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Neck formation and deformation effects in a preformed cluster model of exotic cluster decays
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Using the nuclear proximity approach and the two center nuclear shape parametrization, the interaction
potential between two deformed and pole-to-pole oriented nuclei forming a necked configuration in the overlap
region is calculated and its role is studied for the cluster decay half-lives. The barrier is found to move to a
larger relative separation, with its proximity minimum lying in the neighborhood ofghalue of decay and
its height and width reduced considerably. For cluster decay calculations in the preformed cluster model of
Malik and Gupta, due to deformations and orientations of nuclei(ehwpirica) preformation factor is found
to get reduced considerably and agrees nicely with other model calculations known to be successful for their
predictions of cluster decay half-lives. Comparison with the earlier case of nuclei treated as spheres suggests
that the effects of both deformations and neck formation get compensated by choosing the position of cluster
preformation and the inner classical turning point for penetrability calculations at the touching configuration of
spherical nuclei[S0556-28137)04612-2

PACS numbds): 23.70:+j, 23.60+¢, 21.60.Gx

[. INTRODUCTION of the parent nucleus anlg; is the touching configuration
radius of the cluster and daughter nugleChoosing the
The models of exotic cluster decays are broadly classifie(R;) =Q value of decay, the potentif(R,<R<R,) is
[1] as the preformed cluster modgBCM) and the unified either approximated as a polynomi@-5] (second order,
fission modelfUFM). They are mainly distinguished by the third order, or a simple power Igver avoided completeljg]
inclusion or noninclusion of the concept of cluster preforma-py choosing the inner turning poiR,=R, in the WKB
tion probabilityP,. The inclusion ofP, in PCM refers to the  integral. In this later work8], the cluster preformation prob-
nuclear structure effects present in the decaying nucleugpility is also calculated atR=R,. Alternatively, the
which are completely ignored in fission models. Thus, thepijrac-8, the Michigan-3 YukawaM3Y) or the Christensen
decay constant (or the decay half-life timé;,=In2/\) in " and Winther(CW) interactions[6,7,9] are used, which are

a PCM is given by strongly attractive in the interior region such that the inner
turning pointR, is defined at a point wheN(R,) = Q value.
Aecm= PovoP, @D Here R.>Rg.

In this paper, we attempt to determine the interaction po-
tential for the overlap region, i.e., th&(R<R;), using the
2 nuclear proximity approach10,11 for deformed and ori-
ented nuclei, and study its influence on exotic cluster decay
Here, v, and P are respectively the barrier assault frequencyproperties of nuclei via the PCM of Malik and Gupit8].
and the barrier penetration probability. The straightforwardThe neck formation effects are also included. The model of
difference between Eq¢l) and (2) allows us to associate Malik and Gupta, which is reasonably successful and is ap-
(with UFM) an empiricalP, plied extensivelyf12—18, uses the nuclear proximity poten-
tial between spherical nuclei f&®= R, and avoids using the
potential in the overlap regioR<R,. Thus, the present
work is an extension of the PCM of Malik and Gupta
wherein the missing deformation effects of both the cluster
whose value is unrealistically large-0.1 to 10 for most of  and daughter nuclei are included and the role of neck forma-
the fission modeld2—-6], except for one calculatiofi7]  tion in the overlap region is analyzed. The interesting result
whereP§MP~10"11-1072% depending on the size of emitted of this study is that the barrier is lowered as well as narrowed
cluster (**C to ?Mg) taken to be deformed wherever appli- down significantly and is moved to a larger separation dis-
cable. tance. In the overlap region, the potential energy minimum
One important aspect that remains to be treated properlglue to nuclear proximityis shifted down in the close vicin-
in all the above noted models of exotic cluster decays is théty of the Q value and at a value dR.;,>R,. Thus, for
undetermined nature of the interior part of the interactioncluster decay studies a situation similar to that mentioned
potential where the emitted cluster overlaps with the daughabove for the Diracs, the M3Y, or CW interaction$6,7,9|
ter nucleugRy<R=<Ry; R, is the equivalent spherical radius arises here, too.
In the PCM of Malik and Gupta, for the nuclei treated as
spheres, the preformation factey is calculated theoretically
*Present address: Physics Department, DAV College, Amritsarat the touching point radiusR=R,=R;). In the present
Punjab, India. work, both daughter and cluster nuclei are deformed and the

which in a UFM becomes simply

)\UFM: Vop.
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initial turning point R, refers to an overlappingR,<R;) 2

necked configuration. Thus, in the PCM of Malik and Gupta, Ci= Ri( 1- ﬁz) , (7)

it is an almost formidable task to determine the deformations !

of A—1 nuclei at all possible fragmentations, required for the,,;ip, R=1.28A3-0.76+0.8A, 3. C, represents the
calculations ofP,. One has to invoke the two center shell touching configuration for @&sman central radii.

model for calculating the fragmentation potentidh) which For deformed and oriented nuclei, we follow the method

requires carrying out a three-dimensional minimization in they pmalhotra and Gupt#l1] where, for the geometry of two
deformationsgy,, S, of two nuclei and their necking-in pa- - ayially symmetric nuclei lying in the same plateee Fig. 1
rametere [V(7) is used in the calculations d?;, see be- jn Ref [11])

low], or else resort to some simplifications. One such simpli-

fied calculation has been attempted, which shall be published R sin(#;— a;) — Ry(ay)sin o
separately{19]. Only some results of this calculation are So= sin ¢,

given here. As an alternative way, in this paper we calculate

P&™and compare it with other model calculations which are R sin(6,+ ay) —Ry(ay)sin o

known to give the cluster decay half-lives in good compari- = sin ¢, ' ®)
son with experiment$7,28. A good comparison between

the two Py's would mean the same result for the measuredyith  R,(a;) = Ryi[1+ /85 P5(Cosa;)], i=1, 2, and
and calculated decay half-lives. R0i=1.15Ai1}3. The B, =a;/b; is the ratio between major

In Sec. I, we discuss the nuclear proximity potentialand minor axes. The angles, ; , ando are given in terms
Vp(R) separately for two non-necked deformed and orienteaf the orientation angleg as follows:
nuclei (R=R;) and the necked systenRER;) formed in

exotic cluster decays. The resulting total interaction potential 01— 0,+180=t1 + o+ a1+ ay, (9
V(R) (=Vc+Vp;V; being the Coulomb potential between

the deformed cluster and daughter nucigigiven in Sec. lIl. tan = —R/(a;)/Ri(«a;), (9b)
The PCM of Malik and Gupt8] is briefly sketched in Sec.

IV and our results of the calculation are presented in Sec. V. o=180- 1 — r=a;+ar,— 6,1 0,, (99

Finally, a summary of our results is added at the end in Sec.

VI. For the early very brief reports of this work, see R¢f§. ~ whereR'(a) is the derivative oR(a) with respect tox and
and[20]. dsgl day=0=ds¢/ da5. The anglesy, are the angles between

the radius and the symmetry axis for each nucleus and are
determined from Eq99) by the iterative procedurgll].

The mean curvature radiR for two deformed nuclei,
A. Non-necked surfaces lying in the same plane, can be obtained from the relation

II. NUCLEAR PROXIMITY POTENTIAL

The proximity potential between any two curved surfaces

is given by the “pocket formula’{10] %: 1 . 1 . 1 N 1 08
Vp(R)=47Ryb®(£), 4) R® RuRiz RaRz RuRp  RoRip
with
with {R?(aj) +[R (2;)]232 ‘
o= :i(f?}zéiii_gmgasziffiﬁ . IR (@R — 2R (@) P~ R
| o © Rif’Ri(ai)sma‘{Riz(“i”[Ri’(ai)]Z}l’Z, (100

Ril(ali)COS o — Ri(a(i)Sin o4

Here £=sy/b, the shortest distance, between the sur-
faces in units of b. The surface energy coefficient Wherei=1,2.
y=0.95171-1.7826[(N—Z)/A]? MeV fm 2, and the sur-
face thicknesd[=(7/2v3 In 9t g_gd=~1 fm for t;5_o=2.4 B. Necked surfaces
fm, the thickness of the surface in which the density profile
changes from 90% to 10%. The universal functidré) is
defined for the overlap regiolR<R,), the touching con-
figuration R=R,), and the separated surfacé&XR,). ___

For spherical nucles,=R—-(C;+C,)=R-C,; and R,
the mean curvature radius is defined as

For the overlapping configurationRKR;), the above
method[Eq. (4)] becomes less and less accurate as the over-
lap increases. Therefore, Malhotra and GUgtH have con-
sidered a necked configuration formed by two equal nuclei.
In the following, we extend their derivation to the case of
unequal nuclei, suitable for the exotic cluster decay process
c.c studied here and the collisions between two nonidentical nu-

o _—1-2 clei.
C1+Cy’ © In an adiabatic decafor collision), a two center nuclear
shape with a minimum of energy will be form¢HBig. 1(a)]
whereC; (i=1,2), the Sssman central radii, are related to which can be characterized by major and minor axeand
the effective sharp radR; as b; (related to deformationg,;), respectively, and the neek
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_': N l! FIG. 2. The nuclear proximity potential between the deformed
TR and pole-to-pole oriented decay productsZ3U—2°®Hg+28Mg
SR ) . - ; ’
P allowing no neck(dotted ling and neck(solid line) formation. The
SRV touching configuratiorR; and the new proximity minimunR,,
11:5,’ /’ due to neck effects are also labeled.
(b) c2=¢? (149
FIG. 1. (a) A characteristic two center nuclear shape formed C2(22+22)
during the decay of a nucleus into two equdlshed linesor 52:%22_ (14b)
unequal(solid lineg nuclei. (b) A schematic representation of a bi+b;—-2C
hyperboloid of revolution in one sheet formed due to eqdakhed o i
lines) or unequalsolid line nuclei. Substituting forB andC in (11), we get
Thus, a single indented body in the form of a single hyper- 2 (Z§+Z§)
> . . ; : Vp=myb® 5 —5—— P1(£=0). (19
boloid of one sheet with a hyperboloidal crevice will be bi+by—2e

formed, as is shown in Fig.(h) (solid lines for unequal

nucle). For such a necked system, the proximity potentialFOr two equal nucleiz; =z,, b,=b, and we get the result of
has the forn{10,11] Molhotra and Gupt@l11]. Note that Eq(15) is valid as long

as 2°<(b2+b3).

, B? Figures 2 and 3 illustrate our calculaté@(R) for 2®Mg
Ve=myb® =2 ©1(£=0), (1) decays 0f*U and?*®u nuclei, respectively. In each figure,
the dotted line represents the case of non-necked deformed
and oriented nucleiEgs. (4) and (5) with sy and R given,
respectively, by(8) and(10)] for the most probable pole-to-
pole configuratior{11] (¢;,=0° and #,=180° and deforma-

of Ref.[10]). In order to relatd andC to the parameters of tON parameterg,; taken from Ref[21]. We notice that the
two center nuclear shape in Fig(al (solid lines, we note shape of this potential is very much the same as for non-

that the equation of a hyperboloid of revolution in one sheetN€cked spherical nuclénot plotted herg As already noted
above, this potential is expectEtl0] to be less and less true

y 2 as the overlap increases. Therefore, for the overlap region we
2 + g 1, (12 havg calcglated the potential by using Etp) for the necked
configuration whose two center nuclear shape parameters
_ (the two deformations3,;, B,, and neck parametes) are
gives determined by minimizing the liquid drop energy expressed
in these parameterf22]. This part of the potential for
R=R,,, is shown as a solid line. We notice that the potential
now remains attractive and gives the correct asymptotic limit
of going to zero at the parent nucleus radius, Mp—0 as
the equation of a circle of radius. From Fig. 1a) (solid the neck in Fig. 1a) disappears and the relative separation
lines), we note that az=0, r=€¢ and atz=—z;, r=by; R(=2z;+2,)—0. Also, due to neck formation the minimum
z=12,, r="h,, such that from(13) we get of the potential is shifted to a larg& value and that a part

whereB andC are the semiaxes of the hyperboloid with
along the line of centers arfl;(¢) is the first moment of the
universal functior(5) with ®,(£=0)=—2.0306(from Table |

x?+y?=C? =r?, (13

1+ &2
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of the potential in the overlap regidiR,,<R<R,) is still 7 9 11 13 15 17 i9
given by the pocket formul&4). Thus, the complete nuclear R(fm)

proximity potential for nuclei, with neck and deformation

degrees of freedom included, is composed of two Pars g, 4. The total interaction potenti®(R) =[Vp(R) + Ec(R)]
which are calculated separately, one for the necked configuy; the decay products to be sphefiemg-dashed lineor deformed
ration (R<Rp;,) and other for non-necked deformed, ori- and pole-to-pole oriented nucleolid line) in 234U—2°%Hg+28Mg.
ented nucle(R=R,,). This is the nuclear proximity poten- The dotted line represents the potential for the necked configuration
tial used in the following cluster decay calculations.in overlap region, meeting th® value atR=R,. The dot-dashed
Unfortunately, at present we do not know the way to goand dot-dot-dashed lines show the second-order polynomial inter-

smoothly from a necked to non-necked configuration. polations, respectively, between tfevalue at the parent nucleus
radiusR, and the touching configuratid®, for spherical nuclei and
IIl. TOTAL INTERACTION POTENTIAL the Q value at the new proximity minimurﬁa due to neck forma-

tion and the touching configuratidRr; for deformed, oriented nu-
The total interactior{or scattering potential is given by  clei. The two center nuclear shape for the overlap region and the
touching configurations for both the spherical and deformed nuclei
V(R)=Ec+Vp. (16)  areillustrated, along with the penetration paths for both the cases of
spherical and deformed nuclei, respectively, as short-dashed lines
For spherical nucleE.=Z,Z,e?/R, which for deformed and  and a solid line.
oriented nuclei is shown to be given by different expressions
by different author$23—26. In the following we have used
the one due to Won¢23], given for two nonoverlapping
charge distributions as

Figures 4 and 5 illustrate the total interaction potentials
V(R) for the?®Mg decay 0f?*4U and the*’Si decay of*%u.
The long-dashed lines represent the calculations for both the
cluster and daughter nuclei to be spheres. The minimum due

2 12 2\, 2
szlzze (i (lege ) RZ. 82 P,(cose;) to proximity potential is also shoWnarkedRﬁﬂﬂ in Fig. ).
R 207 R® =1 As in other cluster decay calculatiof-5], the potential at
3\ (7,762 2 R=C, is extrapolated tdQ value atR=R, via a second-
142€ 2 2 order polynomial[see the dot-dashed line, referring to Eq.
+|— i[ Bai 1% : ’
(777)( R3 )Zl Roil BaiP2(cos)] (17 (19) below for R,<R<R, with R,=R, herd.

The solid lines in Figs. 4 and 5 are the results of the
The quadrupole-quadrupole interaction term proportional taalculations for non-neckedor both E- andVp) deformed
B21827 is neglected since it has a short-range character. Fuand(pole-to-pole oriented nuclei and the dotted lines are for
thermore, in the absence of any useable prescription for cathe case wher¢two centey necked shapes are forméir
culating the Coulomb potential for two overlapping de-Vp only). [The potential energy minimum for the case of
formed nuclei, we have used E(l7) also for the overlap non-necked deformed, oriented nuclei is marke®Ras (see
region. For spherical nuclei, the prescription of KermodeFig. 5).] The necked configurations are considered up to a
et al.[27] to calculate the Coulomb potential for necked con-point whereV(R)=Q value. This value oR is denoted as
figurations results in about the same result as foR,. Notice thatR, andR,,, do not match exactly, perhaps
Ec=2,Z,€%R. due to the fact that the Coulomb potential used here is
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130 | , I : : ; IV. THE PREFORMED CLUSTER MODEL
/N 238 a2 The cluster decay constant in a preformed cluster model
, \ Pu—} Hg+" Si (PCW) is given by Eq.(1). In the PCM of Malik and Gupta
/ \ [8], the(spherical cluster and daughter nuclei are considered
to be preformed aR~C; with the quantum mechanical
Y \ probability P, given by the solution of the stationary Schro
‘\] : \ dinger equation in mass asymmetry coordinate
n=(A,—A,)/(A;+A,). This theoretically calculated prob-
ability P, agrees completely with the empirical estimates of
Blendowske and Wallisg28] for cluster masse&,<28 and
suggests a slight increase Bf, for A,>28 which then be-
comes nearly constant f&k,>34 (see, e.g., Fig. 13 in Ref.
[1]; there are no other estimates known #5>28). The
estimates of Blendowske and Walli§@8] are also based on
theoretical calculation$9], made for some light clusters
(A,=<16), and extrapolated empirically up #5,=28. In view
of this early success of PCM of Malik and Gupgahere
both cluster and daughter nuclei were taken as sphdres
the following calculationg(extended for deformations and
neck formation effecls instead of calculatind®, theoreti-
cally, we estimatd® g™ =\¢,{1oP) and compare them with

120

I
o]
-
}
|

110

V(MeV)

90 - R, 1

80 } I I I I I the earlier empirically estimate|, of Blendowske and Wal-
7 9 n 13 15 17 19 liser [28] and our own theoretically calculatdt}, mentioned
R(fm) above.

The tunnelling probability® in the model of Malik and

FIG. 5. Same as for Fig. 4 but foPu—~**Hg+%si. The  Gupta[8] is the WKB penetrability, calculated analytically
potential energy minimum in both the cases of sphef®h) and  for the interaction potentiaV(R) parametrized suitabljEq.
deformed(R,,) nuclei are marked and the fit to the calculated (19), illustrated in Fig. 5 as dot-dot-dashed line for the case
potential for ‘.jeformed a_md Or.iented nulgolid line forR)R‘).to of \}(R) calculated for non-necked deformed and oriented
the parametrized equatid@9) is also showridot-dot-dashed line nuclei(the solid ling]. In earlier calculation§l,8,12—18 for
both nuclei taken to be spheres, Gupta and collaborators
choose the firstinnen turning pointR, at the touching con-
figuration, i.e.R,=C; (or R;) and the secon¢butep turning
gboint Ry, to give theQ value of the reaction, i.eV(R,)=Q
[see Fig. 4, the short-dashed line for spherical nuclei giving
the tunneling patiC; to R; with penetrabilityP , the internal
deexcitation probabilityV;(=1) and then fronR; to R, with
penetrability P,]. Later on, this restriction of choosing

still for non-necked configurationghis is more so for?Si
decay o*®%u in Fig. 9. Thus, the potential betwed®y, and
R, is again intrapolared via a second-order polynomial, alon
with the fit of the calculated potentiésolid line) to Eq.(19)
below for the analytical evaluation of the WKB penetrability
P in Eqg. (20) (the dot-dot-dashed line; the total fit is illus-
trated in Fig. 5 only. It is hoped that for the neck effects

included in the Coulomb potential and the deformation ef—R =R, (or C,) was relaxed20,29 by letting R, to be de-
fects averaged over all orientations, the above-mentioned ir}ée;minted emtpirically(R —-R p) for a reasonagle fit to the
trapola_lted potential would rgpresent the realistic proxlmltymeasured exotic-clusetler f:lnécay half-lives. We obtained
pot\;:vntlal ?r the lg_verlrzp reglgﬁt?ftR; Rtt' def i emp= Rt — AR~ RSPh the position of the minimum in the

© nofice In Figs. & an at due to getormatons an roximity potential for spherical nuclei. The value AR

orientations of nuclei the barrier is lowered as well as nar_s 7. 515 for manya and heavy cluster decays studied
rowed down considerably. Furthermore, it is moved to

larger R value and that the inner part of the interaction poatzg]' In the following, however, for deformed nuclei we

A : “chooseR, itself as the inner turning point, whex(R,) =Q
tential is determined to a good extent. Thus, Y{R,)=Q a . - a
value, R,(~R,;)>R,, in agreement with other models value, and determine the WKB penetrability, given by

[6,7,9 using Diracé, M3Y, and CW interactions. We shall

see in the following sections that for exotic cluster decay 2 (R

studies these effects of deformations, orientations, and neck p:exp( - f [21{V(R)—Q}]YdR] . (18)
formation of nuclei are assimilated by choosiRg in the Ra

neighborhood ofR, (or C,), the touching configuration for

spherical nuclei. In other words, the deformations, orienta-

tions, and neck formations of nuclei neglected in the earlieHere, u=mA;A,/(A;+A,) is the reduced mass witm as
PCM calculation$1,8,12—18 of Gupta and collaborators are the nucleon mass. Note that for spherical nug@tEig-dashed
shown to get compensated by their choiceRgcR, (or C;,)  lines) if we takeR,=R,, Eq.(18) gives the result of Shi and
for both cluster preformation and WKB penetration probabil-Swiatecki[4] which predict very largePg™ (see Table I,
ity. In cluster decay calculation®, refers to inner turning case | forB,,=£5,,=0.0).

point of the WKB penetrability integral. For the potentiaV(R) parametrized as



TABLE I. The penetrabilityP, assault frequency,, producty,P, empirical preformation probabilitP§™, —log,o P§™, and first turning poinR, (fm), calculated for some cluster decays
using the preformed cluster mod€&CM) of Malik and Gupta extended to include the deformations and neck formation effects. Other relevant quantitiefQsuali@asmeasured decay constant
)\exp(sfl) (taken from Ref[1]) and deformationg,; and B,, of the daughter and cluster nuclgaken from Ref[21]) are also listed. Case | or |l refers, respectively, to spherical or deformegz

oriented nuclei. The orientations of the nuclei are fixedat0°, §,=180°, referring to the so-called pole-to-pole configuration. Neck formation effects are included in case Il. g
~
pemP S
Parent Daughter Emitted Q value Nex Bo1 Boo R, vy vP (_ )\exp) g
nucleus nucleus cluster  (MeV) (s‘]% Case (Ref. [21]) (fm) = (s (s " wP —log;o PE™ ;
29Ra  2Rn “He 5.79 2.1%10°° | 0.0 0.0 7.2 4.8%x10°%8 2.89x107° 1.40x1077 1.56x10" -1.19 2
1 0.127 0.0 10.4 3.7810°% 2.89x107° 1.07x10°3 2.05x10°3 2.69 =
210pp Yc 30.53 9.5x10° Y7 | 0.0 0.0 7.2 4.2%10° %8 2.77x107° 1.18x10° Y7 8.03 -0.91 8
I 0.023 0.361 10.2 3.0410 % 5.50x 107° 1.69x10°6 5.62x10 1 10.25 m
2281y 20%pp 200 44.72 7.4&%10°% | 0.0 0.0 7.2 1.6x1074° 2.55x107° 4.13x10°%° 1.80x1072 1.74 O
I 0.054 0.261 10.2 1.08107%8 4.33x107° 4.46x10°8 1.68x10° 14 13.78 Z
234y 210pp 2Ne 58.84 5.9%10 %6 | 0.0 0.0 7.3 5.9810 % 2.77x107° 1.66x10° %3 3.58x10°° 2.45 2
I 0.023 0.430 11.6 9.2810°%6 4.08x 1071 3.79x1074 1.57x10 22 21.80 g
208g 28Mg 74.10 2.001072¢ | 0.0 0.0 7.3 1.66x107%? 2.67x107° 4.27x10°%2 4.68x10°° 4.33 m
1 0.069 0.485 11.7 4.2910%° 3.51x107° 1.50x 10 1.33x10° % 26.89 iy
2py 2P 28Mg 75.93 1.3%10°%8 | 0.0 0.0 7.3 8.6K10°43 2.68x107° 2.31x10 %2 5.97x10°° 4.22 0
1 0.023 0.485 11.7 1.3910°% 6.89x 107° 9.58x10 ! 1.44x10°26 25.84 a
208g 325 91.21 3.4%10°%¢ | 0.0 0.0 7.3 6.4%10 42 2.55x10%° 1.64x10° 2% 2.12x10°° 4.67 Z
I 0.069  0.345 11.6 1.6710°1° 5.75x10%° 9.58x 10" 3.62x10°%8 27.44 :
252t 204py 48Ca 139.50 <8.73x10°Y | 0.0 0.0 75 2.7%107%° 2.14x107° 5.84x107°  <1.50x10? <-2.17
1 0.080 0.101 114 2.8210° Y 5.43x107° 1.53x10* <5.69x10° % <20.24

€ece
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Q+a;R+a,R?, R,<R<R,

V(R)+m(R—R,), R=R<Rp,
V(R)={ Vs—3k(R-Rg)?, Rn<=R=Ry;, (19

V(Ry)—c _ R,=R=R,,

the analytical solution of integral in E418) gives

Va,

5 | (i - L)Yty - L) Y2

al

{[V(Ry) = V(Ry) I¥*~[V(Ry)

P=exp(—% \/ﬂ[

ty
L

- L2< cosh?! ) —cosh?t

L2
3

Rm_ Rt

V(Rm) —V(Ry)

3 1 1
—V(Rp)]*% - T [Ve—V(Rp) [ 62— 3Sin 20,— 0,

N
+3sin 20, ]+ VcR,R,[ 65— 3sin 203]] ) (20

with

a :Ra[Q—V(Rt)] a _ &
! Rt(RI_Ra) ’ 2 Ra’
tlth_%Rai tZZ%Rar
Q—V(Ry)
2_1p2 _Rpy| =17
L 4Ra+Rt(Rt Ra)(Q—V(Rt) ’
Rn—Rs Ry—Rg
6,=cos ! , 6,=cos! ,
Ver, Ver,
[ Ro— Ry V2 2
Oz=tan | ——| , a,=7[Ve—V(Ry)],
R K

~ 2{[Ve— V(R 1"+ [Vg—V(Ry)]¥32
k= (Rn—R)? ’

_ Ry[V(Ry)—V(Ry)]
c= Ro—R. .

Equation(19) means that the first part of the potential from
R, to R, is a polynomial of degree two iR, the second part
from R; to R, is a straight line of slopem, the top part
betweenR,, and R, is an inverted harmonic oscillator and
the rest fromR,, to R, is a Coulomb potential of the type
1/R. The Vg and Ry give the height and position of the
barrier.

Finally, the assault frequenay, is calculated in the har-
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which gives

1

VO:27T

K
VmA
In earlier calculation$8,12—18 based on this model, was
defined in terms of the kinetic energy of the emitted cluster,
obtained as its share of th@ value [vy=(2Q/mMA,)/Ry;

mA, is the mass of the emitted clusteHowever, the order
of 1, is the same for both calculations.

(22

V. CALCULATIONS

The calculated penetrabilitieB, the assault frequencies
1y, the productyyP (called Gamow factokg in the literature
[1]) and the empirical preformation factaPg™ =N\, voP),
along with other characteristic quantities, for various exotic
cluster decays are given in Table | for both the cases, | and
I, of spherical and deformed, oriented nuclei, respectively.
Also, the neck formation effects are included for case Il of
deformed nuclei. We notice that with the inclusion of neck
and deformation effects of both the nuclei, the penetrability
P increases and hence the preformation fadegf™® de-
creases considerably. The increasePiroccurs due to the
lowering and narrowing down of the barrier by the inclusion
of neck and deformation effecteefer to solid line in Figs. 4
or 5).

Table | shows the results af decay calculated for the
22Ra parent. We notice that, for the case of deformation and
neck effects included, ouP{™(a)(=2.05x1073) is very
close to the empirical estimaf®(«)=6.3x10"3] of Blen-
dowske and Wallisef28] for all parents. In view of this
result, in the following we have normalized oB§™c) to
Po(a) of Blendowske and Wallisg28] and plotted the loga-
rithms of this ratio in Fig. 6 as a function of cluster ma#ss
For comparisons, we have also plotted in this figure the em-
pirical results of Blendowske and Wallis¢28] [marked
BW; given by the expression Py(c)/Py(a)
=(6.3x103)A2-95 for even mas#,<28] and another cal-
culation due to Sadulescuet al.[7] (marked SGGCMcon-
taining the deformation effects of only the emitted clu&er
The following results are evident{i) Our calculated
PE™c)/Py(a) for A,=<20 match exactly with that of Blen-
dowske and Wallisef28]. As already reminded before, the
microscopic calculation§9], on which Blendowske and
Walliser [28] based their empirical formula, were limited to
lighter clusters (A,<16) only. (ii)) Beyond A,=20, the
straight line prescription of Blendowske and Walli§@8]
does not seem to hold true, but the calculations afidSa
ulescuet al. [7], which include the deformation effects of
only the clusters, are much closer to the present calculations

monic oscillator approximation of the potentia' around which have the neck formation and deformation effects in-

R=R,,

V(R)=Q+;K(R-Ry)? (21)

cluded for both the cluster and daughter nuclei. Rg=32,
the best straight line representation of our calculations is
given by
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(=3.46x10%° s) by some orders of magnitude. This means

that the calculated barrier, with deformations of nuclei in-

':’ gazsgé‘t cluded in the model of Royer and collaborators, is underes-
-timated for this case. Further calculations and their details

30 I I I t I

25 Lo Bw X i
will be published elsewhere.
S
ToR20+
N VI. SUMMARY OF RESULTS

Based on the nuclear proximity approdd®,11], the in-
teraction potential between any two deformed and pole-to-
pole oriented nuclei forming a necked configuration in the
overlap region is estimated. An asymmetric two center
nuclear shape parametrization is used for the necked configu-
ration. It is shown that due to deformations and orientations
of nuclei, both the barrier height and width are reduced con-
siderably. Also, the barrier position is shifted to a much

10 0

10 +

~log [P*™P(c)/
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largerR value and the energy minimum due to proximity is
“/ u = oy g g, §h|fted down in the very neighborhood of tﬁp\_/alue with
0 e . c[ ‘} MNI %"[g 8sl . . CI its R value, theR,,;,, much larger than the radilg, of the
4 12 2'0 2I8 3|6 4'4 compound nucleus. The role of the neck is shown to modify

the nuclear potential around the proximity minimy®.;,)
by a small amount, as well as in obtaining the asymptotic
limit of the nuclear proximity potentia]Vp(Ry)—0] cor-

FIG. 6. The logarithms of the empirical cluster preformation rectly. Since the neck formation effects on Coulomb poten-
probabilities relative to the a-particle preformation factor tig| petween spherical nuclei are found to be negligible, the
[Po(a)=6.3x10"°] taken from Blendowske and WallisE28] plot-  same between deformed nuclei are expected to be small and
ted as a function of mass numbej of the emitted cluster for the ) + ihe potential energy minimum exactly at @evalue.

PCM of Malik and Gupta extended to include both the deformation£ For exotic cluster decay studies, the preformed cluster

and neck formationsfilled circles and solid lines compared with . . -
the empirical estimates of Blendowske and WaIIiE&?] (dashed model of Mghk and Gupta[_8] is extended to include the
line, marked BW and the calculations of “Bdulescuet al. [7] above-mentioned deformation effects of both the er'nltte.d
(open diamonds, marked SGGEHhe solid lines gives only the cluster and the daughter n_ucleus. Also, neck formation is
average behavior of the present calculations. allowed for the overlap region. These effect_s are show_n_ to
reduce the calculated empirical preformation probability
considerably and in agreement with other earlier estimates
based on shell mod€g28] and the M3Y potential with defor-
—logyp Pg™c)=2.69+0.8839A,—4). (23)  mation effects of the cluster alone included ih7i. Appar-
ently, this result speaks of the success of our model for the
cluster decay half-lives since the above noted earlier model
(i ) P§™Pdecreases up to cluster mass=32 and then starts calculationg7,28] are known to give good comparisons be-
to increase, which agrees with our earlier resiltd4] (e.g., tween their calculated’,,, values and the experimental data.
compare the solid line in Fig. 6 with the solid line in Fig. 13 In order to illustrate this result, an explicit model calculation
of Ref. [1]). Thus, comparing our present calculations withfor the decay half-life is also given. _
the earlier calculations of Gupta and collaborafdr$,12— _ Furthermore, the variation —of our estimated
18] for spherical nuclei, it seems that the neck formation and”0 1)/ Po(@) with cluster mas#, here matches with the

deformation effects of the cluster and daughter nuclei ingarlier theoretical estimates of Gupta and collaborators

cluded in the present calculations get compensated in th[el’s’lz_18 using the same model as here but for spherical

earlier calculations by their choosing the cluster preforma-nUCIe" The preformation factor as well as fifgtney turning

tion and first turning pointof WKB penetration integralat point are taken at the touching configuration of spherical

the touching configuration of spherical nuclei which is closeCIuSter and daughter nuclei. This result suggests that the ef-
. g contig - P ) . g fects of neck formation and deformations of cluster and
to inner (proximity) minimum of interaction potential

o sph daughter nuclei in the present calculations get compensated
(Ry=C, or ~Rmpy), rather than at th@ value. , in the earlier calculations of using spherical nuclei by start-

Finally, a smpllﬁed model .calcula_tlor) is also carried out ing the decay procesboth cluster preformation and the pen-
[19] by determiningP, at R, in the liquid drop model of  gtrapility) at the touching configuration of the spherical clus-
Royer and collaborator§30], with shell effects included ter and daughter nuclei. This is an important result for
from Myers and Swiatecki31]. For **Mg decay of**U,  practical applications of the PCM of Malik and Gupta since,
both taken to be deformed, we obtay=1.82<10"° and  as already stated in the Introduction, the estimation of the
T1,=1.6x10% s. Apparently,P, here compares rather well deformations of all the possible fragmentations of a parent
with the P§™P estimated abové=4.7x10° from Table ) at  nucleus(for calculating the cluster preformation probability
the sameR, but Ty, is off from the experimental value are a rather tedious job.

Ay
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