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Inverse scattering with singular potentials: A supersymmetric approach
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By using potentials with a singularity at the origin, the inverse scattering problem at fixed orbital momentum
| can be decomposed in two parts. First, the unique singular potential without a bound state corresponding to
a given phase shift is constructed; then, bound states may be added without modifying the phase shift. The first
step, called the singular inverse problem, is discussed. When the phase shift is smaller at high energies than at
zero energy, the obtained effective potential has a repulsive core of thevform1)r~2 wherew is larger
thanl. If the S matrix can be approximated by the product of 8mmatrix of a reference potential by a rational
function of the wave numbek, the singular potential is a generalized Bargmann potential. It can be con-
structed with supersymmetric transformations of the reference potential. Each transformation adds a pole to the
S matrix. The repulsive core parameteof the final potential is equal tbplus the difference of the number
of added poles in the upper and lower hklfplanes. This generalized Bargmann potential as well as its
solutions can be expressed in terms of the reference potential and of Wronskians of its solutions. As an
application, we invert the phase shifts of neutron-proton and proton-pi&gpelastic scatterings and obtain in
both cases as=1 singular nuclear potential with two wells. In the neutron-proton case, this potential is
compared with a regular potential obtained from a Gel'fand-Levitan-Marchenko inversion method.
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I. INTRODUCTION lem becaus@\ arbitrary normalization constants are simulta-
neously introduced2]. Moreover, in many casel3], the
The standard approach to the inverse-scattering problemtifference between the zero- and infinite-energy phase shifts
[1] at fixed orbital momentum only considers potentialscannot be explained only with physical bound states. The
which are “regular” at the origin, i.e., less singular than remaining difference is due to the effect of the Pauli prin-
r~2. In fact, if the Schidinger equation of a given partial ciple between composite particles: The phase-shift difference
wave is considered as a one-dimensional problem, the corrés related to the occurrence of a number of so-called “for-
spondingeffectivepotential is singular because of the cen-bidden states”[4,5]. The inverse problem then becomes
trifugal part of the kinetic energy, except for thevave. This  even more ambiguous because both the energy and normal-

effective potentiaM(r) verifies ization choices for the forbidden states are arbitrary.
In the supersymmetric approach applied to the construc-
I(1+1) tion of phase-equivalent potentials, ‘“singular” potentials
V(r) — >, (1) naturally appear when bound states are removed from a regu-
r—o T lar potential[6—10. Near the origin, the corresponding ef-

fective potentials verify
wherel is the orbital momentum. This well-known property
apparently relates the singularity of the effective potential to v(v+1)
the symmetry of the partial wave. At large distances, the Vv(r) — T2 2
Schralinger equation must reproduce a free-particle or Cou- =0
lomb motion. Therefore, the asymptotid +1)r ~2 form of

V(r) for r tending towards infinity is physically related to Whereéw is an integer, larger than the orbital momentum. In
the partial wavel. However, this is not the case for the Many respects, these singular potentials do not behave dif-

singularity of V(r) at the origin. The distinction between ferently from regular ones. However, the difference between

regularity and singularity is not crucial for the resolution of the phase shifts at zero and infinite energies is related to

the equation or for the calculation of scattering propertiestrough the generalized Levinson theorgh]

We show below that using singular potentials, i.e., potentials
which do not satisfy Eq(1), opens new approaches for in- 8(0)— 8()=[N+3(v—1)]m, (€
verse scattering.

When the phase shift does not tend at high energies to itwhere N is the number of remaining bound states of the
zero-energy value, inversion procedures with regular potenpotential. We have conjectured that this theorem remains
tials require the introduction dfl bound states, wherd is  valid even in the presence of a Coulomb interacfibg|.
related to the phase shift by the Levinson theorem: This theorem suggests a new approach to the inverse
8(0)— 8()=Ns. Even when theN bound-state energies problem: From a phase shift at fixédit is always possible
are physically known, ambiguities occur in the inverse prob+to determine asingular potential without any bound state.
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The parameter of the singular repulsive core of this potentiaHere, A, is the first-order differential operator,
is, according to Eq(3) with N=0,

d
2 A6=—5+W(r), 9
V:|+;[5(0)—5(oo)]. (4)

whereW(r) is called the superpotential. With this form, Eq.

Because of the lack of a bound state, this potential is uniqug8) provides
In the following, the problem of constructing this singular
potential from the phase shift will be referred to as #ire-
gular inverse problemThe regular or traditional inverse
problem can consequently be solved in two stdpsdeter-
mining the solution of the singular inverse problem, whichand a second-order linear differential equation for the super-
only depends on scattering data, giigladding given bound potential. Equation5) implies that the general solution of
states with given normalization constants to the spectrurthis equation is
without modifying the phase shifts.

As already shown in10], pairs of supersymmetric trans-
formations can perform stejii). To our knowledge, stefi)
has not been addressed yet. It can be performed with good
accuracy bysingle supersymmetric transformations, as ex-which depends on two independent variables: an energy
plained in this paper. Let us emphasize here that singulaf= «? and a “shape parameter” which determines the shape
potentials can probably be obtained with slight modificationsof the factorization solutiogg(«,r). Notice that the normal-
of other inversion methods. However, supersymmetry hagation of ¢(«,r) does not play any role in Eq11).
various advantages: It is quite simple, it allows one to solve With the transformation operato(8), H, andH, are su-
both the singular inverse problem and the addition of bounghersymmetric partners; i.e., they can be factorized as
states, and it treats the Coulomb interaction without muciH,=AJ A7 + £ andH,=A, Aj + &, whereA; is the adjoint
additional complication. operator of Ay . The energy€ is called the factorization

In Sec. I, the principle of single supersymmetric transfor-energy, and the solutiomo(«,r) is called the factorization
mations is recalled and the corresponding modifications o§ojytion. In applications of supersymmetry, the factorization
the S matrix are studied. In Sec. lll, the singular inverse gnergy is generally reak(is purely imaginary, whereas we
problem is solved by iteration of supersymmetric transformasna| allow this parameter to be complex.
tions when theS matrix is the product of a referen@ma- We now examine which kind of factorization energies and
trix by a rational function of the wave number. We then so|ytions are necessary to solve the singular inverse problem.
apply the method to the nucleon-nuclet®, elastic scatter- |n general, four types of combined boundary conditiéas

d
Vl(r):VO(r)_zaW(r) (10

)

W(r)_ ¢O(K7r)’

(11)

ing in Sec. IV and conclude in Sec. V. the origin and at infinity are possible for the factorization
solutionq(k,r), corresponding to four types of transforma-
[l. SINGLE SUPERSYMMETRIC TRANSFORMATIONS tion. Each transformation type has a well-known effect on

the potential spectrurfil4]. When the solution is normaliz-
able(regular at the origin and at infinitythe transformation
removes the corresponding bound state from the spectrum.
When the solution is neither regular at the origin nor at in-
finity, the transformation adds a bound state to the spectrum.
In general, these two transformations are applied with real
2 factorization energies to Hamiltonians involving real
Ho<p0(k,r)z( - d7+v0(r)) eo(k,r)=K2po(k,r), (5)  potentialst In this case, the factorization solution can be cho-
sen to be real, and consequently the transformed potential is
whose solutionspg(k,r) are known, analytically or numeri- a}lso real. Whereas these tvyo transformation ty(mispec-
cally. These solutions allow one to construct a new Schrolively denoted byT, and T, in Ref. [15], and byT. and

dinger equation for the same orbital momentum, T_ in Ref.[8]) are essential to modify the bound spectrum of
potentials, they are of no interest here since we deal with

) potentials without bound spectrum.
pa(kr)=k%¢i(k,r), (6) The remaining two types of transformation, which do not
modify the bound spectrum, will both be used in the follow-
whose solutions are analytically expressed in terms ofng. When the factorization solution is regular at the origin
eo(k,r) by and exponentially increasing at infini(gespectively singular
at the origin and exponentially decreasing at infipitiy is
e1(k,r)=Ag @o(k,r). (7)  denoted bye(«,r) for left regular[respectivelyoR(«,r)
for right regulaf and the transformation by“ (respectively
The linear operatoA, satisfies the characteristic intertwin-
ing relation of transformation operatdr6],

Let us first recall the principle of supersymmetfis Dar-
boux transformations[13—-15. Consider a given Schyo
dinger equation at fixed orbital momentunior a complex
wave numbek (in unitsz=2u =1, whereu is the reduced
mass of the system

2

d
H1<P1(k:|’)5< - W+V1(f)

3 3 in recent works on complex optical potentiqls7, 12, complex
AgHo=HiA, . 8 factorization energies are employed.
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TR)_ In Ref.[15], this transformation is denoted By (re- TABLE I. Main properties of supersymmetric transformations
spectivelyT,), while in Ref.[8] it is denoted byT9 (respec- used fqr solving the_s_ing_ular inverse problem: location of additional
tively T%). In the following, superscripts thus provide the SMatrix pole, modification of the asymptotic value of the phase
type of factorization solution, while subscripts are reserveth'ﬁ‘ and modification of the potential singularity at the origin.
to numbering Schidinger equations, potentials, and solu- . . . . .
tions of equagtions. Wr?en sglving the Fs)ingular inverse prob-Tr"’meorm"’ltlorl S-matrix pole Phase shift Singularity
lem, both transformations may be used with complex factor-
ization energies. Consequently, the transformed potentiafs" (left regulay Imx>0 51(30):50(00)_7_7 vi=vp+1
may also be complex; however, as will be seen in the next 2
section, successive transformations can be used to derive
real final potential. Since we deal with potentials without a
bound state, botlh. and R solutions have no node at finite
distance. Consequently, the supersymmetric transformations
do not introduce any singularity in the potential at finite dis-When no Coulomb term is present, the Sommerfeld param-
tance, since the superpotent(r) given in Eq.(11) has no  eter is zero, and the difference betweéénandV, decreases
singularity except possibly at=0. faster thanr 2 at infinity. We shall see later that the
The singularity of the potential at the origin is modified 2i 7r ~2 term of Eq.(16) can be canceled when successive
by the supersymmetric transformations: If the initial poten-transformations are applied, even in the presence of a Cou-

TR (right regulay Imx<0 51(00):50(00)4-7—27 vi=vo—1

tial Vo(r) satisfies lomb interaction. The 2 term in the asymptotic form of
both the initial and final potentials is then clearly related to
vo(vo+1) the orbital momentuml, which is the same for both
Volr )r_’or—z ’ (12 potentials’

Equation(7) provides a relation between scattering states
of Vo and V;. The asymptotic form of this equation, com-
bined with Eqs(9), (11), and(15), relates the phase shifts of
Vo andV4, namely,

wherevy=1 for a regular potential and,>1 for a repulsive
singular potential, arl. (respectivelyR) solution behaves
like ro*? (respectivelyr ~*0) for r—0. A series expansion

of Egs.(10) and (11) then implies that the transformed po- k
tential V,(r) satisfies 51(k)= 5o(k)+arctan|—K. (17
Vy(r) — Vl(v—l;rl) (13 When « is purely imaginary € purely real, this formula
r-o reduces to the expression of REE5], up to a difference of

712 due to a different choice of the value for the final
with v, =v,+ 1 (respectivelyy; = v,—1). In this article, we potential (see footnote 2 For the sake of simplicity, we
limit ourselves tov=0 potentials; hence, we shall not apply make in this article the phase conventio0)=0, as in
a TR transformation to a potential witl,<1 (this case is Refs.[11] and[18] in the absence of a bound state. The
discussed elsewhef&]). potential singularity at the origin is then directly related to

The asymptotic behavior of the initial potential reads  the asymptotic value of the phase shift.
From Eq.(17), the S matrices are related by
2yp(kk 1(1+1)
Vo(r) — + 7 (14 k+Kk
e ' Su(k) = So(k) -

(18

where (k) =Z,Z,/2k is the dimensionless Sommerfeld pa-
rameter =4mey=1). BothL andR solutions then behave
as

A supersymmetric transformation thus introduces an
S-matrix pole atx. The main characteristics of tHE- and

TR transformations are summarized in Table |. One can
verify that the phase-shift modification is in agreement with
the generalized Levinson theordB) and with the modifica-
tion of singularity(13) at the origin.

Formula(18) can also be obtained from the modification

of the Jost function by supersymmetric transformations. In

(PO(Kar) N e*iKr+i7](K)|n(2iKr)[l+Go(r)], (15)

r—oo

where « is chosen to lie in the uppdrespectively lower
half k plane for anL (respectivelyR) solution in order to
ensure the appropriate asymptotic behavior. The function

€(r) tends to zero asymptotically, at least as fast a$;
particular cases are discussed in the next section. Equatio
(10), (11, (14), and(15) imply that the transformed potential
behaves asymptotically as

éln Ref.[15], the orbital momentum is said to change, in contra-
rcllction with the fact that the angular part of the wave function
remains unchanged. This interpretation may have several origins:
(i) the modification of the singularity at the origiiq. (13)] or (ii)

290k 1(1+1)  2ip(x) dzeo(r) the shape invariance of. the Cou!omb potgntlal, Tor which removing
Vy(r) — + 5 ——2 —. the ground state of a given partial walvevith a single supersym-
r—o0 r r dr metric transformation precisely leads to the Coulomb potential of

(16) the partial wavd + 1.
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the Appendix, we express ttf&matrix of a singular potential
in terms of its Jost function by

J.-M. SPARENBERG AND D. BAYE

The final phase shift an& matrix read, by iteration of
Egs.(17) and(18),

- F(=K) g K
SK=(-D"" &q5 (19) Su(K) = 8o(K)+ >, arctan— (25)
( ) m=1 |Km
and we show that the modifications of the Jost function byan d
supersymmetric transformations read
k M Kmt
_ L - Su(k)=Sy(k -, 26
F1(k)=Fy(Kk) —x T transformation, Inv>0), m (K) = So( )1_:[1 k=K (26)

(20
For a real potential, th& matrix has to be unitary; this is the
case if and only if the poles are symmetric with respect to the
imaginaryk axis.

The asymptotic difference between the potentials is, by
repeated application of E¢16),

(TR transformation, Ik<0).
(21

F1(k)=Fo(k)

Equations(19)—(21) lead to Eq.(18). Since the multiplica-
tive factors in Egs(20) and(21) do not vanish in the upper
half k plane, no bound state is introduced By and TR
transformations. TheS-matrix poles in the upper halk
plane, introduced b¥' transformations, correspond to poles (27
of the Jost function in the lower half plane. This confirms When th | tric with t10 the i :

that these transformations do not modify the bound spec- en the poles are symmetric with respect 1o the imaginary
trum, as stated above. k axis, thg first term appearing in the _rlght—hand .Slde of thls
equation is purely real. Since we are interested in potentials
decreasing faster than 2 at infinity, this term should van-
ish. Of course, it disappears when the potential contains no
Coulomb term. Moreover, when the initial potential is short

Supersymmetric transformations can be iterated: FactoriZ2nged, i.e., exponentially decreasing at infinity, the
ing Eq. (6) corresponding td/; can in turn give a new po- €m—1(r) functions are also exponentially decreasing. (_Zonse-
tential V,, and so on. In some cases, the final potentigl ~ duently, the last term of Eq27) decreases exponentially,
resulting fromM transformations and its solutions can be @nd the initial and final potentials are both short ranged; this
expressed by compact formulas in terms of the initial soluiMPplies that they both possess an effective-range expansion
tions ¢o(k,r) only. These cases are reviewed for the full Iine[zz]-, This will be used in thenp case discussed in next
problem in Ref[19] and the formulas can be transposed toSéction. _ _
the radial problem. We only mention here the case of interest e situation is more complicated for a repulsive-
for solving the singular inverse problem. L6, ... Sy Coulomb plus §hort—range |n|t|al_potent|al. In this case, the
with &,=«2 be M distinct factorization energies, Coulomb effective-range expansion re4as]

¢m-1(xm,I) be the corresponding or R factorization so-
lutions, andey(xm,r) be the solutions of the initial equation
of the same type. As mentioned before, subscripts number
Schralinger equations. The final potential reads, by repeated
application of Eqs(10) and(11), where we choosk=0 for simplicity. In this expressiorg is
the scattering length,ry is the effective range, and
h(n)=Re¥(1+in)—Iny, whereV¥ is the digamma func-
tion [24]. In Ref. [23], the existence of an effective-range
expansion(28) is shown to be related to the short-range char-
and can be expressed in terms of solutions from the initiacter of the additional potential. When such an expansion
equation[19-21 as exists, all the coefficients of a Taylor expansion about zero
energy of the phase shift vanish, as can be seen with Eq.

2i &
V(1) =Vo(r) = 7 2 7(sm) —2

—

Y A% a(r)

m=1 dl’ ’

lll. ITERATION OF SUPERSYMMETRIC
TRANSFORMATIONS

2’77 k ro
cotdy+ 2k ph(p) — — S+ Ekz'

7
VIR (28)
e’m7—1 k—0

M
()Dr,‘n—l(Km!r)

d
Vu(r)=Vy(r)—2— ,
m(r)=Vo(r) ar o (k1)

(22

d Wleg(ky,r), ... @o(km,r)] (28). Here, for a repulsive-Coulomb plus short-range initial
V(r) =Vo(r) =24~ Wlog(k1.1)s - ook )] potentialV, the e,,_;(r) functions in Eq.(27) are of order
(23  r %, so that in general the final potential has @ tail.

Consequently, the effective-range expangi2®) is not valid
where W is the Wronskian of the different solutions and after the transformation. In fact, ER5) shows that a Taylor
W’ is its derivative with respect to. The solutions of the expansion of the phase-shift differenég— &, exists about
corresponding Hamiltonian read zero energy. As suggested by BQ7), when the sum of

k! is zero, the first-order term of the expansion and conse-
Wleo(K, 1), @o(k1,r), ... @o(Kpm,I)] quently the slope 0B, — &, at the origin vanish. The next
W[ po(k1,1), - -« 00(km 1) coefficients of the Taylor expansion are in general different

em(k,r)= (24
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from zero and the behavior of the physical phase shift cannot TABLE II. Elastic phase shifts of the nucleon-nuclet®, scat-

be perfectly reproduced at low energies. tering, as functions of the laboratory enerBy,,. Single-energy
The appearance of long-range terms in the inversion potnultienergy at 0.1 MeY phase shiftsdey from Ref. [29] and

tential in the presence of a Coulomb interaction is a draw®hase shiftsy of Eq. (25).

back of the supersymmetric method but also of all inversion

methods based on rational expansi¢®é) of the S matrix. Ban Ok (Ref.[29) 55 555, (Ref.[29])  &5°
However, in practice, this drawback is not really important: (MeV) (deg (deg (deg (deg
The long-range term in the potential tail can be made small, 01 38.42-0.10 38.4 238 0.10 29

and anapproximateeffective-range expansion can be found
when the energies are not very small. This is for instance the 1
case in thepp inversion of Sec. IV B.

63.70-0.10 63.5 54.3%:0.10 54.2
0 59.52+0.10 59.9 53.940.10 54.3

An approximate solution of the singular inverse problem ;2 gi;igﬁ 2(13; iggigﬁ ig'i
can be based on E@26). The first step consists in finding 50 41'87:0'06 41'8 39-1&0.06 39'1
the k, poles, symmetric with respect to the imagin&rgxis, o ' e '
giving the best reproduction of the “experimental” phase 75 33.68-0.26 34.4 31.280.26 32.0
shift. The second step is the inversion itself, i.e., the con- 100 27.550.34 28.0 25.320.34 25.8
struction of the unique singular potential from those poles. 150 17.08:0.31 17.2 1532031 15.5
Let us denote by * (respectivelyM ~) the number of poles 200 8.57:0.34 8.3 7.26:0.34 6.9
in the upper(respectively lower half k plane. In previous 250 0.62-0.85 07  -044x085 03
inversion scheme25-27, the poles are constrained to sat- 300 ~ —5.73t030 -57  -6.54t030 -65
isfy the additional conditioM*=M ", in order to obtaina ~ 350 ~ —10.930.54 -11.2 -11.55:0.54 -118

regular potential. The main novelty of our method is that
M* is allowed to be larger thahl ~. Consequently the po-

tential can have a repulsive singular core with parameter €st” fit. In this automatic minimization, the numbehs*
andM ™~ (and hence the singularity of the potentiahnnot

vy=l+M"—M". (29 be chosera priori: They are directly provided by the system
resolution.
Equation(26) also appears in the theory of Bargmann poten- |et us finally discuss the inversion process itself. In pre-
tials[1]. When the numbers of poles in the upper and lowewious works[25-27, the inversion is done by solving the
halfk planes are equal, Eq3) and(24) reduce to the usual Gel'fand-Levitan or Marchenko integral equation, which re-
Bargmann formulas, with the help of the initial Sctileger  duces to a linear system in the case ofSumatrix of the
equation(s). form (26). In the present method, one can choose either a
Following Refs[25-27], the S matrix is approximated by direct (and explici} derivation of the potential by Eq23),
or an iterative construction based on Eg82) which makes

S(k)~ Sy (K) = Sp(K) 1:+Plgﬂhf|(_kl)<) , (30) possible a control of the potential at each step.

IV. APPLICATION TO NUCLEON-NUCLEON

whereSy(k) is theS matrix of the initial or reference poten- ELASTIC SCATTERING

tial Vo, and Py, (k) is a polynomial of degre#, providing

the S-matrix poles. The coefficients can be found by mini- A. Neutron-proton 1S, elastic scattering
mizing As a first example of our method, we invert phase shifts
data . (M1 . M/ _ 1112 of the neutron-protonn(p) elastic scattering in théS, chan-
=3 |S(k[1+ Py (kl)](nisl())(kj)[zl_zPM (—kp]| , nel. The data are the single-energy phase shifts of the Vir-
] |1+ Py~ 7 (k))[7A; ginia group[29] below the pion threshold, i.e., 12 points

(3)  between 5 and 350 MeV, with error bars. They are given in
. . Table II. In order to reproduce the low-energy behavior of
whereA,; is the error on the experimental val&gk;), and o Hhase shift, we add some low-energy data from the mul-
nis an |terat|.on |.ndex.. This nonlinear proplery is made I'neartienergy analysis of the same group, for which no error bar is
by the following iteration scheme. ChoosiRgs)(k)=0 pro- provided. In both thep andpp (see next subsectipeases,
vides a linear system for the coefficients Bft)(k). This e obtain good results with only one additional point at 0.1
system can be solved, for instance, by the singular-valuemeV, with an error bar of 0.1° chosen by us. Another pos-
decomposition methof®8]. The solutionP{;)(k) introduced  sibility would be to directly add to the fit the contributions of
in Eq. (31) provides in turn a linear system for the coeffi- the scattering length and effective range, since they can be
cients ofPﬁ,,Z)(k), and so on. This iteration process strongly expressed linearly in terms of the first coefficients of poly-
restricts the number of nonphysical poles located very closaomial Py, (k). We prefer to use the first method, which can
to the real axis, which are often obtained after the first iterabe generalized to thpp case.

tion [27]. In the cases treated in the application, 20 iterations The reference potential is chosen to ¥g(r)=0, with

are typically needed to move these poles away from the re&,(k) = 1. Another possible choice is the one-pion exchange
axis. Let us, however, notice that these poles camafiobe  potential (OPEB, but we prefer to compare our potential
moved away whemM is taken too large; consequently, dif- with the OPEP. The smallest number of poles providing an
ferentM values have to be tried in order to find the “cheap- accurate fit to the data is 5. Higher numbers do not improve
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TABLE lll. Real and imaginary parts of th&-matrix polesx,, obtained by fitting the phase shifts of
Table Il for thenp (first column andpp (third column 1S, elastic scatterings. The second column displays
the poles of Ref[25] in thenp case.

np (this article np (Ref.[25]) pp (this article
Rex (fm™1) Imk (fm 1) Rex (fm™1) Imk (fm 1) Rex (fm™1) Imk (fm 1)
+1.313 1.453 +1.872 1.679 +1.347 1.499
0.581 1.024 0.729
—0.040 —0.042 0.080
—0.837 —2.953 +0.073 —-0.077
—70.904 —1.100

the fit much, and generally provide the same five poles toknowledge, no simpl@hysicalargument compels th® ma-
gether with other poles with weak physical interest, i.e., venytrix to tend to 1 at infinity: the reasons evoked in textbooks
close to the real axis or very remote from the compkex are always related to a particularathematicaldescription,
plane origin. An example is presented below. The obtaineshamely, a sufficiently regular potential. Our aim is here to
values for the phase shift are given in Table Il, while thefind as simple as possible a model in the purely elastic en-
poles are listed in Table Ill. The 13 phase shifts are reproergy range.
duced by the rational expansi@®6) of the S matrix with a First we compare ouS-matrix expansion with that of
x2 of 35. Let us notice that the 10 MeV and 75 MeV dé&ta  Ref.[25], where a similar inversion is treated with a standard
their error barsare responsible for about two-thirds of this method and where th&-matrix poles are explicitly given.
x?, and that the Virginia multienergy values at these energieShe data used in Ref25] are the real parts of the Virginia
are 60° and 34.51°, which are much closer to the presennultienergy phase shifts, with constant error bars, between 0
values. The rational expansion of tBamatrix thus seems to and 1100 MeV. The obtained poles are reproduced in Table
have a smoothening effect similar to the multienergy calcudll for comparison with ours. The virtual state is very close to
lation. This suggests that such rational expansions could dihe present one. The next four poles are qualitatively similar
rectly be used in multienergy phase-shift parametrizationsto ours in spite of the different data sets used. In [R25),
The rational expressiof26) of the S matrix also provides the one additional pole in the lower half plane, which is very
scattering length and effective range presented in Table IVemote from the other ones, has nearly no influence on the
(for example,a:iEK,;l), Our results are in very good phase shiftin the low-energy region. It only makes the phase
agreement with values deduced from experiment. Let us enshift tend to zero at very high energies and regularizes the
phasize that thesisvo quantities are obtained with onfpne ~ potential at the origin. The simplicity argument evoked
phase shift below 5 MeV in the fit. above naturally leads to eliminate this kind of pole in the fit
Let us now examine the obtained poles. One of the pole§f the phase shift and to accept a singular potential. More-
in Imk<<0 is very close to the real axis; it corresponds to aover, the poles of Ref25] indirectly confirm that the best fit
virtual state of thenp system. Because of this pole, the phaseof the data is obtained with five poles: For=6, the auto-
shift rapidly increases near the origin, with a positive slope afnatic minimization clearly provides a5l structure in the
zero energy(see Ref[12] for a general discussion of the

influence of anS-matrix complex pole on the phase shift 100
The numbers of polet* =3 andM ™~ =2 imply that the 6
phase shift tends te- w/2 asymptotically, in agreement with

Egs. (4) and (29), and that theS matrix tends to—1. This sor
may seem to be physically surprising, but one has to remem- 401
ber that the potential found is only meant to reproduce 20 |

single-channel elastic phase shifts, while other channels ap-
pear at energies higher than the pion threshold. To our =

(MeV)

20

-40 |
TABLE IV. Scattering lengtha and effective range of the

inversion potentials and recommended values.

.60 L
[

-80 np
a (fm) ro (fm) 100 neres | . . , .
0 0.5 1 1.5 2 25 3 3.5 4

np (this article —-23.723 2.70 r (fm)

np (Ref.[31]) —23.721+0.020 2.6580.062 _ _ _ _ _

FIG. 1. Singular potentials obtained by inversion for thp

pp (this article -7.8+0.1 2.8£0.1 13, elastic scatteringsolid line) and for thepp 'S, elastic scatter-
pp (Ref.[32]) —7.8196+0.0026 2.796:0.014 ing (dashed ling and regulanp S, potential of Ref[25] (dash-

dotted lineg.
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pole distribution, with one pole out of the physically inter- 2r ~2, in agreement with Eq(29). SinceV,(r)=0, anL
esting energy range. solution is a hyperbolic sine function and Bnsolution is a

The potential obtained by supersymmetric inversion, disdecreasing exponential, and the explicit fo{23) of the real
played in Figs. 1-3, has a singular repulsive core of the forrmp 1S, potential reads

2
Vs(r)=— 2§—ernW{sir[(1.313+ 1.453)r],sir (- 1.313+ 1.453)r],sin(0.58T ), exp( — 0.04Q ), exp( — 0.837%)},

(32

where the Wronskian is purely imaginary because of thdghe real phase shifts below pion threshold deteriorates. In
symmetry of the poles. This potential reduces to a ratio oparticular, effective-range parameters become less good. Si-
linear combinations of real and complex exponentials corremultaneously, the shape of the potential begins to change:
sponding to the poles of the upper hilplane. This formula The shallow well reduces to a kind of plateau at abe®
can be thought of as a parametrization of the 'S, central  MeV around 2 fm, and the potential tail vanishes faster than
interaction with five real parameters. The potential of Ref.the OPEP. This is, for instance, the case with the potential of
[25], represented in Fig. 1, can also be written with a formulaRef.[25], since these authors invert data up to 1100 MeV. In
similar to Eq.(32), but containing six functions. more recent work$26,27], these authors also limit the en-
Figure 1 shows that our potential and the potential of Refergy range and obtain potentials with the same kind of shal-
[25] have a similar shape, as could be foreseen from théw structure as here, with a correct asymptotic behavior and
similarity of their poles. The latter potential also seems to bewith good effective-range parameters. It may be more physi-
singular at the origin. In fact, the remote pole regularizes it atal to fit real phase shifts below the pion threshold even if,
very high energiesV(0) is equal to 418 000 MeV. Beyond for some purposes, inversion of higher-energy data seems to
this large energy, the corresponding phase shift tends to zerbe necessarf30].
while it continues to tend towards /2 for ours. Both po-
tentials have a deep well around 1 fm. As shown in Figs. 2
and 3, our potential has also a shallow well-ef..2 MeV
around 3 fm and an exponential tail close to the OPEP be- We perform the same calculation in thg case in order
yond 6 fm. to test our method in presence of a Coulomb potential. Add-
To test the stability of the potential shape while varyinging a Coulomb term to the potential obtained in Sec. IV A
the data, we also performed calculations with a set of 11@nly provides a qualitative reproduction of the phase shift,
multienergy phase shifts in the same energy range, and thgpically with an error of 5° An inversion method is thus
obtained potential is very close. In particular, the shallownecessary to obtain a quantitative reproduction of the data.
well is still present. The multienergy data also allowed us to The data are chosen in exactly the same manner as in the
continuously vary the energy interval; the obtained potentialp case : twelve single-energy phase shifts of R&f),
are similar for all energy intervals between 0—300 MeV anddisplayed in Table Il, and one multienergy point at 0.1 MeV
0-450 MeV. When additional real parts of complex phase
shifts are introduced beyond 450 MeV, the reproduction of

B. Proton-proton S, elastic scattering

102

-05 |

IV (MeV)

-15 |

V (MeV)

-25

5 6
r {fm)

: 4 a4 5 55 6
r?fr‘?l) ° FIG. 3. Asymptotic behavior of thep (solid line and pp
(dashed ling singular potentials, in logarithmic scale. The OPEP
FIG. 2. Shallow structure of the singular potentials obtained bypotential —14.8exp(0.69%)/r MeV is represented by a dash-

inversion in thenp (solid line) andpp (dashed ling cases. dotted line.
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with an assumed error of 0.1°. The reference poteMjals a plateau and the data below pion threshold are less well
now a Coulomb potential, regularized as a sphere-sphere poeproduced. The same inversion has been perfomed with a
tential below 1.6 fm. The referenc®@matrix S; is thus cal- standard method and regular potentials in R27].

culated numerically. The results obtained with a nonregular-

ized Coulomb potential or with other regularized potentials V. CONCLUSION

are very close to those described below.

The rational factor in theS matrix is imposed to be of Singular potentials should become a useful tool for inver-
orderk? near the origir(the coefficient ok in Py, is forced ~ sion methods, since they only depend on scattering data. A
to zerg. This is equivalent to canceling the sum of the general inversion method at fixed orbital momentum can
k,,}. The phase-shift slope at the origin and thé term in ~ now be decomposed into two complementary but clearly
Eqg. (27) then vanish. The obtained poles are displayed irseparated physical problems: deriving a potential from phase
Table Ill. The quality of the fit is similar to that of thep  shifts and choosing the most appropriate bound spectrum for
case. The main inaccuracies also correspond to the 10 Met#is potential. Supersymmetric transformations provide a
and 75 MeV data. The differendd * —M ™~ equals unity as powerful way of solving each of these problems. The first
in thenp case, which means that the phase shift also tends tstep constitutes the singular inverse problem, introduced and
— /2 at infinity and that the potential has a repulsive core oftreated in this article. Other approaches can probably also be
the form 2. extended to solve this singular inverse problem.

The pole locations are similar to the ones of thgcase, The first step of our inversion scheme starts with the
except for the virtual state, which is replaced by three poleghoice of a reference potential and with a parametrization of
close to the origin. The two poles in the lower hklplane  the S matrix under the forn{26), with different numbers of
correspond to a narrow resonance, and the combined effepbles in the upper and lower ha{f planes. The number of
of the three poles on the phase shift is a nearly vanishingoles should, however, not be larger in the lower half plane.
slope at the origin, followed by an increase around 1 MeV.In this respect, a fitting method allowing a definite choice of

In the pp case, the explicit expression of the potential,the number of poles in both half planes might be helpful. The
corresponding to Eq(32) of the np case, would contain method presented hededuceghese numbers from the fit-
solutions of the regularized Coulomb potential rather tharting scheme for a given total number of poles. The potential
simple exponential or hyperbolic sine functions. These solueorresponding to these poles, which is in general singular, is
tions match Whittaker functions in the external region andthen obtained with single supersymmetric transformations. If
parabolic cylinder functions in the internal regif®d]. They  the wave functions of the reference potential are known ana-
are continuous as well as their first derivatives. Using thdytically, an analytical expression of this potential is also
initial Schradinger equation(5), their higher-order deriva- available.
tives can be expressed in terms of these functions and of In a second step, bound states can be added either for
their first-order derivatives. The Wronskian of E3) can  physical reasons or for reducing the singularity. This step is
be calculated as in Ref{21]. The additional potential not indispensable. The phase-equivalent addition of physical
Vu—Vy is shown in Figs. 1-3; it is qualitatively close to the bound states with given normalization constants can be per-
np potential, as expected from charge independence. Its taibrmed with supersymmetric transformation pafiz-10.
is not exponentially decreasing; however, Fig. 3 shows thafuch transformations reduce the singularity of the potential
an exponential decrease is simulated up to 7 fm where thky 2 for each bound-state addition. The final potential can be
potential is already very small. Beyond 7 fm, a node occurstegular, as in the traditional inverse problem. This is possible
Ther 2 term becomes dominant beyond 150 fm only. Thisfor an even singularity of the singular potential obtained after
shows that the method can simulate a short-range behavior tite first step, i.e., when th® matrix tends to 1 at infinity.
physically important distances. However, odd-singularity potentials are also possible if the

The long-range tail in the final potential implies that no best fit corresponds to a8 matrix tending to—1. In this
exact effective-range expansion exists. However, we can figecond step, nonphysical bound states simulating forbidden
the effective-range parametesisandr, to phase shiftsy,,  stateq3] can also be introduced in addition to physical ones.
calculated at two low energies. By varying these energiedn some applications, this might lead to deep potentials in-
we can verify whether an approximate effective-range exdependent of, or weakly dependent on, the orbital momen-
pansion exists in some energy interval, and estimate its cdum. The study of this last point is in progress.
efficients. With energies between 2.5 and 7 MeV, we obtain The application of our method to the nucleon-nucleon
the coefficients displayed in Table IV. However, at lower 1S, elastic scatterings leads to potentials with a singular re-
energies, the phase shift is not perfectly reproduced. Thpulsive core of the form 2 2. The corresponding phase
inaccuracy is maximum near 0.5 MeV but does not exceeadhifts tend to— 7/2 at infinity; i.e., theS matrix tends to
2°. With more poles in the expansion and more low-energy— 1. No obvious physical argument allows one to reject such
data to constrain them, it should be possible to reduce thipotentials, since their definition is based on finite-energy
inaccuracy but let us emphasize again that a perfect agreeanges where a single channel is open. It would be interest-
ment at very low energies is not possible. Anyway, when thdéng to evaluate off-shell properties of such potentials. The
tail of the potential is well simulated, the effective-rangeodd singularity makes impossible a regularization of these
expansion is well approximated in some energy range. potentials by a phase-equivalent addition of a bound state

Calculations with multienergy phase shifts lead to thesimulating a forbidden state. Therefore, they cannot easily be
same conclusions as in thep case. In particular, when compared with the deep nucleon-nucleon potential of Ref.
higher-energy data are added, the second well also becomf83]. Our singular potentials have good low-energy proper-
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ties and are fairly close to the OPEP potential at large dis- (—k)”

tances. In previous inversions of nucleon-nucleon phase F(k)= 2v=D11 lim [r¥f(k,r)]. (A4)

shifts[25—27], the obtained potentials are in fact very close =0

to singular potentials, even if the singularity is not allowed

explicitly. In such a case, simplicity favors using a singularFor real energiesy(k,r) must behave asymptotically like

potential. sin— 31+ kr— 5(k)In(2kr) + (K + &K)], where o'(k) is
the Coulomb phase shift; this imposes the 1{i®) between
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APPENDIX

In this appendix, we first recall some formulas of scatter-Below, we need the behavior 6f(k,r) near the origin. This
ing theory for singular potentials. Details and references cais easy for aTt transformation ¢;=v+1), remembering
be found in Ref[12] (see also Refl34] for analytical ex- that Jost solutions are in general singular at the origin and
amples. We then deduce from those formulas the modifica-behave liker ~”. For a TR transformation ¢;=v,—1), a

tion of the Jost solutions and Jost function by supersymmethigher-order expansion of the Jost solutidigék,r) and of

ric transformations. the factorization solutiorpy(«,r) near the origin makes the
For a given partial wave, the Jost solutions of the radial calculation more complicated: The “o term of Eq.(A5)
Schralinger equation follow the asymptotic behavior vanishes and the “1=r ~*o*1 term is needed.

- ' _ . Let us now consider the transformation of the Jost func-
f(k,r) — exfi zvm+ikr—in(k)In(=2ikr)], (A1)  tion. For aT" transformation, combining EqéA4) and(A5)
roe directly provides the modificatiof20) of the Jost function.

R B - - . .
wherev is the parameter of the singular repulsive core of the':or aT" transformation, it is simpler to determine the way

effective potential at the origin. The regular solution of thethe regular solution is modified by the transformation. The

radial equation has a definite normalization at the origin, re_gul'ar solution a_Iso t'ransforms according to IH‘) but
q g with its normalization fixed by EqA2). The obtained rela-

rr+l tion

r—0

(K, r)=—Ag o(k,r) (TR transformation (A6)
It can be expressed as a linear combination of the Jost solu-

tions combined with Eq(A3) provides Eq.(21).
iyt Let us mention here that formu(&6) is also valid in the
plkr)= zik exden(k)m[F()f(=k.r) case of art transformation, up to a normalization constant.
—(—1)"F(=Kk)f(k,n)], (A3)  Sincey(k,r) has to behave according to H&2), a higher-
order expansion of the regular solution and of the factoriza-
where e=sgn Ré&. This defines the Jost functioR(k), tion solution would be needed near the origin because the
which also satisfies rvo*! term of Eq.(A6) vanishes.
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