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Baryons as hybrids of solitons and three-quark bound states
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A hybrid model for baryons based on a dynamical interplay between relativistic three-quark bound states and
soliton configurations of mesons is constructed. The Bethe-Salpeter equation for diquarks and the Faddeev
equation for diquark-quark bound states in the background of a soliton are solved. The results show that
baryons are very much like hybrids containing both solitonic meson clouds and three-quark correlations.
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I. INTRODUCTION strongly on the bag radij47,18. Therefore, a hybrid model
is desirable which connects both classes of models in a dy-

At present there exist two generic classes of models tiamical fashion. In this context the Nambu—Jona-Lasinio
describe baryons. On the one hand, there is the picture ¢NJL) model [19] is for the moment unique. On the one
baryons as chiral solitons. The soliton picture is based offand, it possesses soliton solutiof0] of meson fields
considering QCD for an arbitrary number of color degrees ofvhich themselves are obtained as bound antiquark-quark
freedomNc . In the infinite color limitN— QCD reduces states[21]. On the other hand, within this model baryons
to an effective theory of infinitely many weakly interacting may be described as three-quark bound states via the use of
mesong 1]. Although this effective meson theory cannot be diquarks[22-28, while the meson fields are fixed to their
constructed explicitly, Witten conjectured that within this Vacuum expectation values. In particular this model is unique
theory baryons emerge as So||td:|2§ Based on this Conjec_ because with the h6|p of path integral hadronization tech-
ture phenomenological effective meson theories have bediques[29] a consistent unification of both approaches is
developed which possess soliton solutions. The most prompPossible without any double counting of correlations. Be-
nent is perhaps the Skyrme mod8&k5]. In the limit of an ~ cause of the enormous computational effort needed, the re-
infinite number of colors the soliton description is the only alization of a rigorous self-consistent solution is for the mo-
model for baryons. On the other hand, for a finite number ofnent not feasible. Nevertheless, an approximate evaluation
colors a baryon is customarily considered as a bound state 6f this hybrid baryon can be accomplished within a four step
three valence quarks. Such valence quark models are mofrocedure to be carried out in this paper: In the following
vated by high-energy scattering experiments which have resection the transformation of the NJL model with a pointlike
vealed a partonic substructure. Starting with these experinteraction of color octet current into an effective theory of
mental facts many models, which are based on the valend&€sons, diquarks, and baryons is described. For complete-
quark picture, have been developed. These models includiess we briefly repeat the first two steps in the beginning of
the nonrelativistic quark mode|§—8] and its relativistic ex- the third section: First, we construct a static ground-state
tensions9], parton models which are directly based on thesolution in the absence of diquark and elementary baryon
scale invariancd10], bag modelq11], and diquark-quark fields. Second, we solve the Bethe-Salpeter equation for a
models[12,13. scalar diquark in the solitonic background fi¢RD]. In ad-

The valence quark picture directly leads to the quantunflition, we derive the Faddeev equation for arbitrary quark
numbers of a physical baryon whereas the soliton can onlpropagators. In Sec. IV we discuss numerical results for the
be interpreted as a baryon with good spin and flavor quanturfiolutions of the Bethe-Salpeter equation as well as of the
numbers after collective quantization. Yet, baryons as soliFaddeev equation. In Sec. V we employ these results to de-
tons are conceptually better suited for the description of lowfine the hybrid model. We close with conclusions and a out-
energy properties because they Straightforward|y embed tH@Ok in Sec. VI. Some details of the calculation and a few
useful feature of chiral symmetry and its spontaneous breakengthy formulas are left to appendices.
ing. In any event, despite their successes both pictures pos-
sess only limited ranges of applicability. Il. HADRONIZATION OF THE NJL MODEL

Since the advantages of both pictures are in some sense ) ) )
complementary a unification of the two approaches seems As stated in the Introduction we consider a NJL model for
desirable. In principle, the chiral bag modai4,15 repre- WO flavors
sents such a combination since inside the bag it contains 1
explicit quark degrees of freedom whereas a chiral soliton Ly =q(id—mP)q— >gjdjk (2.1
field surrounds the bag. As a consequence of the Cheshire cat 2
principle[16] experimental measurable quantities should not o ) )
depend on the radius chosen for the bag. Explicit calcula?ith @ pointlike interaction of color octet flavor singlet cur-
tions show that the Cheshire cat principle is not universally€Nts j,=a\¢y,a/2. Here q denotes the quark spinors,
valid. In particular, the singlet axial matrix element dependsmozdiag(mg,mg) the current quark mass matrix for two
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flavors, and\(a=1,.

2031

N% 1) are the generators of Note, that we are working in Euclidean space where we have

color SUN¢). The |nteract|0n part can be Fierz rearrangedused the Wick rotatiob— —i 7. For notational simplification

to solely attractive channels

1 SA _a gz T C _C o
—(qA,9)(gA q)+—N (al',a%)(q°T'*q),
C (]

we use the abbreviatioh= [d*x= [d3rdr in the exponents.
The operatoiP? projects the three quarks onto the quantum
numbers of the considered physical baryon states. In particu-
lar, the color of the third quark has to be chosen to build a
colorless baryon wave function. As intermediate building
blocks for the baryon field we also introduce diquark fields

=f Dk oDr 8(k5 = AL 4% 8(ka—q°T 4Q)

mt gl
(2.2
whereq®=Cq" denotes the charge conjugated Dirac spinor.
Furthermore, we have defined the vertices
pm1,lon rom| ] Ton with a=(a
= C? ) = E ? s WI a—( ,a,a)
Cc
(2.3

for the quark-antiquark and the quark-quark interaction, re-

spectively.0? corresponds to the set of Dirac matrices

iy" iy 75} 2.4

O?e |Jl|'y5,\/§, 2

and7? are isospin matrices. Because of the Fierz transforma-

tion the coupling constants are restricted de=g,=g9,

which is necessary to preserve consistégtcounting. Note,

that the diquark channel is suppressed by a facthi ih

comparison to the meson channel. Henceforth we will con-
fine the discussion to the physical cdée= 3, unless explic-

itly noted.

To convert the pure quark NJL mod@.1) into an effec-

tive hadron theory/[29] we introduce collective mesop®

and baryon fieldst and Bg into the generating functional

(2.9

:j Dqu—eXF{fﬁNJL

via the identities
1:f ’DXag(Xa_a\aq):J DXaID(Pa
xexp(i f w(xa—q_Aaq)), 2.6

1= [ veimes s~ 22T, appha)

— 20,
X8| BE— %qPB(qFaq%)
= f DBYDBEDY DY
2 o -
xex;{ij HBf—%(qcFaq)PBq]\Pg

— 20, ., __
W Bﬁ—%qPﬁ(qFaq%H)- (2.7)

[ _
:f DKQDKZDAQDAQ*QX[{EJ' [(«ks—ql %A

+A“*(KQ—?FQQ)])- (2.8

In the interaction Lagrangia®.2) we may now replace the
terms of fourth order in the quark fields, i.e., with the help of
the constraint$2.6) and(2.8) we write

—(qAaq)(qA“q)+ 2 (T ,q%)(q°T*q)

Zgl 2 92 2
—>TX(1+§KCY. (2.9

Subsequently we integrate out the auxiliary fields, <, ,
and «* and obtain the generating functional

~ f DADDeDADADBDB DYDY (2.10

S E
f 1_A °+1_°K
exp — | |5080°+5q°Aq

1t +3tAA \PBB+BB\II
By gy TAN Y 2

+q_A§\P“+@Aaq

where we have introduced the compact matrix notation for
the meson and diquark fieldsp=¢ A% A=T A%,

A= I,A** as well as for the baryon sourcds®=Vj pA
andV¥“= PB\Ifg The symbol tr corresponds to the trace over
color, flavor, and Dirac spinor degrees of freedom.

To eliminate the quark degrees of freedom we are work-
ing within the Nambu-Gorkov formalism developed origi-
nally in the theory of superconductivity33—35. For that
purpose we introduce combined Grassmann ffelds

q\ _
q=(qﬁ), a=(q , q") (2.10)

for the quark fields and

ISimilar hadronization approaches have been considered in2Quantities in the Nambu-Gorkov formalism are denoted by bold-

[31,32.

face letters.
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v Ale, MKW W = A ¢,A,A, W, W]

qraz(@w), pa= (pa yaT (2.12

+AV&|[‘P1A1Z1@1\IIQ]

for the baryon sources. Now, we integrate out the quark +Am[<p]+Ad[A,Z]. (2.18
fields g andqg with the help of the Nambu-Gorkov formula

The first part, the so-called quark determinant,

11
f Dquexp(qg‘lq—EqA = 50°Aq

1
AG|=§TrIogG*1 (2.19
+[q_A*“‘I’a+‘I’aA“q]>
carries the full information of the underlying quark spectrum
:f DqDﬁex;{%[q_quJrq_ngEq]) via the functional trace Tr. The second part
1— 1_a val 8
=(DetGl)1’2eXp<§§G§), (2.13 Ava=5V(Gg ) apV (2.20
where we have defined contains the valence quark part of the baryon propagator

(G‘éa')a,; originating from the inversion of the quark propa-
A*Y o gator G, [see Appendix B for the explicit form of
§=| _gipa) EE(WAT AT, (214 (GE)ul
a Both residual terms

and the inverse quark Green’s function 1 3
Amn=—=—| d*[tre?], A=——fd4xtrKA
m="gg;) IXIe7] Ag=— g | dX(rAA]

Gl -AC ~
1—( ) G=Vig'v. (2.19 (2.2

—-CA —-Vvg V!
are pure mass terms for the meson and diquark fields,
A minus sign has appeared for the lower right componentespectively?
becausey andq are Grassmann variables. The off-diagonal
elements ofs are the so-called anomalous Green’s functions
which are related to the amplitude for adding or subtractinga  !ll. TWO AND THREE QUARK CORRELATIONS
pair of quarks to the system. The transformation operator IN'A SOLITONIC BACKGROUND
V=JG, which we have introduced for technical reasons, is a
combination of the self-adjoint unitary transformation
J=iBvs and theG-parity operatoiG=e'""2/’C.
The normal quark Green’s function is represented by

The formal expression for the effective acti¢n.18 is
expanded in the baryon sourc#sand ¥

Al o, A AT W)= A9 [0 A AT+ A @,A, A, T 7]

49, — 49, —
gfl:i,y,ualu_(,o_i_ %\I’“\Ifazgal—k &‘PQ\I’Q. +..., (31)

3
(2.1 _ L . . .
First, the contribution to the total action not including the
From Eq.(2.14 we observe that the baryon sourci& are ~ Daryon sources, i-_&Af)%)ry' is expanded in the diquark fields.
contracted with the diquark fields, . Hence these sources !N leading order, i.e., no diquark fields, this just renders the
only couple to a single quark. Since in the ladder approxi-Stat'C soliton. The quadratic order in the diquark fields pro-

mation (described beloyva three quark bound state cannot vides the corresponding Bgthe—SaIpeter eq_uatiqn in the soli-
be affected by such a coupling it is sufficient to restrict theton background. The solution of this equation finally enters
quark Green's function tgal Ayq . After integrating out the baryon sources this piece will

Finally, the generating functional is given by prowdeAE,a)ry from which the bary_on propagator can t_)e ex-
tracted. Solving the corresponding Faddeev equation this
o o propagator will finally allow us to compute the quark-
Z[Bf,B§]~f DeDADADY*DY diguark correlations building up a baryon. We will carry out
this program by successively computing the terms on the
><exr[A[np,A,Z,\I?Y,\P“]Jri(\ITngJrB_ﬁ\Ifg)] right-hand side of Eq(3.1) in the proceeding subsections.

(2.17)

3Note the additional factalc= 3 in the diquark mass tertd, as
with the effective action compared to the mass terdy, of the mesons.
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A. The static soliton background " - 1 ® N
= —SAg
The expansion of4{_), in diquark fields ATle.8.A] 4TrJ1/A2dsAle ’ (5.9
A ¢,8,A]1=AO[e]+ AV ¢,A,A]+ AP ¢, A,A]+ - AD[ oA X]= Ag+ ETrF dsA,e Ao
(3.2 4 Jyp2
. I . . 1_ (= 1
contains contributions from both the fermion determinant as —=Tr dss| daaA;e %o
well as A, and 44. We adopt Schwinger’s proper time de- 4 Janz 0
scription [36] to regularize those parts stemming from the X A, e~ S(1-a)Ag (3.5
l . .

quark determinan{2.19

L q The Nambu-Gorkov matrice&; originating from the expan-

% ds ; “Iyte-1— -
OF 1— 4 _ = gs (0) sion of the operatorG™ ") 'G™"=Ap+A;+ A, have the ex
ATLe]=An 4TrLIA2 s © A, (B3 plicit form

(G hHlgt 0
0~ 0 V—l(’é—l)Ta—lV ! (36)
A 0 — (G HYTAC—-ATCV G v 5
Y leatgi+v4G Y vea 0 ’ 3.9
_(KTZ 0 )
A=l 5 _catac) 39

By extracting the Bethe-Salpeter equation for the meson ’églln,v>=VT(iﬁ—<p)TV|n,v>=[3(a,— he)|n, v)

fields ¢ from A® we can relate[21,37 the parameters _

(91, me=mg=mJ and A) of the model to the pion mass =B(—iwa—€,)[n,v). (3.10

m, =135 MeV and the pion decay constaff=93 MeV. i

This leaves undetermined just a single parameter which we_FOr the meson fields we make use of the polar decompo-
choose to be the constituent quark massThis mass is the Ston
vacuum expectation value of the scalar field and reflects the
spontaneous breaking of chiral symmetry. In principle the
diguark coupling constard, is fixed by the Fierz transfor-
mation, however, we will relax the restricti@y /g;=1 thus
effectively treatingg,/g, as a parameter to study the influ-
ence of the diquarks.

Note, that for each term in E¢3.3) the Nambu-Gorkov oA
trace can be worked out analytically. In addition, due to the U=exdirro()]. 312
diagonality ofA, and the vanishing trace @, it is obvious o ] o .
thatA=A=0 is always a solution of the equation of motion Due to the static field corg(f)l)guratlon it is possible to extract
though it is not necessarily the solution of least action. Foffom the zero order terd™ = —TEs[ O] (3.3) an energy
the remaining functional trace we use the color degeneratelnctional
eigenstates of the inverse propagator for quarks in the back-

e=dU=mU?%, (3.11

where we have fixed the chiral radids to its vacuum ex-
pectation valuem. Additionally, we adopt the well-known
hedgehog ansatz for the chiral field

ground of a static meson field Esol © 1= Esest Eval, (3.13
-1 i —3 - 1 2 —sé?
g |n.v>=(l19_‘P)ln,V>:ﬂ(—t?T—h@)|n,V> Esea—z 1/A2ds\/ﬁu e “u
=B(iw,—¢€,)|n,v) (3.9

+mfrffrf d3r[1—coPd(r)],

and perform an additional color trace-trin analogy, the

charge conjugated quark propaga@;,)_r1 can be worked out

3
similarly: Eva=7 €val 1+ M eva) ].
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Neglecting quark-quark correlations, the valence quark conwith A2(a=2,5,7) being the antisymmetric Gell-Mann ma-
tribution E,, is composed of the color degenerated singletrices of the color group.

particle energies of the valence quark level. This state is the Using the Fourier-transform in the time coordinate

only one which is bound by the soliton, i.es;m<e,;<m.

The soliton configuration is characterized by the chiral angle d

04{r) which is self-consistently determined by extremizing A(r,7)= f —A(r,iw)e "7 (3.1
the energy functionaE[ ®] [38—-40. 2m

B. Bethe-Salpeter equation for diquarks and the spatial representatioh,(r)=(r|v) for the quark
eigenstates the residual trace can be worked out. The second

In the following we derive the equation of motion for the . - (2) .
diquark fields in the solitonic meson background field. ThePrder term of the effective actiody™ together with Ay de-

solutions of this equation define the eigenmobiesand b* termines the Bethe-Salpeter equation as the equation of mo-
of the diquark fielgs g g *  tion for the diquark fieldss.A®)/ A* (r,—iw)=0:

A=D,[A(ROTCV 1J7=b,(r 1), [ ar g iw)

A=[VCTA(r,1)]°b% =b*T5y(r.)  (3.14 (3.17

which we have redefined including the matriséandC into '€ inverse diquark propagator
the diquark vertices. Here the objedig and b% may be
considered as the amplitude of a specific diquark eigenmode. | ) ) 22
After canonical quantization they are elevated to annihilatiorPiq (7.7 ";i@) =K(r,r'jiw) = - == &(r—r") (3.18
and creation operators, respectively. 0

For the present qualitative discussion it is sufficient to ) )
consider only arS-wave scalar diquark field. In respect of IS expressed in terms of a local mass term and a bilocal
the Pauli principle the only possible ansatz for the vertexkernel
functionsIgig(r,t) is

~ K(r',rjiw)= dQdQ'R(iw;e,,
ngq(r,t)=A(r,t)F“, ngq(r,t)=A*(r,t)F“, (r r|(l)) VEM (Iw € 6#)

X[W ()W, (r) TN, (n], (3.19

o —

Ae 72, (3.19
- —= .
J2 2 & where

i 1 1F163+1F( e 2, ,
(|w,ey,e#)—ﬁm 232 T2 T\ 2 A2 [0+ (e,—€,)"]

Odaa [aei%—(l—a)e,zj—ka(l—a)wz]?’/z

fl r{s/z,[aei+(1—a)e§+a(1—a)w2/A2]}} (320

is the proper-time regularized version of the quark loop.  single quark. Therefore, we require for the second order term
For the ongoing discussion a normalization of the diquarkhe normalization condition for the diquark contribution to

field A, (r,iw) is necessary. In principle such a normaliza-the baryon number

tion would be obtained in the framework of second quanti-

zation. Equivalently, we demand that the total baryon charge,

to which the diquarks contribute, equals unity. For that pur-
: : .

pose we first caAI(iJIate trle expectatpn value of the bgryon Ei Byq=1 J g%z Rz(w;fwfﬂ)</vb|A§(—iw)|V>

number operatoB=1./N.=1./3. For this purpose the action 3 v

(3.2) is supplemented by a term which contains the coupling * (i

of an external source conjugated to the baryon charge. In X(vlAgio)p) - (3.21

analogy to the calculation in Sec. Il A this effective action is

expanded in terms of diquark fields. The leading order yields

the value 1/3, which is nothing but the contribution of aHere the regularization function reads



55 BARYONS AS HYBRIDS OF SOLITONS AND THREE. .. 2035

Ro(iw;€,,€,) -
—
_iw[wz-l-(e,,— e#)z]

i —— oo

daa

0 [erA-adral-ao® A F— . T e
(3.22

The normalization(3.21) ensures that the configuration + Q @ + I f (a=2)
which has two valence quarks substituted by the bound di-
quark carries unit baryon numb&As the solutions of the

Bethe-Salpeter equation appear always in paire g, the . § + { I
normalization condition(3.21) allows us to distinguish be-

tween diquark and antidiquark solutions.

C. Faddeev equation for a quark-diquark bound state + i}i + ;I?

The central issue for constructing a quark-diquark bound
state is to find the pole in the baryon propagator. This propa- (@23)
gator contains contributions from boh, and A, cf. Egs.
(2.19, (2.20. Let us first discuss the contribution associated
with A,y . In the context of the generalized baryon sources FIG. 1. Feynman diagrams of the seri@24 for the baryon
(2.12 we require the upper-left component of the Green'sPropagatoiGy™'.
functionG whose inverse is given in EQR.15. The detailed o
exprgssion may be found in Appendix B. We gmploy a geo- (G\éa')w: GoD gt gODaﬁrgiqgorgiqD 890
metric series to further treat the componeB) {; in Eq. (B4)

y fl 2F{5/2,[aei+(1— a)el+ a(l—a)w?A?]}

+GoD asl &G0l gD 51" GigGol gD s+ -+ -
- =(GB)apt (GB)asH(GB) ys
:ago (Qobyrgiqﬁofgiq g)a, +(Gg)a5|_| ’5(68)7,7H f”(Gg)Eﬁ o
(3.23 =[1~(GR)asH"1 (GR) 5. (3.29

(1+GoACV 1GVCA) 1= (1~ gobyrgiqaofgiqbg )7t

Up to this point, we have dealt with the generating functionaliere we have introduced the quark-diquark propagéitor
(2.17) for meson, diquark, and baryon fields. In order tothe soliton background
arrive at an effective meson-baryon action the diquark fields
need to be integrated o{29]. This amounts to contracting (GR)ap=G0Dup (3.26
the diquark fields in G),; according to Wick's theorem.
This allows us to writ? the baryon propagator, i.e., the uppeand the quark exchange operator

va

left component of Gg7) .5 in EQ. (2.20 L
. H?°=T %.Gol Giq- (3.2
(G&) ap= 90D apt GoD y&rgi/iqgorgiqD «pY0
~ ~s Similarly the contribution due to4, can be obtained. Here,
+GoD asl digGol gigD yg0 - -+ (3.24 however, the external diquark indices are contracted. Hence

o o ) the only interaction mediated by this term proceeds via
as an infinite series in quark, and diquark propagators quark-diquark loops which should be omitted for consistency
D,s=(b3bg). This series is drawn as a sum of Feynmanwith the above introduced ladder approximation.
diagrams in Fig. 1. For the calculation of bound states it is We are now able to integrate over the baryon source fields

only necessary to consider the quark exchange graphs in thge« e Thjs leads to the effective baryon action
series(3.24). Neglecting the self-interaction graphs is justi-

fied because we have an effective interaction and therefore
all self-interaction graphs can be absorbed in the effective
coupling constants. This simplification is nothing else than = — N i
the well-known ladder approximation which has the advanfor the baryon field8“=P"B,’ und B*=B,P". The inver-
tage that the baryon propagator can summed up completel$ion of the baryon propagator

AR~ B(GE) 5B (3.29

(Gg")ap=(GB)us—Hap (329
4An analogous procedure has been employed in [2d].to nor-
malize the kaon wave function in the bound state approach. follows directly from Eq.(3.25. Using
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5A<b2> tities do not yet have apparent interpretations since due to the
—=0 (3.30  presence of the static and localized soliton Lorentz covari-
6B ance is lost. Hence we are still lacking an energy scale. In

one finally arrives at the Faddeev equation in operator form?.rder o def'ﬂe. a physma!ly .relevapt energy scale we con-
sider the Ilimit of wvanishing diquark-quark coupling
(G\éal);lBﬁ:o_ (3.3) (I'gig—0). In this limit the different quark states decouple
and the Faddeev equation reduces to a purely algebraic equa-

InI the next step we construct the kernel of the matrixtion. For the valence quark part we have the three solutions
(GE") o - For this purpose we expand the baryon field |0 =2(i0+ e,,) andiQ=4(—i0* wyg). When the energy

(e,>0) transfer vanishes, i.&()=0, we should obtain the physically
_ 0 /2y -0 reasonable solutioi() = wg,+ €,4 for the energy of a free
BOxY) f dwdEZ. Ey Al E10)Ba, (X Xa3¥,Ya) baryon. This result can only be realized if we enforce the

(3.32  variable substitutio— Q-+ (i/2) (€ya— wgig)- Thus, two of
the three solutions join the physical solution. The third one
yielding a negative solution is rejected because we have pro-
jected to positive energy states. Since the limit of vanishing

in eigenfunctions

BO ()Z,x4;§,y4)=ﬁl A (X)e Xy (y)e 1BV diquark-quark coupling should continuously emerge from

av (277) a v . . . .
the complete solution of the Faddeev equation it is

(3.33 necessary to perform the variable substitution

of the quark-diquark propagator ?->é))+(i/2)(eva,— wgg) also in the Faddeev equation

3.35.
(Gg)—lg% (X,X4:Y,Ya)=—BGE—¢,) As the Faddeev equatidB.35 is a linear(integra) equa-

e tion for the amplitudes,, no normalization condition can
X (w?+ wg)Bgy(i,x4;§,y4)_ be extracted. This condition will arise from demanding ca-

nonical commutation relations. Again this can be related to
(3.34 demanding the proper normalization of Noether charges,

For feasibility this propagator has been approximated by th&-9- Unit baryon number for the whole configuration.
harmonic order in the diquark energy which just comprises FOr the numerical solution of this integral equatiome
the pole decomposition for a single diquark stagince by  discretize the integration variabl€;=jAQ;j=0,... N,
construction the baryon number operator is additive in quarlielding the kernel as aNxN matrix. We then generalize
and diquark contributions the states characterizedBfly ~ the matrix equation to the eigenvalue equation

possess unit baryon number becaudsg and ¥ ,, respec-
tively, have baryon numbers 2/3 and 1/3, cf. E}21). The
projection operatoP” (2.7) on the third quark projects out
the positive energy eigenstates,0). Transforming the
energy variable€, w to the total energf)=E+ o and the
relative energf)=3(w—E) we obtain the Faddeev equation X
in terms of the coefficienta,,(iQ,i(}):

1. ~
E(IQ—FEvaI_va_wdiq)_IQj}

2
2
+ wdiq

~ . P
Qj"’ E{Eval_ wdiq—IQ} a.,,(lQ,lQJ')

2

1 ~ (V[T gig ) (kT gig| i) ~
1.~ 1~ o~ +D AQ—=—— d a,(iQ,iQ)
2 & ’
[EIQ—IQ—EV (§Q+Q +w?|a,,(iQ,1Q) (3.395 415 [(Q+ Q) + 0ggt €4~ €va Iz j
=\;(i0)a,(i0,iQ). (3.36

B a
N EJ 40 <V|rdB|Kl<K|Fdiq|M>
4 B 1(Q+Q)+e,

as,(i0,iQ)=0.

A solution of the Faddeev equation is given for a vanishing

The summation runs over the one-particle quark eigenSIat@genvalue)\j(iQB):O with the energy) . Within this for-
|u) and|«) of he. To reduce the numerical effort we re- muylation there exists only one positive energy solution with
strict the diquark states to the energetically lowest Stat@s<6va|+wdiq- Possible negative solutions will again be
T§q=Tdq-® In fact, this is the only bound state; all other rejected. If we replacé 4q in Eq. (3.36 with xI' 44 we can
states lie above the two quark threshold and, if at all, influ-explore the dependence of the solution on the coupling be-
ence the quark-diquark bound state only weakly. tween quark and diquark. In this manner we observe that

It is important to equip the absolute and relative energies), approaches the free solutiafy+ wgq for decreasing
Q and(), respectively, with a physical meaning. These quan-y. This justifies the above described procedure.

®This treatment also avoids the appearance of singularities due to’A similar variable substitution was implemented by Isiial.
the two-quark thresholds. [27].

8In the following we suppress all diquark indices, e.g., 8A similar approach was employed for the solution of the diquark
A, ,(10,iQ)=a,(iQ,iQ). Bethe-Salpeter equatidl0].
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TABLE |. The energywg of the diquark in the soliton, the

15000 o, (r/a) ' i energy %, of two uncorrelated quarks, and the binding energy of
et // the diguarkBqq=2€,4— wgjq iN dependence on the scaling param-
----- Gsc(r)+a*sin2(2nr/D) ,/ etera for constituent quark mass=450 MeV andg,=9;.
. 4 / ,"
M0 —= ©,(r+a’sin (2nr/D) /// ',/ 1 a wgigMeV 26y Bo/MeV
3 \ ;s 0.0 759 934 175
< \ ;S 0.2 761 934 173
u AN S 0.4 758 929 171
13000 PN /7 1 06 672 808 136
RN e 0.8 465 560 95
— N et 1.0 295 360 65
1.2 161 208 47
1200000 1800 2200
£, (MeV)

from the one of the valence quark energy. This indicates that
the properties of the diquark are essentially determined b
FIG. 2. Dependence of the soliton energy from the valencethe \?alepnce quarks g y y
quark energy for three different parameterizations of the soliton A further interest.ing point is the increasing diquark bind-
profile. Results are fom=450 MeV. . . - .
ing energy with growing constituent quark mass when the
IV. NUMERICAL RESULTS AND DISCUSSION self-consistent soliton is employed as can be seen from Table
i ) Il. This feature is particularly astonishing because the va-
In the first step we ca}lcula"(qshe chiral angléds(r) self-  |ence quark energy decreases simultaneously.
consistently in a box with radiub by extremizing the en- These results for the diquark serve as input to the solution
ergy functional(3.13. In order to later estimate the influence of the Faddeev equatiof8.36. In Fig. 3 we display the
of the quark-quark and the diquark-quark bound states on th%sulting energy)g as a function of the scaling variabée

soliton we introduce a dimensionless parametewhich  for 5 constituent quark mass= 450 MeV. For comparison,
measures the extension of the soliton profile, Viaie energy of three uncorrelated valence quarks and the en-
O(r)=0{r/a). This choice is motivated by the softness of ggy of a free diquark-quark pair are also shown. Again, in
the scaling mode, i.e., a weak dependence of the total solitofhe ‘entire region the diquark and quark are bound, although
energy on the parametarin comparison to other variables. only weakly. In Table Ill we compare the quark-quark
The energy of the valence quark, on the other hand, depeanqqzzeval_ wgg and diquark-quark Bge= e,qt @i
sensitively ona. As shown in Fig. 2 the soliton energy for _ )y pinding energies to the total binding energy

the scaling mode is almost constant in the displayed range.

For comparison the dependencies for two alternative param- B..—=3¢.—0u=B.+B 4.1
etrizations are presented. Both profiles are chosen such that tor™ 2€val™ 228 Baq™ Pad @D

they not only fulfill the usual boundary conditions but also . . B .
the derivatives at the boundaries are unchanged. for a diquark coupling constary,=g,. We notice that the

In the next step we solve the Bethe-Salpeter equatiort?inding energy is_ carried toalarge_ extent by the quark-quark
(3.17) for the diquark field4® In Table | we display the correlations. While these have their maximal value for a van-

solution of the Bethe-Salpeter equation for different solitonIShIng soliton @—0) the residual diquark-quark interaction

profiles. The important result is that the diquarks are bouncg_e\é_elotp_S athmax_ltmutm f(_)rr g]lodlera';e SO“;Q” exlt(ensmnl._ More
(wgiq<2€.4) for all considered profiles. Furthermore, the istinct is the situation(Table 1V) for a diquark coupling

i _ : : tant twice as large, i.e@;=2g;. In particular, the total
binding energyBg,=2€,4— wgq decreases with growing cons : 27 =91 ; S
soliton size. For a small soliton extensioa<{0.4) the di- binding energy is strongly dominated by the diquark binding

quark energy is almost independent of the soliton. Note, tha?n?n'sﬂ?;ax'am;tll L%rmaevzzltshrgrsg Egl\l/tgnﬁse d instantaneous or
the limita— 0 corresponds to a diquark in an empty box. For , . past s .
small a the quark fields are indeed fréspherical spinors static approximations to solve the integral equatiGr89

and any correlation on top of those discussed in 2] are [22,24-26,43 The mstantanepus appr'oxmatlo.n corre-
due to the boundary conditions imposed by the soliton cal—sDOhdS to a quark exchange with vanishing relative energy
culation. Therefore we consider these correlations just for ) .
formal comparison rather than equipping them with a phySi'entTAuBal;Er:ésT;i;?t?g :hI::r';iLt'gn?Z%e"?:fgcr;gn the constitu-
cal interpretation. On the contrary, for larger soliton exten- d ~ 9

sion (@>0.5) we observe a strong dependence on the scalin

factor a. This behavior of the diquark energy is inherited

Simev wgg/MeV 26 B,/MeV

350 455 495 40

400 368 421 53

%A complete description of the numerical treatment is given in450 295 360 65
[42]. 500 225 303 78
10A test of the numerical treatment in the finite box is given in 600 80 189 109

Appendix A.
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1500 , : TABLE IV. The same as Table Ill for the coupling constant
——————————— “ 92=29;.
. N\
< 1000 \ a Qg/MeV  By/MeV  By/MeV  By/MeV
i — 9 0.0 952 433 16 449
& | e 0.2 957 428 17 445
s 500 3:"‘ ™ 0.4 949 401 43 444
0.6 787 315 110 425
0.8 547 169 124 293
%0 05 10 1.0 374 108 59 167
scaling factor a 1.2 249 75 36 111

FIG. 3. Solution of the Faddeev equatiolid line), the energy

of a free diquark-quark paitshort dashed line and the energy of binding energy. Hence we conclude that retardation effects
three uncorrelated valence quatlang dash lingin dependence on in the full calculation have a repulsive character. Both ap-
the scaling factom for a constituent quark mass=450 MeV and  proximations also elucidate the importance of the above de-
0,=01. scribed variable substitution, because the free solution
_ Q)= wgqt €4 is Obvious for vanishing diquark-quark cou-
Q=0 in Eq. (3.36. Then the different quark channels de- pling (I'4q—0). If we improperly had carried out the static
couple and the Faddeev equation simplifies to a purely algeapproximation in Eq.(3.395 we would have had two un-
braic equation: physical solutions () =2¢€,, andiQ = * wgiq.

[1 Q= €va— waigl[ (€va— @qig— 1)~ 4wgig] V. A HYBRID MODEL FOR BARYONS

o> (vall T gig| ) (| T'gig| valh —0. 4.2 Given the results of the last section we now consider a
p: Odigt €~ €val soliton configuration with correlated valence quarks. For that
purpose we replace the contributior,3 of the three uncor-
In the static approximation in addition the sum over the ex-related valence quarks in the energy functiof@ald by the
changed quark is restricted to the valence quark: solution of the Faddeev equation. In principle the complete
energy functional would also include contributions of

. . 2 2
[1Q = €va— @igl[ (€va— @qiq—1 Q) "~ 4wiig] Tr log(Gy) which eventually would be expressed as a

(val|T gglval)(val|T gl val) (regularized sum over all energy eigenvalues of the Faddeev
-2 =0. 4.3 equation. When considering the above described configura-
@diq tion we restrict that sum to the dominating lowest energy

The presence of the energy denominator indicates that the§@ntribution. Similarly, diquark correlations within the Dirac
approximations should be well suited for large quark and>®a aré omitted and only the lowest nontrl\_/lal cor)trlbut!on IS
diquark masses. In fact, Table V confirms this assessmen{@ken into account. The total energy of this configuration is
For a vanishing soliton the error is one per cent. When th&Ven by

soliton extension grows the valence quark as well as the g

diquark energy become smaller and therefore the error riséssol = Esea {18= Esoi~ Bior<Esof = Eseat 3€va) (5.1

to about 20%. This emphasizes the importance of a complete o ) .

solution of the Faddeev equation for a solitonic background@nd is shown in Fig. 4 as a function of the scaling parameter
In addition, this table shows only a small difference betweerf for the constituent quark mass of 450 MeV. For compari-
both approximations. In comparison to the complete solutior$on, the energy of the pure solit¢8.13) Eso= Eseqt 3€val

of the Faddeev equation both treatments possess an enhan@Hl the energy of the additive diquark-quark soliton model

TABLE lll. The solutionQg of the Faddeev equation as wellas ~ TABLE V. The solutionQ)g of the Faddeev equatian3.36) as
the quark-quark B,;) and diquark-quark binding enerdy,q and  well as the solution of the static approximation®™® (4.3) and the
the total binding energ, of the three valence quarks for a con- instantaneous approximatiét"™? ( 4.2) in dependence of the scal-

stituent quark massm=450 MeV andg,=0;. ing factora.

a Qg/MeV By/MeV Bg/MeV B/MeV a Qg/MeV Q@ /mev Qs Mmev
0.0 1221 175 6 181 0.0 1221 1202 1201
0.2 1222 173 6 179 0.2 1222 1204 1202
0.4 1215 171 8 179 0.4 1215 1194 1189
0.6 1010 136 66 202 0.6 1010 935 924
0.8 705 95 40 135 0.8 705 630 628
1.0 452 65 24 89 1.0 452 394 393

1.2 249 47 15 62 12 249 203 202
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1500
1500 -
1400
1000 |
1300 |

energy (MeV)
energy (MeV)

500 r

1200

—er ER g0,

0.0 0.5 1.0
scaling factor a

1100 - :
0.0 0.5 1.0

scaling factor a

FIG. 5. The energy of the soliton with correlated valence quarks

FIG. 4. The energy of the soliton with correlated valence quarky, giferent diquark coupling constants for a constituent quark
(solid ling), the energy of the additive diquark-quark—soliton model . 1<5 450 MeV.

(dash-dotted lineand the energy of the soliton with uncorrelated
valence quarkglong dashed lingin dependence of the scaling fac-

’ the lowest energy configuration the diquark possesses an ef-
tor a for a constituent quark mass 450 MeV. ay 9 q P

fective energy of about 700 MeV. In comparison, for
(diq) _ m=450 MeV the total energy of the self-consistent soliton

configuration is composed half by the valence quarks and

compared to the additive diquark-quark soliton picture the,i¢ by the polarized sea. The effective diquark energy drops
soliton with correlated valence quarks has a lower energy ijown to the range 280380 MeV.

the entire range shown. The minimum of this curve defines Finally we would like to discuss the dependence on the

the hybrid model. Two other points in this figure also have diquark couplingg,. We observe that stronger diquark cor-

special meaning: First, the poiat=0 on the same curve (gations, j.e., largeg,, counteract the formation of a soliton.
marks the model where a baryon is described as a bounds can pe seen from Fig. 5 the meson configuration, which
state of a quark and a diquark with the meson fields fixed %inimizesE(B)

. . - , is shrinking with increasing,. Starting at a
their vacuum expectation valug25,27. Note, that this con- sol 9 92 g

figuration only corresponds to a local minimum of the en_critical coupling a path is open to a vanishing soliton. The
ergy. The other important point is the minimum Bt at displayed curves correspond to four special cases. The pure

- o . . ., soliton is given for g,=0, whereas the second one
a=1 which is nothing else than the self-consistent sollton(gzzgl) describes the Fierz-symmetric case. In the case

solution without any valence quark correlatiof#0]. Also - (B) e . .

tEe ﬁngr%y of (';hils configuration is larger than the energy 0%%5‘3[12;?6ign?;%ﬁ?;'nge'dsvrg'ecrzl t?](:hess?t)é?c?é mer(r:fsc;t

the hybrid model. . - . )
In Table VI we display results for the lowest energy con—(.a<?'4)' Finally, m;he La3t|9%9§2_391 we hav§4ar;f addi-

figuration for different constituent quark masses. This tab'é'ﬁ,?ﬁg tsgemg:gfg@ t?\e s?n:-e fnegsssér;%eet%i[ons_ go_wever

shows that for a large enough constituent quark mass the' . ) o L

hybrid soliton in fact is the minimal energy configuration. th's bsymmetry canno';] beldreballzed 'r? natLljlre since otherwise

The lower limit of stability for the hybrid soliton is around 1€ Paryon masses should be much smaller.

m=~430 MeV. Below this value the energy of the baryon

E8) =g is completely carried by the valence quarks. This VI. CONCLUSIONS AND OUTLOOK

feature is inherited from the pure soliton sector where soliton |, this paper we have constructed a hybrid model for the

solutions exist fom=>330 MeV, however, their energy iS gegcription of baryons within the framework of the NJL

larger than the one of three uncorrelated valence quarks agodel. Using functional integral techniques we have con-

long asm<<450 MeV [20]. In the context of the hybrid \erted the pure quark model into an effective theory of me-

model we expect that the bouma~430 MeV will be low-  sons, diquarks, and baryons. Apart from the approximations

ered when an expanded variational space for the soliton ig)ade to keep the calculation feasible this treatment avoids
employed. In the region where the soliton does not represergny kind of double counting.

As a first step we have solved the Bethe-Salpeter equation
for an S-wave scalar diquark in the background of a soliton
configuration. We have found that this diquark is kinemati-
cally stable against the decay into the two lightest quarks
even in case the masses of the latter are strongly reduced by

TABLE VI. The total energy of the lowest energy configuration
ES ,as well as the contribution from the Dirac $€g,and from the
correlated valence quark3g for g,=g,. Furthermore displayed is
the scaling parameterand the effective energyg, of the diquark.

m (MeV) 350 400 450 500 600 their interaction with the c_hiral so!iton. In the next step we
have integrated out the diquark fields, thereby inducing an
ES, (MeV) 1057 1140 1142 1108 1011  interaction between quarks and the bound diquark through
Ecea(MeV) 0 0 570 569 606 quark exchange. Using the ladder approximation for this ex-
Qg (MeV) 1057 1140 572 539 405 change interaction a Faddeev type of equation has been de-
a 0 0 0.90 0.85 0.80 rived, which includes the solitonic background field. This
wgq (MeV) 688 725 375 356 283 equation yields a three-quark bound state in the solitonic

background. Using this result the hybrid has been con-
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structed combining the three-quark bound state with the po- TABLE VII. The massmg, of a diquark in the continuum, the
larized sea. The energy of this hybrid {r constituent energywg of a diquark as the solution of the Bethe-Salpeter equa-
quark massesn>430 MeV) smaller than either the energy tion in a spherical boxo{3, and v from the approximation of
of the soliton with three uncorrelated quarks or the energy ofd. (A3) and Eq.(A4), respectively, in dependence gf/g;.

the three-quark bound state with no soliton present. Hence

the formation of such a hybrid is dynamically preferred asd2/91  Maf/MeV  wq/MeV  wiiiMeV  ofd/MeV

compared to either picture alone. In addition, the soliton sizg, , 900 934 934 909
of the hybrid is smaller than the size of the soliton with .’

. . . 884 904 919 893

uncorrelated quarks, and the Faddeev amplitude, i.e., th 736 759 778 747
baryon wave function in terms of quarks, deviates from the "

. . . 595 625 646 608

case without soliton. These results show that baryons arg0 463 502 E27 480

presumably very much like hybrids containing both solitonic '5 326 380 412 350
meson clouds and three-quark correlations, and that the

140 241 288 188

implementation of both features is crucial for a proper de-3
scription of baryons. Unfortunately, the question whether a
baryon is dominated by the valence quark structure or the

2 2
soliton is still an open question. For example, if one includes A(p?) = zfldar(o,m + “(12_ ap )
for the soliton alsdaxial-) vector mesons the baryon current 167<Jo A
is completely carried by the polarized Dirac 44&,48. To
clarify the situation one should in addition include at the 1 m?
mean-field level static diquark fields. The solution of such an B= Wr( N 1’X2> : (A2)

improved soliton calculation would show whether there is
still room for valence quark degrees of freedom beside vec- When we compare the solutions of the Bethe-Salpeter
tor meson degrees of freedom or whether they would excludequations in the continuurtA1) and in the spherical box
each other. (3.17 we observe a relatively large differen@d. the second

In this work we have considered the NJL model which isand third column in Table V)I However, we have to take
well suited for low-energy properties of hadrons. Neverthedinto account that in a finite box the quarks always possess
less, for energies higher than twice the constituent quarknite momenta and therefore an increased energy
mass, threshold effects associated with the unphysical decay,= + Jm?+ (wm/D)?. Now, we can consider two limits:
into free quarks disturb the calculation. Therefore, a generFirst, in the limit of vanishing diquark couplingg¢—0) a
alization to bilocal chiral models seems necessary in order tdiquark consists of two free quarke §jq=2¢€,). From this
effectively incorporate quark confinement. Within thesewe obtain the approximation
models there can also exist confined diquad& on the one
hand. On the other hand, soliton calculations have shown g = Mg+ 4(m/D)? (A3)
that inside a soliton propagating quarks0-52 also can
exist. Thus, the hybrid model introduced in this work pre-for the energy of a diquark in a spherical box. Second, we
sents a well suited starting point for further generalizationsonsider the limit of a large quark-quark coupling. In this

which appear necessary to deepen our understanding of ti§@se, the diquark is a highly correlated state which can be
structure of baryons. viewed as an independent particle, hence

0@ =\mg,+ (/D)2 (A4)

As can be seen from Table VIl and from Fig. 6 the di-
The authors are grateful to L. Gamberg for carefully read- X -
ing the manuscript. This work was partly supported byquark energy a_lways I'?S.W'th'nthe two bogndar(ues) anq
COSY under Contract No. 41315266 and by Deutsche For(-A4)' In fact, in the limit of vanishing diquark coupling
schungsgemeinschdfdFG) under Contract No. Re 856/2-2.
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APPENDIX A: TEST OF THE NUMERICAL TREATMENT 800 |
IN THE FINITE BOX <
2 600
In order to test the numerical treatment in the finite box §
we compare the solution of E¢3.17) for a vanishing chiral g 400
angle® (r) =0 with the solution in the continuum. The mass °
of the diquark is obtained from the Bethe-Salpeter equation 200 |
[53]
0 L L n
0.0 1.0 2.0 3.0
202 2 m2f2 9/9,
—p“A(p9)+2mB— ————— =0 (A1)
6momg, /9 p2=—m2 ) ) . -
dig FIG. 6. The energy of the diquark in a spherical l§salid line)

in dependence af, /g4, the dashed lines corresponds to the upper
with (w§y) and lower @) limit of the energy of the diquark.
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where we have used the inversion of the quark propagator

G _ G11 Glz
" 1Gy Gy

(92—0) the energy of the diquark;q is very well approxi-
mated byw{). The difference at large coupling constants
betweenawq and »f) appears because of numerical effects
at the boundary where the wave functions do not vanish
completely. In the context of the hybrid model we consider
bound states in the solitonic background. In this case, th#hich is obtained from Eq(2.15 by neglecting the baryon
wave functions are localized at the origin and the boundaryources on the diagonal elements. The elements of this ma-
effects are negligible. trix are given by

(B3)

APPENDIX B: THE BARYON PROPAGATOR Gy=(1+GoACV 1G,AVC) 1G,, (B4)

The baryon propagator can be evaluated by comparison of

Egs.(2.20 and(2.13,

Lo, wh——go B1
SV(GE) o WF=2£GE (81)
Using the definitions o and§_(2.14) we can write
AGpAL  —AGRAg
(Gap=| _yrg, 4% atc, | B2
« 2128 a 22288

Gro= — GoACV Y1+ GoVCAGACV 1)~ 1GyV,

Goy= —V Y1+ GoVCAGACV 1) 1G,V.
A useful identity to verify this result is
GoACV (14 G,VCAG,ACV 1)1

=(1+G,ACV 1G,AVC)"1g,ACV L.  (B5)
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