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Consistent treatment of relativistic effects in electrodisintegration of the deuteron

F. Ritz, H. Göller,* T. Wilbois,† and H. Arenho¨vel
Institut für Kernphysik, Johannes Gutenberg-Universita¨t, D-55099 Mainz, Germany

~Received 14 November 1996!

The influence of relativistic contributions to deuteron electrodisintegration is systematically studied in vari-
ous kinematic regions of energy and momentum transfer. As theoretical framework the equation-of-motion and
the unitarily equivalentS-matrix approaches are used. In a (p/M ) expansion, all leading order relativistic
p-exchange contributions consistent with the Bonn one-boson-exchange potential model~OBEPQ! are in-
cluded. In addition, static heavy-meson-exchange currents including boost terms,gpr/v currents, and
D-isobar contributions are considered. Sizable effects from the various relativistic two-body contributions,
mainly from p exchange, have been found in inclusive form factors and exclusive structure functions for a
variety of kinematic regions.@S0556-2813~97!00704-8#

PACS number~s!: 21.45.1v, 13.40.2f, 24.70.1s, 25.30.Fj
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I. INTRODUCTION

In recent years, relativistic effects have become an imp
tant issue in the theoretical understanding of electromagn
~e.m.! reactions on few-body nuclei. Well-known exampl
for clear experimental evidence of such effects are the
cross section in deuteron photodisintegration@1# and the
LT-interference structure function in electrodisintegration
the deuteron@2#. In the meantime, a great number of the
retical investigations have been devoted to this question.
may distinguish between complete covariant approac
@3–5# and those based on a nonrelativistic expansion inc
ing leading order relativistic contributions@6#.

With respect to the latter method, in most cases onl
selected class of leading order relativistic terms of the o
body current, believed to be the most important ones, h
been retained, such as the Darwin-Foldy term, the spin-o
current, and the kinematic wave function boost. Relativis
two-body currents from static pion and heavy meson
change have been studied by Truhlik and Adam@7#, but only
selected one- and two-body operators have been consid
and boost corrections have been left out. A consistent tr
ment of all leading order terms has been presented in@8# for
elastic and inelastic electron deuteron scattering using a
boson-exchange~OBE! model for theNN interaction and in
@9# for deuteron photodisintegration in a pure one-pio
exchange~OPE! model. In the latter work, it has been show
that although the spin-orbit current gives the most import
relativistic contribution, the other terms of the same ord
cannot be neglected and do show significant influence
some polarization observables. In particular, sizable dif
ences occurred between pseudoscalar and pseudov
pNN coupling. Furthermore, wave function corrections we
of the same importance as other two-body current contr
tions.

With respect to relativistic effects in deuteron electrod
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integration, the work of Tamuraet al. @8# cannot be consid-
ered as definitive since their main emphasis has been
elastic electron deuteron scattering whereas the inelastic
cess has been studied for the threshold region only. For
reason, it is legitimate to present here a systematic and
sistent investigation of relativistic effects in deuteron elect
disintegration in various kinematic regions of energy a
momentum transfer. Our approach is based on the theore
framework used in@9# which has been shown to be unitari
equivalent to the work of Adamet al. @10#. It will be
sketched in Sec. II. In Sec. III we recall briefly the definitio
of observables and their representation in terms of struc
functions. The discussion of our results is presented in S
IV. Explicit expressions for the various current contributio
are listed in the Appendix.

II. INTERACTION MODEL AND ELECTROMAGNETIC
OPERATORS

Our theoretical framework, the equation-of-motio
method, has been outlined in detail in@9#. The starting point
is a system of coupled nucleon and meson fields. The exp
meson degrees of freedom are eliminated by the Fuku
Sawada-Taketani~FST! method@11#, resulting in effective
operators in pure nucleonic space for theNN interaction and
the electromagnetic charge and current operators. The
relativistic reduction including leading order relativistic co
tributions is obtained by means of the Foldy-Wouthuys
transformation. For the pionic effective operators, this is
scribed in detail in@9# and we use the explicit expression
given there. For the heavier mesons, we take the result
the unitarily equivalentS-matrix formalism approach o
Adamet al. @10#.

All explicit expressions for the electromagnetic operato
used in this work are listed in the Appendix, where we ha
included in addition thegpr and gpv currents and the
currents involvingD isobars. We will now discuss a few
specific questions concerning the various contributions.

A. Parameters for p-exchange currents

Since we want to use the Bonn potential models for
explicit calculations, we have to fix some parameters in

8,
2214 © 1997 The American Physical Society
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55 2215CONSISTENT TREATMENT OF RELATIVISITC . . .
general expressions of@9# for the pionic operators listed in
the Appendix, subsection 2. To this end, we will briefly r
view the origin of these parameters. The parameterm allows
a mixing of pseudoscalar (m50) and pseudovector (m51)
coupling in the HamiltonianHpN :

HpN~m!5bM1aW •pW 1 i ~12m!gpNNbg5fp

2m
f pNN

mp
~g5ḟp1g5aW •¹W fp!, ~1!

whereM denotes the nucleon mass,pW the nucleon momen
tum operator,gpNN and fpNN the coupling constants ofps
andpv coupling, respectively,fp5tW•fW p the pion field, and
mp its mass. For the Dirac matricesaW , b, andg5, the con-
ventions of@12# are used.

It is well known @13# that these two couplings are un
tarily equivalent ~equivalence theorem! by applying the
Dyson transformation

HpN
pv→~HpN

pv !85e2 iSSHpN
pv 2 i

]

]t DeiS
5HpN

ps 1O~gpNN
2 !, ~2!

where S5(gpNN/2M )g5fp , provided the coupling con
stants f pNN and gpNN fulfill the relation
f pNN /mp5gpNN/2M . However, this equivalence is violate
when one introduces the interaction with the e.m. field,
sulting in the interaction Hamiltonian

H~m!5bM1aW •pW 1êA02êaW •AW 1
k̂

2M
b~ iaW •EW 2g5aW •BW !

1 i ~12m!gpNNbg5fp2m
gpNN

2M
g5~ḟp1aW •¹W fp

1 iA0@ ê,fp#2 iaW •AW @ ê,fp#!, ~3!

whereA0 andAW denote the e.m. scalar and vector potentia
respectively,EW the electric andBW the magnetic field, andê
and k̂ the electric charge and anomalous magnetic mom
of the nucleon. In this case, the Dyson transformation of
~2! yields

~Hpv!85Hps1Hv1O~gpNN
2 !, ~4!

with an additional equivalence-theorem-violating term

Hv52
gpNN

4M2 b~g5aW •EW $k̂,fp%1 iaW •BW $k̂,fp%!. ~5!

This may be summarized with the Hamiltonian

H~m,n!5H~m!1nHv, ~6!

where the parametern switches the termHv off or on
(n50/1).

Another parameter is related to the Barnhill freedom@14#,
which results from the possibility to decompose the ‘‘odd
part of the relativistic Hamiltonian into two arbitrary term
-

,

nt
.

O5A1B, ~7!

A5aW •pW 2êaW •AW 1 i ~c11!~12m!gpNNbg5fp , ~8!

B52 ic~12m!gpNNbg5fp1 i
k̂

2M
baW •EW 2m

gpNN

2M
g5ḟp

2 im
gpNN

2M
g5A0@ ê,fp#2 in

gpNN

4M2 baW •BW $k̂,fp%, ~9!

where c is the Barnhill parameter. If one carries out th
Foldy-Wouthuysen transformation starting withA and then
B, on the one hand, and with the full partO at once, on the
other hand, one arrives at different, but unitarily equivale
results. Within theS-matrix formalism, this freedom arise
from different assumptions on the energy transfer at
pN vertex in the case ofps coupling @15#.

Since the parameters$m,n,c% appear in two combinations
only, it is more convenient to introduce the new paramet
m̃ andg:

m̃5m1c~12m!, g5m1n. ~10!

The settingg51 corresponds to a chiral-invariant interactio
model, which was used throughout in this work. Furth
more, the pionic operators of the extendedS-matrix formal-
ism @10# correspond tom̃51. But in order to be consisten
with the Bonn potentials@16,17# one must setm̃521, as
was explicitly checked in@9#.

B. Heavy meson exchange

For the exchange of heavy mesons, the operators f
@10# are consistent with the Bonn potentials. When taking
e.m. operators from@10#, one should keep in mind that th
relativistic Darwin-Foldy~DF! and spin-orbit~SO! contribu-
tion to the one-body current in Eq.~A8!,

rDF1SO5qW •aW [1] , WDF1SO5@H,aW [1] #, ~11!

with

aW [1]52
ê112k̂1

8M2 ~qW 1 isW 13QW 1!1~1↔2!, ~12!

contains implicitly a two-body part

WDF1SO
[2] 5@V,aW [1] #. ~13!

However, in evaluating such a commutator between eig
states of the Hamiltonian, it is justified to substitu
@H,V#→q0V, whereq0 is the relativistic energy transfe
onto the deuteron, yielding an effective one-body opera
On the other hand, in@10# these two-body parts are explicitl
listed as meson-exchange current~MEC! operators. There-
fore we have to exclude them in order to avoid double cou
ing.

With respect to ther-MEC operators, we would like to
mention that in most of the previous work usually only a fe
selected operators have been considered, namely, those
can be generated from thep-MEC operators by replacing
terms of the formsW •aW by sW 3aW , i.e.,
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2216 55F. RITZ, H. GÖLLER, T. WILBOIS, AND H. ARENHÖVEL
sW 1~sW 2•kW2!→sW 13~sW 23kW2!,

sW 1•kW1sW 2•kW2→~sW 13kW1!•~sW 23kW2!. ~14!

In the later discussion we will call these terms ‘‘Pauli cu
rents.’’ They can be identified as the terms proportional
(11kV)

2 in WCR
r in Eq. ~A28! and WXR;C

r in Eq. ~A33!. Be-
cause of the strong tensor coupling of ther meson@e.g., in
the Bonn one-boson-exchange potential~OBEPQ! one has
(11kV)

2'50#, it is expected that the Pauli currents give t
dominantr-MEC contribution.

C. Retardation contributions

According to@10#, the retarded nucleon-nucleon potenti
generated through a Taylor expansion of the meson prop
tor around the static limit, may be written as

VT~kW !5V0~kW !D~kW2!k0
2 , ~15!

whereV0(kW ) is the static, nonrelativistic potential,k0 the
energy transfer at the vertex, and

D~kW2!5
1

m21kW2
~16!

is the static meson propagator. However, one should kee
mind that the restriction to lowest order is not a good a
proximation above the pion production threshold. In order
avoid an overestimation of retardation effects, we theref
switched off the retardation currents for energies above
threshold.

Since there is a certain freedom to expressk0
2 in terms of

the particle coordinates, i.e., in terms of the individual e
ergy transfer onto thei th nucleonk0

( i ) , iP$1,2%, it is cus-
tomary to parametrize this freedom by a retardation par
etern ret:

k0
252k0

~1!k0
~2!1

12n ret
2

~k0
~1!1k0

~2!!2

5
1

4M2 S kW•QW 1kW•QW 21
12n ret
2

@kW•~QW 12QW 2!#
2D .

~17!

The operators from@9# and @10# are equivalent forn ret50.
However, in order to be consistent with the static Bo
OBEPQ potentials, one must setn ret5

1
2 because for this

choice the retarded potential vanishes in the center-of-m
~c.m.! frame.

D. Boost contributions

The boost current contributions arise from the fact that
a relativistic description of the two-body system the intr
duction of c.m. and relative coordinates

RW 5 1
2 ~rW11rW2!, rW5rW12rW2 , ~18!

PW 5pW 11pW 2 , pW 5 1
2 ~pW 12pW 2! ~19!
o

,
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does not lead to the trivial separation of the two-body wa
function into a c.m. momentum eigenstate and an intrin
wave function. Rather one finds

uPW ,pW &5uPW c.m.& ^e2 ix~PW !upW int&, ~20!

where the dependence of the intrinsic wave function on
c.m. motion is taken into account by the boost genera
x(PW ). Here,upW int& describes the intrinsic wave function in th
rest frame. It is not possible to circumvent this problem
choosing an appropriate reference frame, since the initial
final states move with different momenta because of the m
mentum transfer during the reaction. Instead of transform
the intrinsicNN wave functions, one incorporates the unita
transformation in the e.m. operators, considering again
leading terms only:

eixVe2 ix'V1 i @x,V#. ~21!

In this way the additional boost charge and current densi
i @x,V# arise.

The operatorx can be separated into a kinemati
interaction-independent partx0 and an interaction-dependen
partxV

x5x01xV . ~22!

In @18# one finds an expression forx0, which reads, for the
case of the two-nucleon system,

x052S ~rW•PW !~pW •PW !

16M2 1H.c.D 1
@~sW 12sW 2!3pW #•PW

8M2 .

~23!

A nonvanishing, interaction-dependent boost operator ex
only for pseudoscalar meson exchange@19,20#:

xV
p52~tW1•tW2!

i

8M S gpNN

2M D 2~12m̃ !

3E d3k

~2p!3
eik

W
•rWD~kW2!sW 1•PW sW 2•kW1~1↔2!. ~24!

E. Vertex currents

In order to regularize the various meson-nucleon vertic
it is customary to introduce a phenomenological form fac
at each meson-nucleon vertex:

gBNN→ f ~2km
2 !gBNN , ~25!

wherekm5(k0 ,kW ) is the four-momentum transferred at th
vertex andgBNN is the meson-nucleon coupling constan
These form factors are usually parametrized by the fu
tional forms

f ~z!5S LB
22mB

2

LB
21z D n, nP$ 1

2 ,1,2%. ~26!

The form factors are then expanded around the static l
(km

252kW2):
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f ~2km
2 !5 f ~kW2!2k0

2f 8~kW2!1O~k0
4!, ~27!

where here and in the following the prime indicates diffe
entiation with respect tokW2. The resulting regularized stati
and retarded potentials are obtained by the substitutions

D~kW2!→ f 2~kW2!D~kW2!, D2~kW2!→2@ f 2~kW2!D~kW2!#8.
~28!

The momentum dependence of the hadronic form fac
leads to additional currents, the so-called vertex curre
arising from minimal coupling. The vertex currents and t
regularized currents can be combined, leading to the follo
ing substitution rules for contact (C), wave function renor-
malization (W), and exchange (X) type operators~see the
Appendix, subsection 2!:

C,W:H D2→ f 2
2D2 ,

D2
2→2~ f 2

2D2!8,
~29!

X:H D1D2→ f 1f 2D1D22P12P2 ,

D1D2
2→2 f 1D1~ f 2D2!81P28 .

~30!

The operators that do not fit into this scheme are the reta
X-type charge density operators. In order to fulfill the con
nuity equation with the other retarded operators they sho
be regularized using, as the substitution rule,

D1D2→ f 1f 2D1D22 f 1f 28D12 f 18 f 2D2 . ~31!

In Eqs. ~29!–~31!, the following abbreviations have bee
used forVP$ f ,D,P%:

V1/25V~kW1/2
2 !, V1/28 5

d

dkW1/2
2

V1/2, ~32!

P1/252 f 1/2~ f 12 f 2!D1/2

D1D2

D12D2
. ~33!

F. Isobar currents

Isobar currents arise from intermediate excitation
nucleon resonances. They may be included as effective,
local two-body operators, usually neglecting the hadronic
teraction of the isobar. Often the isobar propagation is a
neglected in order to obtain a local operator. However,
approximation is not reliable. The other possibility is to i
troduce explicitly isobar degrees of freedom via isobar c
figurations in the wave function. This approach is chosen
the present work. In this way, the isobar propagation is
rectly included and furthermore the hadronic isobar-nucle
interaction can be easily incorporated. In fact, with respec
the treatment of theD, which we consider here as the dom
nant isobar contribution, it is well known from deuteron ph
todisintegration that above the pion production threshol
dynamical treatment ofD degrees of freedom is mandato
@21,22#. Therefore, our calculation of theND configurations
is based on aNN-ND coupled channel approach in mome
tum space. Since their influence on theNN scattering phase
-
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a

shifts is already included implicitly in the realisticNN po-
tential simulating intermediateD excitation, we have to
renormalize the latter in order to maintain the good desc
tion of the phase shifts below pion threshold. It turns out t
the renormalization is achieved by the subtraction of
energy-independentND box. Furthermore,p- and r-MEC
contributions related to theNN-ND transition potentials are
also included. In principle, the box subtraction leads to
additional current contribution, which we have not cons
ered here.

III. OBSERVABLES

In order to fix the notation, we briefly collect the gener
formulas for the observables of deuteron electrodisinteg
tion. TheT-matrix element between an initial deuteron wi
momentumPW i and spin projectionmd , and a finalNN state,
with relative nucleon momentumpW np , total momentumPW f ,
total spins, and projectionms , is defined as

Tsmslmd
52k^sms ;pW np ,PW f u j l~0W !u1md ;PW i&,

k5pA2aEEdpnp
Md

, ~34!

where j61 is the transverse nuclear current density opera
in spherical representation andj 0 the nuclear charge densit
operator. Furthermore,a denotes the fine structure constan
E5Ep5En the total energy of one nucleon in the final sca
tering state,Ed the total energy of the initial deuteron, an
Md its mass. If not stated otherwise, all kinematic variab
in this work refer to the final state c.m. frame defined
PW f50W .

Any observable may be written as@23#

O~V!53cTr~T†VTr!, c5
a

6p2

k0
f ,L

k0
i ,L

1

~qm
2 !2

, ~35!

where the initial state density matrix is a direct product of t
density matrices of the virtual photon and the deute
r5rg

^ rd, qm5(q0 ,qW ) denotes the four-momentum of th
virtual photon, andk0

i ,L andk0
f ,L are the initial and final elec-

tron laboratory energies, respectively.V is an operator that
corresponds to the type of observable considered, i.e.,
differential cross section (V51), single-nucleon polariza
tions@V5sxi

( j ), iP$1,2,3%, jP$1,2%#, and double-nucleon

polarizations@V5sxi
(1)sxk

(2), i ,kP$1,2,3%#.
Allowing for longitudinally polarized electrons and or

ented deuterons, described by the deuteron vector (P1
d) and

tensor (P2
d) polarizations, and the spherical angles of t

deuteron orientation axisfd andud , one can separate som
of the angular dependences and can describe any obser
in terms of the structure functionsf a

(8)IM (6)(V), a
P$L,T,LT,TT%, that depend only on the c.m. angleu of
pW np with respect to the momentum transfer, the final st
kinetic energyEnp , and the squared momentum transf
qW 2:
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O~V!5c(
I50

2

PI
d (
M50

I H @rL f L
IM ~V!1rTf T

IM ~V!1rLTf LT
IM1~V!cosf1rTTf TT

IM1~V!cos2f#cosSM f̃2 d̄ I
V

p

2 D
2@rLTf LT

IM2~V!sinf1rTTf TT
IM2~V!sin2f#sinSM f̃2 d̄ I

V
p

2 D
1hF @rT8 f T8

IM ~V!1rLT8 f LT8
IM2~V!cosf#sinSM f̃2 d̄ I

V
p

2 D1rLT8 f LT8
IM1~V!sinfcosSM f̃2 d̄ I

V
p

2 D G J dM ,0
I ~ud!,

~36!
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where f̃5f2fd , andf and u are the c.m. angles of th
proton~see Fig. 1!. The symbold̄ I

V5udV,B2d I ,1u differenti-
ates between observables of typeA andB according to their
behavior under a parity transformation~see@24#!, h is the
longitudinal polarization of the electron beam, andra de-
notes the components of the density matrix of the virt
photon. For further details, especially the explicit expr
sions of the structure functions in terms ofT-matrix ele-
ments, see@23#. The inclusive form factorsFa

(8)IM are ob-
tained by integrating the corresponding structure functi
over u andf.

IV. RESULTS AND DISCUSSION

The various relativistic current contributions outlined
Sec. II have been evaluated for both the inclusive form f
tors and the exclusive structure functionsf a

(8)IM (6)(V), start-
ing from the nonrelativistic framework that has been us
previously in@25–27#. For the calculation of the initial deu
teron and the finaln-p scattering wave functions, we hav
taken as effectiveNN interaction versions A, B, and C of th
realistic Bonn OBEPQ model@17# with appropriate box
renormalization as discussed in Sec. II F. If not mention
explicitly, version B is used. This choice fixes the mass

FIG. 1. Geometry of exclusive electron-deuteron scattering w
polarized electrons and an oriented deuteron target. The rel

n-p momentum defining withqW the reaction plane is denoted b

pW np and is characterized by anglesu andf. The deuteron orienta

tion axis forming withqW the orientation plane is denoted bydW and
specified by anglesud andfd .
l
-

s

-

d

d
s,

coupling strengths, and vertex regularization parameters
the various exchanged mesons. In the evaluation of
T-matrix elements we calculate explicitly all electric an
magnetic multipoles up to the orderL54. That means we
include the final state interaction in all partial waves up
j55. For the higher multipoles, we use the Born approxim
tion for the final state, i.e., no final state interaction in part
waves with j>6 as has been described in@28#. We would
like to remark that for the electric transitions we do not u
the Siegert operators since the current is consistent with
potential model. For the electromagnetic form factors of
one-body current, we use the dipole fit for the Sachs fo
with a nonvanishing neutron electric form factor@29#, from
which the Dirac-Pauli form factors are determined. Also f
the e.m. form factors of the other currents we use the sa
Dirac-Pauli form factors. As already mentioned, all structu
functions are calculated in the c.m. system of the finaln-p
state.

With respect to isobar degrees of freedom, we conside
this work only the most importantND(1232) configurations
and leave outNN(1440) andDD configurations. For the
calculation of theND configurations we use static, regula
ized p- and r-exchangeNN-ND transition potentials. It
turns out that the use of the model parameters of the
Bonn model@16# for these potentials yields quite a goo
description ofNN scattering observables in the delta regio
We would like to mention that a coupling to the three-bo
pNN space is automatically introduced via a retarded di
onal ND potential and the dressed propagator of theND
system. The strength of the retarded potential is governed
an explicitpND vertex which has been fixed by a fit to th
P33 phase shift in pion nucleon scattering@30#. For a detailed
discussion of the hadronic interaction model we refer to@31#.
With respect to theND transition current, we take below
pion production thresholdGDN

M154.7, whereas an energy
dependent effective coupling is used above pion produc
threshold. More precisely, we have taken a coupling wh
has been fitted to pion photoproduction on the nucleon un
the assumption of a vanishing background contribution to
multipoleM11

(3/2) . Using this coupling, a good description o
deuteron photodisintegration in the delta region has b
found @22#. For theqm

2 dependence, a simple dipole behavi
is adopted:

GDN
M1→GDN

M1~12qm
2 /0.71 GeV2!22. ~37!

h
ve
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TABLE I. Explanation of the notation used in the figure captions.

Notation Explanation

n nonrelativistic nucleon current~without Siegert operators!
n(r ,x0) relativistic nucleon current including kinematic boost currents

p nonrelativisticp-MEC
p(r ) static relativisticp-MEC
p(r ,t) p(r ) 1 retardation corrections
p(r ,t,x0) p(r ,t) 1 kinematic boost currents
p(r ,t,x0 ,xV) p(r ,t,x0) 1 potential-dependent boost currents

rP Pauli r-MEC
r full r-MEC
r(x0) r 1 kinematic boost currents

h heavy-meson-exchange currents (h,v,s,d)
h(x0) h 1 kinematic boost currents
d gpr/v currents

D D excitation, includingD-MEC

Total n(r ,x0)p(r ,t,x0 ,xV)r(x0)h(x0)dD
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For thegpr andgpv currents in Eqs.~A54! and~A55!,
we take the coupling constants from@32#

gBNNggpB5
mB

mp
gB1lB , BP$r,v%, ~38!

with the values

gr151.8–3.2, lr50.11,

gv158–14, lv50.36. ~39!

In our calculation, we have used the maximum settings
gr1 and gv1. Again for reasons of simplicity we have a
sumed the sameqm

2 dependence for thegpr/v vertex as for
the nucleonic e.m. vertices.

For the evaluation of the form factors we have chosen
intermediate energyEnp5120 MeV varyingqW 2 between 1
and 25 fm22 while for the structure functions we have ch
sen the same kinematic regions of energy and momen
transfer as considered in@25,27#. In order to facilitate the
discussion of the various relativistic contributions, we ha
introduced in Table I a notation scheme.

A. Inclusive reaction

We will start the discussion of the relativistic two-bod
effects by considering first the form factors of the inclusi
reaction. The form factorsFL and FT for an unpolarized
beam and target are shown in Fig. 2 atEnp5120 MeV as
function of qW 2. Close to the quasifree peak the relativis
two-body contributions are small, less than 1%, but fart
away the relative importance of them increases as one
see more clearly in the two right panels of Fig. 2, where
have plotted the ratios with respect toFL/T@n(r ,x0)prPD#.
In FL the relativistic contributions increase at lowqW 2 up to
r

n

m

e

r
an
e

7%, dominantly fromp contributions, whereas on the high

qW 2 side heavy meson exchange tends to cancel increasi
thep contribution. InFT the effects are more pronounced

low qW 2, wherep and even stronger heavy meson exchan

lead to an increase up to almost 20%. But for the high-qW 2

region one finds an almost complete cancellation betw
p and heavy meson contributions, leaving a tiny increase
about 1% only.

The remaining form factors for the polarized beam a
target are shown in Fig. 3 exceptFLT8

121 where the relativistic
effects are very small. BothFL

20 andFT
20 exhibit sizable ef-

fects, mainly from thep sector. The much smaller heav

meson contributions add constructively at lowqW 2 and de-

structively at highqW 2 with respect to the quasifree cas

qW 2512 fm22. The interference form factorsFLT
221 and

FTT
222 exhibit quite dramatic effects from the relativisticp

contribution, whereas heavy meson currents are less evid
As a particular interesting inclusive process we now w

discuss deuteron electrodisintegrationd(e,e8)pn near the
breakup threshold at backward angles for two reasons. F
of all, this reaction allows a comparison of our results w
the work of Tamuraet al. @8#. Second and more importantly
this reaction is a beautiful example of the manifestation
subnuclear degrees of freedom in terms of meson excha
and isobar currents@33–36#. Indeed, up to a squared mome
tum transfer of about 10 fm22, one finds quite satisfactory
agreement of the nonrelativistic theory with experimen
data, provided one includes the most important contributi
from p andr exchange and fromD excitation. However, at

higherqW 2 larger uncertainties arise for the theoretical pred
tions @37#. In particular, relativistic effects become increa
ingly important @8,26,38,39#. In view of the ongoing ques
for signatures of quark-gluon effects in nuclear structure, i
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FIG. 2. Left: inclusive form factorsFL and FT for Enp5120 MeV. Right: ratio of the form factors with respect to result f
n(r ,x0)prPD ~see Table I!. Notation of the curves: dash-dotted curve,n(r ,x0)prPD; dashed curve,n(r ,x0)p(r ,t,x0 ,xV)rPD; solid
curve, total.
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very important to assess the size of such relativistic con
butions.

While in @8,39# a sizable reduction of the cross section
relativistic effects has been found, the inclusion of only t
one-body contributions in@26# has led to an enhancemen
We had already suspected in@26# that the reason for thes
different results is the neglect of relativistic two-body term
in particular, fromp exchange. This is now confirmed b
our results shown in Fig. 4. As one can see, for example
2qm

2520 fm22, the relativistic one-body currents yield a
enhancement of the cross section of about 60%, wherea
relativistic p contributions give a very strong reduction b
more than a factor of 5. This reduction is partially cance
by heavy meson exchange andgpr/v currents, so that the
i-

e

,

at

the

d

overall reduction with respect to the nonrelativistic res
amounts to a little less than one-half at this momentum tra
fer.

These findings are in accordance with results of Humm
@39#. However, comparing them with theps-coupling model
in Fig. 12 of Tamuraet al. @8#, we find quite significant
differences. First, the reduction from all relativistic contrib
tions to the one-body and pion sector in Fig. 4 is much str
ger than the one shown by the curve ‘‘N.R.1 R.C. 1
Boost’’ in Fig. 12 of @8#. Second, the effect of heavy meso
exchange is much larger in@8# ~see the solid curve of Fig
12! than what we find in Fig. 4. In order to check wheth
this difference could originate from different potential p
rameters, different wave functions, and perhaps by put
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FIG. 3. Inclusive form factors for a polarized targetFL
20, FT

20, FLT
221 , andFTT

222 Notation of the curves as in Fig. 2.
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the r contribution to the relativistic part — Ref.@8# is not
clear about this point — we have performed a calculat
with the parameters from Table 3 in@8# listed under ‘‘Paris,’’
using the wave functions for the Paris potent
(m̃50, n ret5

1
2! and excluding ther-MEC from the nonrela-

tivistic calculation. Certainly one might doubt, whether t
potential model of@8# called ‘‘Paris’’ is a consistent model
since the Paris potential is phenomenological and not a o
boson-exchange model. But otherwise it would be difficult
make a comparison. Furthermore, theND configuration is
treated in the impulse approximation and theD-MEC from
p andr exchange is left out.

The results are presented in Fig. 5. In comparison to
results of Fig. 12 in@8#, we note quite a good agreement f
the nonrelativistic calculation except for the minimum whi
appears at lower momentum transfer in Fig. 5. This sm
difference could come from a different treatment of the is
n

l

e-

e

ll
-

bar current, which is taken in the static approximation in@8#.
Adding all relativistic currents including boost from one
body andp exchange, we find an increase up to the mi
mum of the nonrelativistic result whereas Tamuraet al.
found an overall decrease. The enhancement from heavy
sons is much larger in@8# than what we find. Thus the origin
of the differences in the details remains unclear although
final results are not too far from each other.

We also show in Fig. 5 our total result for the Bon
OBEPQ-B potential which lies consistently above t
‘‘Paris’’ result. But this is not surprising since already th
nonrelativistic calculation revealed such a difference
tween the Paris and various versions of the Bonn poten
@40#.

Finally, we show in Fig. 6 a comparison of the result
which are based on the three OBEPQ versions of the B
potential including box renormalization with experiment
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FIG. 4. Deuteron electrodisintegration near threshold forEnp51.5 MeV at backward angles (ue5155°). Left, absolute values; right
relative with respect tonprPD. Notation of the curves~see Table I!: dotted curve,nprPD; dash-dotted curve,n(r ,x0)prPD; dashed curve,
n(r ,x0)p(r ,t,x0 ,xV)rPD; solid curve, total.
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data from@41–43#. Here we have extended the calculation
the high momentum data from@43# even though we are
aware that, strictly speaking, this kinematic region is beyo
the limits of validity of the (p/M ) expansion. The data be
low 2qm

2530 fm22 have been averaged from 0 to 3 Me
above the threshold and thus the calculation has been do
Enp51.5 MeV, whereas for the data above2qm

2530
fm22, averaged between 0 and 10 MeV, the calculation
been performed forEnp55 MeV. It has been shown in@44#

FIG. 5. Deuteron electrodisintegration near threshold for
‘‘Paris’’ model of Tamura et al. @8# for Enp51.5 MeV and
ue5155°. Notation of the curves: dotted curve,npD; long-dashed
curve, n(r ,x0)p(r ,t,x0 ,xV)r(1v)PD; solid curve, total; short-
dashed curve, total result for the OBEPQ-B potential.
d

at

s

that it is not necessary to average the theoretical results.
tween2qm

2510 fm22 and 30 fm22 one finds a systematic
and increasing overestimation of the data by the the
whereas above 30 fm22 the overestimation is much less pro
nounced and more constant. The variation of the differ
potential versions is comparably small except for the v
highest momentum transfers considered.

e

FIG. 6. Deuteron electrodisintegration near threshold: poten
model dependence and comparison with experiment. Experime
data points: open triangles@41#, solid circles@42# (ue5155°, aver-
aged over energies 0 MeV<Enp<3 MeV; theory for
Enp51.5 MeV), and solid squares@43# (ue5180°, averaged over
energies 0 MeV<Enp<10 MeV; theory forEnp55 MeV). Nota-
tion of the theoretical curves: solid curve, OBEPQ-B potenti
dashed curve, OBEPQ-A potential; dash-dotted curve, OBEP
potential.
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B. Exclusive reaction

The observables of the exclusive process are determ
by the structure functions. The influence of the relativis
one-body contributions on these were discussed intensi
in @26,27#. They were found to be important in almost eve
structure function in various kinematic sectors, which a
marked in Fig. 7, where we also introduce a numbering
order to facilitate the following discussion of the results.
order to give an overview where the additional relativis
current may give a sizable contribution, we show in Fi
8–10 the structure functions of the differential cross sect
and the proton polarization componentPy(p) as the simplest
polarization observable for an unpolarized deuteron ta
without and with electron polarization in these kinematic
gions. Each figure is divided into four~in one case two!
panels, each representing one specific structure functio
panel contains in turn nine parts, one for each kinem
sector of Fig. 7 arranged accordingly. In these figures
show separately the nonrelativistic result including MEC a
isobar contributions, and then consecutively added the r
tivistic one-body contributions, the relativisticp contribu-
tions, and finally all remaining relativistic two-body curren

Let us first consider the structure functions of the diffe
ential cross section shown in Fig. 8. The longitudinal str
ture functionf L is mainly influenced by the relativistic one
body contribution and almost insensitive to the additio
currents except for the relativistic pion contributions in t
kinematic sector Ic. Even less influence is seen inf T . Only
in sectors Ic, IIa, and IIIa does one find some noticea
effects. The interference structure functions are a little m
sensitive to the two-body relativistic currents, though n
overwhelmingly, in sectors Ic and IIIa forf LT , mainly from
the pion, and significantly more pronounced from both p
and heavy mesons in Ib,c and IIa,c forf TT .

Turning now to the structure functions ofPy(p) in Fig. 9,
we note in general a larger sensitivity to the additional tw
body currents. Except for sectors Ia and IIa, one finds
nificant influences onf L(y0) in all other sectors, even for th
quasifree case IIb at the forward peak. Similar effects oc
in f T(y0) in sectors Ib,c, IIa, and IIIa. The interference stru

FIG. 7. Enp-qW
2 plane with indication of the location of the qua

sifree ridge and the kinematic sectors, for which the structure fu
tions have been evaluated.
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ture functionf LT(y0) appears less sensitive except in sec
Ia, where one can see a drastic increase at forward an
mainly from heavy meson exchange, whereasf TT(y0) shows
again a greater sensitivity, in particular in sectors Ic, IIa, I
and IIIa.

Finally, we show for this general overview in Fig. 10 th
only nonvanishing structure functionf LT8 for longitudinally
polarized electrons for both observables. Whilef LT8 exhibits
large effects from the pion contribution, indeed much larg
than the relativistic one-body part, in sectors Ib,c, IIc, a
IIIa,c, one finds almost no effects from the two-body curre
in f LT8 (y0).

We will now discuss the relative importance of the va
ous relativistic two-body currents for a few selected e
amples with respect to the sectors Ic and IIc. The relativis
contributions in the pionic sector, including the retardati
corrections, are the most important ones beyond the o
body contributions as is demonstrated in Figs. 11 and 12.
show in Fig. 11 again the structure functions of the unpol
ized differential cross section for the kinematics Ic andf TT in
addition in sector IIc, where the separate terms of the re
tivistic p exchange, namely,p-MEC, retardation and kine-
matic and potential boost, are consecutively added. Inf L one
can see quite a sizable increase from the two-body cha
density at larger angles, thus marking the area where S
ert’s hypothesis of a vanishing two-body charge density is
longer valid@45#. Retardation effects, on the other hand, le
to a significant reduction in the forward direction. Potenti
dependent boost effects, which are very small, arise fr
i @xV ,rN0# in Eq. ~A52! only. In f T the effects are of similar
size. Only the relativisticp-MEC shows up, mainly at for-
ward and backward angles as a sizable reduction. Reta
tion and other additional currents can be neglected. In
interference structure functions, the effects are in gen
larger, although here one notes a partial cancellation of
various contributions. The strongest influence comes ag
from p-MEC, in particular inf TT in both sectors Ic and IIc,
and f LT8 then partially canceled by retardation. The pion
two-body boost effects are very small. Inf TT the kinematic
and potential boosts are equally small, while inf LT and
f LT8 one can see only a small effect from the potential boo
In Fig. 12 we have collected a few polarization structu

functions which exhibit particularly strong effects from th
relativistic p-exchange sector. Also, here we see the la
influence of the relativisticp-MEC. It gives a strong en-
hancement inf L

11 at forward angles, which is only slightly
reduced by retardation. Also here, the potential-depend
boost contributions are negligible. Inf T

11 and f TT
001(y0)

p-MEC produces for Ic a large reduction and leads even
partial sign change. Again this effect is partially canceled
retardation. The boost contributions are considera
smaller. For the kinematics IIc, the relativistic effects a
much smaller inf T

11 while they are still sizable inf TT(y0)
compared to the sector Ic.

The non-Paulir-MEC is generally a very small effect
and especially the effect of ther-exchange charge densit
may safely be neglected. There are, however, a few polar
tion observables shown in Fig. 13 that exhibit a slight sen
tivity to the additional terms of the fullr-MEC beyond the
Pauli-r-MEC, which is also shown separately, likef TT in

c-
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FIG. 8. The structure functions of the differential cross section for unpolarized electrons and target in the nine kinematic regions
7: f L

00 ~top left!, f T
00 ~top right!, f LT

001 ~bottom left!, and f TT
001 ~bottom right!. Notation of the curves~see Table I!: dotted curve,nprPD;

dash-dotted curve,n(r ,x0)prPD, dashed curve,n(r ,x0)p(r ,t,x0 ,xV)rPD; solid curve, total. The top left inset ‘‘@(2n) fm#’’ indicates the

unit @102n fm# for the structure function, and the top right inset ‘‘@Enp/qW
2#,’’ whereEnp in @MeV# andqW 2 in @fm22#, indicates the kinematic

sector of Fig. 7.
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sectors Ic and IIc, and forf T
22 most prominent in Ic, but very

weak in IIc. In these cases the twor-MEC contributions are
comparable in size but tend to partially cancel each other
f TT and quite strongly forf T

22 in sector Ic. We also would
like to mention that boost contributions tor exchange, as
well as to other heavy meson exchanges, are completely
ligible.

The effect of the heavier mesons, i.e.,h, v, s, d, and
gpr/v, is also small and quite unimportant as one can se
r

g-

in

Fig. 14. Only inf TT , which is the smallest and thus the mo
sensitive of the first four unpolarized structure functions,
the influence of thegpr/v terms visible at high momentum
transfer in both sectors Ic and IIc, also shown in Fig. 14.

At the end of this section, we would like to discuss brie
those two polarization observables, which presently are
ing measured experimentally@46–48# in order to extract the
electric form factor of the neutronGE(n), namely, the trans-
verse polarizationPx8(n) of the outgoing neutron and th



55 2225CONSISTENT TREATMENT OF RELATIVISITC . . .
FIG. 9. As Fig. 8, but for the observablePy(p).
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h is
n-
vector beam-target asymmetryAed
V . We show in Fig. 15 both

observables at the quasifree kinematicsEnp5120 MeV,

qW 2512 fm22, and electron scattering angleue560°. It is
the same kinematics as considered in@26,49# where it was
found that close to quasifree neutron emission (u5180°) the
relativistic one-body contributions to these observables w
negligible if Sachs form factors were used. Fortunately, t
conclusion remains valid even when the additional relativ
tic contributions fromp exchange, heavy mesons, a
gpr/v are included. Only away from the genuine quasifr
situation, i.e., off 0° and 180°, are significant effects se
These findings are very important with respect to the afo
mentioned experiments for the extraction ofGE(n).
re
s
-

e
.
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V. CONCLUSION

In conclusion we may state that besides the relativis
one-body currents also the corresponding two-body curre
of the same order in (p/M ) show significant effects in both
inclusive and exclusive observables, amenable to experim
tal investigations. As expected, the dominant two-body c
tributions come from the pionic sector, in particular, qu
sizable from retardation. But also heavy meson contributi
are not completely negligible. Therefore, a consistent tre
ment of all relativistic contributions, at least forp exchange,
is mandatory for a reliable assessment of such effects.
present treatment within the equation-of-motion approac
completely consistent for the leading order relativistic co
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FIG. 10. The fifth structure function of the differential cross section and the observablePy(p) for longitudinally polarized electrons an
an unpolarized target in the nine kinematic sectors of Fig. 7:f LT8

001 ~left!, f LT8
001(y0) ~right!. Notation of the curves as in Fig. 8.
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se-
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tributions as far as the pion-exchange sector is concerne
view of the, in general, small contributions from heavy m
son exchange we do not consider the neglect of some
tivistic terms, i.e., the retarded current operators, from t
In
-
la-
is

sector as a severe shortcoming of our approach. A more
vere limitation appears at energies above the pion produc
threshold with respect to the present treatment of retarda
effects, the neglect of relativistic contributions related to is
urves,
FIG. 11. Relativistic contributions from the pionic MEC for unpolarized structure functions. Notation of the curves: dotted c
n(r ,x0)prPD; dash-dotted curve,n(r ,x0)p(r )rPD; long-dashed curve,n(r ,x0)p(r ,t)rPD; short-dashed curve,n(r ,x0)p(r ,t,x0)rPD;
solid curve,n(r ,x0)p(r ,t,x0 ,xV)rPD.
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FIG. 12. As in Fig. 11, for selected polarization structure functions.
wi
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be-
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bar excitation, and the neglect of the current associated
the box renormalization. Probably, one should aim at a h
ronic interaction model where isobar configurations are
troduced right from the beginning as is done for the Argon
th
d-
-
e

v28 model @50#. These will be topics for future researc
Another limitation arises from the (p/M ) expansion restrict-
ing the present approach to momentum transfers roughly
low 1 GeV. For higher momentum transfers covariant a
e,

FIG. 13. Effect of the non-Paulir-mesonic

currents. Notation of the curves: dotted curv
n(r ,x0)p(r ,t,x0 ,xV)D; dash-dotted curve,
n(r ,x0)p(r ,t,x0 ,xV)rPD; solid curve,
n(r ,x0)p(r ,t,x0 ,xV)r(x0)D.
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FIG. 14. Effect of the heavy-meson-exchange currents~the contributions ofh, v, s, andd are summed up!. Notation of the curves:
dotted curve,n(r ,x0)p(r ,t,x0 ,xV)rD; dash-dotted curve,n(r ,x0)p(r ,t,x0 ,xV)r(x0)h(x0)D; solid curve, total.
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proaches appear to be more appropriate.
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APPENDIX: ELECTROMAGNETIC OPERATORS

For completeness, we list here all explicit expressions
the electromagnetic charge and current densities in the
mentum space representation. Since the c.m. motion is s
rated, we are left with the representation with respect to
relative momenta. Thus all operators are represented in
form

V~pW ,qW ,kW !5^pW uV̂~qW !upW 2kW &. ~A1!

Since the operators depend on the single-particle coo
nates, we describe them by the kinematic variables

kW1/25pW 1/2
f 2pW 1/2

i 5 1
2qW 6kW , ~A2!

QW 1/25pW 1/2
f 1pW 1/2

i 52 1
2qW 6~2pW 2kW !, ~A3!

wherepW is the relative momentum of the outgoing nucleon
kW is the momentum transfer on the relative motion, andqW is
the momentum of the virtual photon, i.e., the momentu
transferred on the c.m. motion of the two-nucleon syste
For the one-body operators one simply haskW5 1

2qW . Here, the
final total momentumPW f of the two-nucleon system is set t
0W , since the calculation is performed in the final state c
frame, the antilaboratory system.

In the following expressions we use as a shorthand n
tion for the Dirac-Pauli form factors:

ê1/25
1
2 @F1

s~qm
2 !1F1

v~qm
2 !~tW1/2!3#,

k̂1/25
1
2 @F2

s~qm
2 !1F2

v~qm
2 !~tW1/2!3#. ~A4!

1. One-body operators

The one-body operators are split into a nonrelativistic p
and a leading order relativistic contribution, denoted by
subscripts ‘‘N0’’ and ‘‘NR,’’ respectively:
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rN05ê11~1↔2!, ~A5!

rNR52
ê112k̂1

8M2 @qW 21 i ~sW 13QW 1!•qW #1~1↔2!, ~A6!

WN05
1

2M
@ ê1QW 11 i ~ ê11k̂1!~sW 13qW !#1~1↔2!, ~A7!

WNR52
1

8M2q0~ ê112k̂1!~qW 1 isW 13QW 1!

2
1

16M3 @ ê1QW 1~kW1
21QW 1

2!1 i ê1~sW 13qW !~kW1
21QW 1

2!

1 i k̂1~QW 13qW !sW 1•QW 12k̂1qW 3~qW 3QW 1!

1 i k̂1~sW 13qW !qW 2#1~1↔2!. ~A8!

2. Meson-exchange operators

In the following subsections we list the MEC operato
for the isovector pseudoscalar, vector, and scalar mes
The operators are decomposed into contact (C), exchange
(X), and wave function renormalization (W) operators, on
the one hand, and into nonrelativistic~0!, relativistic (R),
ns.

and retarded (T) operators, on the other hand. The transiti
to isoscalar mesons can be made by substitu
(tW1•tW2)→1 in theNN potentials and MEC’s, which means
in detail for the current operators,

@ ô1 ,tW1•tW2#→0, $ô1 ,tW1•tW2%→2ô1 , ~A9!

where ô15ê1 ,k̂1. For the transition from thegpr to the
gpv current one must set (tW1•tW2)→(tW2)3.

a. Pseudoscalar meson

rCR
p 5

1

4M S gpNN

2M D 2D~kW2
2!

~2p!3
$@~12m̃ !$ê1 ,tW1•tW2%12~12g!

3$k̂1 ,tW1•tW2%#sW 1•qW sW 2•kW21@ ê1 ,tW1•tW2#

3~11m̃ !sW 1•QW 1sW 2•kW2%1~1↔2!, ~A10!

rCT
p 50, ~A11!

WC0
p 5@ ê1 ,tW1•tW2#S gpNN

2M D 2D~kW2
2!

~2p!3
sW 1sW 2•kW21~1↔2!,

~A12!
WCR
p 5

1

8M2 S gpNN

2M D 2D~kW2
2!

~2p!3
$2Mq0@~12m̃ !$ê1 ,tW1•tW2%12~12g!$k̂1 ,tW1•tW2%#sW 1sW 2•kW22@ ê1 ,tW1•tW2#

3$sW 1~QW 1
21QW 2

2!sW 2•kW21sW 1QW 2•kW2sW 2•QW 22m̃QW 1sW 1•QW 1sW 2•kW22 i m̃QW 13qW sW 2•kW212kW2sW 1•kW2sW 2•kW2

1sW 1@~12m̃ !qW 212kW2
2#sW 2•kW21@2~21m̃ !kW21m̃qW #sW 1•qW sW 2•kW2%2@ k̂1 ,tW1•tW2#~12m̃ !@ iQW 13qW 1qW 3~sW 13qW !#sW 2•kW2

1$ê1 ,tW1•tW2%@2QW 1sW 1•kW222iqW 3kW22m̃kW2sW 1•QW 12m̃sW 1QW 1•kW21~11m̃ !sW 1QW 2•kW2#sW 2•kW22$k̂1 ,tW1•tW2%

3@~11m̃22g!qW 3~sW 13QW 1!12~12g!iqW 3kW2#sW 2•kW2%1~1↔2!, ~A13!

WCT
p 5

1

4M2 @ ê1 ,tW1•tW2#S gpNN

2M D 2D~kW2
2!2

~2p!3
sW 1kW2•QW 2kW2•QW 2sW 2•kW21~1↔2!, ~A14!

rXR
p 50, ~A15!

rXT
p 5

1

2M
@ ê1 ,tW1•tW2#S gpNN

2M D 2D~kW1
2!D~kW2

2!

~2p!3
kW2•QW 2sW 1•kW1sW 2•kW21~1↔2!, ~A16!

WX0
p 52@ ê1 ,tW1•tW2#S gpNN

2M D 2D~kW1
2!D~kW2

2!

~2p!3
kW12kW2
2

sW 1•kW1sW 2•kW21~1↔2!, ~A17!

WXR
p 5

1

4M2 @ ê1 ,tW1•tW2#S gpNN

2M D 2D~kW1
2!D~kW2

2!

~2p!3
kW12kW2
2

@ 1
2 ~kW1

21QW 1
21kW2

21QW 2
2!sW 1•kW11kW1•QW 1sW 1•QW 1#sW 2•kW21~1↔2!,

~A18!

WXT
p 52

1

2M2 @ ê1 ,tW1•tW2#S gpNN

2M D 2D~kW1
2!D~kW2

2!2

~2p!3
kW12kW2
2

kW2•QW 2kW2•QW 2sW 1•kW1sW 2•kW21~1↔2!, ~A19!
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rWR
p 52

1

8M
~11m̃ !S gpNN

2M D 2D~kW2
2!

~2p!3
$@ ê1 ,tW1•tW2#~sW 1•QW 1sW 2•kW21sW 2•QW 2sW 1•kW2!2$ê1 ,tW1•tW2%sW 1•qW sW 2•kW2%1~1↔2!,

~A20!

rWT
p 5

1

4M
~11m̃ !S gpNN

2M D 2D~kW2
2!2

~2p!3
$@ ê1 ,tW1•tW2#RQsW 1•kW2sW 2•kW22$ê1 ,tW1•tW2%RqsW 1•kW2sW 2•kW2%1~1↔2!, ~A21!

WW0
p 50W , ~A22!

WWR
p 5

1

16M2 ~11m̃ !S gpNN

2M D 2D~kW2
2!

~2p!3
$2@ ê1 ,tW1•tW2#@QW 1~sW 2•QW 2sW 1•kW21sW 1•QW 1sW 2•kW2!1kW2sW 1•qW sW 2•kW2#

1$ê1 ,tW1•tW2%@kW2~sW 2•QW 2sW 1•kW21sW 1•QW 1sW 2•kW2!1QW 1sW 1•qW sW 2•kW2#1@ ê11k̂1 ,tW1•tW2#

3@ iqW 3kW2sW 2•QW 22 iQW 13qW sW 2•kW21~sW 13qW !3qW sW 2•kW2#2$ê11k̂1 ,tW1•tW2%@~sW 13kW2!3qW sW 2•QW 22qW 3~sW 13QW 1!sW 2•kW2#%

1~1↔2!, ~A23!

WWT
p 5

1

8M2 S gpNN

2M D 2D~kW2
2!2

~2p!3
$@ ê1 ,tW1•tW2#~QW 1RQ1kW2Rq!sW 1•kW2sW 2•kW22$ê1 ,tW1•tW2%~kW2RQ1QW 1Rq!sW 1•kW2sW 2•kW2

1@ ê11k̂1 ,tW1•tW2#@qW 3~sW 13kW2!Rq2 iqW 3kW2RQ#sW 2•kW22$ê11k̂1 ,tW1•tW2%

3@qW 3~sW 13kW2!RQ2 iqW 3kW2Rq#sW 2•kW2%1~1↔2!, ~A24!

with

Rq5~12n ret!qW •kW2 , RQ5@~QW 11QW 2!2n ret~QW 12QW 2!#•kW2 . ~A25!

b. Vector meson

rCR
r 50, ~A26!

WC0
r 50W , ~A27!

WCR
r 5

gV
2

8M2

D~kW2
2!

~2p!3
$2@ ê1 ,tW1•tW2#@~112kV!~22kW21qW !1 i ~112kV!sW 13QW 122i ~11kV!sW 13QW 212~11kV!2sW 13~sW 23kW2!#

2$ê1 ,tW1•tW2%@2QW 212i ~11kV!sW 23kW21 i ~112kV!sW 13kW2#%1~1↔2!, ~A28!

rXT
r 52@ ê1 ,tW1•tW2#gV

2
D~kW1

2!D~kW2
2!

~2p!3
k0

~1!1~1↔2!, ~A29!

rXR
r 5@ ê1 ,tW1•tW2#

gV
2

2M

D~kW1
2!D~kW2

2!

~2p!3
@qW •QW 11 i ~11kV!~sW 13kW1!•qW #1~1↔2!, ~A30!

wherek0
( i ) is the energy transfer on thei th nucleonk0

( i )'
1
2M

kW i•QW i :

WX0
r 52@ ê1 ,tW1•tW2#gV

2
D~kW1

2!D~kW2
2!

~2p!3
kW12kW2
2

1~1↔2!, ~A31!

WXR
r 5WXR;C

r 1WXR;trans
r 1WXR;q0

r , ~A32!

WXR;C
r 5@ ê1 ,tW1•tW2#

gV
2

4M2

D~kW1
2!D~kW2

2!

~2p!3
kW12kW2
2

$QW 1•QW 21
1
2 ~112kV!~kW1

21kW2
2!1 i 12 ~112kV!@~sW 13QW 1!•kW11~sW 23QW 2!•kW2#

2 i ~11kV!@~sW 13QW 2!•kW11~sW 23QW 1!•kW2#2~11kV!2~sW 13kW1!•~sW 23kW2!%1~1↔2!, ~A33!
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WXR;trans
r 5@ ê1 ,tW1•tW2#

gV
2

4M2

D~kW1
2!D~kW2

2!

~2p!3
1

2
qW 3$2QW 13QW 21 i ~11kV!@~sW 23kW2!3QW 12~sW 13kW1!3QW 2#

1~11kV!2~sW 13kW1!3~sW 23kW2!%1~1↔2!, ~A34!

WXR;q0
r 5@ ê1 ,tW1•tW2#

gV
2

2M

D~kW1
2!D~kW2

2!

~2p!3
q0
2

@~QW 12QW 2!1 i ~11kV!~sW 13kW12sW 23kW2!#1~1↔2!, ~A35!

r̂W
r 50, WW

r 50W ~static limit!. ~A36!

c. Scalar meson„d,s…

rCR
d 50, ~A37!

WC0
d 50W , ~A38!

WCR
d 5

gdNN
2

8M2

D~kW2
2!

~2p!3
$2@ ê1 ,tW1•tW2#~qW 1 isW 13QW 1!1$ê1 ,tW1•tW2%~2QW 11 isW 13kW11 isW 13qW !%1~1↔2!, ~A39!

rXT
d 5@ ê1 ,tW1•tW2#gdNN

2
D~kW1

2!D~kW2
2!

~2p!3
k0

~1!1~1↔2!, ~A40!

rXR
d 50, ~A41!

WX0
d 5@ ê1 ,tW1•tW2#gdNN

2
D~kW1

2!D~kW2
2!

~2p!3
kW12kW2
2

1~1↔2!, ~A42!

WXR
d 52@ ê1 ,tW1•tW2#

gdNN
2

8M2

D~kW1
2!D~kW2

2!

~2p!3
kW12kW2
2

$~QW 1
21QW 2

2!1 i @sW 1•~kW13QW 1!1sW 2•~kW23QW 2!#%1~1↔2!, ~A43!

r̂W
d 50, WW

d 50W ~static limit!. ~A44!

In the Bonn potentials, different coupling constants and cutoffs have been used for thes meson in the isospinT50 and
T51 channels. With the help of the isospin projection operatorsP05

1
4(12tW1•tW2) andP15

1
4(31tW1•tW2) this can be viewed

as a superposition of the exchange of effectively four scalar mesons:

Vs5 1
4 ~12tW1•tW2!V

s01 1
4 ~31tW1•tW2!V

s1. ~A45!

3. Boost operators

In the following section we use the short notationVxa
B 5 i @x,Va

B#, whereB indicates the exchanged meson,x the kinematic
or potential-dependent boost generator, anda the type of operator. The boost operators are given here with respect to the
state c.m. frame (PW f50W ):

rx0N
5

ê1
16M2 @qW 212irW•qW ~pW 2 1

2qW !•qW 12i „~sW 12sW 2!3pW …•qW #1~1↔2!, ~A46!

Wx0N
5

ê1
16M3 „2qW ~pW 2 1

2qW !•qW 1$qW 212irW•qW ~pW 2 1
2qW !•qW 12i @~sW 12sW 2!3pW #•qW %pW 2

1

2
qW …1

ê11k̂1

16M3

3$~pW 2 1
2qW !qW 22qW ~pW 2 1

2qW !•qW 1 ipW 3qW sW 1•qW 1 isW 13qW @ 1
2qW

21 irW•qW ~pW 2 1
2qW !•qW 2 i ~sW 23pW !•qW #%1~1↔2!, ~A47!

Wx0K
p 5@ ê1 ,tW1•tW2#

1

8M2 S gpNN

2M D 2D~kW2
2!

~2p!3
$@~pW 2kW !sW 1•qW 2qW sW 1•~pW 2kW !1 i ~pW 2kW !3qW 1sW 1irW•qW ~pW 2kW !•qW #sW 2•kW2

1sW 1@sW 2•kW2
1
2qW

21sW 2•~pW 2kW !qW •kW22sW 2•qW ~pW 2kW !•kW21 i ~pW 3qW !•kW #%1~1↔2!, ~A48!
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Wx0X
p 5@ ê1 ,tW1•tW2#

1

8M2 S gpNN

2M D 2D~kW1
2!D~kW2

2!

~2p!3
kW @sW 1•~pW 2kW !sW 2•kW2qW •kW12sW 1•kW1sW 2•~pW 2kW !qW •kW21sW 1•kW1sW 2•qW ~pW 2kW !•kW2

2sW 1•qW sW 2•kW2~pW 2kW !•kW12sW 1•kW1sW 2•kW2
1
2qW

22sW 1•kW1ikW•~pW 3qW !2sW 2•kW2ikW•~pW 3qW !2sW 1•kW1sW 2•kW2irW•qW ~pW 2kW !•qW #

1~1↔2!, ~A49!

Wx0X
r 52@ ê1 ,tW1•tW2#

gV
2

8M2

D~kW1
2!D~kW2

2!

~2p!3
kW @ 1

2qW
21 i ~sW 12sW 2!•~pW 3qW !2 i ~sW 12sW 2!•~kW3qW !1 irW•qW ~pW 2kW !•qW #1~1↔2!,

~A50!

Wx0X
d 5@ ê1 ,tW1•tW2#

gdNN
2

8M2

D~kW1
2!D~kW2

2!

~2p!3
kW F12qW 21 i ~sW 12sW 2!•~pW 3qW !2 i ~sW 12sW 2!•~kW3qW !1 irW•qW ~pW 2kW !•qW G1~1↔2!,

~A51!

rxVN
p 5~$ê1 ,tW1•tW2%1@ ê1 ,tW1•tW2# !

1

16M
~12m̃ !S gpNN

2M D 2D~kW2
2!

~2p!3
~sW 1•kW2sW 2•qW 2sW 1•qW sW 2•kW2!1~1↔2!, ~A52!

WxVN
p 5

1

32M2 ~12m̃ !S gpNN

2M D 2D~kW2
2!

~2p!3
ˆ~$ê1 ,tW1•tW2%1@ ê1 ,tW1•tW2# !~2pW 2qW !~sW 1•kW2sW 2•qW 2sW 1•qW sW 2•kW2!

1~$ê11k̂1 ,tW1•tW2%1@ ê11k̂1 ,tW1•tW2# !

3@sW 1~sW 2•kW2qW
22sW 2•qWqW •kW2!1sW 1•qW ~kW2sW 2•qW 2qW sW 2•kW2!2 ikW3qW sW 2•qW #‰1~1↔2!. ~A53!

4. Dissociation currents

The leading terms of the dissociation currents are according to@51#

Wgpr52 i f gpr~qm
2 !~tW1•tW2!

gpNNgrNNggpr

2Mmr

Dp~kW2
2!Dr~kW1

2!

~2p!3
kW13kW2sW 2•kW21~1↔2!, ~A54!

Wgpv52 i f gpv~qm
2 !~tW2!3

gpNNgvNNggpv

2Mmv

Dp~kW2
2!Dv~kW1

2!

~2p!3
kW13kW2sW 2•kW21~1↔2!, ~A55!

where one has to multiply each meson-nucleon vertex with the corresponding hadronic form factor:

Dp~kW2
2!DB~kW1

2!→ f p~kW2
2! f B~kW1

2!Dp~kW2
2!DB~kW1

2!, BP$r,v%. ~A56!

Because the dissociation currents are purely transverse, we did not construct the vertex currents for them.

5. D-isobar currents

For theND transition current we restrict ourselves to the dominant magnetic dipole excitation of theD:

rDN
M15e

GDN
M1

2MMD
i ~sW DN3qW !•pW ~tWDN!3 , ~A57!

WDN
M15e

GDN
M1

2M
isW DN3qW gN~tWDN!3 , ~A58!

with

qW gN5
MqW 2q0pW

MD
. ~A59!
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The spin ~isospin! transition operators are denoted b

sW DN (tWDN) andMD51232 MeV. The contribution propor

tional to pW in the charge density enters through Galilean
variance.

The static exchange currents involvingND configurations
are constructed consistently with the corresponding tra
tion potentials. The analytic expressions can be obtained

rectly from the static pion-exchange currentsWC0
p andWX0

p in
fe

ys

y

s

y

-

i-
i-

Eqs. ~A11! and ~A16! by substitutinggpNN
2 by gpNNgpND

and replacing the spin~isospin! operators by the correspond
ing transition operators. In the case ofr exchange we have
considered the Pauli currents only, which are obtained fr
the contributions proportional to (11kV)

2 in WCR
r and

WXR;C
r in Eqs. ~A28! and ~A33! by substitutinggV

2(11kV)
2

by grNN(11kV)grND . The corresponding vertex current
which, however, turn out to be almost negligible, are co
structed as well.
v.

v.

nd

n,

s.

S.
S.
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