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Completeness rules for spin observables in pseudoscalar meson photoproduction

Wen-Tai Chiang and Frank Tabakin
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 27 November 1996!

The number and type of measurements needed to ascertain the amplitudes for pseudoscalar meson photo-
production are analyzed in this paper. It is found that eight carefully selected measurements can determine the
four transversity amplitudes without discrete ambiguities. That number of measurements is one less than
previously believed. We approach this problem in two distinct ways:~1! solving for the amplitude magnitudes
and phases directly, and~2! using a bilinear helicity product formulation to map an algebra of measurements
over to the well-known algebra of the 434 gamma matrices. It is shown that the latter method leads to an
alternate proof that eight carefully chosen experiments suffice for determining the transversity amplitudes
completely. In addition, Fierz transformations of the gamma matrices are used to develop useful linear and
nonlinear relationships between the spin observables. These relationships not only help in finding complete sets
of experiments, but also yield important constraints between the 16 observables for this reaction.
@S0556-2813~97!02104-3#

PACS number~s!: 13.88.1e, 13.60.Le, 24.70.1s, 25.20.Lj
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I. INTRODUCTION

Interest in the photoproduction of pseudoscalar mes
has been revived now that experiments of unprecedented
cision are imminent. With the development of new electr
accelerator facilities~such as TJNAF! along with both polar-
ized beams and targets and with the CLAS detector, it w
soon be possible to measure various spin observables
precision. These observables include the differential cr
section,s(u), plus three single-spin observables (S, T, and
P), which we denote as typeS measurements. In addition
there are 12 double-spin observables which can be class
into three types: beam-target (BT ), beam-recoil (BR), and
target-recoil (TR) spin observables. The classic Barke
Donnachie-Storrow~BDS! @1# paper is one of the standar
references on how to select measurements to fully determ
the four ~complex! total pseudoscalar meson photoprodu
tion amplitudes. In this paper, we also address that ques

It is well known that, without considering discrete amb
guities, seven measurements are needed to determine
four helicity amplitudes~four magnitudes plus three phase!
up to an arbitrary overall phase. However, it is necessar
resolve all discrete ambiguities to extract complete inform
tion from experiments. In BDS, the following rule@1# ~herein
called the BDS rule! was promulgated:In order to determine
all amplitudes without discrete ambiguities, one has to m
sure five double-spin observables along with the four typS
measurements, provided no four double-spin observables
selected from the same set ofBT, BR, and TR. Thus, they
say nine experiments are required.

Recently, Keaton and Workman~KW! @2# argued that se-
lecting a complete set of observables is more complica
than the above BDS rule. However, KW were not able
provide sufficient conditions for resolving all ambiguitie
Their work inspired us to investigate the problem of det
mining which experiments can provide a ‘‘complete se
e.g., those experiments which suffice to determine the b
amplitudes free of discrete or continuous ambiguities. H
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we confirm the KW result@2# that there are cases obeying th
BDS rule that still leave unresolved ambiguities. To our s
prise, we also find thatfour appropriately chosen double-sp
observables, along with the four typeS measurements suffic
to resolve all ambiguities. This is our major result. It is illu
trated first by using the explicit approach used in BD
namely, by solving for the magnitudes and phases of tra
versity helicity amplitudes. Transversity amplitudes provi
the advantage of having all typeS ~single-spin! observables
expressed in terms of the amplitude magnitudes only. T
double-spin observables are then needed to determine
phases of the transversity amplitudes.

Another approach is also provided in this paper. In t
alternate approach, Hermitian versions of the usual 434
gamma matrices are used to express all observables as
ear products of helicity amplitudes. In that way, algebr
relations between observables~an algebra of measurement!
are mapped into the well-known algebra of the 434 gamma
matrices. For example, important relationships between s
observables are derived here by applying the Fierz ident
to products of gamma matrices. This procedure, as expla
later, yields useful relationships between observables wh
serve to select complete sets of observables. One bene
this bilinear helicity product~BHP! approach is that it can be
generalized to other reactions@3#.

In Sec. II, we present the bilinear helicity product analy
of spin observables. In Sec. III, we give a general discuss
of the discrete ambiguities, with emphasis on linear and n
linear ambiguities. In Sec. IV, we give an example of a co
plete set of eight measurements which resolve all amb
ities, and then present tables of all such sets of observa
In Sec. V, relations among spin observables are derived
ing the Fierz identities, which are then used to confirm
complete sets of observables deduced earlier.

We assume that the four typeS observables are alway
measured and that the problem is to select the double-
observables which will yield unambiguous total amplitude
2054 © 1997 The American Physical Society
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TABLE I. Spin observables: The 16 spin observables are expressed in helicity representation an
forms. Here they are classified into four type sets: typeS for the differential cross section and single-sp
observables, and typesBT, BR, andTR for beam-target, beam-recoil, and target-recoil spin observab
respectively.

Spin Helicity Transversity BHP
observable representation representation form Set

V̌1 [ I(u) 1
2(uH1u21uH2u21uH3u21uH4u2)

1
2(ub1u21ub2u21ub3u21ub4u2) 1

2^buG̃1ub&
V̌4 [ Š Re(2H1H4*1H2H3* )

1
2(ub1u21ub2u22ub3u22ub4u2) 1

2^buG̃4ub& S
V̌10 [ 2Ť Im(H1H2*1H3H4* )

1
2(2ub1u21ub2u21ub3u22ub4u2) 1

2^buG̃10ub&
V̌12 [ P̌ Im(2H1H3*2H2H4* )

1
2(2ub1u21ub2u22ub3u21ub4u2) 1

2^buG̃12ub&

V̌3 [ Ǧ Im(H1H4*2H3H2* ) Im(2b1b3*2b2b4* )
1
2^buG̃3ub&

V̌5 [ Ȟ Im(2H2H4*1H1H3* ) Re(b1b3*2b2b4* )
1
2^buG̃5ub& BT

V̌9 [ Ě
1
2(uH1u22uH2u21uH3u22uH4u2) Re(b1b3*1b2b4* )

1
2^buG̃9ub&

V̌11 [ F̌ Re(2H2H1*2H4H3* ) Im(b1b3*2b2b4* )
1
2^buG̃11ub&

V̌14 [ Ǒx Im(2H2H1*1H4H3* ) Re(2b1b4*1b2b3* )
1
2^buG̃14ub&

V̌7 [ 2Ǒz Im(H1H4*2H2H3* ) Im(2b1b4*2b2b3* )
1
2^buG̃7ub& BR

V̌16 [ 2Čx Re(H2H4*1H1H3* ) Im(b1b4*2b2b3* )
1
2^buG̃16ub&

V̌2 [ 2Čz
1
2(uH1u21uH2u22uH3u22uH4u2) Re(b1b4*1b2b3* )

1
2^buG̃2ub&

V̌6 [ 2Ťx Re(2H1H4*2H2H3* ) Re(2b1b2*1b3b4* )
1
2^buG̃6ub&

V̌13 [ 2Ťz Re(2H1H2*1H4H3* ) Im(b1b2*2b3b4* )
1
2^buG̃13ub& TR

V̌8 [ Ľx Re(H2H4*2H1H3* ) Im(2b1b2*2b3b4* )
1
2^buG̃8ub&

V̌15 [ Ľz
1
2(2uH1u21uH2u21uH3u22uH4u2) Re(2b1b2*2b3b4* )

1
2^buG̃15ub&
ve
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We do not deal with the problem of extracting partial wa
amplitudes.

II. BILINEAR HELICITY PRODUCTS

In this section, we introduce the bilinear helicity produ
~BHP! formulation for discussing spin observables, follow
ing the conventions in@3,4#.

The pseudoscalar meson photoproduction reaction is c
pletely described by four complex helicity amplitudes:H1,
H2, H3, andH4,

1 at each energy and angle. The 16 sp
observables,Va, consist of the differential cross sectio
s(u), plus 3 single- and 12 double-spin observables. Exp
sions for these 16 observables in terms of the helicity, tra
versity, and BHP forms are presented in Table I.2 All of the
16 observables can be expressed in bilinear helicity prod
~BHP! form @3#:

V̌a5VaI~u!5
1

2
Hi*G i j

aHj[
1

2
^HuGauH&, a51, . . . ,16,

~2.1!

where summation over repeated indices is implied. We
fine I(u)5(k/q)s(u), wherek and q are the momenta o

1These are also often denoted byS1, N, D, andS2, whereS refers
to single-flip,D double-flip, andN no-flip amplitudes.
2For convenience, some of theVa’s in Table I were defined with

different signs than in Ref.@3#.
t

-

s-
s-

ct

e-

the initial and final states in the center-of-mass frame. T
V̌a are the ‘‘profile function’’@3,4# forms of the spin observ-
ables, andGa matrices are the 16 434 Hermitian gamma
matrices. See Appendix A for details about theGa matrices.
The 16 spin observables are also classified in Table I as
sets:S, BT, BR, andTR, with four observables in each se

A unitary transformationU (4) acting on both the helicity
amplitudes and theGa matrices,

Hi→bi5Ui j
~4!Hj , ~2.2!

Ga→G̃a5U ~4!GaU†~4!, ~2.3!

offers a means of altering amplitudes without changing
servables. Such changes in description without changing
servables are called canonical transformations, as in mec
ics. A particularly useful unitary transformation of this typ
is the transversity choice@3#,

U ~4!5
1

2 S 1 2 i i 1

1 i 2 i 1

1 i i 21

1 2 i 2 i 21

D , ~2.4!

which involves rotating the helicity quantization axis to th
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2056 55WEN-TAI CHIANG AND FRANK TABAKIN
direction normal to the scattering plane. The 16 spin obse
ables can be expressed in thistransversity basisby

V̌a5VaI~u!5
1

2
bi* G̃i j

abj5
1

2
^buG̃aub&, a51, . . . ,16.

~2.5!

Note that the correspondingG̃a matrices for the four typeS
measurements are diagonal in the transversity basis,
these observables involve combinations of the squared m
nitudes,6ubi u2, of the transversity helicity amplitudes. If a
four of the typeS observables are measured~as assumed in
this paper!, then the double-spin observables are used to
termine only the phases of the transversity amplitudes.
explicit forms of the gamma matrices in the transversity
sis, G̃a, are presented in Appendix A. In this paper, we w
work mainly in the transversity basis.

After the above transversity transformation, both the a
plitudes and the gamma matrices are changed, without a
ing the observables. In the next section, we will introdu
unitary transformations corresponding to discrete change
the amplitudes that can change observables.

This BHP form will be used first to discuss such discre
ambiguities and later for a general approach to the compl
ness problem.

III. DISCRETE AMBIGUITIES

A. General definition of discrete ambiguities

The extraction of reaction amplitudes from experime
poses an interesting, and sometimes difficult, task becau
is a nonlinear problem. To gain insight into the general
ture of this problem and to define discrete ambiguit
broadly, let us consider a reaction described byN complex
amplitudes. For pseudoscalar meson photoproductionN54,
and we deal with a 434 gamma algebra. For the gener
N case one also has a BHP form, but it is represented b
N3N Clifford algebra. There areN2 linearly independent
experimental observables which are linear combinations
the N2 bilinear products of theN amplitudes. One migh
assume that 2N21 appropriately chosen observables can
termine theseN amplitudes, apart from an overall phase fa
tor. However, theseN2 observables arenonlinearly depen-
denton each other, and several discrete solutions may sa
these 2N21 measurements simultaneously. Therefore, m
than 2N21 experiments are needed to resolve ambiguit
and the number of additional measurements required is n
fixed number, but depends on the type of measurement
ready performed@5#. Here we study these discrete ambig
ities, following Dean and Lee@6#, and find ways to resolve
them. Some of the following discussion is equivalent to
methods proposed by Keaton and Workman@2#.

In general, the observables~as profile functions! $V̌a% can
be expressed in a bilinear product form with theN helicity
amplitudesH1•••HN :

V̌a5VaI~u!5
1

2
Hi*G i j

aHj , ~3.1!

whereGa are HermitianN3N matrices. An ambiguity oc-
curs in extracting theN amplitudesHi from asubset of mea-
v-

e.,
g-
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surements$Va%[Va1
•••VaM, where M,N3N, when

there exists a transformation on the amplitudesHi under
which that subset of observables$Va% is invariant. To re-
move that ambiguity, one needs to enlarge the sub
M→M11 wisely, until no such transformation exists. Th
defines the process for removing discrete ambiguities.

A trivial case of an ambiguity is an overall phase tran
formation applied to allN amplitudesHi→eidHi with the
real d independent ofi . SinceM5N2, there is no way to
remove this ambiguity, which shows that only the relati
phases of the amplitudes can be determined. Other nontr
ambiguities will be discussed later. If the set$Va% of M
observables is sufficient to eliminate all ambiguities, the
unique set of amplitudes can be extracted. In that case
call $Va% a complete setof measurements. Linear and no
linear transformations of the amplitudes can be defined
perform the above test.

As an example of a linear type of transformation th
could leave a subset of observables unchanged, conside
following unitary transformation applied to allN helicity
amplitudes:

Hi→Hi85Li jH j , ~3.2!

whereL is chosen unitary to conserve the differential cro
sectionI(u)5 1

2Hi* d i j H j5
1
2( i uHi u2.

3 If there exists a uni-
tary L commuting with all Ga’s in the M,N2 subset
Va1

•••VaM, i.e.,

L†GanL5Gan, n51•••M,N2, ~3.3!

then for members of that subset

V̌an5
1

2
Hi*G i j

anH j5
1

2
Hi* ~L†GanL ! i j H j5

1

2
Hi8*G i j

anH j8 ,

~3.4!

which shows that the subset of observables$Va% are invari-
ant underL and cannot be used to distinguish between a
plitudesHi andHi8 . Then, there is alinear ambiguity.

Next let us now consider an antilinear transformation a
ing on allN helicity amplitudes:

Hi→Hi85Ai jH j* , ~3.5!

whereA is unitary. AnyA satisfying

~A†GanA!T5Gan, ~3.6!

wherean corresponds to any observable in theM,N2 sub-
setVa1

•••VaM, defines anantilinear ambiguityfor $Van%
because

3Here we suppress density of states factors and use the fact
the cross section is the sum of magnitude-squared helicity am
tudes.
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V̌an5
1

2
Hi*G i j

anH j5
1

2
Hi* ~A†GanA! j i H j5

1

2
Hi*Ajk

† Gkl
anAliH j5

1

2
~AliHi* !Gkl

an~Ajk
† Hj !5

1

2
Hk8*Gkl

anHl8 , ~3.7!
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which shows that members of the measurement subsetVan

cannot distinguish between amplitudesHi andHi8 .

B. Discrete ambiguities for pseudoscalar meson
photoproduction

For pseudoscalar meson photoproduction (N54), we
have expressed the 16 spin observables in BHP form u
the transversity basis,

V̌a5
1

2
bi* G̃i j

abj . ~3.8!

To find associated discrete ambiguities, we need to look
matricesL andA which satisfy Eqs.~3.3! and~3.6!, respec-
tively. Since the 16 HermitianG̃a matrices form a basis fo
434 matrices, it is sufficient to findG̃a matrices satisfying
Eqs. ~3.3! and ~3.6!. Suppose that we always measure t
four type S observables:V̌1, V̌4, V̌10, V̌12. The only G̃a

matrices commuting with all four of thoseG̃a matrices in
typeS are

L5G̃4,G̃10,G̃12 for S ~3.9!
ng

r

e

~whereL5G̃1 is not listed because it obviously leaves a
amplitudes unchanged!. ThoseG̃a matrices satisfying the an
tilinear transformation case, Eq.~3.6!, are

A5G̃6,G̃8,G̃13,G̃15 for S. ~3.10!

So L5$G̃4,G̃10,G̃12% are possible candidates for testing f
linear ambiguities in any subset of measurements which
cludes typeS measurements. Similarly,A5$G̃6,G̃8,G̃13,G̃15%
test for antilinear ambiguities. We believe that all oth
transformations, assuming typeS measurements, can be co
structed from the above basic linear and antilinear unit
transformations.

All 16 spin observables remain either unchanged or s
ply change sign under these basic linear and antilinear tr
formations. The results are given in Table II~some of these
cases are in Ref.@2#!. We are working with transversity am
plitudes and correspondingly with the transformed matri
G̃. The parallel results are expressed in the helicity basi
Appendix B, wherein the connection to the results of Ref.@2#
is made.

If a subset of measured observables are invariant un
one of these linear or antilinear transformations, then a
crete ambiguity exists. For example, if we measu
G, F, Oz , Cx , Tx , andLz , in addition to typeS, since
they are all unchanged under the antilinear transforma
he
TABLE II. Result of linear (L) and antilinear (A) ambiguity transformations applied to observables. T
observables are either invariant~1! or change sign (2) under these transformations.

Spin
observable

Linear transformationL
bi→bi85Li j bj

Antilinear transformationA
bi→bi85Ai j bj*

SetG̃4 G̃10 G̃12 G̃6 G̃8 G̃13 G̃15

s(u) 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 S
T 1 1 1 1 1 1 1

P 1 1 1 1 1 1 1

G 2 2 1 1 2 1 2

H 2 2 1 2 1 2 1 BT
E 2 2 1 2 1 2 1

F 2 2 1 1 2 1 2

Ox 2 1 2 2 2 1 1

Oz 2 1 2 1 1 2 2 BR
Cx 2 1 2 1 1 2 2

Cz 2 1 2 2 2 1 1

Tx 1 2 2 1 2 2 1

Tz 1 2 2 2 1 1 2 TR
Lx 1 2 2 2 1 1 2

Lz 1 2 2 1 2 2 1
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with A5G̃6, these 416510 spin observables cannot resol
all ambiguities.4 Note that the BDS rule is violated in thi
case. Therefore,to determine the amplitudes uniquely, o
has to choose a set of spin observables that are not all
variant under these L and A transformations. Unfortunately,
the above statement provides onlynecessarybut not
sufficient conditions to determine unique solutions, sin
there are alsononlinearambiguities which are relatively dif
ficult to resolve.

To clarify the above discussion, we note that some tra
formations of the basic amplitudes leave some set of obs
ables unchanged, while other observables simply cha
sign. For example, the replacementb3→2b3 , and
b4→2b4 , leave the eight observablesV1,4,10,12~typeS) and
the V6,13,8,15 ~type TR) unchanged, while the sign of th
eight observablesV3,5,9,11 ~type BT ) and V14,7,16,2 ~type
BR) are changed, see Table I. If none of these sign chan
observables are among those measured, then we have a
biguity in determiningb3 and b4 . This particular transfor-
mation of the amplitudes can be represented asbi85Ui j bi
with

U5S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D , ~3.11!

which is identical toG̃4. Now consider the effect of such
transformation on all of the observablesVa. We have

V̌a5VaI~u!5
1

2
bi* G̃i j

abj→
1

2
bi*Uk8 i

* G̃k8k
a Ukjbj ,

a51, . . . ,16. ~3.12!

Since for our particular exampleU→G̃4, the effect of this
discrete transformation on the transversity amplitudes
equivalent to the following substitution:

G̃a→G̃4G̃aG̃4. ~3.13!

The above effect ofG̃4 on G̃a exactly duplicates the sign
changes indicated above that are induced by
b3,4→2b3,4 substitution. This result is also seen in the th
column of Table I and the first column of Table II.

We wish to find a subset of measurements that can
used to deduce a unique set of transversity amplitudes. O
accomplished, the helicity amplitudes can be obtained by
inverse of Eq.~2.4!. Two different approaches to this prob
lem are presented: in Sec. IV, we solve for the phases of
transversity amplitudes directly from spin observables;
Sec. V, we derive relations between spin observables f
the Fierz identities of theG̃a matrices.

4In this case, the transformation isb1↔2b2* and b3↔b4* , see
Eq. ~A5!.
-
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IV. COMPLETE SET OF MEASUREMENTS

Since we assume that we always measure four typS
observables, the magnitudes of the four transversity am
tudes, r i[ubi u, can always be determined unambiguous
Three double-spin observables can in general determine
relative phases between the four helicity amplitudes,
leave us with discrete ambiguities. Therefore, more meas
ments are required to resolve these ambiguities. We cl
the following surprising result:In addition to the setS, four
appropriately chosen double-spin observables are suffic
to determine the amplitudes uniquely.This means that a tota
of eight properly chosen measurements can resolve all
biguities. This result contradicts the BDS rule, which a
serted thatninemeasurements are necessary. In the follo
ing discussion, we first provide one explicit example whi
shows that eight measurements are sufficient. Then
present our complete results and guidelines for all situatio

Here we choose the same measurements as in the exa
given by BDS@1#. Suppose that we measureG, F, andLx ,
along with the setS. We then have the equations~see column
3 of Table I!

G52r 1r 3sin~f13!2r 2r 4sin~f24!, ~4.1!

F5r 1r 3sin~f13!2r 2r 4sin~f24!, ~4.2!

Lx52r 1r 2sin~f12!2r 3r 4sin~f34!, ~4.3!

where we write the amplitudesbi5r iexp(fi) and
f i j5f i2f j . Except for slightly different conventions, th
solutions given by BDS@1# are

f135a13 or p2a13, ~4.4!

f245a24 or p2a24, ~4.5!

f125b1g or b1~p2g!, ~4.6!

wherea13, a24, b, andg are defined by5

sina135
F2G

2r 1r 3
, 2

p

2
<a13<

p

2
,

sina2452
G1F

2r 2r 4
, 2

p

2
<a24<

p

2
,

sing52
Lx
A
, 2

p

2
<g<

p

2
,

sinb5
r 3r 4sin~f132f24!

A
,

cosb5
r 1r 21r 3r 4cos~f132f24!

A
,

A5@r 1
2r 2

21r 3
2r 4

212r 1r 2r 3r 4cos~f132f24!#
1/2. ~4.7!

5Herea13 anda24 are uniquely defined. Oncef13 andf24 ~four
choices! are selected,A is fixed and so areb andg. There are still
two choices forf12 @Eq. ~4.6!#.
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TABLE III. Tables III–VIII enumerate all situations under which four double-spin observables, along with the setS, can completely
determine the transversity amplitudes. In these tables,X’s indicate three initially selected measurements, andO’s indicate the possible
choices for a fourth observable that can resolve all the ambiguities.

G X X X X X X X X X X X X X X X X X X X X X X X X
H X X X X X X X X BT
E X X X X X X X X
F X X X X X X X X

Ox X O O O O O X O O O O O O O X O O O
Oz X O O O O O O X O O O O O O X O O O BR
Cx O X O O O O O O X O O O O O O X O O
Cz O X O O O O O O O X O O O O O X O O

Tx O O O O X O O O O O O O X O O O X O
Tz O O O O O X O O O O O O X O O O X O TR
Lx O O O O O O X O O O O O O X O O O X
Lz O O O O O O O X O O O O O X O O O X
ng
e
e
e
I

i-

s

re-
x-

in
in
Therefore, we have an eightfold ambiguity in determini
the phases. BDS showed that two more measurements,
E andLz , can resolve the ambiguity. But, instead of two, w
can show that only one additional appropriately chosen m
surement can completely determine the four amplitudes.
stead of the BDS choice ofE and Lz , take just
Tx52r 1r 2cos(f12)1r 3r 4cos(f34) as the fourth double-spin
observable in addition toG, F, andLx . UsingLx andTx to
solve for thef12 andf34 phases, we get

f1252j1a12, f345j1a34,

or ~4.8!

f1252j1~p2a12!, f345j1~p2a34!,

wherea12, a34, andj are uniquely determined from exper
ment by

sina1252
Lx
21Tx

21r 1
2r 2

22r 3
2r 4

2

2r 1r 2ALx21Tx
2

, 2
p

2
<a12<

p

2
,

.g.,

a-
n-

sina3452
Lx
21Tx

22r 1
2r 2

21r 3
2r 4

2

2r 1r 2ALx21Tx
2

, 2
p

2
<a34<

p

2
,

sinj5
Tx

ALx21Tx
2
, cosj5

Lx

ALx21Tx
2
. ~4.9!

Note that Eq.~4.8! has a twofold ambiguity in determining
f12 andf34, unlike the fourfold ambiguity for the solution
of f13 andf24 @Eqs.~4.4! and ~4.5!#.

Combining the four solutions forf13 andf24 @Eqs.~4.4!
and~4.5!# and the two solutions forf12 andf34 @Eq. ~4.8!#,
we now have eight sets of possible solutions. Using the
lationf345f121f242f13, these eight solutions can be e
pressed by

2j56~a122a34!6H ~a132a24!,

p2~a131a24!,
~4.10!

here the two6 signs are independent. Because alla ’s and
j are fixed, only one of the above eight solutions will hold
general, which tells us that if there is a solution, then it is
TABLE IV. Situations under which four double-spin observables can determine the transversity amplitudes.

G
H X X X X X X X X X X X X X X X X BT
E X X X X X X X X X X X X X X X X
F X X X X X X X X X X X X X X X X

Ox X O O O X O O O O O O O X O O O O O
Oz X O O O O X O O O O O O X O O O O O BR
Cx O X O O O O X O O O O O O X O O O O
Cz O X O O O O O X O O O O O X O O O O

Tx O O X O O O O O X O O O O O X O O O
Tz O O X O O O O O X O O O O O O X O O TR
Lx O O O X O O O O O X O O O O O O X O
Lz O O O X O O O O O X O O O O O O O X
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TABLE V. Situations under which four double-spin observables can determine the transversity amplitudes.

G X O O O O O X O O O O O O O X O O O
H X O O O O O O X O O O O O O X O O O BT
E O X O O O O O O X O O O O O O X O O
F O X O O O O O O O X O O O O O X O O

Ox X X X X X X X X X X X X X X X X X X X X X X X X
Oz X X X X X X X X BR
Cx X X X X X X X X
Cz X X X X X X X X

Tx O O O O X O O O O O O O X O O O X O
Tz O O O O O X O O O O O O O X O O O X TR
Lx O O O O O O X O O O O O X O O O X O
Lz O O O O O O O X O O O O O X O O O X
s

Ap

a

u
se
le
th

r-
on
o
n
ce
s
ak

rty

-
p-

irely

or
e-
general a unique solution. Therefore, in this particular ca
we have shown that eight spin observables can resolve
ambiguities except the overall phase. All other cases can
evaluated in the same way. We give some guidelines in
pendix C and list all the situations~Tables III–VIII! for
which eight measurements can completely determine the
plitudes.

V. RELATIONS FROM FIERZ IDENTITIES

In the previous section, an elementary, albeit tedio
method was used to determine a unique solution. In this
tion we use a totally different approach to the same prob
of determining which set of experiments can determine
four transversity amplitudes without discrete ambiguities.

We know that in field theory@7#, bilinear products of
currents obey interchange relations known as theFierz iden-
tities. In our problem, we do not deal with the fou
dimensional space-time, instead we have a four-dimensi
(b1•••b4) amplitude space. Nevertheless, the properties
the gamma matrices are characteristic of four-dimensio
space and thus Hermitian versions of the gamma matri
along with all of their known properties, are of use to u
Their Fierz identities, which were particularly useful in we
e,
all
be
-

m-

s
c-
m
e

al
f
al
s,
.

interactions studies, are obtained from the following prope
of the gamma matrices:

G i j
a Gst

b 5Cdh
abG i t

d Gs j
h , ~5.1!

whereCdh
ab[ 1

16 Tr(G
dGaGhGb). These identities are proper

ties of the~Hermitian! gamma matrices as discussed in A
pendix A. We can therefore use the aboveFierz identitiesfor
the gamma matrices, even though we are in a context ent
different from their field theory origin.

Applying the Fierz transformations to the BHP forms f
spin observables yields the following set of relations b
tween observables:

V̌aV̌b5S 12 bi* G̃i j
abj D S 12 bs* G̃st

bbtD
5Cdh

abS 12 bi* G̃i t
dbtD S 12 bs* G̃s j

d bj D
5Cdh

abV̌dV̌h, ~5.2!

or, since the above profile functions satisfyV̌a[VaI, for all
a:
TABLE VI. Situations under which four double-spin observables can determine the transversity amplitudes.

G X O O O X O O O O O O O X O O O O O
H X O O O O X O O O O O O X O O O O O BT
E O X O O O O X O O O O O O X O O O O
F O X O O O O O X O O O O O X O O O O

Ox

Oz X X X X X X X X X X X X X X X X BR
Cx X X X X X X X X X X X X X X X X
Cz X X X X X X X X X X X X X X X X

Tx O O X O O O O O X O O O O O X O O O
Tz O O O X O O O O O X O O O O O X O O TR
Lx O O X O O O O O X O O O O O O O X O
Lz O O O X O O O O O X O O O O O O O X
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TABLE VII. Situations under which four double-spin observables can determine the transversity amplitudes.

G X O O O O O X O O O O O O O X O O O
H O X O O O O O X O O O O O O O X O O BT
E X O O O O O O O X O O O O O X O O O
F O X O O O O O O O X O O O O O X O O

Ox O O O O X O O O O O O O X O O O X O
Oz O O O O O X O O O O O O O X O O O X BR
Cx O O O O O O X O O O O O X O O O X O
Cz O O O O O O O X O O O O O X O O O X

Tx X X X X X X X X X X X X X X X X X X X X X X X X
Tz X X X X X X X X TR
Lx X X X X X X X X
Lz X X X X X X X X
ill
ta

n-
c

le
-
ty
n
he

bl
yp
r

ht-

e

VaVb5Cdh
abVdVh. ~5.3!

All distinct Fierz relations derived from Eq.~5.3! are pre-
sented in Appendix D. In the rest of this section, we w
show that these relations provide an alternate way to ob
some useful results.

A. Fierz observable constraints and bounds

The Fierz relations yield explicit and rigorous relatio
ships between observables. Of course, such relationships
be derived from the bilinear structure of the observab
with much effort. That effort is now replaced by simply in
voking the well-known Fierz rules as a general proper
That allows us to avoid much algebra and to find all relatio
in one step. There are direct physical consequences of t
relations.

For example, from Eqs.~L.tr!, ~L.br!, and ~L.bt! in Ap-
pendix D, it can be seen that if three double spin observa
in a type set are known, then the fourth member of that t
is uniquely determined. The fourth measurement is thus
dundant.

The Fierz relations can also be used to derive bounds
measurements. For example, from Eqs.~L.tr! and ~S.tr!,
in

an
s,

.
s
se

es
e
e-

on

~V6!
21~V13!

21~V8!
21~V15!

262 ~V6V152V8V13!

5~V1!
21~V4!

22~V10!
22~V12!

2

62 ~V1V42V10V12!, ~5.4!

we obtain

~V66V15!
21~V87V13!

25~V16V4!
22~V106V12!

2.
~5.5!

The left-hand side of the equation is positive, so is the rig
hand side. Therefore, Eq.~5.5! gives a bound relation

V16V4>uV106V12u or 16S>uT6Pu. ~5.6!

Other bounds, within the setS, can be derived in the sam
way:

16T>uP6Su, 16P>uS6Tu. ~5.7!

Since the left-hand sides of Eqs.~S.bt!–~S.br! in Appendix D
are positive, we can deduce the bounds

11S2>P21T2, 11T2>S21P2, 11P2>S21T2,
~5.8!
TABLE VIII. Situations under which four double-spin observables can determine the transversity amplitudes.

G X O O O X O O O O O O O X O O O O O
H O X O O O X O O O O O O O X O O O O BT
E X O O O O O X O O O O O X O O O O O
F O X O O O O O X O O O O O X O O O O

Ox O O X O O O O O X O O O O O X O O O
Oz O O O X O O O O O X O O O O O X O O BR
Cx O O X O O O O O X O O O O O O O X O
Cz O O O X O O O O O X O O O O O O O X

Tx
Tz X X X X X X X X X X X X X X X X TR
Lx X X X X X X X X X X X X X X X X
Lz X X X X X X X X X X X X X X X X
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as well asP2<1, S2<1, andT2<1.
In this way all bounds among spin observables given

BDS @1# and Goldsteinet al. @8# can be obtained using thes
Fierz relations.

B. Fierz and selection of experiments

We determined how to pick a complete set of measu
ments by solving trigonometric equations in Sec. IV. He
we show that the Fierz relations can accomplish the sa
task.

Take the case of the four double-spin observablesG, H,
Ox , andCx (V3,5,14,16). From Eq.~S.bt!, we can determine
(V9)

21(V11)
2. Therefore, Eqs.~S.br! and ~S.b! can yield

the magnitudes ofV2 andV7. Finally, invoking Eq.~L.br!
we can uniquely decideV2 andV7 . By selecting the appro
priate equations from Appendix D, one can determine
other observables. Once all the observablesV̌a are known,
we can use12bi* bj5(aG̃i , j

a V̌a , or
1
2Hi*Hj5(aG i , j

a V̌a , to
obtain the amplitudes; here the sum is overa51, . . . ,16 —
all the now known observables.

In this specific case, we show that the chosen eight m
surements resolve the ambiguities. All other cases can
examined in a similar way using properly selected Fierz
lations to determine the unmeasured observables, altho
sometimes it becomes rather awkward to find the right se
Fierz relations needed for the task. The same result that
found earlier, which is summarized in Tables III–VIII,
recovered by this second method. One advantage of
Fierz-based method is that it provides a procedure that c
possibly be generalized to reactions withN.4 amplitudes.

VI. CONCLUSIONS

We have reexamined the classic question of how m
observables are required in pseudoscalar meson photo
duction to completely and unambiguously extract the ba
amplitudes from experiment. The four magnitudes and th
phases suggest that, aside from an overall arbitrary ph
only seven experiments are needed. However, seven ex
ments do not suffice to resolve discrete ambiguities, as
been discussed, most recently by Keaton and Workm
Stimulated by that observation, we have investigated
question of the number of spin observables needed to d
mine the transversity amplitudes~assuming the cross sectio
plus all single-spin observables are measured!. It is conve-
nient to transform to transversity amplitudes, which use
normal to the scattering plane as the quantization axis. In
case, the cross section plus the three single-spin observ
determine the magnitudes of the transversity amplitud
while the double-spin observables play the role of determ
ing their phases. It is found that by carefully selecting four
the double-spin observables it is possible to extract all of
requisite phases without discrete ambiguities.

This is illustrated following the same procedure used
the classic BDS paper, by explicitly expressing observab
in terms of the magnitudes and relative phases of the am
tudes. As an alternate approach, we expressed all observ
in terms of bilinear helicity product forms, which map th
algebra of observables to the algebra of Hermitian versi
of the well-known 434 gamma matrices. This mapping a
y

-

e

ll

a-
be
-
gh
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as

he
ld

y
ro-
ic
e
se,
ri-
as
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e
er-

e
at
les
s,
-
f
e

s
li-
les

s

lows us to make unitary~canonical! transformations which
have no effect on the observables, as illustrated by the tr
formation to the transversity basis. In addition, there
transformations which can store the discrete ambiguities.
finding the set of those unitary matrices that describe
discrete transformations, it is possible to delineate which
periments resolve such discrete ambiguities.

In addition, once it is recognized that the algebra of o
servables maps over to the algebra of the 434 gamma ma-
trices, we can use all known properties of the 434 matrices.
In our case, the four-dimensional space is not that of spa
time, but is rather the four-dimensional helicity space. Ne
ertheless, the gamma matrices have the well-known pro
ties of four-dimensional space. One property that
particularly interesting is the Fierz transformation. It
shown that the Fierz transformation properties lead to re
tionships between observables which can be used to pro
constraints and inequalities rules for observables.

The Fierz transformation can also be used as an alter
way to prove that a set of eight experiments can be sele
to form a complete set of measurements. All examples of
four sets of double-spin observables are presented in t
form, since we have not been able to express this result u
a simple guideline.
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APPENDIX A: GAMMA MATRICES

The 16 434 G matrices are Hermitian versions of th
familiar Dirac matrices:

Ga51, . . . ,1651,g0,igW ,is0x,is0y,is0z,isxy,isxz,

iszy,ig5g0,g5gW ,g5. ~A1!

They have the following properties which are used in t
paper.

~a! Ga are Hermitian and unitary.
~b! Tr(GaGb)54dab .
~c! Ga are linearly independent. Therefore, they form

complete set~a basis! for 434 matrices. Using property~b!,
any 434 matricesX can be expanded asX5(aCaGa with
Ca5 1

4 Tr(G
aX).

~d! (aGba
a Gst

a 54dasdbt .
~e! GaGb5rabgGg with rabg5 1

4 Tr(G
aGbGg).

~f! 1
4ragdrbgh5 1

16 Tr(G
dGaGhGb)[Cdh

ab , which is used
for the Fierz transformation in Sec. V.

These properties are preserved under any unitary trans
mation, e.g., the transversity transformationU (4) @defined in
Eq. ~2.4!#. Therefore, theG̃ matrices in the transversity bas
have the same properties as the originalG matrices. These 16
G̃ matrices can be grouped into four classes with four me
bers in each class according to their ‘‘shape.’’~By shape, we
mean the location of nonzero entries inG̃ matrices.! The four
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shapes are diagonal~D!, right parallelogram~PR!, antidiago-
nal ~AD!, and left parallelogram~PL! @3#. In the transversity
basis, these four shape classes correspond toS, BT, BR, and
TR type experiments. Here, we give their explicit expre
sions:

G̃D5G̃S5F a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

G ,
a b c d

G̃1 11 11 11 11

G̃4 11 11 21 21

G̃10 21 11 11 21

G̃12 21 11 21 11

~A2!

G̃PR5G̃BT5F 0 0 a 0

0 0 0 b

c 0 0 0

0 d 0 0

G ,
a b c d

G̃3 2 i 2 i 1 i 1 i

G̃5 11 21 11 21

G̃9 11 11 11 11

G̃11 1 i 2 i 2 i 1 i

~A3!

G̃AD5G̃BR5F 0 0 0 a

0 0 b 0

0 c 0 0

d 0 0 0

G ,
a b c d

G̃14 21 11 11 21

G̃7 2 i 2 i 1 i 1 i

G̃16 1 i 2 i 1 i 2 i

G̃2 11 11 11 11

~A4!

G̃PL5G̃TR5F 0 a 0 0

b 0 0 0

0 0 0 c

0 0 d 0

G ,
a b c d

G̃6 21 21 11 11

G̃13 1 i 2 i 2 i 1 i

G̃8 2 i 1 i 2 i 1 i

G̃15 21 21 21 21

~A5!

APPENDIX B: DISCRETE AMBIGUITIES
IN HELICITY BASIS

In Ref. @2#, KW gave discrete ambiguity relations asso
ated with transformations of helicity amplitudes.

Ambiguity I:

H1↔H4 ,

H2↔2H3 ,

i.e.,
-FH1

H2

H3

H4

G→FH18

H28

H38

H48

G5F 0 0 0 11

0 0 21 0

0 21 0 0

11 0 0 0

GFH1

H2

H3

H4

G5G4FH1

H2

H3

H4

G .
~B1!

Ambiguity II:

H1→H2 ,

H2→2H1 ,

H3→H4 ,

H4→2H3 ,

i.e.,

FH1

H2

H3

H4

G→FH18

H28

H38

H48

G5F 0 11 0 0

21 0 0 0

0 0 0 11

0 0 21 0

GFH1

H2

H3

H4

G
52 iG10FH1

H2

H3

H4

G . ~B2!

Ambiguity III:

H1→H3 ,

H2→H4 ,

H3→2H1 ,

H4→2H2 ,

i.e.,

FH1

H2

H3

H4

G→FH18

H28

H38

H48

G5F 0 0 11 0

0 0 0 11

21 0 0 0

0 21 0 0

GFH1

H2

H3

H4

G
5 iG12FH1

H2

H3

H4

G . ~B3!
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Ambiguity IV:

H1→2H1* ,

H2→H2* ,

H3→H3* ,

H4→2H4* ,

i.e.,

FH1

H2

H3

H4

G→FH18

H28

H38

H48

G5F21 0 0 0

0 11 0 0

0 0 11 0

0 0 0 21

GFH1*

H2*

H3*

H4*
G

5G15FH1*

H2*

H3*

H4*
G . ~B4!

Note that in the above the helicity amplitudes and gam
matrices are in the original basis. Since we work exclusiv
in the transversity basis in this paper, it is convenient
express the above ambiguities in the transversity basis.

Ambiguity I:

F b1b2b3
b4

G→F b18b28b38
b48

G5F11 0 0 0

0 11 0 0

0 0 21 0

0 0 0 21

GF b1b2b3
b4

G5G̃4F b1b2b3
b4

G .
~B5!

Ambiguity II:

F b1b2b3
b4

G→F b18b28b38
b48

G5F21 0 0 0

0 11 0 0

0 0 11 0

0 0 0 21

GF b1b2b3
b4

G
52 i G̃10F b1b2b3

b4

G . ~B6!
a
y
o

Ambiguity III:

F b1b2b3
b4

G→F b18b28b38
b48

G5F21 0 0 0

0 11 0 0

0 0 21 0

0 0 0 11

GF b1b2b3
b4

G5 i G̃12F b1b2b3
b4

G .
~B7!

Ambiguity IV:

F b1b2b3
b4

G→F b18b28b38
b48

G5F 0 21 0 0

21 0 0 0

0 0 0 21

0 0 21 0

GF b1*b2*b3*
b4*

G5G̃15F b1*b2*b3*
b4*

G .
~B8!

Ambiguities I, II, and III are equivalent to our linear am
biguities L5G̃4, G̃10, and G̃12 except for irrelevant phase
~see Table II!. Ambiguity IV corresponds to our antilinea
ambiguityA5G̃15. And the other three antilinear ambiguitie
in Table II, A5G̃6, G̃13, and G̃8, can be constructed by am
biguity IV and the three linear ambiguities~ambiguities
I–III !. It is shown explicitly by

G̃65G̃4G̃15,

G̃135 i G̃10G̃15,

G̃852 i G̃12G̃15.

Here we recover the results given by KW~Ref. @2#!.

APPENDIX C: COMPLETE SETS
OF EIGHT MEASUREMENTS

Here we give rules for choosing four double-spin obse
ables which can resolve the ambiguities when they are ta
together withs(u), S, T, and P. These rules are not ex
pressed succinctly, and we cannot yet provide simple ph
cal guidance. Some may find Tables III–VIII useful fo
choosing the appropriate measurements.

DefineA, B, C, D, E, andF as sets of pairs of double-spi
observables:

$~H,E!,~Ox ,Cz!,~Tx ,Lz!%5A, ~C1!

$~G,F !,~Oz ,Cx!,~Tz ,Lx!%5B, ~C2!

$~H,F !,~Ox ,Cx!,~Tx ,Tz!%5C, ~C3!

$~G,H !,~Ox ,Oz!,~Tx ,Lx!%5D, ~C4!

$~E,F !,~Cx ,Cz!,~Tz ,Lz!%5E, ~C5!

$~G,E!,~Oz ,Cz!,~Lx ,Lz!%5F, ~C6!

andX andY as sets of double-spin observables:
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$H,E,Ox ,Cz ,Tx ,Lz%5X, ~C7!

$G,F,Oz ,Cx ,Tz ,Lx%5Y. ~C8!

There are four situations in choosing four double-spin
servables.

~a! 212 cases: Pick one pair of double-spin observab
from the same type (BT, BR, or TR), and another pair from
another type. Here are the 212 cases which can determin
the amplitudes uniquely.

~1! 2 BT12 TR cases: At least one pair belongs to s
D or E, i.e., at least one pair is (G,H), (E,F), (Tx ,Lx), or
(Tz ,Lz).

~2! 2 BT12 BR cases: At least one pair belongs to s
C or F, i.e., at least one pair is (G,E), (H,F), (Ox ,Cx), or
(Oz ,Cz).

~3! 2 BR12 TR cases: TheBR pair belongs to setD or
E, or theTR pair belongs to setC or F, i.e., at least one pai
is (Ox ,Oz), (Cx ,Cz), (Tx ,Tz), or (Lx ,Lz).

~b! 21111 cases: Pick one pair of double-spin obse
ables from one type ofBT, BR, or TR, and one observable
from each of the remaining two types. The following are t
only 21111 situations under which the ambiguities arenot
resolved.

~1! When the pair belongs to setA and the other two
observables belong to the same set ofX or Y.

~2! When the pair belongs to setB and the other two
observables belong to the different set ofX andY.

~c! 311 cases: Pick three double-spin observables fr
one type and one observable from other types. Ambigui
cannot be resolved in these cases.

~d! 4 cases: Pick all four double-spin observables from
same type. They can never determine the amplitu
uniquely.

APPENDIX D: FIERZ RELATIONS

In this appendix, we display all of the Fierz relations
contained in Eq.~5.3!. We select values for the indicesa and
b and then evaluate the coefficientCdh

ab , from the trace rules
in Appendix A. There are 163165256 choices for the pai
a,b; however, due to symmetries and the fact that many
the resulting equations are redundant, we can reduce
Fierz results to the following 37 equations. There continu
to be some redundancy in these, but that is hard to ju
since they are nonlinear equations.

The 37 surviving equations that are obtained using
Fierz identities are organized according to the followi
scheme:~a! relations ~L.tr! and ~S.tr! involve only S and
TR types, etc.;~b! relations ~Q.b! and ~S.b! involve only
BT and BR types, etc.;~c! relations ~Q.bt.1!–~Q.tr.4! and
~L.1!–~L.12! involve all fourTR, BT, BR, andS types.

The labelL is used for linear~LHS! to quadratic~RHS!
relations~with a51 selected!. The labelQ denotes purely
quadratic relations on right and left sides, whileS is used to
indicate observable squared rules. Use Table I to trans
these rules to the notation (s,S,T,P)S, (G,H,E,F)BT,
(Ox ,Oz ,Cx ,Cz)BR, (Tx ,Tz ,Lx ,Lz)TR. Note that these re
lations hold true at all energies and all angles. The typS
observablesV1,4,10,12are all assumed to be known.

The following relations have been organized to help
-

s

t

t

-

s

e
s

f
he
s
e

e

te

seeking connections between observables, which is im
tant in showing that not all observables need to be measu
They have interesting patterns which might help in exam
ing questions of interdependence between observables a
future generalizations to reactions withN.4 amplitudes.

Linear-quadratic relations:

V1515
1

4(
a51

16

~Va!2, ~L.0!

V45V10V121V6V152V8V13, ~L.tr!

V105V4V121V2V141V7V16, ~L.br!

V125V4V101V3V112V5V9 , ~L.bt!

V351V11V122V7V151V14V8 , ~L.1!

V552V9V121V7V132V14V6 , ~L.2!

V952V5V122V2V152V16V8 , ~L.3!

V1151V3V121V2V131V16V6 , ~L.4!

V145V2V101V3V82V5V6 , ~L.5!

V75V16V102V3V151V5V13, ~L.6!

V165V7V102V9V81V11V6 , ~L.7!

V25V14V102V9V151V11V13, ~L.8!

V651V15V42V5V141V11V16, ~L.9!

V1352V8V41V5V71V11V2 , ~L.10!

V852V13V41V3V142V9V16, ~L.11!

V1551V6V42V3V72V9V2 . ~L.12!

Quadratic relations:

V2V72V14V162V3V92V5V1150, ~Q.b!

V3V51V9V111V6V81V13V1550, ~Q.t!

V2V162V7V142V6V132V8V1550, ~Q.r!

V4V32V10V111V7V61V14V1350, ~Q.bt.1!

V4V51V10V91V7V81V14V1550, ~Q.bt.2!

V4V91V10V51V2V62V16V1350, ~Q.bt.3!

V4V112V10V31V2V82V16V1550, ~Q.bt.4!

V4V142V12V21V3V131V5V1550, ~Q.br.1!

V4V72V12V161V3V61V5V850, ~Q.br.2!

V4V162V12V72V9V132V11V1550, ~Q.br.3!

V4V22V12V141V9V61V11V850, ~Q.br.4!
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V10V62V12V151V5V22V11V750, ~Q.tr.1!

V10V131V12V82V5V162V11V1450, ~Q.tr.2!

V10V81V12V132V3V21V9V750, ~Q.tr.3!

V10V152V12V61V3V161V9V1450. ~Q.tr.4!

Square relations:

~V3 !21~V5 !21~V9 !21~V11!
2

5~V1 !22~V4 !22~V10!
21~V12!

2, ~S.bt!

~V14!
21~V7 !21~V16!

21~V2 !2

5~V1 !22~V4 !21~V10!
22~V12!

2, ~S.br!
s

~V6 !21~V13!
21~V8 !21~V15!

2

5~V1 !21~V4 !22~V10!
22~V12!

2, ~S.tr!

~V3 !21~V5 !22~V9 !22~V11!
2

5~V14!
21~V7 !22~V16!

22~V2 !2, ~S.b!

2~V3 !21~V5 !22~V9 !21~V11!
2

5~V6 !21~V13!
22~V8 !22~V15!

2, ~S.t!

~V14!
22~V7 !21~V16!

22~V2 !2

5~V6 !22~V13!
21~V8 !22~V15!

2. ~S.r!
.
y
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