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Inverse scattering with singular potentials: A supersymmetric approach

J.-M. Sparenberg and D. Baye
Physique Nucle´aire Théorique et Physique Mathe´matique, C.P. 229, Universite´ Libre de Bruxelles, Campus Plaine,

B 1050 Brussels, Belgium
~Received 16 December 1996!

By using potentials with a singularity at the origin, the inverse scattering problem at fixed orbital momentum
l can be decomposed in two parts. First, the unique singular potential without a bound state corresponding to
a given phase shift is constructed; then, bound states may be added without modifying the phase shift. The first
step, called the singular inverse problem, is discussed. When the phase shift is smaller at high energies than at
zero energy, the obtained effective potential has a repulsive core of the formn(n11)r22 wheren is larger
thanl . If theSmatrix can be approximated by the product of theSmatrix of a reference potential by a rational
function of the wave numberk, the singular potential is a generalized Bargmann potential. It can be con-
structed with supersymmetric transformations of the reference potential. Each transformation adds a pole to the
Smatrix. The repulsive core parametern of the final potential is equal tol plus the difference of the number
of added poles in the upper and lower halfk planes. This generalized Bargmann potential as well as its
solutions can be expressed in terms of the reference potential and of Wronskians of its solutions. As an
application, we invert the phase shifts of neutron-proton and proton-proton1S0 elastic scatterings and obtain in
both cases an51 singular nuclear potential with two wells. In the neutron-proton case, this potential is
compared with a regular potential obtained from a Gel’fand-Levitan-Marchenko inversion method.
@S0556-2813~97!00805-4#

PACS number~s!: 03.65.Nk, 21.45.1v, 13.75.Cs
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I. INTRODUCTION

The standard approach to the inverse-scattering prob
@1# at fixed orbital momentum only considers potentia
which are ‘‘regular’’ at the origin, i.e., less singular tha
r22. In fact, if the Schro¨dinger equation of a given partia
wave is considered as a one-dimensional problem, the co
spondingeffectivepotential is singular because of the ce
trifugal part of the kinetic energy, except for thes wave. This
effective potentialV(r ) verifies

V~r !→
r→0

l ~ l11!

r 2
, ~1!

wherel is the orbital momentum. This well-known proper
apparently relates the singularity of the effective potentia
the symmetry of the partial wave. At large distances,
Schrödinger equation must reproduce a free-particle or C
lomb motion. Therefore, the asymptoticl ( l11)r22 form of
V(r ) for r tending towards infinity is physically related t
the partial wavel . However, this is not the case for th
singularity of V(r ) at the origin. The distinction betwee
regularity and singularity is not crucial for the resolution
the equation or for the calculation of scattering properti
We show below that using singular potentials, i.e., potent
which do not satisfy Eq.~1!, opens new approaches for in
verse scattering.

When the phase shift does not tend at high energies t
zero-energy value, inversion procedures with regular po
tials require the introduction ofN bound states, whereN is
related to the phase shift by the Levinson theore
d(0)2d(`)5Np. Even when theN bound-state energie
are physically known, ambiguities occur in the inverse pro
550556-2813/97/55~5!/2175~10!/$10.00
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lem becauseN arbitrary normalization constants are simult
neously introduced@2#. Moreover, in many cases@3#, the
difference between the zero- and infinite-energy phase s
cannot be explained only with physical bound states. T
remaining difference is due to the effect of the Pauli pr
ciple between composite particles: The phase-shift differe
is related to the occurrence of a number of so-called ‘‘f
bidden states’’@4,5#. The inverse problem then become
even more ambiguous because both the energy and nor
ization choices for the forbidden states are arbitrary.

In the supersymmetric approach applied to the constr
tion of phase-equivalent potentials, ‘‘singular’’ potentia
naturally appear when bound states are removed from a r
lar potential@6–10#. Near the origin, the corresponding e
fective potentials verify

V~r !→
r→0

n~n11!

r 2
, ~2!

wheren is an integer, larger than the orbital momentum.
many respects, these singular potentials do not behave
ferently from regular ones. However, the difference betwe
the phase shifts at zero and infinite energies is related tn,
through the generalized Levinson theorem@11#

d~0!2d~`!5@N1 1
2 ~n2 l !#p, ~3!

whereN is the number of remaining bound states of t
potential. We have conjectured that this theorem rema
valid even in the presence of a Coulomb interaction@12#.

This theorem suggests a new approach to the inve
problem: From a phase shift at fixedl , it is always possible
to determine asingular potential without any bound state
2175 © 1997 The American Physical Society
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2176 55J.-M. SPARENBERG AND D. BAYE
The parameter of the singular repulsive core of this poten
is, according to Eq.~3! with N50,

n5 l1
2

p
@d~0!2d~`!#. ~4!

Because of the lack of a bound state, this potential is uniq
In the following, the problem of constructing this singul
potential from the phase shift will be referred to as thesin-
gular inverse problem. The regular or traditional invers
problem can consequently be solved in two steps:~i! deter-
mining the solution of the singular inverse problem, whi
only depends on scattering data, and~ii ! adding given bound
states with given normalization constants to the spect
without modifying the phase shifts.

As already shown in@10#, pairs of supersymmetric trans
formations can perform step~ii !. To our knowledge, step~i!
has not been addressed yet. It can be performed with g
accuracy bysingle supersymmetric transformations, as e
plained in this paper. Let us emphasize here that sing
potentials can probably be obtained with slight modificatio
of other inversion methods. However, supersymmetry
various advantages: It is quite simple, it allows one to so
both the singular inverse problem and the addition of bou
states, and it treats the Coulomb interaction without mu
additional complication.

In Sec. II, the principle of single supersymmetric transf
mations is recalled and the corresponding modifications
the S matrix are studied. In Sec. III, the singular inver
problem is solved by iteration of supersymmetric transform
tions when theSmatrix is the product of a referenceSma-
trix by a rational function of the wave number. We the
apply the method to the nucleon-nucleon1S0 elastic scatter-
ing in Sec. IV and conclude in Sec. V.

II. SINGLE SUPERSYMMETRIC TRANSFORMATIONS

Let us first recall the principle of supersymmetric~or Dar-
boux! transformations@13–15#. Consider a given Schro¨-
dinger equation at fixed orbital momentuml for a complex
wave numberk ~in units\52m51, wherem is the reduced
mass of the system!,

H0w0~k,r ![S 2
d2

dr2
1V0~r ! Dw0~k,r !5k2w0~k,r !, ~5!

whose solutionsw0(k,r ) are known, analytically or numeri
cally. These solutions allow one to construct a new Sch¨-
dinger equation for the same orbital momentum,

H1w1~k,r ![S 2
d2

dr2
1V1~r ! Dw1~k,r !5k2w1~k,r !, ~6!

whose solutions are analytically expressed in terms
w0(k,r ) by

w1~k,r !5A0
2w0~k,r !. ~7!

The linear operatorA0
2 satisfies the characteristic intertwin

ing relation of transformation operators@16#,

A0
2H05H1A0

2 . ~8!
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Here,A0
2 is the first-order differential operator,

A0
252

d

dr
1W~r !, ~9!

whereW(r ) is called the superpotential. With this form, E
~8! provides

V1~r !5V0~r !22
d

dr
W~r ! ~10!

and a second-order linear differential equation for the sup
potential. Equation~5! implies that the general solution o
this equation is

W~r !5
w08~k,r !

w0~k,r !
, ~11!

which depends on two independent variables: an ene
E5k2 and a ‘‘shape parameter’’ which determines the sha
of the factorization solutionw0(k,r ). Notice that the normal-
ization ofw0(k,r ) does not play any role in Eq.~11!.

With the transformation operators~9!, H0 andH1 are su-
persymmetric partners; i.e., they can be factorized
H05A0

1A0
21E andH15A0

2A0
11E, whereA0

1 is the adjoint
operator ofA0

2 . The energyE is called the factorization
energy, and the solutionw0(k,r ) is called the factorization
solution. In applications of supersymmetry, the factorizat
energy is generally real (k is purely imaginary!, whereas we
shall allow this parameter to be complex.

We now examine which kind of factorization energies a
solutions are necessary to solve the singular inverse prob
In general, four types of combined boundary conditions~at
the origin and at infinity! are possible for the factorizatio
solutionw0(k,r ), corresponding to four types of transform
tion. Each transformation type has a well-known effect
the potential spectrum@14#. When the solution is normaliz
able~regular at the origin and at infinity!, the transformation
removes the corresponding bound state from the spectr
When the solution is neither regular at the origin nor at
finity, the transformation adds a bound state to the spectr
In general, these two transformations are applied with r
factorization energies to Hamiltonians involving re
potentials.1 In this case, the factorization solution can be ch
sen to be real, and consequently the transformed potenti
also real. Whereas these two transformation types~respec-
tively denoted byT1 and T2 in Ref. @15#, and byT1

1 and
T2

2 in Ref. @8#! are essential to modify the bound spectrum
potentials, they are of no interest here since we deal w
potentials without bound spectrum.

The remaining two types of transformation, which do n
modify the bound spectrum, will both be used in the follow
ing. When the factorization solution is regular at the orig
and exponentially increasing at infinity~respectively singular
at the origin and exponentially decreasing at infinity!, it is
denoted bywL(k,r ) for left regular @respectivelywR(k,r )
for right regular# and the transformation byTL ~respectively

1In recent works on complex optical potentials@17,12#, complex
factorization energies are employed.
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55 2177INVERSE SCATTERING WITH SINGULAR . . .
TR). In Ref. @15#, this transformation is denoted byT3 ~re-
spectivelyT4), while in Ref.@8# it is denoted byT2

0 ~respec-
tively T1

0 ). In the following, superscripts thus provide th
type of factorization solution, while subscripts are reserv
to numbering Schro¨dinger equations, potentials, and sol
tions of equations. When solving the singular inverse pr
lem, both transformations may be used with complex fac
ization energies. Consequently, the transformed poten
may also be complex; however, as will be seen in the n
section, successive transformations can be used to der
real final potential. Since we deal with potentials withou
bound state, bothL andR solutions have no node at finit
distance. Consequently, the supersymmetric transformat
do not introduce any singularity in the potential at finite d
tance, since the superpotentialW(r ) given in Eq.~11! has no
singularity except possibly atr50.

The singularity of the potential at the origin is modifie
by the supersymmetric transformations: If the initial pote
tial V0(r ) satisfies

V0~r !→
r→0

n0~n011!

r 2
, ~12!

wheren05 l for a regular potential andn0. l for a repulsive
singular potential, anL ~respectivelyR) solution behaves
like r n011 ~respectivelyr2n0) for r→0. A series expansion
of Eqs. ~10! and ~11! then implies that the transformed po
tentialV1(r ) satisfies

V1~r !→
r→0

n1~n111!

r 2
, ~13!

with n15n011 ~respectivelyn15n021). In this article, we
limit ourselves ton>0 potentials; hence, we shall not app
a TR transformation to a potential withn0,1 ~this case is
discussed elsewhere@7#!.

The asymptotic behavior of the initial potential reads

V0~r ! →
r→`

2h~k!k

r
1
l ~ l11!

r 2
, ~14!

whereh(k)5Z1Z2/2k is the dimensionless Sommerfeld p
rameter (e54pe051). BothL andR solutions then behave
as

w0~k,r ! →
r→`

e2 ikr1 ih~k!ln~2ikr !@11e0~r !#, ~15!

wherek is chosen to lie in the upper~respectively lower!
half k plane for anL ~respectivelyR) solution in order to
ensure the appropriate asymptotic behavior. The func
e0(r ) tends to zero asymptotically, at least as fast asr21;
particular cases are discussed in the next section. Equa
~10!, ~11!, ~14!, and~15! imply that the transformed potentia
behaves asymptotically as

V1~r ! →
r→`

2h~k!k

r
1
l ~ l11!

r 2
1
2ih~k!

r 2
22

d2e0~r !

dr2
.

~16!
d
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When no Coulomb term is present, the Sommerfeld para
eter is zero, and the difference betweenV1 andV0 decreases
faster than r22 at infinity. We shall see later that th
2ihr22 term of Eq.~16! can be canceled when successi
transformations are applied, even in the presence of a C
lomb interaction. Ther22 term in the asymptotic form of
both the initial and final potentials is then clearly related
the orbital momentuml , which is the same for both
potentials.2

Equation~7! provides a relation between scattering sta
of V0 andV1. The asymptotic form of this equation, com
bined with Eqs.~9!, ~11!, and~15!, relates the phase shifts o
V0 andV1, namely,

d1~k!5d0~k!1arctan
k

ik
. ~17!

When k is purely imaginary (E purely real!, this formula
reduces to the expression of Ref.@15#, up to a difference of
p/2 due to a different choice of thel value for the final
potential ~see footnote 2!. For the sake of simplicity, we
make in this article the phase conventiond(0)50, as in
Refs. @11# and @18# in the absence of a bound state. T
potential singularity at the origin is then directly related
the asymptotic value of the phase shift.

From Eq.~17!, theSmatrices are related by

S1~k!5S0~k!
k1k

k2k
. ~18!

A supersymmetric transformation thus introduces
S-matrix pole atk. The main characteristics of theTL and
TR transformations are summarized in Table I. One c
verify that the phase-shift modification is in agreement w
the generalized Levinson theorem~3! and with the modifica-
tion of singularity~13! at the origin.

Formula~18! can also be obtained from the modificatio
of the Jost function by supersymmetric transformations.

2In Ref. @15#, the orbital momentum is said to change, in cont
diction with the fact that the angular part of the wave functi
remains unchanged. This interpretation may have several orig
~i! the modification of the singularity at the origin@Eq. ~13!# or ~ii !
the shape invariance of the Coulomb potential, for which remov
the ground state of a given partial wavel with a single supersym-
metric transformation precisely leads to the Coulomb potentia
the partial wavel11.

TABLE I. Main properties of supersymmetric transformatio
used for solving the singular inverse problem: location of additio
S-matrix pole, modification of the asymptotic value of the pha
shift, and modification of the potential singularity at the origin.

Transformation S-matrix pole Phase shift Singularity

TL ~left regular! Imk.0 d1~`!5d0~`!2
p

2
n15n011

TR ~right regular! Imk,0 d1~`!5d0~`!1
p

2
n15n021
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2178 55J.-M. SPARENBERG AND D. BAYE
the Appendix, we express theSmatrix of a singular potentia
in terms of its Jost function by

S~k!5~21!n2 l
F~2k!

F~k!
, ~19!

and we show that the modifications of the Jost function
supersymmetric transformations read

F1~k!5F0~k!
k

k1k
~TL transformation, Imk.0!,

~20!

F1~k!5F0~k!
2k1k

k
~TR transformation, Imk,0!.

~21!

Equations~19!–~21! lead to Eq.~18!. Since the multiplica-
tive factors in Eqs.~20! and ~21! do not vanish in the uppe
half k plane, no bound state is introduced byTL and TR

transformations. TheS-matrix poles in the upper halfk
plane, introduced byTL transformations, correspond to pole
of the Jost function in the lower halfk plane. This confirms
that these transformations do not modify the bound sp
trum, as stated above.

III. ITERATION OF SUPERSYMMETRIC
TRANSFORMATIONS

Supersymmetric transformations can be iterated: Facto
ing Eq. ~6! corresponding toV1 can in turn give a new po
tentialV2, and so on. In some cases, the final potentialVM
resulting fromM transformations and its solutions can
expressed by compact formulas in terms of the initial so
tionsw0(k,r ) only. These cases are reviewed for the full li
problem in Ref.@19# and the formulas can be transposed
the radial problem. We only mention here the case of inte
for solving the singular inverse problem. LetE1 , . . . ,EM
with Em5km

2 be M distinct factorization energies
wm21(km ,r ) be the correspondingL or R factorization so-
lutions, andw0(km ,r ) be the solutions of the initial equatio
of the same type. As mentioned before, subscripts num
Schrödinger equations. The final potential reads, by repea
application of Eqs.~10! and ~11!,

VM~r !5V0~r !22
d

dr (m51

M wm218 ~km ,r !

wm21~km ,r !
, ~22!

and can be expressed in terms of solutions from the in
equation@19–21# as

VM~r !5V0~r !22
d

dr

W8@w0~k1 ,r !, . . . ,w0~kM ,r !#

W@w0~k1 ,r !, . . . ,w0~kM ,r !#
,

~23!

whereW is the Wronskian of the different solutions an
W8 is its derivative with respect tor . The solutions of the
corresponding Hamiltonian read

wM~k,r !5
W@w0~k,r !,w0~k1 ,r !, . . . ,w0~kM ,r !#

W@w0~k1 ,r !, . . . ,w0~kM ,r !#
. ~24!
y

c-

z-

-

st
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The final phase shift andS matrix read, by iteration of
Eqs.~17! and ~18!,

dM~k!5d0~k!1 (
m51

M

arctan
k

ikm
~25!

and

SM~k!5S0~k! )
m51

M
km1k

km2k
. ~26!

For a real potential, theSmatrix has to be unitary; this is th
case if and only if the poles are symmetric with respect to
imaginaryk axis.

The asymptotic difference between the potentials is,
repeated application of Eq.~16!,

VM~r !2V0~r ! →
r→`

2i

r 2 (m51

M

h~km!22(
m51

M
d2em21~r !

dr2
.

~27!

When the poles are symmetric with respect to the imagin
k axis, the first term appearing in the right-hand side of t
equation is purely real. Since we are interested in potent
decreasing faster thanr22 at infinity, this term should van-
ish. Of course, it disappears when the potential contains
Coulomb term. Moreover, when the initial potential is sho
ranged, i.e., exponentially decreasing at infinity, t
em21(r ) functions are also exponentially decreasing. Con
quently, the last term of Eq.~27! decreases exponentially
and the initial and final potentials are both short ranged;
implies that they both possess an effective-range expan
@22#. This will be used in thenp case discussed in nex
section.

The situation is more complicated for a repulsiv
Coulomb plus short-range initial potential. In this case,
Coulomb effective-range expansion reads@23#

2phk

e2ph21
cotd012khh~h!→

k→0
2
1

a
1
r 0
2
k2, ~28!

where we choosel50 for simplicity. In this expression,a is
the scattering length,r 0 is the effective range, and
h(h)5ReC(11 ih)2 lnh, whereC is the digamma func-
tion @24#. In Ref. @23#, the existence of an effective-rang
expansion~28! is shown to be related to the short-range ch
acter of the additional potential. When such an expans
exists, all the coefficients of a Taylor expansion about z
energy of the phase shift vanish, as can be seen with
~28!. Here, for a repulsive-Coulomb plus short-range init
potentialV0, the em21(r ) functions in Eq.~27! are of order
r21, so that in general the final potential has anr23 tail.
Consequently, the effective-range expansion~28! is not valid
after the transformation. In fact, Eq.~25! shows that a Taylor
expansion of the phase-shift differencedM2d0 exists about
zero energy. As suggested by Eq.~27!, when the sum of
km

21 is zero, the first-order term of the expansion and con
quently the slope ofdM2d0 at the origin vanish. The nex
coefficients of the Taylor expansion are in general differ
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55 2179INVERSE SCATTERING WITH SINGULAR . . .
from zero and the behavior of the physical phase shift can
be perfectly reproduced at low energies.

The appearance of long-range terms in the inversion
tential in the presence of a Coulomb interaction is a dra
back of the supersymmetric method but also of all invers
methods based on rational expansions~26! of theS matrix.
However, in practice, this drawback is not really importa
The long-range term in the potential tail can be made sm
and anapproximateeffective-range expansion can be fou
when the energies are not very small. This is for instance
case in thepp inversion of Sec. IV B.

An approximate solution of the singular inverse proble
can be based on Eq.~26!. The first step consists in findin
thekm poles, symmetric with respect to the imaginaryk axis,
giving the best reproduction of the ‘‘experimental’’ pha
shift. The second step is the inversion itself, i.e., the c
struction of the unique singular potential from those pol
Let us denote byM1 ~respectivelyM2) the number of poles
in the upper~respectively lower! half k plane. In previous
inversion schemes@25–27#, the poles are constrained to sa
isfy the additional conditionM15M2, in order to obtain a
regular potential. The main novelty of our method is th
M1 is allowed to be larger thanM2. Consequently the po
tential can have a repulsive singular core with paramete

nM5 l1M12M2. ~29!

Equation~26! also appears in the theory of Bargmann pote
tials @1#. When the numbers of poles in the upper and low
half k planes are equal, Eqs.~23! and~24! reduce to the usua
Bargmann formulas, with the help of the initial Schro¨dinger
equation~5!.

Following Refs.@25–27#, theSmatrix is approximated by

S~k!'SM~k!5S0~k!
11PM~2k!

11PM~k!
, ~30!

whereS0(k) is theSmatrix of the initial or reference poten
tial V0, andPM(k) is a polynomial of degreeM , providing
the S-matrix poles. The coefficients can be found by min
mizing

x25(
j

data uS~kj !@11PM
~n!~kj !#2S0~kj !@11PM

~n!~2kj !#u2

u11PM
~n21!~kj !u2D j

2 ,

~31!

whereD j is the error on the experimental valueS(kj ), and
n is an iteration index. This nonlinear problem is made line
by the following iteration scheme. ChoosingPM

(0)(k)50 pro-
vides a linear system for the coefficients ofPM

(1)(k). This
system can be solved, for instance, by the singular-va
decomposition method@28#. The solutionPM

(1)(k) introduced
in Eq. ~31! provides in turn a linear system for the coef
cients ofPM

(2)(k), and so on. This iteration process strong
restricts the number of nonphysical poles located very cl
to the real axis, which are often obtained after the first ite
tion @27#. In the cases treated in the application, 20 iteratio
are typically needed to move these poles away from the
axis. Let us, however, notice that these poles cannotall be
moved away whenM is taken too large; consequently, di
ferentM values have to be tried in order to find the ‘‘chea
ot
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est’’ fit. In this automatic minimization, the numbersM1

andM2 ~and hence the singularity of the potential! cannot
be chosena priori: They are directly provided by the syste
resolution.

Let us finally discuss the inversion process itself. In p
vious works@25–27#, the inversion is done by solving th
Gel’fand-Levitan or Marchenko integral equation, which r
duces to a linear system in the case of anS matrix of the
form ~26!. In the present method, one can choose eithe
direct ~and explicit! derivation of the potential by Eq.~23!,
or an iterative construction based on Eq.~22! which makes
possible a control of the potential at each step.

IV. APPLICATION TO NUCLEON-NUCLEON
ELASTIC SCATTERING

A. Neutron-proton 1S0 elastic scattering

As a first example of our method, we invert phase sh
of the neutron-proton (np) elastic scattering in the1S0 chan-
nel. The data are the single-energy phase shifts of the
ginia group @29# below the pion threshold, i.e., 12 poin
between 5 and 350 MeV, with error bars. They are given
Table II. In order to reproduce the low-energy behavior
the phase shift, we add some low-energy data from the m
tienergy analysis of the same group, for which no error ba
provided. In both thenp andpp ~see next subsection! cases,
we obtain good results with only one additional point at 0
MeV, with an error bar of 0.1° chosen by us. Another po
sibility would be to directly add to the fit the contributions o
the scattering length and effective range, since they can
expressed linearly in terms of the first coefficients of po
nomialPM(k). We prefer to use the first method, which ca
be generalized to thepp case.

The reference potential is chosen to beV0(r )50, with
S0(k)51. Another possible choice is the one-pion exchan
potential ~OPEP!, but we prefer to compare our potenti
with the OPEP. The smallest number of poles providing
accurate fit to the data is 5. Higher numbers do not impro

TABLE II. Elastic phase shifts of the nucleon-nucleon1S0 scat-
tering, as functions of the laboratory energyElab. Single-energy
~multienergy at 0.1 MeV! phase shiftsdexpt from Ref. @29# and
phase shiftsdM of Eq. ~25!.

Elab dexpt
np ~Ref. @29#! d5

np dexpt
pp ~Ref. @29#! d7

pp

~MeV! ~deg! ~deg! ~deg! ~deg!

0.1 38.4360.10 38.4 2.3060.10 2.2
5 63.7060.10 63.5 54.3660.10 54.2
10 59.5260.10 59.9 53.9460.10 54.3
15 56.7360.47 56.7 52.3960.47 52.4
25 51.6760.11 51.5 48.3160.11 48.1
50 41.8760.06 41.8 39.1960.06 39.1
75 33.6860.26 34.4 31.2860.26 32.0
100 27.5560.34 28.0 25.3760.34 25.8
150 17.0860.31 17.2 15.3260.31 15.5
200 8.5760.34 8.3 7.2060.34 6.9
250 0.6260.85 0.7 20.4460.85 20.3
300 25.7360.30 25.7 26.5460.30 26.5
350 210.9360.54 211.2 211.5560.54 211.8
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TABLE III. Real and imaginary parts of theS-matrix poleskm obtained by fitting the phase shifts o
Table II for thenp ~first column! andpp ~third column! 1S0 elastic scatterings. The second column displa
the poles of Ref.@25# in thenp case.

np ~this article! np ~Ref. @25#! pp ~this article!
Rek ~fm21) Imk ~fm21) Rek ~fm21) Imk ~fm21) Rek ~fm21) Imk ~fm21)

61.313 1.453 61.872 1.679 61.347 1.499
0.581 1.024 0.729

20.040 20.042 0.080
20.837 22.953 60.073 20.077

270.904 21.100
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the fit much, and generally provide the same five poles
gether with other poles with weak physical interest, i.e., v
close to the real axis or very remote from the complexk
plane origin. An example is presented below. The obtai
values for the phase shift are given in Table II, while t
poles are listed in Table III. The 13 phase shifts are rep
duced by the rational expansion~26! of theS matrix with a
x2 of 35. Let us notice that the 10 MeV and 75 MeV data~or
their error bars! are responsible for about two-thirds of th
x2, and that the Virginia multienergy values at these energ
are 60° and 34.51°, which are much closer to the pres
values. The rational expansion of theSmatrix thus seems to
have a smoothening effect similar to the multienergy cal
lation. This suggests that such rational expansions could
rectly be used in multienergy phase-shift parametrizatio
The rational expression~26! of theSmatrix also provides the
scattering length and effective range presented in Table
~for example,a5 i(km

21). Our results are in very good
agreement with values deduced from experiment. Let us
phasize that thesetwo quantities are obtained with onlyone
phase shift below 5 MeV in the fit.

Let us now examine the obtained poles. One of the po
in Imk,0 is very close to the real axis; it corresponds to
virtual state of thenp system. Because of this pole, the pha
shift rapidly increases near the origin, with a positive slope
zero energy~see Ref.@12# for a general discussion of th
influence of anS-matrix complex pole on the phase shift!.
The numbers of polesM153 andM252 imply that the
phase shift tends to2p/2 asymptotically, in agreement wit
Eqs. ~4! and ~29!, and that theS matrix tends to21. This
may seem to be physically surprising, but one has to rem
ber that the potential found is only meant to reprodu
single-channel elastic phase shifts, while other channels
pear at energies higher than the pion threshold. To

TABLE IV. Scattering lengtha and effective ranger 0 of the
inversion potentials and recommended values.

a ~fm! r 0 ~fm!

np ~this article! 223.723 2.70
np ~Ref. @31#! 223.72160.020 2.65860.062

pp ~this article! 27.860.1 2.860.1
pp ~Ref. @32#! 27.819660.0026 2.79060.014
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knowledge, no simplephysicalargument compels theSma-
trix to tend to 1 at infinity: the reasons evoked in textboo
are always related to a particularmathematicaldescription,
namely, a sufficiently regular potential. Our aim is here
find as simple as possible a model in the purely elastic
ergy range.

First we compare ourS-matrix expansion with that of
Ref. @25#, where a similar inversion is treated with a standa
method and where theS-matrix poles are explicitly given.
The data used in Ref.@25# are the real parts of the Virginia
multienergy phase shifts, with constant error bars, betwee
and 1100 MeV. The obtained poles are reproduced in Ta
III for comparison with ours. The virtual state is very close
the present one. The next four poles are qualitatively sim
to ours in spite of the different data sets used. In Ref.@25#,
one additional pole in the lower halfk plane, which is very
remote from the other ones, has nearly no influence on
phase shift in the low-energy region. It only makes the ph
shift tend to zero at very high energies and regularizes
potential at the origin. The simplicity argument evoke
above naturally leads to eliminate this kind of pole in the
of the phase shift and to accept a singular potential. Mo
over, the poles of Ref.@25# indirectly confirm that the best fi
of the data is obtained with five poles: ForM56, the auto-
matic minimization clearly provides a 511 structure in the

FIG. 1. Singular potentials obtained by inversion for thenp
1S0 elastic scattering~solid line! and for thepp

1S0 elastic scatter-
ing ~dashed line!, and regularnp 1S0 potential of Ref.@25# ~dash-
dotted line!.
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pole distribution, with one pole out of the physically inte
esting energy range.

The potential obtained by supersymmetric inversion, d
played in Figs. 1–3, has a singular repulsive core of the fo
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2r22, in agreement with Eq.~29!. SinceV0(r )50, an L
solution is a hyperbolic sine function and anR solution is a
decreasing exponential, and the explicit form~23! of the real
np 1S0 potential reads
V5~r !522
d2

dr2
lnW$sin@~1.31311.453i !r #,sin@~21.31311.453i !r #,sinh~0.581r !,exp~20.040r !,exp~20.837r !%,

~32!
. In
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P
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where the Wronskian is purely imaginary because of
symmetry of the poles. This potential reduces to a ratio
linear combinations of real and complex exponentials co
sponding to the poles of the upper halfk plane. This formula
can be thought of as a parametrization of thenp 1S0 central
interaction with five real parameters. The potential of R
@25#, represented in Fig. 1, can also be written with a form
similar to Eq.~32!, but containing six functions.

Figure 1 shows that our potential and the potential of R
@25# have a similar shape, as could be foreseen from
similarity of their poles. The latter potential also seems to
singular at the origin. In fact, the remote pole regularizes i
very high energies:V(0) is equal to 418 000 MeV. Beyon
this large energy, the corresponding phase shift tends to z
while it continues to tend towards2p/2 for ours. Both po-
tentials have a deep well around 1 fm. As shown in Figs
and 3, our potential has also a shallow well of21.2 MeV
around 3 fm and an exponential tail close to the OPEP
yond 6 fm.

To test the stability of the potential shape while varyi
the data, we also performed calculations with a set of 1
multienergy phase shifts in the same energy range, and
obtained potential is very close. In particular, the shall
well is still present. The multienergy data also allowed us
continuously vary the energy interval; the obtained potent
are similar for all energy intervals between 0–300 MeV a
0–450 MeV. When additional real parts of complex pha
shifts are introduced beyond 450 MeV, the reproduction

FIG. 2. Shallow structure of the singular potentials obtained
inversion in thenp ~solid line! andpp ~dashed line! cases.
e
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the real phase shifts below pion threshold deteriorates
particular, effective-range parameters become less good
multaneously, the shape of the potential begins to chan
The shallow well reduces to a kind of plateau at about23
MeV around 2 fm, and the potential tail vanishes faster th
the OPEP. This is, for instance, the case with the potentia
Ref. @25#, since these authors invert data up to 1100 MeV.
more recent works@26,27#, these authors also limit the en
ergy range and obtain potentials with the same kind of sh
low structure as here, with a correct asymptotic behavior
with good effective-range parameters. It may be more ph
cal to fit real phase shifts below the pion threshold even
for some purposes, inversion of higher-energy data seem
be necessary@30#.

B. Proton-proton 1S0 elastic scattering

We perform the same calculation in thepp case in order
to test our method in presence of a Coulomb potential. A
ing a Coulomb term to the potential obtained in Sec. IV
only provides a qualitative reproduction of the phase sh
typically with an error of 5° An inversion method is thu
necessary to obtain a quantitative reproduction of the da

The data are chosen in exactly the same manner as in
pp case : twelve single-energy phase shifts of Ref.@29#,
displayed in Table II, and one multienergy point at 0.1 Me

y

FIG. 3. Asymptotic behavior of thenp ~solid line! and pp
~dashed line! singular potentials, in logarithmic scale. The OPE
potential 214.8exp(20.697r )/r MeV is represented by a dash
dotted line.
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with an assumed error of 0.1°. The reference potentialV0 is
now a Coulomb potential, regularized as a sphere-sphere
tential below 1.6 fm. The referenceS matrix S0 is thus cal-
culated numerically. The results obtained with a nonregu
ized Coulomb potential or with other regularized potenti
are very close to those described below.

The rational factor in theS matrix is imposed to be o
orderk2 near the origin~the coefficient ofk in PM is forced
to zero!. This is equivalent to canceling the sum of th
km

21 . The phase-shift slope at the origin and ther22 term in
Eq. ~27! then vanish. The obtained poles are displayed
Table III. The quality of the fit is similar to that of thenp
case. The main inaccuracies also correspond to the 10 M
and 75 MeV data. The differenceM12M2 equals unity as
in thenp case, which means that the phase shift also tend
2p/2 at infinity and that the potential has a repulsive core
the form 2r22.

The pole locations are similar to the ones of thenp case,
except for the virtual state, which is replaced by three po
close to the origin. The two poles in the lower halfk plane
correspond to a narrow resonance, and the combined e
of the three poles on the phase shift is a nearly vanish
slope at the origin, followed by an increase around 1 Me

In the pp case, the explicit expression of the potenti
corresponding to Eq.~32! of the np case, would contain
solutions of the regularized Coulomb potential rather th
simple exponential or hyperbolic sine functions. These so
tions match Whittaker functions in the external region a
parabolic cylinder functions in the internal region@24#. They
are continuous as well as their first derivatives. Using
initial Schrödinger equation~5!, their higher-order deriva-
tives can be expressed in terms of these functions an
their first-order derivatives. The Wronskian of Eq.~23! can
be calculated as in Ref.@21#. The additional potentia
VM2V0 is shown in Figs. 1–3; it is qualitatively close to th
np potential, as expected from charge independence. Its
is not exponentially decreasing; however, Fig. 3 shows
an exponential decrease is simulated up to 7 fm where
potential is already very small. Beyond 7 fm, a node occu
The r23 term becomes dominant beyond 150 fm only. Th
shows that the method can simulate a short-range behavi
physically important distances.

The long-range tail in the final potential implies that n
exact effective-range expansion exists. However, we ca
the effective-range parametersa and r 0 to phase shiftsdM
calculated at two low energies. By varying these energ
we can verify whether an approximate effective-range
pansion exists in some energy interval, and estimate its
efficients. With energies between 2.5 and 7 MeV, we obt
the coefficients displayed in Table IV. However, at low
energies, the phase shift is not perfectly reproduced.
inaccuracy is maximum near 0.5 MeV but does not exc
2°. With more poles in the expansion and more low-ene
data to constrain them, it should be possible to reduce
inaccuracy but let us emphasize again that a perfect ag
ment at very low energies is not possible. Anyway, when
tail of the potential is well simulated, the effective-ran
expansion is well approximated in some energy range.

Calculations with multienergy phase shifts lead to t
same conclusions as in thenp case. In particular, when
higher-energy data are added, the second well also beco
o-
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a plateau and the data below pion threshold are less
reproduced. The same inversion has been perfomed wi
standard method and regular potentials in Ref.@27#.

V. CONCLUSION

Singular potentials should become a useful tool for inv
sion methods, since they only depend on scattering data
general inversion method at fixed orbital momentum c
now be decomposed into two complementary but clea
separated physical problems: deriving a potential from ph
shifts and choosing the most appropriate bound spectrum
this potential. Supersymmetric transformations provide
powerful way of solving each of these problems. The fi
step constitutes the singular inverse problem, introduced
treated in this article. Other approaches can probably als
extended to solve this singular inverse problem.

The first step of our inversion scheme starts with t
choice of a reference potential and with a parametrization
theSmatrix under the form~26!, with different numbers of
poles in the upper and lower halfk planes. The number o
poles should, however, not be larger in the lower half pla
In this respect, a fitting method allowing a definite choice
the number of poles in both half planes might be helpful. T
method presented herededucesthese numbers from the fit
ting scheme for a given total number of poles. The poten
corresponding to these poles, which is in general singula
then obtained with single supersymmetric transformations
the wave functions of the reference potential are known a
lytically, an analytical expression of this potential is al
available.

In a second step, bound states can be added eithe
physical reasons or for reducing the singularity. This step
not indispensable. The phase-equivalent addition of phys
bound states with given normalization constants can be
formed with supersymmetric transformation pairs@7–10#.
Such transformations reduce the singularity of the poten
by 2 for each bound-state addition. The final potential can
regular, as in the traditional inverse problem. This is poss
for an even singularity of the singular potential obtained af
the first step, i.e., when theS matrix tends to 1 at infinity.
However, odd-singularity potentials are also possible if
best fit corresponds to anS matrix tending to21. In this
second step, nonphysical bound states simulating forbid
states@3# can also be introduced in addition to physical on
In some applications, this might lead to deep potentials
dependent of, or weakly dependent on, the orbital mom
tum. The study of this last point is in progress.

The application of our method to the nucleon-nucle
1S0 elastic scatterings leads to potentials with a singular
pulsive core of the form 2r22. The corresponding phas
shifts tend to2p/2 at infinity; i.e., theS matrix tends to
21. No obvious physical argument allows one to reject su
potentials, since their definition is based on finite-ene
ranges where a single channel is open. It would be inter
ing to evaluate off-shell properties of such potentials. T
odd singularity makes impossible a regularization of the
potentials by a phase-equivalent addition of a bound s
simulating a forbidden state. Therefore, they cannot easily
compared with the deep nucleon-nucleon potential of R
@33#. Our singular potentials have good low-energy prop
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ties and are fairly close to the OPEP potential at large
tances. In previous inversions of nucleon-nucleon ph
shifts @25–27#, the obtained potentials are in fact very clo
to singular potentials, even if the singularity is not allow
explicitly. In such a case, simplicity favors using a singu
potential.
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APPENDIX

In this appendix, we first recall some formulas of scatt
ing theory for singular potentials. Details and references
be found in Ref.@12# ~see also Ref.@34# for analytical ex-
amples!. We then deduce from those formulas the modific
tion of the Jost solutions and Jost function by supersymm
ric transformations.

For a given partial wavel , the Jost solutions of the radia
Schrödinger equation follow the asymptotic behavior

f ~k,r ! →
r→`

exp@ i 1
2np1 ikr2 ih~k!ln~22ikr !#, ~A1!

wheren is the parameter of the singular repulsive core of
effective potential at the origin. The regular solution of t
radial equation has a definite normalization at the origin,

c~k,r !→
r→0

r n11

~2n11!!!
. ~A2!

It can be expressed as a linear combination of the Jost s
tions

c~k,r !5 1
2 ik

2n21exp@eh~k!p#@F~k! f ~2k,r !

2~21!nF~2k! f ~k,r !#, ~A3!

where e5sgn Rek. This defines the Jost functionF(k),
which also satisfies
s

.
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F~k!5
~2k!n

~2n21!!!
lim
r→0

@r n f ~k,r !#. ~A4!

For real energies,c(k,r ) must behave asymptotically like

sin@2 1
2lp1kr2h(k)ln(2kr)1sl(k)1d(k)#, where s l(k) is

the Coulomb phase shift; this imposes the link~19! between
theSmatrix and the Jost function.

Jost solutions are modified by supersymmetric trans
mations according to Eq.~7! but with a normalization fixed
by Eq. ~A1!. Equations~9! and ~11! then imply that

f 1~k,r !5
i

k1k
exp@ i 12 ~n12n0!p#A0

2 f 0~k,r !. ~A5!

Below, we need the behavior off 1(k,r ) near the origin. This
is easy for aTL transformation (n15n011), remembering
that Jost solutions are in general singular at the origin
behave liker2n. For a TR transformation (n15n021), a
higher-order expansion of the Jost solutionsf 0(k,r ) and of
the factorization solutionw0(k,r ) near the origin makes the
calculation more complicated: Ther2n0 term of Eq. ~A5!
vanishes and ther2n15r2n011 term is needed.

Let us now consider the transformation of the Jost fu
tion. For aTL transformation, combining Eqs.~A4! and~A5!
directly provides the modification~20! of the Jost function.
For aTR transformation, it is simpler to determine the wa
the regular solution is modified by the transformation. T
regular solution also transforms according to Eq.~7!, but
with its normalization fixed by Eq.~A2!. The obtained rela-
tion

c1~k,r !52A0
2c0~k,r ! ~TR transformation! ~A6!

combined with Eq.~A3! provides Eq.~21!.
Let us mention here that formula~A6! is also valid in the

case of aTL transformation, up to a normalization consta
Sincec1(k,r ) has to behave according to Eq.~A2!, a higher-
order expansion of the regular solution and of the factori
tion solution would be needed near the origin because
r n011 term of Eq.~A6! vanishes.
e
-

@1# K. Chadan and P. C. Sabatier,Inverse Problems in Quantum
Scattering Theory~Springer, Berlin, 1977!.

@2# R. G. Newton,Scattering Theory of Waves and Particle
~Springer, New York, 1982!.

@3# V. G. Neudatchin, V. I. Kukulin, V. L. Korotkikh, and V. P
Korennoy, Phys. Lett.34B, 581~1971!; B. Buck, H. Friedrich,
and C. Wheatley, Nucl. Phys.A275, 246 ~1977!; W. Ihra and
H. Friedrich, Phys. Rev. A45, 5278~1992!.

@4# K. Wildermuth and Y. C. Tang, inA Unified Theory of the
Nucleus, edited by K. Wildermuth and P. Kramer~Vieweg,
Braunschweig, 1977!.

@5# P. Swan, Proc. R. Soc. London, Ser. A228, 10 ~1955!.
@6# D. Baye, Phys. Rev. Lett.58, 2738~1987!.
@7# D. Baye, J. Phys. A20, 5529~1987!.
@8# L. U. Ancarani and D. Baye, Phys. Rev. A46, 206 ~1992!.
@9# D. Baye, Phys. Rev. A48, 2040~1993!.

@10# D. Baye and J.-M. Sparenberg, Phys. Rev. Lett.73, 2789
~1994!.

@11# P. Swan, Nucl. Phys.46, 669 ~1963!.
@12# J.-M. Sparenberg and D. Baye, Phys. Rev. C54, 1309~1996!.
@13# E. Witten, Nucl. Phys.B188, 513 ~1981!.
@14# C. V. Sukumar, J. Phys. A18, 2917~1985!.
@15# C. V. Sukumar, J. Phys. A18, 2937~1985!.
@16# B. M. Levitan,Generalized Translation Operators and som

of their Applications~Israel Program for Scientific Transla
tions, Jerusalem, 1964!.



d

b,

e

et-
ng

,

r-

and

2184 55J.-M. SPARENBERG AND D. BAYE
@17# D. Baye, G. Le´vai, and J.-M. Sparenberg, Nucl. Phys.A599,
435 ~1996!.

@18# Z. R. Iwinski, L. Rosenberg, and L. Spruch, Phys. Rev. A31,
1229 ~1985!.

@19# J.-M. Sparenberg and D. Baye, J. Phys. A28, 5079~1995!.
@20# M. M. Crum, Q. J. Math.6„2…, 121 ~1955!.
@21# P. Deift and E. Trubowitz, Commun. Pure Appl. Math.32, 121

~1979!.
@22# M. L. Goldberger and K. M. Watson,Collision Theory~Wiley,

New York, 1964!.
@23# H. van Haeringen,Charged Particle Interactions, Theory an

Formulas~Coulomb Press, Leyden, 1985!.
@24# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun~Dover, New York, 1970!.
@25# M. Coz, J. Kuberczyk, and H. V. von Geramb, Z. Phys. A326,

345 ~1987!.
@26# Th. Kirst, K. Amos, L. Berge, M. Coz, and H. V. von Geram

Phys. Rev. C40, 912 ~1989!.
@27# H. V. von Geramb and H. Kholhoff, inQuantum Inversion
Theory and Applications, edited by H. V. von Geramb, Lectur
Notes in Physics~Springer, Berlin, 1993!, Vol. 427, p. 285.

@28# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W.T. V
terling, Numerical Recipes, The Art of Scientific Computi
~Cambridge University Press, Cambridge, England, 1986!.

@29# R. A. Arndt and L. D. Roper,Scattering Analysis Interactive
Dial-in SAID ~Virginia Polytechnic Institute, Blacksbury
1996!.

@30# H. F. Arellano, F. A. Brieva, M. Sander, and H. V. von Ge
amb, Phys. Rev. C54, 2570~1996!.

@31# L. Mathelitsch and B. J. VerWest, Phys. Rev. C29, 739
~1984!.

@32# J. R. Bergevoet, P. C. van Campen, W. A. van der Sanden,
J. J. de Swart, Phys. Rev. C38, 15 ~1988!.

@33# V. I. Kukulin and V. N. Pomerantsev, Prog. Theor. Phys.88,
159 ~1992!.

@34# G. A. Natanzon, Teor. Mat. Fiz.38, 219 ~1979! @Theor. Math.
Phys.38, 146 ~1979!#.


