2gpp~Ppn
† Pnp1Pnp

† Ppn!#, ~1!

where, by using single-particle operatorscam
† , with

a5p,n andm5spin projection, the following standard no
tations were introduced:

Nab5(
m

cam
† cbm , Nba5Nab

† ,

Pab
† 5Pba

† 5(
m

cam
† cbm̄

† sm , Pba5~Pab
† !†,

a,b5p,n, m̄52m, sm5~2 ! j2m, V5 j11/2.
~2!

Here ea are single-particle energies andla the Lagrange
multipliers, adjusted by the particle number condition. Fer
beta decay operators are given byb25Npn , b15Nnp , and
x is the overall strength of the beta decay process. A sim
Hamiltonian describing the dipole Gamow-Teller beta dec
process was proposed in Ref.@14#. In spite of its simplicity,
it takes into account the main properties displayed also
realistic interactions. The factorsgph and gpp are the
particle-hole and particle-particle strengths, respectively
calculating double beta decay transition rates an impor
role is played by particle-particle correlations@15–17#. This
is why in the case of Gamow-Teller transitions one usua
studies the behavior versus particle-particle correlations
varyinggpp and keeping constantgph51.

This Hamiltonian was extensively studied using gro
theoretical methods in Refs.@18–20#. The set of ten opera
tors in Eq.~2! closes the commutation algebra of the O~5!
2340 © 1997 The American Physical Society
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group. In the general case the Hamiltonian can be diago
ized in the complete but nonorthogonal basis@19#

uNpNnN0&5~Ppp
1 !Np~Pnn

1 !Nn~Ppn
1 !N0u0&. ~3!

The Hamiltonian~1! is a quadratic Casimir of the O~5! group
for Gp5Gn5G and xgpp5GV/2. In this case the eigen
states can be labeled by the isospin quantum number.
gpp values different fromGV/2x the Hamiltonian violates
isospin symmetry. Though an artifact of the model, this v
lation may simulate proton-neutron correlations coming fr
the other channels, likeT50 ~isoscalar pairing!, not in-
cluded in the present model.

We will study the vibrations around the stationary po
within the SCQRPA. In the quasiparticle representat
given by single-particle operatorsaam

† 5Uacam
† 2Vacam̄sm

the Hamiltonian~1! is given by

H5H01 (
a5pn

@EaNaa1Haa
~20!~Aaa

† 1Aaa!#

1 (
a<b

@Hab
~22!Aab

† Aba1Hab
~40!~Aab

† Aab
† 1AbaAba!#,

~4!

where

Nab5(
m

aam
† abm , Aab

† 5~aa
†ab

† !0 . ~5!

H05HBCS is the expectation value of the Hamiltonian on t
vacuum state,Ea are quasiparticle energies, and

Haa
~20!5eaUaVa2 1

2 ~Ua
22Va

2 !GaVUaVa ,

Hab
~22!52x@gph~Ua

2Vb
21Va

2Ub
2 !2gpp~Ua

2Ub
21Va

2Vb
2 #,

Hab
~40!52x~gph1gpp!UaVaUbVb . ~6!

The SCQRPA state is written in terms of an excitation o
erator, acting on the vacuum state~in this work the generali-
zation of the SCRPA excitation operator to includea†a
terms like proposed in@13# will not be considered, since it is
not easily applied to schematic models such as the
treated here!

uC&5G†u0&, ~7!

Gu0&50, ~8!

where

S G†

G
D 5S X̄g 2Ȳg

2Ȳg X̄g
D S Āg

†

Āg
D . ~9!

Here we introduced the normalized pair-creation operato

Āg
†5Tg

21/2Ag
† , g5~ab!, ~10!

with a normalization factor given by
l-

or

-

t
n

-

e

Tab5^0u@A,A†#u0&5^0u12
N
2V

u0&,

N5Naa1Nbb . ~11!

The SCQRPA operators~9! obey boson commutation rule
on the average and therefore the amplitudesX̄g ,Ȳg are or-
thonormalized as follows:

S X̄g 2Ȳg

2Ȳg X̄g
D S X̄g Ȳg

Ȳg X̄g
D 5S 1 0

0 1D . ~12!

This relation also provides the inverse transformat
expressing the operatorsĀg

† ,Āg in terms of G†,G. The
SCQRPA equations for the renormalized amplitudes defi
by Eq. ~9! have then the standard form

S Āgg8 B̄gg8

B̄gg8 Āgg8
D S X̄g8

Ȳg8
D 5vS 1 0

0 21D S X̄g

Ȳg
D , ~13!

with the usual expression for the ME’s as expectation val
of the following double commutators:

Āgg85^0u@Āg,@H,Āg8
†

##u0&,

B̄gg852^0u@Āg,@H,Āg8##u0&. ~14!

In the evaluation of these ME’s, as proposed in Ref.@12#,
fermionic commutation relations are used and the SCQR
vacuum is treated exactly by using Eq.~8!. In order to find a
self-consistent BCS minimum we will use the generalizat
of the gap equation@12,13#, which corresponds to the mini
mization of the ground-state energy with respect to the B
transformation amplitudes,

^0u@H,Aaa
† u0&50, a5p,n, ~15!

whereH is given by Eq.~4!. As in @13# for particle number
equation one uses the exact expression

^0uNaau0&52VVa
21~Ua

22Va
2 !^0uNaau0&5Na

5S Z, a5p

N, a5n
D . ~16!

By using Eqs.~8! and ~12! it can be shown that the BCS
equations have a standard structure with, however, a re
malized interaction. The particle number condition~16! is
modified by the quasiparticle occupation numbe
^Naa&[^0uNaau0&Þ0, accounting for ground state correla
tions. In the same way we obtain for the BCS amplitudes

SUa
2

Va
2 D 5

1

2S 16
ea2la

Ea
D5

1

2S 16
V2Na

V2^Naa& D ,

Ea5
GaV

2
, a5p,n. ~17!

It can also be shown that the SCQRPA matrices given by
~14! split into two independent blocks, namely, a block co
nectingĀp

† with Ān
† and a single elementĀpn

† . This last part
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is responsible for beta decay processes and we will analy
separately, without any loss of generality. Thus the QR
transformation~9! contains one component.

By using the inverse transformation of Eq.~9! and the
property~8! one can exactly calculate the SCQRPA ME’s
taking into account the fermion commutation relations

Āpn5Ep1En1Hpn
~22!F ^~12N/2V!2&

^12N/2V&
2
Ȳpn
2

V
G ,

B̄pn52Hpn
~40!F ^~12N/2V!2&

^12N/2V&
2
112Ȳpn

2

2V
G . ~18!

At this point some comments on the form of the SCQR
matrices are necessary. The first terms in square bracke
Eq. ~18! are taken into account already by the abov
mentioned RBA. The other terms are obtained by consid
ing the exact commutation fermionic rules. In this way, up
now, no approximations in the SCQRPA diagonalizati
procedure have been introduced. The only unknowns are
normTpn, which contains the average quasiparticle occu
tion number̂N&, and^N&. To find ^N& we will for simplic-
ity use the prescription given by@5,6#, which is consistent up
to first order in 1/V with fermionic commutation rules„a
more elaborate scheme has been given in@13#, but this ex-
tension is of no consequence for the fulfillment of the Ike
sum rule~see below! and we will not consider it…

N52Apn
† Anp . ~19!

By using the inverse transformation expressingĀpn in terms
of QRPA operators one easily obtains

Tpn512
^N&
2V

5
1

11Ȳpn
2 /V

. ~20!

With the usual approximation̂N 2&'^N&2 the system of
SCQRPA equations is closed and can be solved.

Now let us point out that in this approach the Ikeda s
rule is automatically fulfilled. Indeed, if one computes t
transition ME’s of the beta decay operators

^Cub2u0& 5Tp n
1/2 A2V~UpVn X̄p n 1VpUnȲp n !,

^Cub1u0&5Tpn
1/2A2V~UnVpX̄pn1VnUpȲpn!, ~21!

and considering that we have only one intermediate st
then one obtains

u^Cub2u0&u22u^Cub1u0&u25Tpn2V~Vn
22Vp

2 !. ~22!

If we use for the BCS amplitudes the standard particle nu
ber condition 2VVa

25Na , the above relation is differen
from N2Z, the value given by the Ikeda sum rule, becau
the normalization factorTpn is different from unity. If we
use the renormalized expressions~17!, the product on the
right-hand side~rhs! of relation ~22! gives N2Z and the
Ikeda sum rule is automatically fulfilled.~One should notice
that in the strict sense the Ikeda sum rule@9# involves spin
and isospin degrees of freedom, whereas in this model o
isospin is restored since spin is absent. As other authors
it
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will not make this distinction here and call it ‘‘Ikeda sum
rule’’ also in this more restricted case.!

An accurate prediction of the 0nbb amplitude depends
on the quality of the nuclear ME’s involved in 2nbb, which
can be compared with experimental measurements. To
count for Pauli correlations in an optimal way, as is done
the SCQRPA, is therefore important. Let us consider 2nbb
decay from an initial stateu i & to a final stateu f &, through an
intermediate stateuC& given by Eq. ~7!. One obtains the
following expression for the transition amplitude:

M2n5
^ f ub2uC&^Cub2u i &

v1DE
'

^Cub1u0^Cub2u0&
v1DE

,

~23!

whereDE5mec
21 1

2Qbb (me is electron mass andQbb the
Q value of the process!.

FIG. 1. ~a! The RPA excitation energy as a function ofxgpp
given by Eq. ~13! in a quasiboson approximation~QBA! ~dot-
dashed line!, renormalized boson approximation~RBA! ~dashed
line!, self-consistent QRPA~SCQRPA! ~solid line!, and the exact
solutions ~dotted line!. ~b! The average quasiparticle occupatio
number versusxgpp for QBA ~dot-dashed line!, RBA ~dashed line!,
and SCQRPA~solid line!.
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Here we approximated ^ f ub2uC& ' ^ i ub2uC&
5^Cub1u0& in order to better simulate the realistic situatio
whereM2n is strongly suppressed.

The results of the calculations are presented in Figs. 1
2. We have chosen the following set of parameters

N56, Z54, j59/2,

Ep5En51 MeV, x50.5 MeV,

gph51, DE50.5 MeV . ~24!

We studied the behavior of different observables ver
xgpp , by changing the particle particle strength. First of
in Fig. 1~a! the energy given by the eigenvaluev in Eq. ~13!
is plotted. The dot-dashed line presents the QBA res
which is obtained if one replaces in the SCQRPA matri

FIG. 2. ~a! Ikeda sum rule versusxgpp for RBA ~dashed line!
and SCQRPA~solid line!. ~b! 2nbb Fermi transition amplitude
versus xgpp for QBA ~dot-dashed line!, RBA ~dashed line!,
SCQRPA~solid line!, and exact solution~dotted line!.
nd

s
l

lt,
s

~18! the square brackets by unity. One can observe the br
down of the solution aroundxgpp51. If one uses the RBA
~first term in the square brackets!, one obtains the dashe
curve which avoids the breakdown. A similar result was a
reported in Ref.@10#. If we use the SCQRPA, one obtains th
solid line in this figure which smears out the phase transit
even further. The exact result~lowest curve! is represented
by dots.

To have an idea about the corrections induced by grou
state correlations we plotted in Fig. 1~b! the average quasi
particle occupation number̂N& versus xgpp , using the
same graphical representation. One can observe an impo
feedback behavior in the SCQRPA in comparison with
other two approaches.

Concerning the Ikeda sum rule we present in Fig. 2~a! the
result given by Eq.~22! if one uses the RBA~dashed line!.
This shows the amount of violation in the sum rule wh
increasinggpp . Of course for the SCQRPA the sum rule
automatically fulfilled~solid line!.

Recent calculations@21# show for more realistic mode
describing the Gamow-Teller 2nbb process that the Ikeda
sum rule is not fulfilled if one takes the exact express
~16!, but within the above-mentioned RBA. Our hope is
fulfill the sum rule for realistic models by using the SC
QRPA.

Finally in Fig. 2~b! we plotted the dependence of th
2nbb transition rate versusxgpp . For the QBA the collapse
around xgpp51 is induced by an overestimation of th
ground-state correlations~dot-dashed line!. The effect is par-
tially removed by considering the RBA~dashed line!. One
can observe that in the SCQRPA case~solid line! the col-
lapse is almost completely removed. By a dotted line
plotted the transition rate using the exact solution.

The conclusions extracted from this analysis can be s
marized as follows. First of all a self-consistent treatment
the particle number condition, taking fully into accou
ground-state correlations, together with the coupling of
BCS transformation to the quantum fluctuations gives
necessary ingredients to fulfill the Ikeda sum rule. A simi
treatment becomes very important for any sum rule c
nected with some procedure to renormalize RPA calculati
@22#.

Second, Pauli corrections and ground-state correlati
are treated in an optimal way within the SCQRPA. The si
ation with respect to the exact solution of the model@Figs.
1~a!, 2~b!# is paradoxical, however. Indeed, seemingly t
better the theory, the further the results get away from
exact solution. In spite of the exact fulfillment of the Iked
sum rule, SCRPA results are the worst. A similar behav
was already noticed and discussed in@10#. It implies, first,
that the relative good agreement of QRPA with the ex
results might be accidental and, second, that QRPA toge
with its extension of RBA and SCRPA misses an importa
piece of physics. In this respect it should be realized that
crossing of the zero line of the exact solution in Fig. 1~a!
simply means that from this value ofgpp on the ground state
of the odd-odd system becomes lower than the one of
even-even system. However QRPA plus extensions trea
difference in ground state energies of the even-even and
odd systems as an excitation energy which by definition
>0. So the QRPA schemes generally considered for
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doubleb-decay seem intrinsically incapable of describing
a continuous way the crossing of the ground state energie
the even-even and odd-odd systems. At this point we wo
like to remark that a continuation of RBA or SCQRPA f
beyond the phase transition point where QRPA breaks d
@at xgpp.1 in our case, see Fig. 1~a!# makes little sense, a
we know from the treatment of other models@12,22#. On the
contrary, from the phase transition point on one sho
change the single particle basis which in our case means
we have to consider a general Bogoliubov transformat
which mixes nn, pp, and pn pairs~the phase transition sig
nals instability with respect to proton-neutron pairing!.
Whether this generalization can cure the problem is an o
question.

Further work on this point is needed to get a better con
of the situation.

Note added in proof.The comparison of exact and ap
proximate results in Fig. 1~a! is biased, since the latter one
must be corrected for the chemical potentials of protons
hy

ys
of
ld

n

d
at
n

n

l

d

neutrons~see Refs.@13, 21#!. Though the introduction of this
correction allows the RBA~dashed! and SCQRPA~solid!
lines to cross the horizontal axis of zero energy, it still ca
not remedy to the fact that SCQRPA, contrary to expec
tion, gives the least satisfactory agreement with the ex
solution. One reason for this failure may be the breaking
consistency on the SCQRPA level by Eqs.~19! and ~20!.
Work to improve on this is in progress. Another possibility
that it may turn out that exact particle number projection
necessary to remove any residual particle number fluctua
in the subtle balance between even-even and odd-
ground-state energies.
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