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Completeness rules for spin observables in pseudoscalar meson photoproduction
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The number and type of measurements needed to ascertain the amplitudes for pseudoscalar meson photo-
production are analyzed in this paper. It is found that eight carefully selected measurements can determine the
four transversity amplitudes without discrete ambiguities. That number of measurements is one less than
previously believed. We approach this problem in two distinct wéljssolving for the amplitude magnitudes
and phases directly, ari@) using a bilinear helicity product formulation to map an algebra of measurements
over to the well-known algebra of thexd4 gamma matrices. It is shown that the latter method leads to an
alternate proof that eight carefully chosen experiments suffice for determining the transversity amplitudes
completely. In addition, Fierz transformations of the gamma matrices are used to develop useful linear and
nonlinear relationships between the spin observables. These relationships not only help in finding complete sets
of experiments, but also yield important constraints between the 16 observables for this reaction.
[S0556-28187)02104-3

PACS numbseis): 13.88+e, 13.60.Le, 24.76:s, 25.20.1j

[. INTRODUCTION we confirm the KW resuli2] that there are cases obeying the
BDS rule that still leave unresolved ambiguities. To our sur-
Interest in the photoproduction of pseudoscalar mesonprise, we also find thdbur appropriately chosen double-spin
has been revived now that experiments of unprecedented prebservables, along with the four tyameasurements suffice
cision are imminent. With the development of new electronto resolve all ambiguities. This is our major result. It is illus-
accelerator facilitiegsuch as TINAFalong with both polar-  trated first by using the explicit approach used in BDS;
ized beams and targets and with the CLAS detector, it willhamely, by solving for the magnitudes and phases of trans-
soon be possible to measure various spin observables witfersity helicity amplitudes. Transversity amplitudes provide
precision. These observables include the differential crosg,e advantage of having all typ® (single-spin observables
section,a(6), plus three single-spin observables, (T, and  expressed in terms of the amplitude magnitudes only. The

P), which we denote as typ§ measurements. In addition, yoyple-spin observables are then needed to determine the
there are 12 double-spin observables which can be cIas&ﬂ%ases of the transversity amplitudes.

into three t)l/pes: beam-taggeﬁﬂblbeam-r:ecoill BR)’ an(iI( Another approach is also provided in this paper. In this
target-recoil R) spin observables. The classic Barker- alternate approach, Hermitian versions of the ususgl44

Donnachie-StorrowBDS) [1] paper is one of the Standard.n%amma matrices are used to express all observables as bilin-
references on how to select measurements to fully determi - ; :
ear products of helicity amplitudes. In that way, algebraic

the four (complex total pseudoscalar meson photoproduc- }
tion amplitudes. In this paper, we also address that questioﬁ'.alatIons between observabléen algebra of measurements

It is well known that, without considering discrete ambi- &€ Mapped into the well-known algebra of the 4 gamma
guities, seven measurements are needed to determine tHRAtrices. For example, important relationships between spin
four helicity amplitudesfour magnitudes plus three phases observables are derived hgre by applymg the Fierz |dent[t|es
up to an arbitrary overall phase. However, it is necessary t& Products of gamma matrices. This procedure, as explained
resolve all discrete ambiguities to extract complete informalater, yields useful relationships between observables which
tion from experiments. In BDS, the following rulé] (herein ~ Serve to select complete sets of observables. One benefit of
called the BDS rulewas promulgatedn order to determine  this bilinear helicity productBHP) approach is that it can be
all amplitudes without discrete ambiguities, one has to meageneralized to other reactiof3].
sure five double-spin observables along with the four type  In Sec. Il, we present the bilinear helicity product analysis
measurements, provided no four double-spin observables af spin observables. In Sec. I, we give a general discussion
selected from the same set87, BR, and 7R. Thus, they of the discrete ambiguities, with emphasis on linear and non-
say nhine experiments are required. linear ambiguities. In Sec. IV, we give an example of a com-

Recently, Keaton and WorkmdKW) [2] argued that se- plete set of eight measurements which resolve all ambigu-
lecting a complete set of observables is more complicatedies, and then present tables of all such sets of observables.
than the above BDS rule. However, KW were not able toln Sec. V, relations among spin observables are derived us-
provide sufficient conditions for resolving all ambiguities. ing the Fierz identities, which are then used to confirm the
Their work inspired us to investigate the problem of deter-complete sets of observables deduced earlier.
mining which experiments can provide a “complete set,” We assume that the four typ® observables are always
e.g., those experiments which suffice to determine the basimeasured and that the problem is to select the double-spin
amplitudes free of discrete or continuous ambiguities. Her®bservables which will yield unambiguous total amplitudes.
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TABLE I. Spin observables: The 16 spin observables are expressed in helicity representation and BHP
forms. Here they are classified into four type sets: t@pfr the differential cross section and single-spin
observables, and typds7, BR, and 7R for beam-target, beam-recoil, and target-recoil spin observables,

respectively.

Spin Helicity Transversity BHP
observable representation representation form Set
!:)1 = I(0) AIH1P+Ho*+[Hal?+[Hal?)  3(Ibaf*+[by|?+[bs| >+ [bal?) %<b|il|b>
Q=3 Re(—H;Hj +H,H3) 2>+ [bl*~[bgl?~[byf?)  Yb|T*b) S
0= -7 Im(H;H3 +H3H7) 3(—[1] >+ |ba|?+[bs|?~[bs?)  K(b|T29b)
a?=Pp Im(—H;H3 —H,HZ) 2(—[b1]+ [bo|?—[bs|*+[b4?)  K(b|T*3b)
=6 Im(HHE — HgH3) Im(—byb% —b,b¥) X(b|T?|b)

05 = 1 Im(—HoH + HyH%) Re(o,b% —b,b}) Xb|T%b) BT
w=E 3(IH 12— [H| 2+ [H32—H4/?) Re(b,b% +byb}) %(b|T°|b)
at=F Re(—HoHY —H4H%) Im(b,b3 —b,b}) 3(b|THb)
=0, Im(—H,H* +H,H%) Re(—b;b} +b,b%) X(b|T™b)

@' = -0, Im(H HE — H,H3) Im(—byb% —b,b%) Xb|T7b) BR
Q%= —C, Re(H,H% +HH3) Im(bb} —byb%) 3(b| T4 b)
0= -C, F|Hi|>+|Ha2=Hz2—=[H,l?) Re(b,bj +b,b3) b|T?|b)

Q%= —T, Re(—H,H —H,H%) Re(—b;b} +bb}) (0|T®|b)
0B=-T, Re(—HyH3 +H,H3) Im(b;b% —bsb%) Xp|T¥b) TR
0 =L, Re(H,H% —H,H3) Im(—b;b3 —bsb}) 2(b|T®|b)
OB =1L,  H(~[Hil+[Ho*+[Hgl*~[H,[?) Re(~ b;b —bgb}) x(b[T*9b)

We do not deal with the problem of extracting partial wavethe initial and final states in the center-of-mass frame. The

QO are the “profile function”[3,4] forms of the spin observ-
ables, andl'® matrices are the 164 Hermitian gamma

amplitudes.

Il. BILINEAR HELICITY PRODUCTS

In this section, we introduce the bilinear helicity product
(BHP) formulation for discussing spin observables, follow-

ing the conventions if3,4].

matrices. See Appendix A for details about Th& matrices.

The 16 spin observables are also classified in Table | as four
sets:S, B7, BR, and7TR, with four observables in each set.
A unitary transformatiord ) acting on both the helicity

The pseudoscalar meson photoproduction reaction is Coma_mphtudes and th& matrices,

pletely described by four complex helicity amplitudeés;,

H,, Hs, andH,,! at each energy and angle. The 16 spin Hi—bi=U{"H;, (2.2
observables)“, consist of the differential cross section

a(6), plus 3 single- and 12 double-spin observables. Expres- -

sions for these 16 observables in terms of the helicity, trans- re—re=yWreyt®, 2.3

versity, and BHP forms are presented in TabfeAll of the
16 observables can be expressed in bilinear helicity produ

(BHP) form [3]:

C&ffers a means of altering amplitudes without changing ob-

servables. Such changes in description without changing ob-
servables are called canonical transformations, as in mechan-

. 1 1
0*=Q°7(0)= EHi*Fﬂ-‘HjE §<H|F”‘|H>, a=1,...,16, ics. A particularly useful unitary transformation of this type

is the transversity choics],

(2.9
where summation over repeated indices is implied. We de- 1 —i i 1
fine Z(0) = (k/q) o(0), wherek andq are the momenta of 11 1
i
(€O J—
U 21 1 i i -1 24
These are also often denoted 8y N, D, andS,, whereS refers 1 —i —i -1

to single-flip,D double-flip, andN no-flip amplitudes.
2For convenience, some of tg®'s in Table | were defined with

different signs than in Ref3]. which involves rotating the helicity quantization axis to the
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direction normal to the scattering plane. The 16 spin observsurements{Q“}=Q“...Q*, where M<NXN, when
ables can be expressed in thiansversity basiby there exists a transformation on the amplitudés under

. 1 which that subset of observabl¢Q“} is invariant. To re-
Va_ e T hrTan k(T _ move that ambiguity, one needs to enlarge the subset
QF=Q71(6)= 5 b7 Tijh; = 2<b|F [0), a=1,....16. M—M +1 wisely, until no such transformation exists. That

(2.5 defines the process for removing discrete ambiguities.
- A trivial case of an ambiguity is an overall phase trans-

Note that the correspondirl® matrices for the four typ&  formation applied to alN amplitudesH;—e'°H; with the
measurements are diagonal in the transversity basis, i.&eal 5 independent of. Since M = N2, there is no way to
these observables involve combinations of the squared magemove this ambiguity, which shows that only the relative
nitudes,* |b;|?, of the transversity helicity amplitudes. If all phases of the amplitudes can be determined. Other nontrivial
four of the typeS observables are measureas assumed in  ambiguities will be discussed later. If the sg“} of M
this papey, then the double-spin observables are used to deghservables is sufficient to eliminate all ambiguities, then a
termine only the phases of the transversity amplitudes. Th@nique set of amplitudes can be extracted. In that case, we
eXpE’Cit forms of the gamma matrices in the transverSity ba'ca” {Q“} a Comp|ete sebf measurements. Linear and non-
sis,I'*, are presented in Appendix A. In this paper, we will linear transformations of the amplitudes can be defined to
work mainly in the transversity basis. perform the above test.

After the above transversity transformation, both the am- As an example of a linear type of transformation that
plitudes and the gamma matrices are changed, without altecould leave a subset of observables unchanged, consider the
ing the observables. In the next section, we will introducefollowing unitary transformation applied to aM helicity
unitary transformations corresponding to discrete changes eimplitudes:
the amplitudes that can change observables.

This BHP form will be used first to discuss such discrete
ambiguities and later for a general approach to the complete-
ness problem.

Hi"Hi,:Linj’ (32)

whereL is chosen unitary to conserve the differential cross

IIl. DISCRETE AMBIGUITIES SeCtionI(o):%Hik 5|JHJ:%E||H||2 3 If there exists a uni-
tary L commuting with allT®s in the M<N? subset
A. General definition of discrete ambiguities Q%...Q0 je.,

The extraction of reaction amplitudes from experiments
poses an interesting, and sometimes difficult, task because it LIrT®L=r*, n=1...-M<N? (3.3
is a nonlinear problem. To gain insight into the general na-
ture of this problem and to define discrete ambiguities
broadly, let us consider a reaction describedNbgomplex then for members of that subset
amplitudes. For pseudoscalar meson photoprodudlier,
and we deal with a 44 gamma algebra. For the general ~ 1 ap 1 N L e
N case one also has a BHP form, but it is represented by an{¥"= EHi*Fii Hj= EHi*(LTF "L)ijHj= EHi *Fij Hy,
NXN Clifford algebra. There ar&? linearly independent (3.9
experimental observables which are linear combinations of
the N? bilinear products of theN amplitudes. One might
assume that/®— 1 appropriately chosen observables can de
termine thes&\ amplitudes, apart from an overall phase fac-
tor. However, thesd? observables areonlinearly depen-
denton each other, and several discrete solutions may satis
these A —1 measurements simultaneously. Therefore, mor
than 2N—1 experiments are needed to resolve ambiguities,
and the number of additional measurements required is not a Hi—H{=AH], (3.5
fixed number, but depends on the type of measurements al-
ready performed5]. Here we study these discrete ambigu-\yhereA is unitary. AnyA satisfying
ities, following Dean and Le6], and find ways to resolve
them. Some of the following discussion is equivalent to the
methods proposed by Keaton and Worknjiah

In general, the observabléss profile functions{(2“} can
be expressed in a bilinear product form with tKehelicity ~ Wherea, corresponds to any observable in fidle<N* sub-
amplitudesH; - - - Hy: set()“t. .., defines arantilinear ambiguityfor {Q “n}

because

which shows that the subset of observal{l@s} are invari-
‘ant underL and cannot be used to distinguish between am-
plitudesH; andH; . Then, there is dinear ambiguity

Next let us now consider an antilinear transformation act-
féﬁﬁg on allN helicity amplitudes:

(ATT“nA)T=T"n, (3.6)

. 1
Qa:QaI(ﬁ): EH*FIO;HJ’ (31)

I
SHere we suppress density of states factors and use the fact that
whereI'® are HermitianNX N matrices. An ambiguity oc- the cross section is the sum of magnitude-squared helicity ampli-
curs in extracting th& amplitudesH; from asubset of mea- tudes.
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.1 1 1 . 1 . 1o
mn=EHi*rijnHj:EHi*(A*ranA)jiHj:EH;*AJTKFH"A“H]:E(A”Hr)rkp(A}kHj)zEHk*rk,“H., (3.7)

which shows that members of the measurement subset  (whereL=T" is not listed because it obviously leaves all
cannot distinguish between amplitudds andH; . amplitudes unchanggdThosel™ matrices satisfying the an-
tilinear transformation case, E(.6), are
_T6 T8 1713 115
B. Discrete ambiguities for pseudoscalar meson A=IEILIRTE for S (3.10

photoproduction So L={T% T2 T2 are possible candidates for testing for

For pseudoscalar meson photoproductidd=(@), we linear ambiguities in any subset of measurements which in-
have expressed the 16 spin observables in BHP form usingludes typeS measurements. Similarly={I"®,I’®,I''3 1%

the transversity basis, test for antilinear ambiguities. We believe that all other
transformations, assuming tygemeasurements, can be con-
ﬁasz*fqb, (3.9 structed from the above basic linear and antilinear unitary
271 transformations.

All 16 spin observables remain either unchanged or sim-

. . . . ply change sign under these basic linear and antilinear trans-
To find associated discrete ambiguities, we need to look fofyrmations. The results are given in Table(sbme of these

matricesL. andA which satisfy Eqs(3.3) and(3.6), respec-  cases are in Ref2]). We are working with transversity am-
tively. Since the 16 Hermitiai™® matrices form a basis for plitudes and correspondingly with the transformed matrices
4x 4 matrices, it is sufficient to find"“ matrices satisfying T'. The parallel results are expressed in the helicity basis in
Egs. (3.3 and (3.6). Suppose that we always measure theappendix B, wherein the connection to the results of [R2f.
four type S observables)!, 0%, 0% 0. The onlyI'*  is made.
matrices commuting with all four of thosE* matrices in If a subset of measured observables are invariant under
type S are one of these linear or antilinear transformations, then a dis-
crete ambiguity exists. For example, if we measure
o G, F, O0,, C,, Ty, andL,, in addition to typeS, since
L=T4T0r2 for (3.9 they are all unchanged under the antilinear transformation

TABLE II. Result of linear ) and antilinear A) ambiguity transformations applied to observables. The
observables are either invariant) or change sign{) under these transformations.

Linear transformatiorn. Antilinear transformatiorA

. bi_>bi,:Lijbj bi_7bi/:Aijb]*
Spin — — — — — — —
observable I, I 'y, I's Iy I3 I'is Set
a(6) + + + + + + +
S + + + + + + + S
T + + + + + + +
P + + + + + + +
G — — + + — + -
H - — + — + — + BT
E - - + — + — +
F - - + + - + -
Oy - + — — - + +
o, = + — + + = - BR
Cy + — + + — —
C, - + — — — + +
Ty + — — + — — +
T, + - - - + + - TR
Ly + — — — + + —
L + - - + - - +

N
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with A:fe, these 4-6=10 spin observables cannot resolve IV. COMPLETE SET OF MEASUREMENTS

all ambiguities? Note that the BDS rule is violated in this Since we assume that we always measure four t§pe
case. Thereforeto determine the amplitudes uniquely, one gpservables, the magnitudes of the four transversity ampli-
has to choose a set of spin observables that are not all INtudes, r;=|b;|, can always be determined unambiguously.
variant under these L and A transformatioténfortunately,  Three double-spin observables can in general determine the
the above statement provides onlyecessarybut not rejative phases between the four helicity amplitudes, but
sufficient conditions to determine unique solutions, since|eave us with discrete ambiguities. Therefore, more measure-
there are alsmonlinearambiguities which are relatively dif- ents are required to resolve these ambiguities. We claim
ficult to resolve. _ . the following surprising resultin addition to the set, four

To clarify the above discussion, we note that some transyppropriately chosen double-spin observables are sufficient
formations of the baS|c_ amplitudes leave some set of obseryy getermine the amplitudes uniqueRhis means that a total
ables unchanged, while other observables simply changsr eight properly chosen measurements can resolve all am-
sign. For example, the replacemeri;——Dbs, and pigyities. This result contradicts the BDS rule, which as-
bs— —by, leave the eight observablék, 4.10,12(typeS) and  serted thanine measurements are necessary. In the follow-
the (13515 (type T7R) unchanged, while the sign of the ing discussion, we first provide one explicit example which
eight observabled)ss g1, (type BT) and Q147162 (type  shows that eight measurements are sufficient. Then we
BR) are changed, see Table I. If none of these sign changegtesent our complete results and guidelines for all situations.
observables are among those measured, then we have an am+ere we choose the same measurements as in the example
biguity in determiningb; andb,. This particular transfor-  given by BDS[1]. Suppose that we measu@ F, andL,,
mation of the amplitudes can be representeasU;jb;  along with the seS. We then have the equatiofsee column

with 3 of Table )
10 0 O G=—rr3SiN(P13) — Il 4SiN(b24), 4.1
U 8 ; _f (()’1 (311 F =117 3Sin(dya) — I oF 4SIN b2a), (4.2
00 0 -1 Ly=—r1r,Sin(¢y5) —r3r,Sin( ¢zy), 4.3

_ where we write the amplitudesb;=r;exp(#) and
which is identical tol'*. Now consider the effect of such a @®i;= ¢i— ¢;. Except for slightly different conventions, the

transformation on all of the observabl&<. We have solutions given by BD$1] are
1 1 h13= a1z OF T—ayg, (4.9
o= = Zb*T%h.— —b*U* T U. b
Q*=0°1(8) 2b| F'Jblﬂzbl UrilieokUiibj bos=aps OF T— ayy, 4.9
a=1,...,16.(3.12 ¢1=B+y or B+(m—vy), (4.6

5 wherea,3, a,4, B, andy are defined by
Since for our particular exampld —T',, the effect of this

discrete transformation on the transversity amplitudes is - F-G _r _r
. . S 137~ ) S=a13= 5,
equivalent to the following substitution: 2rqr 2 2
~ o~~~ G+F T T
e TI4rer, (3.13 o= — g
SiNap4 2r 0, 5 SXus 75
The above effect of* on T exactly duplicates the sign L, o o
changes indicated above that are induced by the siny=— T Es y< X

b3 4— — bs 4 substitution. This result is also seen in the third
column of Table | and the first column of Table II. ol 4SIN 13— boa)
We wish to find a subset of measurements that can be sing= 2 18 T
used to deduce a unique set of transversity amplitudes. Once A
accomplished, the helicity amplitudes can be obtained by the
inverse of Eq.(2.4). Two different approaches to this prob-

Tl o3l Co i3~ hoy)

. co ,
lem are presented: in Sec. IV, we solve for the phases of the ¥ A
transversity amplitudes directly from spin observables; in so 9o
Sec. V, we derive relations between spin observables from A=[r2r3+riri+2rrrar,cof dis— doa) 1Y% (4.7)

the Fierz identities of thé&'* matrices.

®Here a5 and ay, are uniquely defined. Oncg,; and ¢, (four
4In this case, the transformation kg — — b3 andbs;—bj, see choices are selectedA is fixed and so ar@ and y. There are still
Eq. (A5). two choices forg,, [Eq. (4.6)].
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TABLE Ill. Tables llI-VIII enumerate all situations under which four double-spin observables, along with ti# sah completely
determine the transversity amplitudes. In these tabtés,indicate three initially selected measurements, @isl indicate the possible
choices for a fourth observable that can resolve all the ambiguities.

G X X X X X X X X X X X X X X X X X X X X X X X X

H X X X X X X X X BT
E X X X X X X X X

F X X X X X X X X

Oy X o 0O O O O X O O O O O o o X (0] 0] 0]

o, X O O O O O 0O X O 0 0O 0 o O X (0] o O BR
Cy 0] X 0O O O O 0O O X O 0O 0O O O 0] X O O

C, o X O O O O O 0O 0O X 0O 0O O O (@) X O 0]

Ty O O 0O 0O X 0O O O O O O O X o O o X (0]

T, O O O O 0O X O O O O O O X (0] O O X O 7R
Ly O 0O 0O 0O 0O 0O X O O O 0O O O X O O o X

L, O O O O 0o 0O O X O O O O 0] X 0] 0] O X
Therefore, we have an eightfold ambiguity in determining L§+T§—r§r§+r§rﬁ - -

the phases. BDS showed that two more measurements, €.9., Sinag,= — , T ESapso,

E andL,, can resolve the ambiguity. But, instead of two, we 2r rVLy+ Ty 2 2

can show that only one additional appropriately chosen mea-

surement can completely determine the four amplitudes. In- _ T, Ly “9
stead of the BDS choice off and L,, take just SINé= ———5, COSE= ——5—;. 4.9
Ty= —r1r,C0S(p10) + I3 4€OS(h34) as the fourth double-spin Lt Tx Lt Tx

observable in addition t&, F, andL,. UsingL, andT, to

solve for thee,, and ¢, phases, we get Note that Eq.(4.8) has a twofold ambiguity in determining

$10 and ¢34, unlike the fourfold ambiguity for the solutions
of ¢153 and ¢p,4 [Egs.(4.4) and (4.5)].

b1o=—Etarn  pau=Etas, Combining the four solutions fop,5 and ¢, [Egs. (4.4)
and(4.5] and the two solutions fog,, and ¢34 [Eq. (4.9)],
or (4.8 we now have eight sets of possible solutions. Using the re-
lation ¢34= 1o+ Pou— P13, these eight solutions can be ex-
b= —EH(T—ayy),  Pa=E+(T—asz), pressed by
whereay,, a4, and¢ are uniquely determined from experi- (13— @z4),
e iar Xoa, BNGE &€ UNIGUELY P 26== (ay s (4.10
y 7= (13t azy),
L2+ T2+ r2r2—r2r2 - - here the two* signs are independent. Because &l and
sina = — ——————, - S San=, ¢ are fixed, only one of the above eight solutions will hold in
2131 L+ s general, which tells us that if there is a solution, then it is in
TABLE IV. Situations under which four double-spin observables can determine the transversity amplitudes.
G
H X X X X X X X X X X X X X X X X BT
E X X X X X X X X X X X X X X X X
F X X X X X X X X X X X X X X X X
Oy X 0] O O X O O 0O O O O o X o 0O O O O
o, X o O (0] 0O X O O 0O 0O o o X O O O O OBR
Cy (0] X (0] (0] 0O O X O 0O O O o (0] X 0O O O O
C, (0] X O O 0 O 0O X O 0O O o (0] X O O O O
Ty O O X (0] O O O O X 0] 0O O 0O O X 0O o o
T, (0] 0] X O 0O O O O X (0] O O O O O X O O0O7R
Ly (0] O O X O O O O O X 0 O 0O o o o X o
L, O O @) X O O O O @) X O O O 0O 0O 0O O X
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TABLE V. Situations under which four double-spin observables can determine the transversity amplitudes.

G X O o O O O X O O 0 0O 0O 0O O X (0] o O

H X 0 O O O O 0O X O O 0O O O O X o O O BT
E (0] X 0 O O O 0O O X O O O O O @] X @) @]

F (@) X O O O O O O 0O X O O o o o X O O

Oy X X X X X X X X X X X X X X X X X X X X X X X X

o, X X X X X X X X BR
Cy X X X X X X X X

C, X X X X X X X X

Ty 0 O 0O 0O X O O O 0 O O O X O O O X O

T, 0 O 0O 0O 0O X O O 0O O O O O X (0] O O X TR
Ly 0 O 0O 0O o o X O 0 O O O X O (0] (0] X O

L O 0O 0O 0O 0O 0O 0O X O O O O o X O O o X

N

general a unique solution. Therefore, in this particular casdnteractions studies, are obtained from the following property
we have shown that eight spin observables can resolve allif the gamma matrices:

ambiguities except the overall phase. All other cases can be

evaluated in the same way. We give some guidelines in Ap- reré=cseriry, (5.1
pendix C and list all the situationélables 111-VIIl) for

w_hich eight measurements can completely determine the a”&)vherecgfz L Tr(°T T "I'#). These identities are proper-
plitudes. ties of the(Hermitian gamma matrices as discussed in Ap-
pendix A. We can therefore use the abdierz identitiesfor

the gamma matrices, even though we are in a context entirely
different from their field theory origin.

In the previous section, an elementary, albeit tedious ApPPlying the Fierz transformations to the BHP forms for
method was used to determine a unique solution. In this se@pin observables yields the following set of relations be-
tion we use a totally different approach to the same problenfween observables:
of determining which set of experiments can determine the
four transversity amplitudes without discrete ambiguities.

We know that in field theonf7], bilinear products of
currents obey interchange relations known asRisez iden-
tities. In our problem, we do not deal with the four- :Caﬁ<}b*'l:;b )<1b*'1:5-b-)

Sy 2 it™t 278 7S] J

V. RELATIONS FROM FIERZ IDENTITIES

ﬁaﬁﬁ=(1b*'fﬁb-)(3b*'fﬂb)
2 i iy 2 s+ st¥t

dimensional space-time, instead we have a four-dimensional

(b;---b,) amplitude space. Nevertheless, the properties of « o~

the gamma matrices are characteristic of four-dimensional :ngﬂ'sﬂ"- (5.2
space and thus Hermitian versions of the gamma matrices, .

along with all of their known properties, are of use to us.or, since the above profile functions satisiyf= Q) “Z, for all
Their Fierz identities, which were particularly useful in weak «:

TABLE VI. Situations under which four double-spin observables can determine the transversity amplitudes.

G X (0] o (0] X O O 0O 0O 0O O O X O 0 O O O

H X (0] O O 0O X O 0O 0O 0 0 O X O O O O 0BT
E (0] X 0O O 0 O X O 0O OO o O (0] X 0 O O O

F o X O (@) O O 0O X 0O O o o (0] X O O O O

Ox

o, X X X X X X X X X X X X X X X X BR
Cy X X X X X X X X X X X X X X X X

C, X X X X X X X X X X X X X X X X

Ty (0] o X O 0O O O O X O 0O O 0O 0o X O o0 O

T, o O o X 0O O O O O X O O O 0O O X O O7R
Ly o O X O 0O O O O X O 0O 0O 0O 0O 0O o X O

L, (0] (0] o X O O O O o X O 0O 0O 0O 0O 0O 0 X
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TABLE VII. Situations under which four double-spin observables can determine the transversity amplitudes.

G X O O O O O X O O 0 0 0o o0 O X O O O

H o X O O O O O X 0O 0O 0O 0 o O o X o O BT
E X O O O O O 0 O X O 0O OO O O X O O (0]

F O X O O O O O O 0O X O O o O O X O O

Oy O 0O 0O 0O X O 0 O O 0O 0O 0o X O O O X O

o, O 0O 0O 0O 0O X O O O O O 0O O X (0] O O X BR
Cy O 0O 0O 0O 0O 0O X O O O O O X O (0] (O] X O

Cz O 0O 0O 0O 0O 0O 0o X O O O O o X O O o X

Ty X X X X X X X X X X X X X X X X X X X X X X X X

T, X X X X X X X X TR
Ly X X X X X X X X

L X X X X X X X X

N

0°0F=C5l0°0". (5.3 (26)*+(Q19%+(Qe)*+ (219 + 2 (2 Q15— 25 Q13)

- . . . =(01)2+(Q4)°~ (210°— (212)?
All distinct Fierz relations derived from Ed5.3) are pre-

sented in Appendix D. In the rest of this section, we will £2(Q104= 04001, (5.4
show that these relations provide an alternate way to obtain )
some useful results. we obtain
(Qe= Q1%+ (T Q19 %= (01 = Q) *— (Q 10+ Q1))
A. Fierz observable constraints and bounds (5.5

.The Fierz relations yield explicit and rigorous relat'lon- The left-hand side of the equation is positive, so is the right-
ships between observables. Of course, such relationships CA0nd side. Therefore E¢6.5) gives a bound relation
be derived from the bilinear structure of the observables, ' ’ 9

W|th_ much effort. That effprt is now replaced by simply in- Q.+ 0,=|Q0+ Q)] or 1+3=|T+P|. (5.6
voking the well-known Fierz rules as a general property.
That allows us to avoid much algebra and to find all relationsother bounds, within the set, can be derived in the same
in one step. There are direct physical consequences of the%y;
relations.

For example, from Eqs(L.tr), (L.br), and(L.bt) in Ap- 1+T=|P=3|, 1+P=[|3+T|. (5.7
pendix D, it can be seen that if three double spin observables
in a type set are known, then the fourth member of that typeSince the left-hand sides of EqS.bd—(S.bn in Appendix D
is uniquely determined. The fourth measurement is thus reare positive, we can deduce the bounds
dundant.

The Fierz relations can also be used to derive bounds on1+32=P?+ T2, 1+T?=32+P2, 1+P?=32+T?,
measurements. For example, from E@dstr) and(S.tr), (5.8

TABLE VIII. Situations under which four double-spin observables can determine the transversity amplitudes.

G X O o o X O O 0O 0O 0O O O X O 0O O O O

H O X o O 0O X O 0O 0O 0 0 O o X O O O 0BT
E X O o O 0 O X O 0O 0O o0 O X O O 0 O O

F O X O O O O O X O O O o O X O O O O

Oy o O X O O 0O 0O 0O X O O 0O 0O 0O X 0O o0 o

o, O O O X O O 0O 0O O X O O O 0O 0O X O OBR
Cy O O X O O O O O X O 0O 0O 0O 0O 0O 0O X O

C, o (0] o X O O O O o X O 0O 0O 0O 0O 0O 0o X

T

T, X X X X X X X X X X X X X X X X TR
Ly X X X X X X X X X X X X X X X X

L X X X X X X X X X X X X X X X X

N
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as well asP?<1,3%<1, andT?<1. lows us to make unitarycanonical transformations which
In this way all bounds among spin observables given byhave no effect on the observables, as illustrated by the trans-
BDS[1] and Goldsteiret al.[8] can be obtained using these formation to the transversity basis. In addition, there are
Fierz relations. transformations which can store the discrete ambiguities. By
finding the set of those unitary matrices that describe the
discrete transformations, it is possible to delineate which ex-
B. Fierz and selection of experiments periments resolve such discrete ambiguities.

We determined how to pick a complete set of measure- In addition, once it is recognized that the algebra of ob-
ments by solving trigonometric equations in Sec. IV. HereS€rvables maps over to the algebra of the44gamma ma-
we show that the Fierz relations can accomplish the sam#ices, we can use all known properties of the 4 matrices.
task. In our case, the four-dimensional space is not that of space-

Take the case of the four double-spin observatiesi,  time, but is rather the four-dimensional helicity space. Nev-
O,, andC, (Qs351413. From Eq.(S.bb, we can determine €rtheless, the gamma matrices have the well-known proper-
(Qg)2+ (012, Thérefore, Eqs(S.by and (S.b can yield ties of four—dlmenslongl space. One property that is
the magnitudes of), and Q,. Finally, invoking Eq.(L.br) particularly mtergstmg is the F!erz transfqrmaﬂon. It is
we can uniquely decid®, andQ),. By selecting the appro- s_hown_ that the Fierz transformatlo_n properties lead to rel_a-
priate equations from Appendix D, one can determine alfionships between observables which can be used to provide

other observables. Once all the observal§lesare known, constraints and |nequal|t_|es rules for observables.
L% o s 1w @ - The Fierz transformation can also be used as an alternate
we can usezb; bj=2 I7Q,, or HH;=2.IQ,, to

btain th litudes: h h ] way to prove that a set of eight experiments can be selected
obtain the amplitudes; here the sum is ower 1, ...,16 — 4 torm a complete set of measurements. All examples of the
all the now known observables.

. o , four sets of double-spin observables are presented in table
In this specific case, we show that the chosen eight me

R Form, since we have not been able to express this result using
surements resolve the ambiguities. All other cases can b,

kg Ve _ _ % simple guideline.

examined in a similar way using properly selected Fierz re-

lations to determine the unmeasured observables, although

sometimes it becomes rather awkward to find the right set of ACKNOWLEDGMENTS

Fierz relations needed for the task. The same result that was The authors wish to thank Dr. R. Workman for his com-

found earlier, which is summarized in Tables IlI-VIl, is ments, which stimulated us to examine this problem. We also
recovered by this second method. One advantage of thgish to thank Dr. Bijan Saghai for helpful discussions. The

possibly be generalized to reactions with>4 amplitudes.  Egoundation.

VI. CONCLUSIONS APPENDIX A: GAMMA MATRICES

We have reexamined the classic question of how many 1ne 16 4<4 T matrices are Hermitian versions of the
observables are required in pseudoscalar meson photoprymiiiar Dirac matrices:

duction to completely and unambiguously extract the basic
amplitudes from experiment. The four magnitudes and three
phases suggest that, aside from an overall arbitrary phase,
only seven experiments are needed. However, seven experi- o2 7,5),0,3/5;,7 ¥5. (A1)
ments do not suffice to resolve discrete ambiguities, as has

been discussed, most recently by Keaton and Workmarghey have the following properties which are used in this
Stimulated by that observation, we have investigated thggner.

guestion of the number of spin observables needed to deter- () T are Hermitian and unitary.

mine the transversity amplitudéassuming the cross section (b) Tr(TeT?) =45,

plus all single-spin observables are measurédis conve- (c) T are linearly independent. Therefore, they form a

nient to transform to transversity amplitudes, which use thecomplete seta basi$ for 4X 4 matrices. Using propertp)
normal to the scattering plane as the quantization axis. In thaatny 4 4 matricesX can be expanded a6=3,C,I'® with'
case, the cross section plus the three single-spin observables =1 T(rX). “e

determine the magnitudes of the transversity amplitudes, “(d) S TeT=45..5
while the double-spin observables play the role of determin- © F;‘ng;t F)?S\N:)tth pog= L Tr(TeTET?)
ing their phases. It is found that by carefully selecting four of e “hry Tr(F‘SFZl@y”Fé)=C“B whi<':h is used
the double-spin observables it is possible to extract all of th? 4P aysP pyn— 16 o Com
or the Fierz transformation in Sec. V.

requisite phases without discrete ambiguities. . .
d P g These properties are preserved under any unitary transfor-

This is illustrated following the same procedure used in . h ) ¢ GH Tdefined i
the classic BDS paper, by explicitly expressing observable§1ation, €.9., the transversity transtormat [defined in

in terms of the magnitudes and relative phases of the amplfd- (2-4]. Therefore, thd” matrices in the transversity basis
tudes. As an alternate approach, we expressed all observabf@@ve the same properties as the originahatrices. These 16

in terms of bilinear helicity product forms, which map the I' matrices can be grouped into four classes with four mem-
algebra of observables to the algebra of Hermitian versionbers in each class according to their “shap&3y shape, we

of the well-known 4<x4 gamma matrices. This mapping al- mean the location of nonzero entriesliratrices) The four

FaZl ..... 16 1,y0,i ’y,iO'OX,iO'Oy,iO'OZ,iO'Xy,iO'XZ,
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shapes are diagondD), right parallelogran{PR), antidiago-
nal (AD), and left parallelograniPL) [3]. In the transversity
basis, these four shape classes corresposi] BY, BR, and
TR type experiments. Here, we give their explicit expres-

sions:
a
~ o~ 0
FD:FS: O
0
0
~ ~ 0
er=1'57= c
0
0
~ ~ 0
Cap=T'pr= 0
d
0
~ - b
e =I'z= 0
0

O O T O

o O O o

o 060 o o

o O ©O 9

COMPLETENESS RULES FOR SPIN OBSERVABLES IN ...

a b c d
00 r, +1 +1 +1 +1
0 0| =
T, +1 +1 -1 -1
c O ~
0 g T —1 +1 +1 -1
FlZ _1 +1 _1 +1
(A2)
a b c d
et A A R e s
0 b| =
CTs +1 -1 +1 -1
o 1 +1 +1 +1
+1 +1 +1 +
0o o o
Ty +i —i =i +i
(A3)
a b c d
0al T, -1 +1 +1 -1
b 0| = L
R e I
0 0" - S
+i =i 4P -
0 o 1}6 [ [ [ [
I, +1 +1 +1 +1
(A4)
a b c d
0 01 T o1 -1 41 +1
S P T S R R R
0 C, ~13 . - - .
—I1 +1 —I +1
d of s
s -1 -1 -1 -1
(A5)

APPENDIX B: DISCRETE AMBIGUITIES

In Ref.[2], KW gave discrete ambiguity relations associ-

IN HELICITY BASIS

ated with transformations of helicity amplitudes.

Ambiguity I

Hl(—>H4,

H2<—>_H3,

H, Hi 0 0 0 +1
H, H, 0 0 -1
—_ =
Hj Hj 0o -1
H4 HA +1 0
Ambiguity II:
H1—>H2,
H2—>_H1,
H3—>H4,
H4—>_H3,
ie.,
H, Hi 0 +1 O
H, H, -1 0 0
N =
Hi Hj 0 0 0
Hy
— il’*lO H2
Hs
Ha
Ambiguity IlI:
H14>H3,
H2—7H4,
H3—>_H1,
H4—>_H2,
ie.,
H, Hi 0 0 +1
H, H, 0
— =
Hj Hj -1 0 0
Hy Hy O -1 0
Hy
_il'*12 H2
Hs

(B2)

(B3)
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Ambiguity IV: Ambiguity III:
o — H* b7 [bi] -1 0 0 07[b; b,
b, B b? 0o +1 o0 0 (| by _fr2 b,
H2—>H* , b3 b3 O O -1 0 b3 b3
b, b, 0 0 0 +1]|bsa b,
H3*>H* y (87)
Ambiguity IV:
Hy—— HZ. ' * *
b7 [b1 0 -1 0 017[bs b
ie b, bj B -1 0 0 0 || b3 = b3
bs bj 0 0 0 —1||b3 b%
, b, b! 0 0 -1 O0]|b* b*
H,] [Hi] 1-1 O 0 1[ H} N N N
' * (B8)
H, H, 0O +1 o0 0 || H3 o ) )
— = Ambiguities I, 1l, and Ill are equivalent to our linear am-

! * ~ ~ ~
Hs Ha 0 0 +1 0 1H; biguities L=T", T''% and I''? except for irrelevant phases

Hy H, 0 0 0 —-1]|H} (see Table N._Ambiguity IV corresponds to our antilinear
ambiguityA= Ff. And the other three antilinear ambiguities
H in Table I, A=T%, I'3 andI®, can be constructed by am-
" biguity IV and the three linear ambiguitie@mbiguities
15 Hi _ (B4) I-III'). It is shown explicitly by
3 ~ ~ o~
F6=F4F15,
H
f13:if10f15

Note that in the above the helicity amplitudes and gamma
matrices are in the original basis. Since we work exclusively
in the transversity basis in this paper, it is convenient to
express the above ambiguities in the transversity basis.

Fo_ _ifuris

Here we recover the results given by KiRef. [2]).

Ambiguity I:
APPENDIX C: COMPLETE SETS
OF EIGHT MEASUREMENTS
by by +1 0 0 01[ by by Here we give rules for choosing four double-spin observ-
b, b, 0 +1 O 0 || b, = b, ables which can resolve the ambiguities when they are taken
by - b, 1o 0 -1 0 ||lbs|" bs |’ together witho(6), X, T, and P. These rules are not ex-

pressed succinctly, and we cannot yet provide simple physi-

by b, 0 0 0 —1]|by b, cal guidance. Some may find Tables lI-VIII useful for
(B5) choosing the appropriate measurements.
Define A4, B, C, D, &, andF as sets of pairs of double-spin
Ambiguity II: observables:
{(H,E),(OX,CZ),(TX ,LZ)}:A, (Cy
b b -1 0 0 017[b
! ! ! {(G,F),(0,,C0.(T;,L} =B, (C2
b,| | b} +1 0 0||b,
b3 - bé B O O +1 O b3 {(H,F),(OX,CX),(TX,Tz)}:C, (C3)
b y 0 0 0 -—-1f|b
o Lba ‘ {(G,H),(0,0,)., (T, L} =D, 4
by {(E,F),(Cx,C(To L)} =6, ()
. b2
=i, (B6) {(GE)(0,.C)).(Lu Lo} =7, (8

b, and X and ) as sets of double-spin observables:
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{H,E,0,,C,,T,,L,} =4, (C7) seeking connections between observables, which is impor-
tant in showing that not all observables need to be measured.
{G,F,0,,C,, T,, L= (c8  They have interesting patterns which might help in examin-

ing questions of interdependence between observables and in
There are four situations in choosing four double-spin obfuture generalizations to reactions wii>4 amplitudes.
servables.

(a) 2+2 cases: Pick one pair of double-spin observables -Nar-quadratic relations:

from the same typeR7, BR, or TR), and another pair from 16
another type. Here are thet2 cases which can determine 0, =1=> (Q,)? (L.0)
the amplitudes uniquely. 45=1

(1) 2 B7+2 TR cases: At least one pair belongs to set
D or &, i.e., at least one pair iS,H), (E,F), (T,,L,), or 0= Q10015+ Q60 15— Qgy3, (L.tr)
(Tz,L). _

(2) 2 BT+2 BR cases: At least one pair belongs to set Q10= Q4 Q1o Qo Qs t 0706, (L.br)
C or F, i.e., at least one pair iSJ,E), (H,F), (O,C,), or

(0,.C)). 015= Qg Q1o+ Q30 1;— 050y, (L.bt)
(3) 2 BR+2 TR cases: Theé8R pair belongs to seb or Oamt Qi QoOaet Qr i) L1
&, or the7R pair belongs to sef or 7, i.e., at least one pair 3 132 SRS TR L.
1S (Ox,0,), (Cx.C2), (T, o), or (Ly.Ly). . O5==0g 015+ Q7013— 0106, (L.2)
(b) 2+1+1 cases: Pick one pair of double-spin observ-
ables from one type oB7, BR, or 7R, and one observable Qg=—05Q— 00— Q1604 , (L.3)
from each of the remaining two types. The following are the
only 2+1+1 situations under which the ambiguities arat Q1=+ Q301+ Q013+ Q1606 , (L.4)
resolved.
(1) When the pair belongs to set and the other two Q14=05Q19t Q305 —05Q5, (L.5)
observables belong to the same settobr ).
(2) When the pair belongs to sé& and the other two Q7 =016010~ Q3015+ Q50 3, (L.6)
observables belong to the different set’Xofaind ).
(c) 3+1 cases: Pick three double-spin observables from Q6= Q7090— Qg +Q1:6, (L.7)
one type and one observable from other types. Ambiguities
cannot be resolved in these cases. Q2 =014010— Q)15+ 01103, (L.8)
(d) 4 cases: Pick all four double-spin observables from the _
same type. They can never determine the amplitudes Q=+ Q1504 = 05014+ 011056, (L.9)
uniquely.
q y 913:_QSQ4+QSQ7+91192 y (LlO)
APPENDIX D: FIERZ RELATIONS Qg=—0,30,+ Q50,0 Q1g, (L.12)
In this appendix, we display all of the Fierz relations as Qo=+ 00— 030, — 050, . (L12)

contained in Eq(5.3). We select values for the indicesand
B and then evaluate the coefficiaﬁgf, from the trace rules Quadratic relations:
in Appendix A. There are 1616=256 choices for the pair

«, B; however, due to symmetries and the fact that many of 0507 —01,016— Q30— 050,,=0, (Q.b

the resulting equations are redundant, we can reduce the

Fierz results to the following 37 equations. There continues Q305+ 09013+ Qg +013015=0, QY

to be some redundancy in these, but that is hard to judge

since they are nonlinear equations. 001607014~ Q6 Q13- Qg N15=0,  (Q.N)
The 37 surviving equations that are obtained using the

Fierz identities are organized according to the following Q4 Q3= Q10001+ Q706 +Q14013=0, (Q.bt.Y

scheme:(a) relations(L.tr) and (S.tr) involve only S and
TR types, etc.;(b) relations(Q.b) and (S.b involve only
BT and BR types, etc.;(c) relations(Q.bt.)—(Q.tr.4 and
(L.2)—(L.12) involve all four TR, B7, BR, andS types.

Q4Q5+Qlo(29+ﬂ798+01491520, (thz

Qs Qg+ Q1005+ 0,06—0160,3=0, (Q.bt.3

The labellL is used for lineafLHS) to quadratic(RHS) _ _ _
relations(with a=1 selecteyl The labelQ denotes purely 04811~ Q1ofds + 00 = 2160215=0, (Q.0LY
quadratic relations on right and left sides, wiiés used to Qo Qs Q0 + Q3 Q03+ Q5 Q5=0, (Q.br.D)
indicate observable squared rules. Use Table | to translate
these rules to the notations(2,T,P)S, (G,H,E,F)B7, Q0,006+ Q306 +0:0=0, (Q.br.2
(04,0,,Cy,C)BR, (T4, T,,Ly,L,)TR. Note that these re-
lations hold true at all energies and all angles. The tgpe 0401601507 =Qg Q13— 01:Q15=0, (Q.br.3

observableg), 410 10are all assumed to be known.
The following relations have been organized to help in Q405 =004+ Qg Q6 +Q1:05=0, (Q.br.9
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Q16— Q045+ Q0 —01,0,=0,  (Q.tr.1) (Q6)2+ (Q19)2+ (Qg) 2+ (Q19)?
Q16013+ Q105 — Qs Q16— 01:01,=0, (Q.tr.2) =(Q1)%+(Q4)%=(210° - (019% ()
Q1+ Q1013- 030, + 050, =0, (Q.r.3 ()2 (e 12— (09— (210
010015~ 0106 + Q3016+ 0 Q1,=0.  (Q.tr.d) = (024 (052 (0107~ (Q,)% (S

Square relations:
—(Q3)%+(05)°—(Qg)+(01)?

(Q3)%+(Q5)%+(Qg)%+ (0193 5 5 ) )
=(Q6) + (219"~ (Qg)"—(N15)°, (SH

=(01)%=(04)°—(Q10%+(021)% (S.bh
(91224 (Q7)%+(Q1)2+(Q5)? (Q19%=(Q7)%+(Q16)°— (Q,)?
=(01)%=(Q4)%+ (210~ (21)% (S.bp =(06)%(019°+(Qg)*—(219% (S
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