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Restoration of the lkeda sum rule in self-consistent quasiparticle random-phase approximation

D. S. Delion
Institute of Atomic Physics, Bucharest Maele, P.O. Box MG-6, Romania

J. Dukelsky
Instituto de Estructura de la Materia, Serrano 123, 28006 Madrid, Spain

P. Schuck
CNRS-IN2P3 Universitdoseph Fourier, Institut des Sciences Nadles, 53 Avenue des Martyrs, F-38026 Grenoble Cedex, France
(Received 8 July 1996

The so-called self-consistent quasiparticle random phase approximation, accounting for a better treatment of
ground-state correlations, is applied to a schematic Hamiltonian, describing the Fermi beta decay process. The
self-consistent procedure coupling the BCS minimum with the quantum fluctuations yields an exact fulfillment
of the lkeda sum rule. The role of the ground-state correlations is analyzed in the case of the double beta decay
process[S0556-28137)02405-9

PACS numbd(s): 21.60.Jz, 23.40.Hc

The interest in beta decay was renewed in the last decade G,
mainly by the prediction of neutrinoless double beta decay =~ H=(€;=A;)N,+(€,—\,)N,,— TPLWPM
(OvBpR) in the frame of some grand unification modgld
and by new spectroscopy in the neutron-rich gr2h An
important test for nuclear current matrix eleme(E’s) is
given by the experimentally measured double beta decay . "
process with emission of two neutrinos¥2B8). The main ~9pp(P7,Puat Py Pr)l, (1)
tool to estimate nuclear ME's of this process in medium and
heavy nuclei is the random phase approximation in a quaswhere, by using single-particle operatorslm, with
particle representatio@QRPA). The standard QRPA diago- «=,v andm=spin projection, the following standard no-
nalization procedure takes place in two steps. First one ddations were introduced:
termines the static minimum, using the quasiparticle
representation. In the second step one finds the eigenvalues, T T
describing small vibrations around this minimum, by using NaB:§ CamCpms  Npa=Ngg,
different procedures to linearize the equations of motion. In
the simplest quasiboson approximati@BA) one considers
bosonlike pairs of fermions, while different variants of the PLB: PL=> Clmcgﬁsm! Pﬁa:(PLﬂ)T!
renormalized boson approximatiofRBA) [3—6] account m
more exactly for the Pauli corrections. _
Usually the two steps are considered separately both in «,=m,v, m=—-m, s,=(—) "™ Q=j+1/2.
the QBA and RBA. In spite of the fact that, for instance, the 2
RBA corrects the collapse of thevBB amplitude versus
particle-particle correlation$7,8] it was shown that the Here €, are single-particle energies ang, the Lagrange
Ikeda sum ruld9] is violated[10]. Higher RPA corrections multipliers, adjusted by the particle number condition. Fermi
computed within the boson expansion technique also violatbeta decay operators are given®y=N_,, 87=N,,, and
the sum rulg11] by a comparable amount. x is the overall strength of the beta decay process. A similar
In this paper we will remove this drawback by consider- Hamiltonian describing the dipole Gamow-Teller beta decay
ing a simultaneous treatment of the BCS and QRPA vacua iprocess was proposed in REE4]. In spite of its simplicity,
applying the so-called self-consistent QRRECQRPA, it takes into account the main properties displayed also by
which better accounts for Pauli corrections. This is the genrealistic interactions. The factorg,, and g,, are the
eralization of the scheme proposed in Ref$2,13 to particle-hole and particle-particle strengths, respectively. In
proton-neutron systems. In this way one obtains a substantiablculating double beta decay transition rates an important
correction of the collapse in thevBg transition rate with role is played by particle-particle correlatiofts5—17. This
increasing particle-particle correlations. is why in the case of Gamow-Teller transitions one usually
For the sake of simplicity let us consider a schematicstudies the behavior versus particle-particle correlations by
Hamiltonian, describing the gross properties of the decayaryingg,, and keeping constarf,,=1.
processes in the simplest case of the monopole Fermi transi- This Hamiltonian was extensively studied using group
tions. It describes a system of protofis) and neutrons theoretical methods in Reff18-20. The set of ten opera-
(v), filling shells with the same spifx tors in Eq.(2) closes the commutation algebra of th¢5D
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group. In the general case the Hamiltonian can be diagonal- N
ized in the complete but nonorthogonal baig] T.s=(0|[A,AT]|0)=(0|1- mm)'
= + Nﬂ' + ND + N
INZN,No)= (P )N=(P;,) (P2,)"0[0). ) N=Nyo+Ngg. (12)

The Hamiltonian(1) is a quadratic Casimir of the(®) group  The SCQRPA operator®) obey boson commutation rules

for G,=G,=G and xgp,=G€/2. In this case the eigen- ., he average and therefore the amplitudlesY,, are or-
states can be labeled by the isospin quantum number. FQL,,qrmalized as follows:

dpp Values different fromG(1/2y the Hamiltonian violates

isospin symmetry. Though an artifact of the model, this vio- X =Y \[X. Y. 1 0
lation may simulate proton-neutron correlations coming from 2 T2 2= ( 0 1) . (12
the other channels, likd=0 (isoscalar pairing not in- —Yy, X, JNY, X,

cluded n the present r_nod(_el. . . This relation also provides the inverse transformation
We will study the vibrations around the stationary point _ — . +
expressing the operator,,A, in terms of I'',I". The

within the SCQRPA. In the quasiparticle representation . for th Y i i i
given by single-particle operato’, =U ¢! —V.c.msm SCQRPA equations for the renormalized amplitudes defined

the Hamiltonian(1) is given by by Eg. (9) have then the standard form

X,

(200, pt A—w/ @y, = =w(1 0 ) ﬁ (13
H=Ho+a:2w [ENoyotHZAT +A,)] 5, 4,.\Y, o -1/lv,)
(2211 (40 AT AT with the usual expression for the ME’s as expectation values
+ 2 [HEDAL A HUD (AL AL g+ Ag.Ag)T, of the following double commutators:
as<p
e A AT
(4) .Ay,y’:<0|[A'yi[HvA,y’]]|o>'
where B, =—(0|[A,.[H,A,/1]|0). (19

In the evaluation of these ME'’s, as proposed in R&g]
- T t _(atat , '
Naﬁ_im: Bampm: Aap=(2a8g)o- ®) " fermionic commutation relations are used and the SCQRPA
vacuum is treated exactly by using E8). In order to find a
Ho=Hpcsis the expectation value of the Hamiltonian on the self-consistent BCS minimum we will use the generalization

vacuum stateE , are quasiparticle energies, and of the gap equatiofi12,13, which corresponds to the mini-
mization of the ground-state energy with respect to the BCS
H®=¢ U, V,—%(U2-V3)G,QU,V,, transformation amplitudes,
(O|[H,A!_|0y=0, a=m,v, (15)

HLE = 2x[gpn(U2VE+VEUR) — gpp(UZU S+ VIV,
whereH is given by Eq.(4). As in[13] for particle number

HYS = 2x(dpnt Gpp)U VU gVss. (6)  equation one uses the exact expression
The SCQRPA state is written in terms of an excitation op- (0|N,,|0y=20V2+ (U2—V3)(0|N,,[0)=N,
erator, acting on the vacuum stdbe this work the generali-
zation of the SCRPA excitation operator to includéa Z, a=m
terms like proposed ifil3] will not be considered, since it is - N, a=v/" (16)
not easily applied to schematic models such as the one
treated here By using Egs.(8) and (12) it can be shown that the BCS
equations have a standard structure with, however, a renor-
|w)y=T"T]0), (7)  malized interaction. The particle number condititi6) is
modified by the quasiparticle occupation numbers
r[o)=0, (8)  (N,a)=(0|N,,|0)#0, accounting for ground state correla-
tions. In the same way we obtain for the BCS amplitudes:
where
L U2\ 1/ e,—r,| 1 Q-N,
(FT) Xy _Yy AI, (g) Vi =§(11‘ Ea )zz(lim )
r -Y, X '
Y Y A)’ GaQ
Here we introduced the normalized pair-creation operators E.= 2 aTmy (a7
A_’;:T;WA’;, y=(ap), (10) It can also be shown that the SCQRPA matrices given by Eq.

(14) split into two independent blocks, namely, a block con-
with a normalization factor given by nectingA” with A" and a single elemem! . This last part
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is responsible for beta decay processes and we will analyze it 8 7T
separately, without any loss of generality. Thus the QRPA
transformation(9) contains one component.

By using the inverse transformation of E() and the
property(8) one can exactly calculate the SCQRPA ME’s by
taking into account the fermion commutation relations

o (MeV)

Y '

— (1-N120)%) Y2,
_ (22) __m
A,,=E,+E,+H [ EEYZ I

(1-N120)3)  1+2Y2,
(1-N2Q) 20

B,,=2H)

} . (18

At this point some comments on the form of the SCQRPA R T T
matrices are necessary. The first terms in square brackets of 0.0 0.5 1.0 15 20
Eq. (18 are taken into account already by the above-

mentioned RBA. The other terms are obtained by consider- X Gpp

ing the exact commutation fermionic rules. In this way, up to

now, no approximations in the SCQRPA diagonalization ST 7
procedure have been introduced. The only unknowns are the r
normT_,, which contains the average quasiparticle occupa- : )
tion number Ny, and(A?). To find (N} we will for simplic- 4r L]
ity use the prescription given 4%,6], which is consistent up [ . 1
to first order in 1) with fermionic commutation rulega : L
more elaborate scheme has been giveplB], but this ex- L I ; ]
tension is of no consequence for the fulfilment of the lkeda i |
sum rule(see belowand we will not consider )t - i ,

N=2AT A, . (19) oy

By using the inverse transformation expres% in terms
of QRPA operators one easily obtains

0 i PR [ T R TR DU N T SR S
1— w_ 1 20 0.0 05 1.0 15 2.0
—.
20 1+Y2 JQ x g
PP

T

mTyT

With the usual approximatiod\V 2)~(N})? the system of
SCQRPA equations is closed and can be solved.

Now let us point out that in this approach the Ikeda su
rule is automatically fulfilled. Indeed, if one computes the
transition ME’s of the beta decay operators

FIG. 1. (a) The RPA excitation energy as a function gf,,
mgiven by Eg.(13) in a quasiboson approximatiofQBA) (dot-
dashed ling renormalized boson approximatiqiRBA) (dashed
line), self-consistent QRPASCQRPA (solid ling), and the exact
solutions (dotted ling. (b) The average quasiparticle occupation
number versugg,, for QBA (dot-dashed ling RBA (dashed ling
and SCQRPA(solid line).

(¥[BT|0)=TH2\2Q(U VX, +V,U,Y,,), (21)  will not make this distinction here and call it “Ikeda sum
o ) ) rule” also in this more restricted case.
and considering that we have only one intermediate state, apn gccurate prediction of theig88 amplitude depends
then one obtains on the quality of the nuclear ME’s involved iniBg8, which
12 A2 2\ 2 can be compared with experimental measurements. To ac-
[(CPIB7I0)* = [(W|BT[0)|*=T,,20(V, = V7). (22) count for Pauli correlations in an optimal way, as is done in

If we use for the BCS amplitudes the standard particle num'Ehe SCQRPA, is therefore important. Let us considegp

ber condition Zlvi=Na, the above relation is different ﬁ]?g?n)géggeagt;g\?}>5ta}t/i>r]t%aEnai;tatg:]é' ghg; '”Ilgg ?hne
from N—Z, the value given by the Ikeda sum rule, becaus 9 y =10,

o ) X Sollowing expression for the transition ampli :
the normalization factofl ., is different from unity. If we ollowing expression for the transition amplitude

(¥|p710) =TY2 \20(U,V, X, , +V,U,Y. ),

use the renormalized expressiofis), the product on the (f| BN W |B7]i) (¥|B*|o(¥|B~|0)
right-hand side(rhs) of relation (22) gives N—Z and the M,,= ot AE wtAE ,
Ikeda sum rule is automatically fulfilledOne should notice (23)

that in the strict sense the Ikeda sum r[@¢ involves spin
and isospin degrees of freedom, whereas in this model onlwhere AE =m.c?+ %Qﬁﬁ (mg is electron mass anQ g, the
isospin is restored since spin is absent. As other authors w® value of the process
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(18) the square brackets by unity. One can observe the break-
] down of the solution aroungg,,=1. If one uses the RBA
] (first term in the square brackeétone obtains the dashed

g

=}
T

4

25 p curve which avoids the breakdown. A similar result was also
[ reported in Ref[10]. If we use the SCQRPA, one obtains the
20— solid line in this figure which smears out the phase transition
o even further. The exact resulowest curve is represented
EN ish ] by dots.
N ; 1 To have an idea about the corrections induced by ground-
D r state correlations we plotted in Fig(kl the average quasi-
< 10F particle occupation numbef/\) versus xg,,, using the

saaala

same graphical representation. One can observe an important
feedback behavior in the SCQRPA in comparison with the
other two approaches.

Concerning the Ikeda sum rule we present in Fig) the

o

»n
T

©

2
1

o ¢
o
T

00' '05' — '10' — '15' — '20 result given by Eq(22) if one uses the RBAdashed ling
) ' ’ ’ ’ This shows the amount of violation in the sum rule when
X Gpp increasingg,,. Of course for the SCQRPA the sum rule is
automatically fulfilled(solid line).

1.0 ———T——T 7T Recent calculation$21] show for more realistic model

i describing the Gamow-Telleri38 process that the Ikeda
sum rule is not fulfilled if one takes the exact expression
(16), but within the above-mentioned RBA. Our hope is to
fulfill the sum rule for realistic models by using the SC-
QRPA.

Finally in Fig. 2b) we plotted the dependence of the
2v B transition rate versugg,,,. For the QBA the collapse
around xg,,=1 is induced by an overestimation of the
ground-state correlatioriglot-dashed ling The effect is par-

[ ] tially removed by considering the RBAlashed ling One
s _ (b) _ can observe that in the SCQRPA cdselid line) the col-
. : lapse is almost completely removed. By a dotted line we
plotted the transition rate using the exact solution.

-2.00'0' — '0'5' — '1'0' — '1'5' — '2'0 The conclusions extracted from this analysis can be sum-
) ’ ) : ) marized as follows. First of all a self-consistent treatment of
X Gpp the particle number condition, taking fully into account

ground-state correlations, together with the coupling of the
BCS transformation to the quantum fluctuations gives the
FIG. 2. (a) Ikeda sum rule versugg,, for RBA (dashed ling  necessary ingredients to fulfill the Ikeda sum rule. A similar
and SCQRPA(solid line). (b) 2vBB Fermi transition amplitude treatment becomes very important for any sum rule con-
versus xg,, for QBA (dot-dashed ling RBA (dashed ling  nected with some procedure to renormalize RPA calculations
SCQRPA(solid ling), and exact solutioitdotted ling. [22].
Second, Pauli corrections and ground-state correlations
are treated in an optimal way within the SCQRPA. The situ-
Here ~we approximated (f|8"|¥) ~ (i[87|¥)  ation with respect to the exact solution of the moffbs.
=(W¥|B"|0) in order to better simulate the realistic situation 1(a), 2(b)] is paradoxical, however. Indeed, seemingly the

whereM,,, is strongly suppressed. better the theory, the further the results get away from the
The results of the calculations are presented in Figs. 1 angxact solution. In spite of the exact fulfillment of the Ikeda
2. We have chosen the following set of parameters sum rule, SCRPA results are the worst. A similar behavior
was already noticed and discussed 1®]. It implies, first,
N=6, Z=4, [=9/2, that the relative good agreement of QRPA with the exact
results might be accidental and, second, that QRPA together
E,=E,=1 MeV, x=0.5 MeV, with its extension of RBA and SCRPA misses an important
piece of physics. In this respect it should be realized that the
gpn=1, AE=0.5 MeV. (24)  crossing of the zero line of the exact solution in Figa)l

simply means that from this value gf,, on the ground state
We studied the behavior of different observables versusf the odd-odd system becomes lower than the one of the
X9pp, by changing the particle particle strength. First of alleven-even system. However QRPA plus extensions treat the
in Fig. 1(a) the energy given by the eigenvaluein Eq.(13)  difference in ground state energies of the even-even and odd-
is plotted. The dot-dashed line presents the QBA resultpdd systems as an excitation energy which by definition is
which is obtained if one replaces in the SCQRPA matrices=0. So the QRPA schemes generally considered for the
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doubleB-decay seem intrinsically incapable of describing inneutrongsee Refs[13, 21]). Though the introduction of this

a continuous way the crossing of the ground state energies @brrection allows the RBA(dashed and SCQRPA(solid)

the even-even and odd-odd systems. At this point we wouldines to cross the horizontal axis of zero energy, it still can-
like to remark that a continuation of RBA or SCQRPA far not remedy to the fact that SCQRPA, contrary to expecta-
beyond the phase transition point where QRPA breaks dowfion, gives the least satisfactory agreement with the exact
[at xgpp>1 in our case, see Fig(d] makes little sense, as splution. One reason for this failure may be the breaking of
we know from the treatment of other model2,22. Onthe  ¢onsistency on the SCQRPA level by Eq&9) and (20).
contrary, from the phase transition point on one shouldyqrk to improve on this is in progress. Another possibility is
change the single particle basis which in our case means thg{at it may turn out that exact particle number projection is

we have to consider a general Bogoliubov transformatiohecessary to remove any residual particle number fluctuation
which mixes nn, pp, and pn paifthe phase transition Sig- iy the subtle balance between even-even and odd-odd
nals instability with respect to proton-neutron pailing ground-state energies.

Whether this generalization can cure the problem is an open

guestion. One of us(D.S.D) is grateful for the financial support
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of the situation. was performed. This work was supported in part by DGI-

Note added in proofThe comparison of exact and ap- CYTT (Spain under Contract No. PB 95/0123. Discussions
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must be corrected for the chemical potentials of protons ané. A. Raduta(Bucharestare gratefully acknowledged.
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