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Consistent treatment of relativistic effects in electrodisintegration of the deuteron
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The influence of relativistic contributions to deuteron electrodisintegration is systematically studied in vari-
ous kinematic regions of energy and momentum transfer. As theoretical framework the equation-of-motion and
the unitarily equivalenS-matrix approaches are used. In p/l{1) expansion, all leading order relativistic
m-exchange contributions consistent with the Bonn one-boson-exchange potential (Q8#HQ are in-
cluded. In addition, static heavy-meson-exchange currents including boost tefméw currents, and
A-isobar contributions are considered. Sizable effects from the various relativistic two-body contributions,
mainly from 7= exchange, have been found in inclusive form factors and exclusive structure functions for a
variety of kinematic regiong.S0556-28187)00704-§

PACS numbgs): 21.45:+v, 13.40—f, 24.70+s, 25.30.Fj

I. INTRODUCTION integration, the work of Tamurat al. [8] cannot be consid-
ered as definitive since their main emphasis has been on
In recent years, relativistic effects have become an imporelastic electron deuteron scattering whereas the inelastic pro-
tant issue in the theoretical understanding of electromagnetieess has been studied for the threshold region only. For this
(e.m) reactions on few-body nuclei. Well-known examplesreason, it is legitimate to present here a systematic and con-
for clear experimental evidence of such effects are the 03istent investigation of relativistic effects in deuteron electro-
cross section in deuteron photodisintegratid) and the disintegration in various kinematic regions of energy and
LT-interference structure function in electrodisintegration ofmomentum transfer. Our approach is based on the theoretical
the deuterori2]. In the meantime, a great number of theo- framework used ii9] which has been shown to be unitarily
retical investigations have been devoted to this question. Onequivalent to the work of Adamet al. [10]. It will be
may distinguish between complete covariant approachesketched in Sec. Il. In Sec. Il we recall briefly the definition
[3-5] and those based on a nonrelativistic expansion includof observables and their representation in terms of structure
ing leading order relativistic contribution§]. functions. The discussion of our results is presented in Sec.
With respect to the latter method, in most cases only dV. Explicit expressions for the various current contributions
selected class of leading order relativistic terms of the oneare listed in the Appendix.
body current, believed to be the most important ones, have
been retained, such as the Darwin-Foldy term, the spin-orbitIl. INTERACTION MODEL AND ELECTROMAGNETIC
current, and the kinematic wave function boost. Relativistic OPERATORS
two-body currents from static pion and heavy meson ex-
change have been studied by Truhlik and Adaf but only
selected one- and two-body operators have been consider
and boost corrections have been left out. A consistent trea
ment of all leading order terms has been present¢8]ifor
elastic and inelastic electron deuteron scattering using a on
boson-exchangéOBE) model for theNN interaction and in
[9] for deuteron photodisintegration in a pure one-pion-
exchangdOPE) model. In the latter work, it has been shown

Our theoretical framework, the equation-of-motion
ethod, has been outlined in detail[®]. The starting point

Is 'a system of coupled nucleon and meson fields. The explicit
meson degrees of freedom are eliminated by the Fukuda-
éawada—TaketarﬂFSD method[11], resulting in effective
operators in pure nucleonic space for th interaction and

the electromagnetic charge and current operators. The non-
relativistic reduction including leading order relativistic con-

that although the spin-orbit current gives the most importan{rIbUtlonS IS obtained by. means Of. the Foldy-Wou;hqysen
ransformation. For the pionic effective operators, this is de-

relativistic contribution, the other terms of the same orded & . . L .
cribed in detail in9] and we use the explicit expressions

cannot be neglected and do show significant influence i th For the heavi take th its of
some polarization observables. In particular, sizable differd'VeN there. -or the heavier mesons, we take the results o

ences occurred between pseudoscalar and pseudovecg}fa unitarily equivalentS-matrix formalism approach  of

7NN coupling. Furthermore, wave function corrections were damet a!. .[101' . .
of the same importance as other two-body current contribu- All explicit expressions for the electromagnetic operators
tions used in this work are listed in the Appendix, where we have
With respect to relativistic effects in deuteron electrodis-'mlude‘j n adqmon .thewrp and ymw curre'nts and the
currents involvingA isobars. We will now discuss a few
specific questions concerning the various contributions.

*Present address: repas Prozess-Automation, Voltastrasse 8,
D-63303 Dreieich, Germany.

"Present address: Institut rfurheoretische Physik, Universita Since we want to use the Bonn potential models for the
Hannover, Appelstrasse 2, D-30167 Hannover, Germany. explicit calculations, we have to fix some parameters in the

A. Parameters for «r-exchange currents
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general expressions ¢9] for the pionic operators listed in

the Appendix, subsection 2. To this end, we will briefly re-

view the origin of these parameters. The paramgtatiows
a mixing of pseudoscalan(=0) and pseudovectomu(=1)
coupling in the HamiltoniaH

Hon()=BM+a-p+i(1— )9 nnBYsdx

waN

(3’5¢w+7’50‘ Vo), 1)

whereM denotes the nucleon magsthe nucleon momen-
tum operatorg,yn and f .y the coupling constants gis
andpv coupling, respectivelyg_= 7- ¢ the pion field, and
m,, its mass. For the Dirac matrices B, andys, the con-
ventions of[12] are used.

It is well known [13] that these two couplings are uni-
tarily equivalent (equivalence theoremby applying the
Dyson transformation

Hgl;ﬁ(HE:N)Ee—iS(HETUN—.— e's

ot

=HR+ O(gonn), )

where §=(g,nn/2M) ys¢ .., provided the coupling con-
stants f_yn and g,y fulfil the  relation
f.nn/M-=g.nn/2M. However, this equivalence is violated

O=A+B8, )

P

A=a-p—ea-A+i(c+1)(1— u)gnBYsdx, (8

- gnNN -
B=—ic(1— M)ngN1875¢w+|2M Ba-E—p=—" oM V5P

_iM%’YSAO[é:(ﬁw]_i gq,:/'Nz Ba B{K bt (©)

where ¢ is the Barnhill parameter. If one carries out the
Foldy-Wouthuysen transformation starting with and then
B, on the one hand, and with the full paftat once, on the
other hand, one arrives at different, but unitarily equivalent
results. Within theS-matrix formalism, this freedom arises
from different assumptions on the energy transfer at the
7N vertex in the case gbs coupling[15].

Since the parametefs.,v,c} appear in two combinations
only, it is more convenient to introduce the new parameters
w andy:

w=ptc(l-w), y=ptv. (10

The settingy=1 corresponds to a chiral-invariant interaction
model, which was used throughout in this work. Further-
more, the pionic operators of the extend&dhatrix formal-
ism [10] correspond tqu=1. But in order to be consistent
with the Bonn potential$16,17] one must seju=—1, as

when one introduces the interaction with the e.m. field, rewas explicitly checked if9].

sulting in the interaction Hamiltonian

> > A Ao > K > > s> >
H(p)=BM+a-pt+eAj—ea-A+ mﬂ(ia-E—y5a-B)

9N
Fi(1= ) GnBYsb— 1oy vs( bt a-V b,

B. Heavy meson exchange

For the exchange of heavy mesons, the operators from
[10] are consistent with the Bonn potentials. When taking the
e.m. operators fromil0], one should keep in mind that the
relativistic Darwin-Foldy(DF) and spin-orbitSO) contribu-
tion to the one-body current in EGA8),

+|A0[e:¢ﬂ']_la'A[ev¢ﬂ'])v (3) pDF+SO:a'C—;[1]v JDF+SO [H a[l]] (11)
whereA, andA denote the e.m. scalar and vector potentialswith
respectiverE the electric andB the magnetic field, and o
~ ; ; e+
and « the electric charge and anomalous magnetic moment altl=_ 1 ( +ig X Q)+ (12), (12)
of the nucleon. In this case, the Dyson transformation of Eq. 8M G101 Q,

(2) yields
(HPY)" =HPS+ HY+ O(g% ) (4
with an additional equivalence-theorem-violating term

HY = = ST B s E(R b A Hia-Blk b)),

This may be summarized with the Hamiltonian
H(w,v)=H(u)+vH", (6)

where the parameter switches the termHY off or on
(v=0/1).
Another parameter is related to the Barnhill freeddm,

contains implicitly a two-body part

JBL so=[V,alt]. (13)

However, in evaluating such a commutator between eigen-
states of the Hamiltonian, it is justified to substitute
[H,Q]—qe2, whereq, is the relativistic energy transfer
onto the deuteron, yielding an effective one-body operator.
On the other hand, iflL0] these two-body parts are explicitly
listed as meson-exchange curréMEC) operators. There-
fore we have to exclude them in order to avoid double count-
ing.

With respect to thep-MEC operators, we would like to
mention that in most of the previous work usually only a few
selected operators have been considered, namely, those that

which results from the possibility to decompose the “odd” ¢an be generated from the-MEC operators by replacing
part of the relativistic Hamiltonian into two arbitrary terms: terms of the formo-a by oxa,ie.,
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(;1( (;2, Ez)_> 51>< ( C;zx Ez), does. not_lead to the trivial separat_ion of the two-bod_y wave
function into a c.m. momentum eigenstate and an intrinsic
> s s o - o - o wave function. Rather one finds
01-K102-Koa— (01X Kq) - (02XKy). (14
. . . . S V=[P —ix(P)| 5
In the later discussion we will call these terms “Pauli cur- [P.p)=[Pcm)®e” X piny), (20

rents.” They can be identified as the terms proportional to L .
2 2 5 , where the dependence of the intrinsic wave function on the
(1+xy)~ in Jggr in Eq. (A28) and j§r.c in EQ. (A33). Be-

- : c.m. motion is taken into account by the boost generator
cause of the strong tensor coupling of {heneson(e.g., in

the Bonn one-boson-exchange potent@BEPQ one has X(IS). Here,|5i_m> describe_s the intrinsic wave fl_mction in the
(1+ k) 2~50], it is expected that the Pauli currents give therest frame. It is not possible to circumvent this problem by

dominantp-MEC contribution qhoosing an appropriate_ reference frame, since the initial and
' final states move with different momenta because of the mo-
mentum transfer during the reaction. Instead of transforming
the intrinsicNN wave functions, one incorporates the unitary
According to[10], the retarded nucleon-nucleon potential, transformation in the e.m. operators, considering again the
generated through a Taylor expansion of the meson propageading terms only:
tor around the static limit, may be written as

C. Retardation contributions

eXQe X=0+i[x,Q]. (21
Vr(k)=Vo(K) A (KK, (15 . N y
In this way the additional boost charge and current densities
i[ x,Q] arise.
The operatory can be separated into a kinematic,
interaction-independent payt and an interaction-dependent

part xv

where VO(IZ) is the static, nonrelativistic potentigk, the
energy transfer at the vertex, and

A(k?)=

_ (16)
m?+k? X=Xo+ Xv- (22)

is the static meson propagator. However, one should keep im [18] one finds an expression far,, which reads, for the
mind that the restriction to lowest order is not a good ap-case of the two-nucleon system,

proximation above the pion production threshold. In order to

avoid an overestimation of retardation effects, we therefore ((F. P)(p-P) [(61—0)Xp]-P

switched off the retardation currents for energies above this 16M2 +H.c.|+
threshold.

Since there is a certain freedom to exprk§sn terms of
the particle coordinates, i.e., in terms of the individual en-A nonvanishing, interaction-dependent boost operator exists
ergy transfer onto théth nucleonk’, ie{1,2, it is cus- only for pseudoscalar meson exchanhg®,20;:

tomary to parametrize this freedom by a retardation param-

(23

eter vy = (i ;)i 9NN 2(1 )
R TVRRPTY -
1-v
k= —kg k() + == (kg + k)2 L TP
xf(zmse A(K2)gy-Pay-K+(12). (24)

1 - R TR 1_ Vret » =4 2 2
= amz| K Qik- Qo+ —5—[k-(Q1= Q)7
E. Vertex currents
17 In order to regularize the various meson-nucleon vertices,
it is customary to introduce a phenomenological form factor

The operators fronj9] and[10] are equivalent fow,,=0. at each meson-nucleon vertex:

However, in order to be consistent with the static Bonn

OBEPQ potentials, one must sef,=3 because for this Ienn— F(—K2)ganN (25)
choice the retarded potential vanishes in the center-of-mass K
(c.m) frame.

where ku:(kO,IZ) is the four-momentum transferred at the
o vertex andggyn iS the meson-nucleon coupling constant.
D. Boost contributions These form factors are usually parametrized by the func-

The boost current contributions arise from the fact that fortional forms
a relativistic description of the two-body system the intro-

. . . 2
duction of c.m. and relative coordinates

2
g~ Mg
Ag+z

n

f(z)= , ne{3,12. (26)

FEZ%(F{HTZ), F:Fl_Fz, (18)
o R R The form factors are then expanded around the static limit
P=p;+p2, pP=3(P1—P2) 19 (K=-K?:
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f(—ki)zf(Ez)—ka’(IZZ)JrO(kg), (27) shift_s is _alread_y ingluded implicitly in_ th_e realisteN po-
tential simulating intermediaté\ excitation, we have to
where here and in the following the prime indicates differ-renormalize the latter in order to maintain the good descrip-
entiation with respect t&2. The resulting regularized static tion of the phase shifts below pion threshold. It turns out that

and retarded potentials are obtained by the substitutions the renprmalization is achieved by the subtraction of an
energy-independerflA box. Furthermoregr- and p-MEC

A(R)—F(R2)A(K?), A2(KY)— —[fARA)A(KD)]'. contributions related to thllN-NA transition potentials are
(29 also included. In principle, the box subtraction leads to an
additional current contribution, which we have not consid-
The momentum dependence of the hadronic form factorgred here.
leads to additional currents, the so-called vertex currents

arising from minimal coupling. The vertex currents and the Ill. OBSERVABLES
regularized currents can be combined, leading to the follow- i ] )
ing substitution rules for contacCy), wave function renor- In order to fix the notation, we briefly collect the _ggneral
malization ), and exchangeX) type operatorgsee the formulas for the observables of deuteron electrodisintegra-
Appendix, subsection)2 tion. TheT-matrix element between an initial deuteron with
momentumﬁi and spin projectiomy, and a finalNN state,
AZ_’ngL with relative nucleon momentunﬁnp, total momentunﬁf,
Wi, ) (290  total spins, and projectionmg, is defined as
As——(f34,)",

(30

[AIAZHfleAlAZ_Hl_HZy

Tsms)\md: - K<Sms;|5npi|5f|j )\(6)|1 Mgy ; |5i>1
AAS——F 1A (foA,) +115. 2aEEprp
K=m\|———, (34
The operators that do not fit into this scheme are the retarded M
X-type charge density operators. In order to fulfill the conti-

nuity equation with the other retarded operators they shoul/nerej ., is the transverse nuclear current density operator

be regularized using, as the substitution rule, in spherical representation afglthe nuclear charge density
operator. Furthermorey denotes the fine structure constant,
A A, —fif A A, —Ff A — oA, (31) E=Ep=E, the total energy of one nucleon in the final scat-

tering stateE, the total energy of the initial deuteron, and
In Egs. (29-(31), the following abbreviations have been Mg its mass. If not stated otherwise, all kinematic variables

used forQ e {f,A,Il}: in this work refer to the final state c.m. frame defined by
d |5f:6.
- , Any observable may be written #83
Q1= Q(KEp),  Qip=—=Qup, (32) Y Y 43]
dk1/2
AA O(Q)=3cTr(TIQTp) @ K 1 (35)
=sclr p), C=%2 0T 7 2\2
Hl/2:_fl/2(fl_f2)Al/2ﬁ- (33 67 kg ()

where the initial state density matrix is a direct product of the
F. Isobar currents density matrices of the virtual photon and the deuteron

Isobar currents arise from intermediate excitation of?=p’®p, d,=(do,q) denotes the four-momentum of the
nucleon resonances. They may be included as effective, noiirtual photon, andg" andkg" are the initial and final elec-
local two-body operators, usually neglecting the hadronic iniron laboratory energies, respectivefy.is an operator that
teraction of the isobar. Often the isobar propagation is alsgorresponds to the type of observable considered, i.e., the
neglected in order to obtain a local operator. However, thiglifferential cross section{{=1), single-nucleon polariza-
approximation is not reliable. The other possibility is to in-tions[Q =0y (), i €{1,2,3, j €{1,2], and double-nucleon
troduce explicitly isobar degrees of freedom via isobar COﬂpoIarizations[Q=Uxi(l)oxk(Z), i,ke{1,2,3].
figurations in the wave .function. Th.is approach is c_hos_en i.n Allowing for longitudinally polarized electrons and ori-
the present work. In this way, the isobar propagation is dignteq deuterons, described by the deuteron ve@@) and

rectly included and furthermore the hadronic issobar-nucleor{!ensor P9) polarizations, and the spherical angles of the
2 1

interaction can be easily incorporated. In fact, with respect_ t%euteron orientation axishy and f, one can separate some

the treatment of Fhe‘f wh!ch we consider here as the domi- of the angular dependences and can describe any observable
nant isobar contribution, it is well known from deuteron pho-. . (NIM (=)
terms of the structure functiond;, (Q), «

todisintegration that above the pion production threshold &
dynamical treatment oA degrees of freedom is mandatory f{L'T’LT'TT}’ that depend only on the c.m. a”gd’e"f

[21,22. Therefore, our calculation of tH¢A configurations ~ Pnp With respect to the momentum transfer, the final state
is based on &IN-NA coupled channel approach in momen- Kinetic energyE,,, and the squared momentum transfer

tum space. Since their influence on tR& scattering phase g%
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2 |
O(Q)=c2 P{ 2 [[poLM<m+pr'TM<m +pLTfL“4*<mcos¢+pTTf'T“4*<Q>cos2¢]coa( M- 5?%)

—[pLTfL“4‘<n>sin¢+pTTf'T“4‘(9>sin2¢]sin( M- 5 g)

T

+h >

[p+f+'M(n>+pLTfL'TM‘(mcosz»]sm( Mo +pLTfL'TM+(msin¢cos( ME—E"%) ]d'M,o< 60,

(36)

whereg~z’>=¢—¢d, and ¢ and ¢ are the c.m. angles of the coupling strengths, and vertex regularization parameters for
proton (see Fig. 1 The symbolé®=|8, g— 4, 4| differenti-  the various exchanged mesons. In the evaluation of the
ates between observables of typeandB accdrding to their T-matrix elements we calculate explicitly all electric and
behavior under a parity transformatiésee[24]), h is the ~ Magnetic multipoles up to the order=4. That means we
longitudinal polarization of the electron beam, apg de- include the final state interaction in all partial waves up to
notes the components of the density matrix of the virtuall =3 For the higher multipoles, we use the Born approxima-

photon. For further details, especially the explicit expres-t'on for the final state, i.e., no final state interaction in partial
sions of the structure functions in terms Bfmatrix ele- Waves withj=6 as has been described[i28]. We would

ments, sed23]. The inclusive form factor§g’)'M are ob- like tq remark that for the electric transi_tions we do no; use
tained by integrating the corresponding structure function§he S'?ge” operators since the current Is consistent with the
over 6 and ¢. potential model. For the electromagnet_lc form factors of the
one-body current, we use the dipole fit for the Sachs form
with a nonvanishing neutron electric form fac{@9], from
IV. RESULTS AND DISCUSSION which the Dirac-Pauli form factors are determined. Also for
the e.m. form factors of the other currents we use the same

Sec. Il have been evaluated for both the inclusive form factnctions are calculated in the c.m. system of the fima

tors and the exclusive structure functidy'™ =)(Q), start-  gate.

ing from the nonrelativistic framework that has been used \ith respect to isobar degrees of freedom, we consider in
previously in[25—27]. For the calculation of the initial deu- this work only the most importaA (1232) configurations
teron and the finah-p scattering wave functions, we have and leave outNN(1440) andAA configurations. For the
taken as effectiv&IN interaction versions A, B, and C of the calculation of theNA configurations we use static, regular-
realistic Bonn OBEPQ mode]17] with appropriate boX jzed 7~ and p-exchangeNN-NA transition potentials. It
renormalization as discussed in Sec. Il F. If not mentionequnS out that the use of the model parameters of the full
explicitly, version B is used. This choice fixes the massesgonn model[16] for these potentials yields quite a good
description ofNN scattering observables in the delta region.
We would like to mention that a coupling to the three-body
7NN space is automatically introduced via a retarded diag-
onal NA potential and the dressed propagator of bh&
system. The strength of the retarded potential is governed by
an explicitrNA vertex which has been fixed by a fit to the
P33 phase shift in pion nucleon scatterif®0]. For a detailed
discussion of the hadronic interaction model we refd 3.
With respect to theNA transition current, we take below
pion production threshoI(BX',ﬁ=4.7, whereas an energy-
dependent effective coupling is used above pion production
REACTION PLANE threshold. More precisely, we have taken a coupling which
has been fitted to pion photoproduction on the nucleon under
the assumption of a vanishing background contribution to the
FIG. 1. Geometry of exclusive electron-deuteron scattering withmultipole M(l?ffz). Using this coupling, a good description of
polarized electrons and an oriented deuteron target. The relativgeuteron photodisintegration in the delta region has been
n-p momentum defining withy the reaction plane is denoted by found[22]. For theqi dependence, a simple dipole behavior
5np and is characterized by anglésand ¢. The deuteron orienta- is adopted:
tion axis forming withq the orientation plane is denoted Hyand
specified by anglegy and ¢ . GXN—GAN(1-02/0.71 GeV) 2. (37)

ORIENTATION PLANE




CONSISTENT TREATMENT OF RELATIVISIT . .. 2219

TABLE I. Explanation of the notation used in the figure captions.

Notation Explanation

n nonrelativistic nucleon currertvithout Siegert operatoys
n(r,xo) relativistic nucleon current including kinematic boost currents
T nonrelativisticr-MEC

(r) static relativisticr-MEC

(r,t) 7(r) + retardation corrections

7(r,t, xo0) 7(r,t) + kinematic boost currents

7(r,t,x0:Xxv) 7(r,t,xo) + potential-dependent boost currents

pp Pauli p-MEC

p full p-MEC

p(xo0) p + kinematic boost currents

h heavy-meson-exchange currentg ¢, o, 5)

h(xo) h + kinematic boost currents

d ymplw currents

A A excitation, includingA-MEC

Total n(r, xo) 7(r,t,xo. xv) p(x0) N(x0)dA

For theymp and ymw currents in Eqs(A54) and(A55), 7%, dominantly froms contributions, whereas on the high-

we take the coupling constants frdi2] q 2 side heavy meson exchange tends to cancel increasingly
the = contribution. InF; the effects are more pronounced at

m -
gBNNg,/,TB:m—Bgsl)\B, Be{p,w}, (38)  low q?, wheres and even stronger heavy meson exchange

lead to an increase up to almost 20%. But for the higzn-
with the values region one finds an almost complete cancellation between
7+ and heavy meson contributions, leaving a tiny increase of
9,1=1.8-3.2, A,=0.11, about 1% only.
The remaining form factors for the polarized beam and
9,1=8-14, \,=0.36. (39 target are shown in Fig. 3 excepfL™* where the relativistic

. . , effects are very small. BotRZ2° and F2° exhibit sizable ef-
In our calculation, we have used the maximum settings for,

9,1 and g,;. Again for reasons of simplicity we have as- fects, malnly- frqm ther sector. Thfa much s[naller heavy

Sumed the Sami dependence for thQﬂ'p/w vertex as for meson COI’]tI‘IbutIOI’LS add ConStructlvely at IGW@ and de-

the nucleonic e.m. vertices. structively at highq? with respect to the quasifree case
For the evaluation of the form factors we have chosen ag2=12 fm=2. The interference form factor&27% and

intermediate energf,,=120 MeV varyingq® between 1 F2:2 exhibit quite dramatic effects from the relativistic
and 25 fm ? while for the structure functions we have cho- contribution, whereas heavy meson currents are less evident.
sen the same kinematic regions of energy and momentum as g particular interesting inclusive process we now will
transfer as considered {25,27. In order to facilitate the yiscuss deuteron electrodisintegratidge,e’)pn near the
discussion of the various relativistic contributions, we havey ey threshold at backward angles for two reasons. First
introduced in Tal# | a notation scheme. of all, this reaction allows a comparison of our results with
the work of Tamureet al.[8]. Second and more importantly,
this reaction is a beautiful example of the manifestation of
We will start the discussion of the relativistic two-body subnuclear degrees of freedom in terms of meson exchange
effects by considering first the form factors of the inclusiveand isobar curren{83-36. Indeed, up to a squared momen-
reaction. The form factor§, and F; for an unpolarized tum transfer of about 10 fi?, one finds quite satisfactory
beam and target are shown in Fig. 2Bt,=120 MeV as agreement of the nonrelativistic theory with experimental
function of q2. Close to the quasifree peak the relativistic data, provided one includes the most important contributions
two-body contributions are small, less than 1%, but farthefrom 7 andp exchange and fromk excitation. However, at
away the relative importance of them increases as one cailgherq 2 larger uncertainties arise for the theoretical predic-
see more clearly in the two right panels of Fig. 2, where wetons [37]. In particular, relativistic effects become increas-
have plotted the ratios with respectRQ,r[n(r,xo) mppA].  ingly important[8,26,38,39. In view of the ongoing quest
In F, the relativistic contributions increase at IG.W up to  for signatures of quark-gluon effects in nuclear structure, it is

A. Inclusive reaction
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FIG. 2. Left: inclusive form factors= and Fy for E,,=120 MeV. Right: ratio of the form factors with respect to result for

n(r,xo) mppA (see Table )l Notation of the curves: dash-dotted curvey,y,) mppA; dashed curven(r,xo) 7(r,t,xo,xv)ppA; solid
curve, total.

very important to assess the size of such relativistic contrioverall reduction with respect to the nonrelativistic result
butions. amounts to a little less than one-half at this momentum trans-
While in[8,39] a sizable reduction of the cross section byfer.
relativistic effects has been found, the inclusion of only the These findings are in accordance with results of Hummel
one-body contributions in26] has led to an enhancement. [39]. However, comparing them with thgs-coupling model
We had already suspected [i26] that the reason for these in Fig. 12 of Tamuraet al. [8], we find quite significant
different results is the neglect of relativistic two-body terms, differences. First, the reduction from all relativistic contribu-
in particular, froms exchange. This is now confirmed by tions to the one-body and pion sector in Fig. 4 is much stron-
our results shown in Fig. 4. As one can see, for example, ajer than the one shown by the curve “N.R. R.C. +
—qi=20 fm~2, the relativistic one-body currents yield an Boost” in Fig. 12 of[8]. Second, the effect of heavy meson
enhancement of the cross section of about 60%, whereas tlexchange is much larger {i8] (see the solid curve of Fig.
relativistic = contributions give a very strong reduction by 12) than what we find in Fig. 4. In order to check whether
more than a factor of 5. This reduction is partially cancelecdthis difference could originate from different potential pa-
by heavy meson exchange amdp/w currents, so that the rameters, different wave functions, and perhaps by putting



55 CONSISTENT TREATMENT OF RELATIVISIT . .. 2221

-3
1 [107 fm]

2—
1-T‘L

25 I L ! L -1 | 1 ! !
0 5 10 15 20 25 0 5 10 15 20 25

- — =2 -2
§?[fm™] q*[fm™]
FIG. 3. Inclusive form factors for a polarized targel’, F2°, FZ;*, andF2;? Notation of the curves as in Fig. 2.

the p contribution to the relativistic part — Ref8] is not  bar current, which is taken in the static approximatioh8h
clear about this point — we have performed a calculationAdding all relativistic currents including boost from one-
with the parameters from Table 3[i8] listed under “Paris,”  body andw exchange, we find an increase up to the mini-
using the wave functions for the Paris potentialmum of the nonrelativistic result whereas Tamuwtal.
(m=0, ve=3) and excluding thep-MEC from the nonrela- found an overall decrease. The enhancement from heavy me-
tivistic calculation. Certainly one might doubt, whether the sons is much larger if8] than what we find. Thus the origin
potential model of8] called “Paris” is a consistent model, of the differences in the details remains unclear although the
since the Paris potential is phenomenological and not a ondinal results are not too far from each other.
boson-exchange model. But otherwise it would be difficult to We also show in Fig. 5 our total result for the Bonn
make a comparison. Furthermore, tN& configuration is OBEPQ-B potential which lies consistently above the
treated in the impulse approximation and theMEC from  “Paris” result. But this is not surprising since already the
7 and p exchange is left out. nonrelativistic calculation revealed such a difference be-
The results are presented in Fig. 5. In comparison to théween the Paris and various versions of the Bonn potentials
results of Fig. 12 irf8], we note quite a good agreement for [40].
the nonrelativistic calculation except for the minimum which  Finally, we show in Fig 6 a comparison of the results
appears at lower momentum transfer in Fig. 5. This smallvhich are based on the three OBEPQ versions of the Bonn
difference could come from a different treatment of the iso-potential including box renormalization with experimental
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FIG. 4. Deuteron electrodisintegration near thresholdEgg=1.5 MeV at backward angles{=155°). Left, absolute values; right,
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n(r,xo) 7(r,t,xo0,xv)ppA; solid curve, total.

data from[41-43. Here we have extended the calculation tothat it is not necessary to average the theoretical results. Be-
the high momentum data frorf¥3] even though we are tween—qizlo fm 2 and 30 fm 2 one finds a systematic
aware that, strictly speaking, this kinematic region is beyondand increasing overestimation of the data by the theory
the limits of validity of the p/M) expansion. The data be- whereas above 30 fiif the overestimation is much less pro-
low _qizgo fm 2 have been averaged from 0 to 3 MeV nounced and more constant. The variation of the different
above the threshold and thus the calculation has been doneRg@tential versions is comparably small except for the very
Enp=1.5MeV, whereas for the data above qizgo highest momentum transfers considered.

fm~ 2, averaged between 0 and 10 MeV, the calculation has

. -2
been performed foE,,=5 MeV. It has been shown i#4] L ; 3
: r 3
=
[
=
107 f’l
= 2
-3
=107 3
2 e
o 07 F =
N o
} 10° L %
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= o
o7k
o
S o0tk
o~
’U 9
- | 1 1 1 |
10 o 5 © 15 20 25 30 FIG. 6. Deuteron electrodisintegration near threshold: potential
—q?[fm™?] model dependence and comparison with experiment. Experimental

data points: open trianglg¢d1], solid circles[42] (#.= 155°, aver-
aged over energies 0 MeVE,,<3 MeV; theory for
FIG. 5. Deuteron electrodisintegration near threshold for theE,,=1.5 MeV), and solid square#}3] (6.,=180°, averaged over
“Paris” model of Tamuraetal. [8] for E,,=1.5MeV and energies 0 MeWE,,<10 MeV; theory forE,,=5 MeV). Nota-
6.=155°. Notation of the curves: dotted curwverA; long-dashed tion of the theoretical curves: solid curve, OBEPQ-B potential;

curve, n(r,xo) m(r,t,xo0,xv)p(+ w)pA; solid curve, total; short- dashed curve, OBEPQ-A potential; dash-dotted curve, OBEPQ-C
dashed curve, total result for the OBEPQ-B potential. potential.
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250 ——————— ture functionf +(y0) appears less sensitive except in sector
Illa ® IIlb ¢ Illc o
la, where one can see a drastic increase at forward angles,
200 F o . mainly from heavy meson exchange, wheréagy0) shows
— .350 again a greater sensitivity, in particular in sectors Ic, lla, llc,
&
% 150 F & 4 and llla.
= e1la é;& b olle Finally, we show for this general overview in Fig. 10 the
2100 0?0 - only nonvanishing structure functioff ; for longitudinally
M= polarized electrons for both observables. WHile exhibits
50 7 large effects from the pion contribution, indeed much larger
¢ *Ib ¢le than the relativistic one-body part, in sectors Ib,c, lic, and
0 B ' : llla,c, one finds almost no effects from the two-body currents
qz[fm_z LTYY).

We will now discuss the relative importance of the vari-

R ous relativistic two-body currents for a few selected ex-

FIG. 7. Eny-q % plane with indication of the location of the qua- amples with respect to the sectors Ic and lic. The relativistic

sifree ridge and the kinematic sectors, for which the structure funcgontributions in the pionic sector, including the retardation
tions have been evaluated. corrections, are the most important ones beyond the one-
body contributions as is demonstrated in Figs. 11 and 12. We

show in Fig. 11 again the structure functions of the unpolar-

ized differential cross section for the kinematics Ic dpgin
B. Exclusive reaction addition in sector llc, where the separate terms of the rela-

The observables of the exclusive process are determinetal istic  exchange, namelyy-MEC, retardation and kine-

by the structure functions. The influence of the relativisticmatlc and potential boost, are consecutively added, lone

one-body contributions on these were discussed intensivel{f € quite a sizable increase from the two-body charge

in [26,27). They were found to be important in almost every éfensny at larger angles, thus marking the area where Sieg-

SN . . . . ert’s hypothesis of a vanishing two-body charge density is no
structure function in various kinematic sectors, which ar.elonger valid[45]. Retardation effects, on the other hand, lead

marked in Fig. 7, where we also introduce a numbering Mo a significant reduction in the forward direction. Potential-

order to facilitate the following discussion of the results. Inde endent boost effects. which are very small. arise from
order to give an overview where the additional relativistic. P f y '

current may give a sizable contribution, we show in Figs.I [i;(g,lg)Nr;)I] Thsqre(l':t?\i)sgg-lryl\/lllg (]C:Tstrr:gvs;fimsri;n?f S'tmf'l?f
8-10 the structure functions of the differential cross sectior? - Y X P. 'y at 1o

and the proton polarization compond#y(p) as the simplest v_vard and backwar(_j_angles as a sizable reduction. Retarda-
polarization observable for an unpolarized deuteron target’[Ion and other additional currents can be neglected. In the

without and with electron polarization in these kinematic re—:gtregfn;ﬂziusmuﬁt;f ofxgcr:g)tgss’ ;hear?g?(ggn?giz;t?or?%r;etﬂ
gions. Each figure is divided into fouin one case twp ger, ) P

panels, each representing one specific structure function. xarious contnpuhong. The_ stror_lgest influence comes again
panel contains in turn nine parts, one for each kinematict,rom ZT'MEC’ n parucular infrr in both sectors lc and lle,
sector of Fig. 7 arranged accordingly. In these figures Wéand fLr then partially canceled by retardation. _The ponic
show separately the nonrelativistic result including MEC anotwo'bOdy b.OOSt effects are very small. Ty th? kmemaﬂc
isobar contributions, and then consecutively added the relaie—‘,nd potential boosts are equally small, while fipy and
tivistic one-body contributions, the relativistie contribu- LT ON€ can see only a small effect from the potential boost.
tions, and finally all remaining relativistic two-body currents. N Fig. 12 we have collected a few polarization structure

Let us first consider the structure functions of the differ-functions which exhibit particularly strong effects from the
ential cross section shown in Fig. 8. The longitudinal strucelativistic 7-exchange sector. Also, here we see the large
ture functionf, is mainly influenced by the relativistic one- influence of the relativisticr-MEC. It gives a strong en-
body contribution and almost insensitive to the additionain@ncement inf{* at forward angles, which is only slightly
currents except for the relativistic pion contributions in thereduced by retardation. Also here, the potential-dependent
kinematic sector Ic. Even less influence is seefiinOnly ~ boost contributions are negligible. Iif" and 95" (y0)
in sectors Ic, lla, and llla does one find some noticeabler-MEC produces for Ic a large reduction and leads even to a
effects. The interference structure functions are a little morgoartial sign change. Again this effect is partially canceled by
sensitive to the two-body relativistic currents, though notretardation. The boost contributions are considerably
overwhelmingly, in sectors Ic and llla fdf +, mainly from  smaller. For the kinematics lic, the relativistic effects are
the pion, and significantly more pronounced from both pionmuch smaller inf%1 while they are still sizable iff{1(y0)
and heavy mesons in Ib,c and lla,c forr. compared to the sector Ic.

Turning now to the structure functions Bf(p) in Fig. 9, The non-Paulip-MEC is generally a very small effect,
we note in general a larger sensitivity to the additional two-and especially the effect of the-exchange charge density
body currents. Except for sectors la and lla, one finds sigmay safely be neglected. There are, however, a few polariza-
nificant influences o, (y0) in all other sectors, even for the tion observables shown in Fig. 13 that exhibit a slight sensi-
guasifree case IlIb at the forward peak. Similar effects occutivity to the additional terms of the fulp-MEC beyond the
in f+(y0) in sectors Ib,c, lla, and llla. The interference struc-Paulip-MEC, which is also shown separately, likgt in
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FIG. 8. The structure functions of the differential cross section for unpolarized electrons and target in the nine kinematic regions of Fig.
7: 120 (top left), £° (top right, 123" (bottom lefy, and f35" (bottom righ). Notation of the curvegsee Table )t dotted curvenmppA;
dash-dotted curven(r, xo) mppA, dashed curvay(r, xo) 7(r,t, x0,xv) ppA; solid curve, total. The top left inse{{—n) fm]” indicates the
unit[ 10~ " fm] for the structure function, and the top right insQE‘np/d 2],” where Enp in [MeV] andq 2in [fm ~2], indicates the kinematic
sector of Fig. 7.

sectors Ic and lic, and fd?? most prominent in Ic, but very ~ Fig. 14. Only inf11, which is the smallest and thus the most
weak in llc. In these cases the tyweMEC contributions are  sensitive of the first four unpolarized structure functions, is
comparable in size but tend to partially cancel each other fothe influence of they7p/ w terms visible at high momentum
fy1 and quite strongly forf%2 in sector Ic. We also would transfer in both sectors Ic and lic, also shown in Fig. 14.
like to mention that boost contributions o exchange, as At the end of this section, we would like to discuss briefly
well as to other heavy meson exchanges, are completely netjiose two polarization observables, which presently are be-
ligible. ing measured experimentall46—48 in order to extract the
The effect of the heavier mesons, i.e., o, o, 8, and  electric form factor of the neutro@g(n), namely, the trans-
vymplw, is also small and quite unimportant as one can see imerse polarizatiorP,(n) of the outgoing neutron and the
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FIG. 9. As Fig. 8, but for the observabR,(p).
vector beam-target asymmetd,. We show in Fig. 15 both V. CONCLUSION

observables at the quasiiree kinematieg=120 MeV, In conclusion we may state that besides the relativistic

q?=12 fm~?, and electron scattering angle=60°. It is  one-hody currents also the corresponding two-body currents
the same kinematics as considered 26,49 where it was  of the same order ing/M) show significant effects in both
found that close to quasifree neutron emissiér(80°) the  inclusive and exclusive observables, amenable to experimen-
relativistic one-body contributions to these observables wergy| investigations. As expected, the dominant two-body con-
negligible if Sachs form factors were used. Fortunately, thigriputions come from the pionic sector, in particular, quite
conclusion remains valid even when the additional relatiViS'Sizab|e from retardation. But also heavy meson contributions
tic contributions from 7 exchange, heavy mesons, andare not completely negligible. Therefore, a consistent treat-
ympl w are included. Only away from the genuine quasifreement of all relativistic contributions, at least farexchange,
situation, i.e., off 0° and 180°, are significant effects seenis mandatory for a reliable assessment of such effects. The
These findings are very important with respect to the aforepresent treatment within the equation-of-motion approach is
mentioned experiments for the extraction@g(n). completely consistent for the leading order relativistic con-
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FIG. 10. The fifth structure function of the differential cross section and the obse®afp¢ for longitudinally polarized electrons and
an unpolarized target in the nine kinematic sectors of Fig.ﬁ?ﬂf’ (left), f[$°+(y0) (right). Notation of the curves as in Fig. 8.

tributions as far as the pion-exchange sector is concerned. bector as a severe shortcoming of our approach. A more se-
view of the, in general, small contributions from heavy me-vere limitation appears at energies above the pion production
son exchange we do not consider the neglect of some reldhreshold with respect to the present treatment of retardation
tivistic terms, i.e., the retarded current operators, from thisffects, the neglect of relativistic contributions related to iso-
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FIG. 11. Relativistic contributions from the pionic MEC for unpolarized structure functions. Notation of the curves: dotted curves,

n(r,xo) mppA; dash-dotted curven(r, xo) 7(r)ppA; long-dashed curven(r,xo) 7(r,t) ppA; short-dashed curven(r,xo) 7(r,t,xo) ppl;
solid curve,n(r,xo) 7(r,t, xo0. xv)PpA.
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bar excitation, and the neglect of the current associated with,g model [50]. These will be topics for future research.
the box renormalization. Probably, one should aim at a hadAnother limitation arises from thep{M) expansion restrict-
ronic interaction model where isobar configurations are ining the present approach to momentum transfers roughly be-
troduced right from the beginning as is done for the Argonndow 1 GeV. For higher momentum transfers covariant ap-
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construction of the coupled channel model and various use- : - .
For completeness, we list here all explicit expressions for

the electromagnetic charge and current densities in the mo-

0.6 ; . S
' ' ' ' mentum space representation. Since the c.m. motion is sepa-
o4 | ] rated, we are left with the representation with respect to the
' . relative momenta. Thus all operators are represented in the
AL form
02 Y e -
—~ \\ /’; - > - A s> >
£ oo \\“"/\\ Q(p,q,k)=(p|Q(a)[p—k). (A1)
6-1“
o2 [ Since the operators depend on the single-particle coordi-
nates, we describe them by the kinematic variables
A | Ruz= Pl Pla= 3G+ K A2
12~ P12= P12~ 24 =K, (A2)
-0.6 1 1 1 1
0 60 120 180 240 300 360 Quo= 52/2‘*' 5i1/2: ~3q+(2p—K), (A3)
6[deg]
0.2 l 1 Whereﬁ is the relative momentum of the outgoing nucleons,

k is the momentum transfer on the relative motion, gnis
the momentum of the virtual photon, i.e., the momentum
transferred on the c.m. motion of the two-nucleon system.

For the one-body operators one simply Iﬁas%ﬁ. Here, the
final total momentumsf of the two-nucleon system is set to

0, since the calculation is performed in the final state c.m.
frame, the antilaboratory system.

In the following expressions we use as a shorthand nota-
tion for the Dirac-Pauli form factors:

eyo=3[F5(0%) +F{(a2)(1103],

k1= 3[F3(02) + F5(0%) (7112)3]. (A4)

FIG. 15. The neutron polarizatioR,(n) and the vector beam-
target asymmetry Agd for the kinematics E,,=120 MeV,
q?=12 fm2. Notation of the curves: dash-dotted curve, The one-body operators are split into a nonrelativistic part
n(r,xo) mppA; dashed curve,n(r,xo)m(rt,x0.xv)ppA; solid  and a leading order relativistic contribution, denoted by the
curve, total. subscripts ‘NO” and “NR,” respectively:

1. One-body operators
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PNo=é1+(1<—>2) (A5) and retardedT) operators, on the other hand. The transition
' to isoscalar mesons can be made by substituting
&+ 2k, o (7,-7)—1 in theNN potentials and MEC’s, which means,
PNR W[q +i(01XQ1)-q]+(1-2), (A6) in detail for the current operators,
[61,;1'7_:2]—>O, {61,7_:1'7_:2}—>261, (Ag)

- 1 .. .
Ino=5p[€1Qati (81t k) (01X Q)] +(12), (A7) . -
where 0,=e;,x,. For the transition from theywp to the
i T ymw current one must setr(- 7o) —(75)3.
JNR:_WQO(61+2K1)(q+i01XQ1)
a. Pseudoscalar meson

1 o e
— T3l €1Qu(Ki+QY) +iey(a1x Q) (ki+Q7) 1 (goun)|2A(K3)
pCR 4M 2M (2 )3{[(1 Iu’){elyTl 7-2}+21 7)
+ik1(Q1X Q)1 Q1 — k19X (GX Qy) L
X{ky,71- To}]oy-qop Kot [y, 710 73]

+iky(01X9)q2+(1-2). (A8) L.
2. Meson-exchange operators
. . . p&=0, (A11)
In the following subsections we list the MEC operators
for the isovector pseudoscalar, vector, and scalar mesons. n
The operators are decomposed into cont&z}, (exchange T [8y.71 7] gmnn| “A( 2)(; Gy kot (152),
(X), and wave function renormalization) operators, on Jco LT oM | (24r)37 10272
the one hand, and into nonrelativist{@), relativistic (R), (A12)
|
1 [gann)? (
JZR= sMZ\ 2M | (27 )3{2'\/'%[(1 w{er, 71 T+ 2(1— Y){k1, 71 7ot lo102 Ko —[€4, 71 7]

X{01(Qf+ Q%) ay- kot 01Qz Kooy Q= Q101 Q102 Ka— 1 HQ1 X Gy Ko+ 2Ky - Ky - Ky
+aq[(1- M)q2+2k Joa Ko+ [— (24 m)ky+ 2G1 0y oy Ko} — [ k1,71 T2](1— )[1Q1 X g+ X (01X Q)]0 Ko
+{élv7_:1';2}[2615'1'EZ_ZiaXRZ_ﬁR2&1'©1_ﬁ&lél'|22+(1+7L)5'162'EZ]&Z'EZ_{”;l:;l'7_:2}

X[(1+7—29)qX (01X Q) +2(1— y)ig X K] ap- Ko} +(142), (A13)

- > gann| 2A( k)% s
Jer= w2 ey, 7] M Wffl 2 Qoky Q05 Kot (1652), (A14)

PXr="0, (A15)

1 9aNN 2A(K2)A (K3 )o < -
PXT= ZM[eerl 73] M 23 Ko Q071 -Ky0p- Ko+ (16-2), (A16)

G PARDARY) Ky—K, .
J)(O:_[elle'TZ]< 2M ) (277)3 2 (S k10'2 k2 (1<—>2)1 (A17)

1 o, 2A(k)A(k)k e
JXR 4M2[elv7'1 7'2]( 2|\'\/‘|N) 23 L [ (k I+ Qi+k3+Q3) 0y ky+ky-Qro1-Qq]op Ko+ (152),
(A18)
. 1 g.nn | 2A K2 A(K3)? K Koo -
Jxt="—" Mz[elle 7'2]( Z&N) 27 12 Ko+ QoKa- Qa1 -Kyop Kot (12), (A19)
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- 1 g\ PAKD) L L L L L L L L
PWR:_W(1+M)(N) W{[elaﬁ'Tz](Ul'Qle‘k2+02'Q201'k2)_{91771'72}01'q02'k2}+(1<—>2),
(A20)
- 1 — [gan|PAKDZ L L L e e e A e o .
pWT:m(1+M) W W{[elﬂ'rTZ]RQ(Tl~k2(72~k2—{el,Tl~TZ}Rq0'1~k20'2'k2}+(1<—>2), (A21)
Jwo=0, (A22)
> 1 — [ gann|2A(K3) A e e e e s s s e . aL L
JWR:W(:H'M) oM (27)3{_[31:71'Tz][Ql(Uz‘on'l'k2+01'Q102'k2)+k201'q02'kz]

+{e1,71- To}[Ka(02- Qa0 - Kot 071-Q105-Ky) + Quoy - qop- Kol [ €+ k1,71 73]

X[i6XE25'2'Qz_idlxagz'E2+(51Xa)xa&2'Ez]_{é1+;<1a;'1' ;2}[(5'1XEz)xagz'éz_ax((;lx 61)&2'E2]}

+(1-2), (A23)
. 1 (gan|2AKD2 . L L R e e e oA e e - .
Jwr=gmz| om 2m)° {le1, 71 T21(Q1RgT KRy 01 - Kooa- Ky —{€1, 71 5} (KoRg+ Q1Rg) 01 - K05+ K

+[eg+ Ky, 710 '?2][5><(51><122)Rq—i5><|22Rq]52- Ko—{e1+ 1,71 72}
X[GX (03XKo)Ro—1q X KyRy] - Ko} +(14-2), (A24)
with
Ry=(1=vedd Ko, Ro=[(Q1+Qz) = r1e Q1= Q2)]-Kz. (A25)
b. Vector meson

ple=0, (A26)

>

J20=0, (A27)

., 9y AR

JER=gNZ (2 (8107 T2l (L4 206) (= 2K+ Q) (14 26) 01X Q1 = 20 (L ky) 1 X Qo+ 2( L ky) 7 X (05X K)]

—{e1,71- T 2Q,+ 2 (1+ ky) 0 X Ko +i (14 2ky) 0y X Ky ]} + (15 2), (A28)

.o L AKDAKY)
p&r=—[€e1, 71" 72]9\2/Wr kg)l>+ (1-2), (A29)

Lo - gy AKDAKY) Lo S -
pr=lL. 71 Talyyr — 5 o3 [0 Quti(1+ k) (01 Ky) -G+ (12), (A30)

, , 1. .
wherekg) is the energy transfer on théh nucleonk8)~ mki'Qi :

. Lo - L ADAKS) ki -k,
J%=—le1,m1- 72105 2m)3 > +(1+2), (A31)

jg(szf(R;C+J§(R;trans+j§)(R;q0 ’ (A32)

2 2 02\ "
. Ao 0 AKDAKS) Ky—ky . - I .
Jire=[en i malgye — s — 5 101 Qat 3(1+ 2k (ki Ky Fi3(1+2k0)[(01XQu)- kit (92X Qo) Ko

—i(1+ k)[(01XQy) Ky + (05X Q1) - Kol = (14 k) 201X Ky) - (05X Kp) } + (152), (A33)
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- - gy AKDAKY 1
JXRtrans [e,7s: T2lgmz T 2n)? qu{ Q1XQu+i(1+ ky)[(02XKy) X Q1= (071X Ky) X Q]

+ (14 k)01 X K) X (07X ko) + (152), (A34)

g7 AKDHA(KD)
Jra,=[8171 rz]zg,ﬁ?[(ql Qo) +i(1+ ky) (1 XKy~ 72X Ko) ]+ (12), (A35)
pb,=0, J5,=0 (static limit). (A36)

c. Scalar meson(é,0)

per=0, (A37)
J&0=0, (A38)
-5 I5un A(KD)
Jcr= 8MZ (2 )3{ [€1,71- 7](A+i01X Q) +{€1,71- 75}(2Q1+i oy XKy +igy X )} +(12), (A39)
e A(K2)A(K3)
pyr=[e1, 71" TZ]Q?SNN(Z—)32 k§ +(12), (A40)
pr=0, (A41)
R e A(K}A(K3) k
J%0=L€1,71- 2195 2m)° 12 +(1<2), (A42)

R L. GAnAKDAKS) Kk
Jir= (817 gy — 5 o3 12 {(Qi+Q)) +ilor (KX Q)+ o (X Q)N +(1-2), (A4

po=0, Jo=0 (static limif). (A44)

In the Bonn potentials, different coupling constants and cutoffs have been used temtieson in the isospiif=0 and
T=1 channels. With the help of the isospin projection operalys 3(1— ;- 7,) andP;=%(3+ 74 7,) this can be viewed
as a superposition of the exchange of effectively four scalar mesons:

VO=3(1— 71 7o) VO0+ (34 71+ ) VL, (A45)

3. Boost operators
In the following section we use the short notatﬁﬁazi[X,QE], whereB indicates the exchanged mesgrthe kinematic
or potential-dependent boost generator, arttie type of operator. The boost operators are given here with respect to the final
state c.m. frameR,;=0):

ProN =Tz 02+ 2iM-A(P—30)- G+ 2i (01~ 02) XP)-G1+(1-2), (A46)

=S @A 36)-d+ (G2 2076(5 +2 X Loy S
Jxon= 73 RA(P—30)-4+{q%+2ir-q(p—30)-q+2i[(02—5) X p]- A} p— 2q) Ve

- > >
15

X{(p—39)q2—q(p—3q)-q+ipXxqo,-q+io X q[3q2+ir-q(p—3a)-q—i(o,xp)-ql}+(12), (A47)

1
JXOK (e, 7 72J8M2

| 2A(KD)
gZI\’\/IIN) (2 is{[(p K)o1-a—goy- (p—K) +i(p—K)Xq+0qir -q(p—K)-aloz-ke

+01[0,- K392+ 02 (P—K)G-Ko— 02-q(p—K) -k +i(pX Q) - K]} + (1 2), (A48)
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1 (P=K) 02 Kol k= 1K1 (P=K) G- Kot 01 Ks 02 G(P—K) -k

1 [gann (k%)A(k%,
JXOX [el 7-l T2]8_M2 M (277)
—01:005 Ko(P—K) - Ky — 01 - Ky K30 2= 0 - KaiK- (PX ) = 7+ Kol K- (PXG) = 1 - Ky 7+ Koi T -G(P—K) - ]
+(12), (A49)
T : 9 AKDAKD) | 240 (gy— ) - (PX Q) —i (01— 00) - (KX Q) +ir -q(p—K) -]+ (12
Jhox="l&1,7- 7'2J8M2 2m)° K[3G°+i(a1—02)-(pX Q) (01— ) (kX Q) +ir-q(p—k)-q]+(1-2),
(A50)

aag A(k)A(k) .
JXx [ey, 71 msf\;g 2m)° [zq +i(o1—07) - (PX Q) —i(01—03) - (KX Q) +ir -q(p—K)- q} +(1-2),

(A51)
1 ngN (k ) i
Py NT ({e1, 71 o} + (61,71 72])16M (1-m) oM | 2n )3(0'1 202 0= 01-qoy-Ky) +(12), (A52)
1 gann| A( 2)
JXVN 32_M2(1 ©) oM W{({elaTl 7o} +[e1, 71 72])(2p— Q) (01 Koop- 4= 01 Gop-Ko)
+({er+ Ky, 71 TR} H €1+ K1, 70 o))
X[a1(02 Ko >= 05 Q0 Kp) + 01+ A(Kp0p G = G0y Kp) =ik X qop- Q11+ (1-:2). (A53)
4. Dissociation currents
The leading terms of the dissociation currents are accordif§lip
o2 o2
> _ gﬂ'NngNNg‘yﬂ'p (kZ)A (kl)» -
J‘)/7Tp_ ywp(q )(Tl ) 2Mmp (2,“_)3 “leZUZ I(2 (1H2)1 (A54)
o2
g . gﬂ'NNngNgyﬂ'w 'n'(k )Aw(k )
.’yﬂ'wz_lf'yﬂ'w(qp,)( )3 2me (277)3 k20-2 k2 (1<—>2)1 (A55)
where one has to multiply each meson-nucleon vertex with the corresponding hadronic form factor:
AL (KD)Ag(KD) —f (K3 fa(KDA (k5 Ag(KD), Be{p,w}. (A56)
Because the dissociation currents are purely transverse, we did not construct the vertex currents for them.
5. A-isobar currents
For theNA transition current we restrict ourselves to the dominant magnetic dipole excitation Af the
GiN
M=o j(oanX0) P(Tan)3 A57
PAN= ZMMA (oanXd)-P(7an)3 (A57)
GMl
M1
JANT eZM "TANquN(TAN) (A58)
with
- Ma_%ﬁ
quZM—A. (A59)
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The spin (isospin transition operators are denoted by Egs.(A11) and (A16) by substitutingg®yy bY gonnGana

TAN (;AN) and M ,=1232 MeV. The contribution propor-

tional toﬁ in the charge density enters through Galilean in-

variance.
The static exchange currents involviNg\ configurations

are constructed consistently with the corresponding trans
tion potentials. The analytic expressions can be obtained d

rectly from the static pion-exchange currenfs andjZ, in

and replacing the spifisospin operators by the correspond-
ing transition operators. In the case mfexchange we have
considered the Pauli currents only, which are obtained from

the contributions proportional to (ixy)? in ng and

>

I5rc in Egs.(A28) and (A33) by substitutingg? (1 + «y)?

py gonn(1+ky)g,na - The corresponding vertex currents,
which, however, turn out to be almost negligible, are con
structed as well.
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