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Baryons as hybrids of solitons and three-quark bound states

U. Zückert, R. Alkofer, H. Weigel, and H. Reinhardt
Institute for Theoretical Physics, Tu¨bingen University, Auf der Morgenstelle 14, D-72076 Tu¨bingen, Germany

~Received 5 September 1996!

A hybrid model for baryons based on a dynamical interplay between relativistic three-quark bound states and
soliton configurations of mesons is constructed. The Bethe-Salpeter equation for diquarks and the Faddeev
equation for diquark-quark bound states in the background of a soliton are solved. The results show that
baryons are very much like hybrids containing both solitonic meson clouds and three-quark correlations.
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I. INTRODUCTION

At present there exist two generic classes of models
describe baryons. On the one hand, there is the pictur
baryons as chiral solitons. The soliton picture is based
considering QCD for an arbitrary number of color degrees
freedomNC . In the infinite color limitNC→` QCD reduces
to an effective theory of infinitely many weakly interactin
mesons@1#. Although this effective meson theory cannot
constructed explicitly, Witten conjectured that within th
theory baryons emerge as solitons@2#. Based on this conjec
ture phenomenological effective meson theories have b
developed which possess soliton solutions. The most pro
nent is perhaps the Skyrme model@3–5#. In the limit of an
infinite number of colors the soliton description is the on
model for baryons. On the other hand, for a finite number
colors a baryon is customarily considered as a bound sta
three valence quarks. Such valence quark models are m
vated by high-energy scattering experiments which have
vealed a partonic substructure. Starting with these exp
mental facts many models, which are based on the vale
quark picture, have been developed. These models inc
the nonrelativistic quark models@6–8# and its relativistic ex-
tensions@9#, parton models which are directly based on t
scale invariance@10#, bag models@11#, and diquark-quark
models@12,13#.

The valence quark picture directly leads to the quant
numbers of a physical baryon whereas the soliton can o
be interpreted as a baryon with good spin and flavor quan
numbers after collective quantization. Yet, baryons as s
tons are conceptually better suited for the description of lo
energy properties because they straightforwardly embed
useful feature of chiral symmetry and its spontaneous bre
ing. In any event, despite their successes both pictures
sess only limited ranges of applicability.

Since the advantages of both pictures are in some s
complementary a unification of the two approaches se
desirable. In principle, the chiral bag model@14,15# repre-
sents such a combination since inside the bag it cont
explicit quark degrees of freedom whereas a chiral soli
field surrounds the bag. As a consequence of the Cheshir
principle @16# experimental measurable quantities should
depend on the radius chosen for the bag. Explicit calcu
tions show that the Cheshire cat principle is not universa
valid. In particular, the singlet axial matrix element depen
550556-2813/97/55~4!/2030~13!/$10.00
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strongly on the bag radius@17,18#. Therefore, a hybrid mode
is desirable which connects both classes of models in a
namical fashion. In this context the Nambu–Jona-Lasi
~NJL! model @19# is for the moment unique. On the on
hand, it possesses soliton solutions@20# of meson fields
which themselves are obtained as bound antiquark-qu
states@21#. On the other hand, within this model baryon
may be described as three-quark bound states via the u
diquarks@22–28#, while the meson fields are fixed to the
vacuum expectation values. In particular this model is uniq
because with the help of path integral hadronization te
niques @29# a consistent unification of both approaches
possible without any double counting of correlations. B
cause of the enormous computational effort needed, the
alization of a rigorous self-consistent solution is for the m
ment not feasible. Nevertheless, an approximate evalua
of this hybrid baryon can be accomplished within a four s
procedure to be carried out in this paper: In the followi
section the transformation of the NJL model with a pointli
interaction of color octet current into an effective theory
mesons, diquarks, and baryons is described. For comp
ness we briefly repeat the first two steps in the beginning
the third section: First, we construct a static ground-st
solution in the absence of diquark and elementary bar
fields. Second, we solve the Bethe-Salpeter equation fo
scalar diquark in the solitonic background field@30#. In ad-
dition, we derive the Faddeev equation for arbitrary qua
propagators. In Sec. IV we discuss numerical results for
solutions of the Bethe-Salpeter equation as well as of
Faddeev equation. In Sec. V we employ these results to
fine the hybrid model. We close with conclusions and a o
look in Sec. VI. Some details of the calculation and a fe
lengthy formulas are left to appendices.

II. HADRONIZATION OF THE NJL MODEL

As stated in the Introduction we consider a NJL model
two flavors

LNJL5q̄~ i ]”2m̂0!q2
1

2
g jm

a j a
m ~2.1!

with a pointlike interaction of color octet flavor singlet cu
rents j m

a5q̄lC
agmq/2. Here q denotes the quark spinors

m̂05diag(m0
u ,m0

d) the current quark mass matrix for tw
2030 © 1997 The American Physical Society
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55 2031BARYONS AS HYBRIDS OF SOLITONS AND THREE- . . .
flavors, andlC
a (a51, . . . ,NC

221) are the generators o
color SU(NC). The interaction part can be Fierz rearrang
to solely attractive channels

Lint5g1S 12
1

NC
D ~ q̄Laq!~ q̄Laq!1

g2
NC

~ q̄Gaq
c!~ q̄cGaq!,

~2.2!

whereqc5Cq̄T denotes the charge conjugated Dirac spin
Furthermore, we have defined the vertices

La51c
ta

2
Oa, Ga5S i eAA2 D

c

ta

2
Oa, with a5~A,a,a!

~2.3!

for the quark-antiquark and the quark-quark interaction,
spectively.Oa corresponds to the set of Dirac matrices

OaPH 1,ig5 ,
igm

A2
,
igmg5

A2 J ~2.4!

andta are isospin matrices. Because of the Fierz transfor
tion the coupling constants are restricted tog15g25g,
which is necessary to preserve consistentNC counting. Note,
that the diquark channel is suppressed by a factor 1/NC in
comparison to the meson channel. Henceforth we will c
fine the discussion to the physical caseNC53, unless explic-
itly noted.

To convert the pure quark NJL model~2.1! into an effec-
tive hadron theory1 @29# we introduce collective mesonwa

and baryon fieldsBa
b and B̄a

b into the generating functional

Z5E DqDq̄expS E LNJLD ~2.5!

via the identities

15E Dxad~xa2q̄Laq!5E DxaDwa

3expS i E wa~xa2q̄Laq! D , ~2.6!

15E DB̄a
bDBa

bdSBa
b2

2g2
3

~ q̄cGaq!PbqD
3dS B̄a

b2
2g2
3

q̄Pb~ q̄Gaq
c! D

5E DB̄a
bDBa

bDC̄b
aDCb

a

3expS i E F HBa
b2

2g2
3

~ q̄cGaq!PbqJ C̄b
a

1Cb
aH B̄a

b2
2g2
3

q̄Pb~ q̄Gaq
c!J G D . ~2.7!

1Similar hadronization approaches have been considered
@31,32#.
d

r.

-

a-

-

Note, that we are working in Euclidean space where we h
used the Wick rotationt→2 i t. For notational simplification
we use the abbreviation*5*d4x5*d3rdt in the exponents.
The operatorPb projects the three quarks onto the quantu
numbers of the considered physical baryon states. In part
lar, the color of the third quark has to be chosen to build
colorless baryon wave function. As intermediate buildi
blocks for the baryon field we also introduce diquark field

15E DkaDka* d~ka*2q̄Gaq
c!d~ka2q̄cGaq!

5E DkaDka*DDaDDa* expS i2E @~ka*2q̄Gaq
c!Da

1Da* ~ka2q̄cGaq!# D . ~2.8!

In the interaction Lagrangian~2.2! we may now replace the
terms of fourth order in the quark fields, i.e., with the help
the constraints~2.6! and ~2.8! we write

2g1
3

~ q̄Laq!~ q̄Laq!1
g2
3

~ q̄Gaq
c!~ q̄cGaq!

→
2g1
3

xa
21

g2
3

ka
2 . ~2.9!

Subsequently we integrate out the auxiliary fieldsxa ,ka ,
andka* and obtain the generating functional

Z;E DqDq̄DwDDDD̃DB̄DBDC̄aDCa ~2.10!

3expS E F q̄H igm]m2m02w1
4g2
3

C̄aCaJ q
1q̄Da*Ca1C̄aDaqG DexpS 2E F12 q̄Dqc1

1

2
q̄cD̃q

1
1

8g1
trw21

3

8g2
trD̃D2 i $C̄b

aBa
b1B̄a

bCb
a%G D ,

where we have introduced the compact matrix notation
the meson and diquark fieldsw5waLa,D5GaDa,
D̃5GaDa* as well as for the baryon sourcesCa5Cb

aPb

andC̄a5PbC̄b
a . The symbol tr corresponds to the trace ov

color, flavor, and Dirac spinor degrees of freedom.
To eliminate the quark degrees of freedom we are wo

ing within the Nambu-Gorkov formalism developed orig
nally in the theory of superconductivity@33–35#. For that
purpose we introduce combined Grassmann fields2

q5S qq̄TD , q̄5~ q̄ , qT! ~2.11!

for the quark fields and

in 2Quantities in the Nambu-Gorkov formalism are denoted by bo
face letters.
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2032 55U. ZÜCKERT, R. ALKOFER, H. WEIGEL, AND H. REINHARDT
Ca5S Ca

C̄aTD , C̄a5~C̄a,CaT ~2.12!

for the baryon sources. Now, we integrate out the qu
fieldsq and q̄ with the help of the Nambu-Gorkov formula

E DqDq̄expS q̄G21q2
1

2
q̄Dqc2

1

2
q̄cD̃q

1@ q̄D* aCa1C̄aDaq# D
5E DqDq̄expS 12 @ q̄G21q1q̄j1 j̄q# D
5~DetG21!1/2expS 12j̄GjD , ~2.13!

where we have defined

j5S D* aCa

2C̄a
TDaD , j̄5~C̄aDa ,2D* aCa

T!, ~2.14!

and the inverse quark Green’s function

G215S G21 2DC

2CD̃ 2VG̃21V†D , G̃5V†GTV. ~2.15!

A minus sign has appeared for the lower right compon
becauseq and q̄ are Grassmann variables. The off-diagon
elements ofG are the so-called anomalous Green’s functio
which are related to the amplitude for adding or subtractin
pair of quarks to the system. The transformation opera
V5JG, which we have introduced for technical reasons, i
combination of the self-adjoint unitary transformatio
J5 ibg5 and theG-parity operatorG5eipt2/2C.

The normal quark Green’s function is represented by

G215 igm]m2w1
4g2
3

C̄aCa5G0211
4g2
3

C̄aCa.

~2.16!

From Eq.~2.14! we observe that the baryon sourcesCa are
contracted with the diquark fieldsDa . Hence these source
only couple to a single quark. Since in the ladder appro
mation ~described below! a three quark bound state cann
be affected by such a coupling it is sufficient to restrict t
quark Green’s function toG021.

Finally, the generating functional is given by

Z@Ba
b ,B̄a

b#;E DwDDDD̃DC̄aDCa

3exp@A@w,D,D̃,C̄a,Ca#1 i ~C̄b
aBa

b1B̄a
bCb

a!#

~2.17!

with the effective action
k

t
l
s
a
r
a

i-

A@w,D,D̃,C̄a,Ca#5Aq@w,D,D̃,C̄a,Ca#

1Aval@w,D,D̃,C̄a,Ca#

1Am@w#1Ad@D,D̃#. ~2.18!

The first part, the so-called quark determinant,

Aq5
1

2
TrlogG21 ~2.19!

carries the full information of the underlying quark spectru
via the functional trace Tr. The second part

Aval5
1

2
C̄a~GB

val!abCb ~2.20!

contains the valence quark part of the baryon propag
(GB

val)ab originating from the inversion of the quark propa
gator G0 @see Appendix B for the explicit form o
(GB

val)ab#.
Both residual terms

Am52
1

8g1
E d4x@ trw2#, Ad52

3

8g2
E d4x@ trD̃D#

~2.21!

are pure mass terms for the meson and diquark fie
respectively.3

III. TWO AND THREE QUARK CORRELATIONS
IN A SOLITONIC BACKGROUND

The formal expression for the effective action~2.18! is
expanded in the baryon sourcesC̄ andC

A@w,D,D̃,C̄a,Ca#5Abary
~0! @w,D,D̃#1Aval@w,D,D̃,C̄a,Ca#

1••• . ~3.1!

First, the contribution to the total action not including th
baryon sources, i.e.,Abary

(0) , is expanded in the diquark fields
In leading order, i.e., no diquark fields, this just renders
static soliton. The quadratic order in the diquark fields p
vides the corresponding Bethe-Salpeter equation in the s
ton background. The solution of this equation finally ente
Aval . After integrating out the baryon sources this piece w
provideAbary

(2) from which the baryon propagator can be e
tracted. Solving the corresponding Faddeev equation
propagator will finally allow us to compute the quar
diquark correlations building up a baryon. We will carry o
this program by successively computing the terms on
right-hand side of Eq.~3.1! in the proceeding subsections.

3Note the additional factorNC53 in the diquark mass termAd as
compared to the mass termAm of the mesons.
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A. The static soliton background

The expansion ofAbary
(0) in diquark fields

Abary
~0! @w,D,D̃#5A~0!@w#1A~1!@w,D,D̃#1A~2!@w,D,D̃#1•••

~3.2!

contains contributions from both the fermion determinant
well asAm andAd . We adopt Schwinger’s proper time de
scription @36# to regularize those parts stemming from t
quark determinant~2.19!

A~0!@w#5Am2
1

4
TrE

1/L2

` ds

s
e2sA01Aval

~0! , ~3.3!
so

s

w

th
th
-

-

th

n
o
at
ac
s

A~1!@w,D,D̃#5
1

4
TrE

1/L2

`

dsA1e
2sA0, ~3.4!

A~2!@w,D,D̃#5Ad1
1

4
TrE

1/L2

`

dsA2e
2sA0

2
1

4
TrE

1/L2

`

dssE
0

1

daaA1e
2saA0

3A1e
2s~12a!A0 . ~3.5!

The Nambu-Gorkov matricesA i originating from the expan-
sion of the operator (G21)†G215A01A11A2 have the ex-
plicit form
A05S ~G21!†G21 0

0 V21~ G̃21!†G̃21V
D , ~3.6!

A15S 0 2~G21!†DC2D̃†CV21G̃21V

CD†G211V21~ G̃21!†VCD̃ 0
D , ~3.7!

A25S D̃†D̃ 0

0 2CD†DC
D . ~3.8!
po-

ct
By extracting the Bethe-Salpeter equation for the me
fields w from Aq

(0) we can relate@21,37# the parameters
(g1, m05m0

u5m0
d and L) of the model to the pion mas

mp5135 MeV and the pion decay constantfp593 MeV.
This leaves undetermined just a single parameter which
choose to be the constituent quark massm. This mass is the
vacuum expectation value of the scalar field and reflects
spontaneous breaking of chiral symmetry. In principle
diquark coupling constantg2 is fixed by the Fierz transfor
mation, however, we will relax the restrictiong2 /g151 thus
effectively treatingg2 /g1 as a parameter to study the influ
ence of the diquarks.

Note, that for each term in Eq.~3.3! the Nambu-Gorkov
trace can be worked out analytically. In addition, due to
diagonality ofA0 and the vanishing trace ofA1 it is obvious
thatD5D̃50 is always a solution of the equation of motio
though it is not necessarily the solution of least action. F
the remaining functional trace we use the color degener
eigenstates of the inverse propagator for quarks in the b
ground of a static meson fieldw

G21un,n&5~ i ]”2w!un,n&5b~2]t2hQ!un,n&

5b~ ivn2en!un,n& ~3.9!

and perform an additional color trace trC . In analogy, the
charge conjugated quark propagatorG̃021 can be worked out
similarly:
n

e

e
e

e

r
ed
k-

G̃021un,n&5V†~ i ]”2w!TVun,n&5b~]t2hQ!un,n&

5b~2 ivn2en!un,n&. ~3.10!

For the meson fields we make use of the polar decom
sition

w5FUg55mUg5, ~3.11!

where we have fixed the chiral radiusF to its vacuum ex-
pectation valuem. Additionally, we adopt the well-known
hedgehog ansatz for the chiral field

U5exp@ it• r̂Q~r !#. ~3.12!

Due to the static field configuration it is possible to extra
from the zero order termA(0)52TEsol@Q# ~3.3! an energy
functional

Esol@Q#5Esea1Eval , ~3.13!

Esea5
3

2E1/L2

`

ds
1

A4ps3
(
m

e2sem
2

1mp
2 f p

2 E d3r @12cosQ~r !#,

Eval5
3

2
eval@11sgn~eval!#.
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2034 55U. ZÜCKERT, R. ALKOFER, H. WEIGEL, AND H. REINHARDT
Neglecting quark-quark correlations, the valence quark c
tribution Eval is composed of the color degenerated sin
particle energies of the valence quark level. This state is
only one which is bound by the soliton, i.e.,2m,eval,m.
The soliton configuration is characterized by the chiral an
Qsc(r ) which is self-consistently determined by extremizi
the energy functionalE@Q# @38–40#.

B. Bethe-Salpeter equation for diquarks

In the following we derive the equation of motion for th
diquark fields in the solitonic meson background field. T
solutions of this equation define the eigenmodesba andba*
of the diquark fields

D5ba@D~r ,t !GCV21#a5baGdiq
a ~r ,t !,

D̃5@VC†GD~r ,t !#aba*5ba* G̃diq
a ~r ,t ! ~3.14!

which we have redefined including the matricesV andC into
the diquark vertices. Here the objectsba and ba* may be
considered as the amplitude of a specific diquark eigenm
After canonical quantization they are elevated to annihilat
and creation operators, respectively.

For the present qualitative discussion it is sufficient
consider only anS-wave scalar diquark field. In respect o
the Pauli principle the only possible ansatz for the ver
functionsGdiq

a (r ,t) is

Gdiq
a ~r ,t !5D~r ,t !Ga, G̃diq

a ~r ,t !5D* ~r ,t !Ga,

Ga52
lC
a

A2
t2
2
ig5 ~3.15!
ar
a
t
rg
ur
yo
n
in
.
is
ld
a

n-
e
e

e

e

e.
n

x

with lC
a (a52,5,7) being the antisymmetric Gell-Mann m

trices of the color group.
Using the Fourier-transform in the time coordinate

D~r ,t!5E dv

2p
D~r ,iv!e2 ivt ~3.16!

and the spatial representationCn(r )5^r un& for the quark
eigenstates the residual trace can be worked out. The se
order term of the effective actionAq

(2) together withAd de-
termines the Bethe-Salpeter equation as the equation of
tion for the diquark fieldsdA(2)/dD* (r ,2 iv)50:

r 2F E dr8r 82Ddiq
21~r ,r 8; iv!Da~r 8,iv!GU

v252v
diq
2

50.

~3.17!

The inverse diquark propagator

Ddiq
21~r ,r 8; iv!5K~r ,r 8; iv!2

pmp
2 f p

2

2m0m
d~r2r 8! ~3.18!

is expressed in terms of a local mass term and a bilo
kernel

K~r 8,r ; iv!5(
nm

E dVdV8R~ iv;en ,em!

3@Cn
†~r 8!Cm~r 8!Cm

† ~r !Cn~r !#, ~3.19!

where
R~ iv;en ,em!5
1

16Ap
F 1

2uenu
GS 12 , en

2

L2D 1
1

2uemu
GS 12 , em

2

L2D 2@v21~en2em!2#

3E
0

1

daa
G$3/2,@aem

21~12a!en
21a~12a!v2/L2#%

@aem
21~12a!en

21a~12a!v2#3/2 G ~3.20!
erm
to
is the proper-time regularized version of the quark loop.
For the ongoing discussion a normalization of the diqu

field Da(r ,iv) is necessary. In principle such a normaliz
tion would be obtained in the framework of second quan
zation. Equivalently, we demand that the total baryon cha
to which the diquarks contribute, equals unity. For that p
pose we first calculate the expectation value of the bar
number operatorB̂51c /Nc51c/3. For this purpose the actio
~3.2! is supplemented by a term which contains the coupl
of an external source conjugated to the baryon charge
analogy to the calculation in Sec. III A this effective action
expanded in terms of diquark fields. The leading order yie
the value 1/3, which is nothing but the contribution of
k
-
i-
e,
-
n

g
In

s

single quark. Therefore, we require for the second order t
the normalization condition for the diquark contribution
the baryon number

2
3

5
!
Bdiq5 i E dv

2p(
nm

R2~v;en ,em!^muDa* ~2 iv!un&

3^nuDa* ~ iv!um& . ~3.21!

Here the regularization function reads
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55 2035BARYONS AS HYBRIDS OF SOLITONS AND THREE- . . .
R2~ iv;en ,em!

5
iv@v21~en2em!2#

4Ap

3E
0

1

daa2
G$5/2,@aem

21~12a!en
21a~12a!v2/L2#%

@aem
21~12a!en

21a~12a!v2#5/2
.

~3.22!

The normalization ~3.21! ensures that the configuratio
which has two valence quarks substituted by the bound
quark carries unit baryon number.4 As the solutions of the
Bethe-Salpeter equation appear always in pairs6 ivdiq , the
normalization condition~3.21! allows us to distinguish be
tween diquark and antidiquark solutions.

C. Faddeev equation for a quark-diquark bound state

The central issue for constructing a quark-diquark bou
state is to find the pole in the baryon propagator. This pro
gator contains contributions from bothAq andAval , cf. Eqs.
~2.19!, ~2.20!. Let us first discuss the contribution associat
with Aval . In the context of the generalized baryon sourc
~2.12! we require the upper-left component of the Gree
functionG whose inverse is given in Eq.~2.15!. The detailed
expression may be found in Appendix B. We employ a g
metric series to further treat the component (G)11 in Eq. ~B4!

~11G0DCV21G̃0VCD̃!215~12G0bgGdiq
g G̃0G̃diq

d bd* !21

5 (
a50

`

~G0bgGdiq
g G̃0G̃diq

d bd* !a.

~3.23!

Up to this point, we have dealt with the generating functio
~2.17! for meson, diquark, and baryon fields. In order
arrive at an effective meson-baryon action the diquark fie
need to be integrated out@29#. This amounts to contracting
the diquark fields in (G)11 according to Wick’s theorem
This allows us to write the baryon propagator, i.e., the up
left component of (GB

val)ab in Eq. ~2.20!

~GB
val!ab5G0Dab1G0DgdGdiq

g G̃0G̃diq
d DabG0

1G0DadGdiq
g G̃0G̃diq

d DgbG01••• ~3.24!

as an infinite series in quarkG0 and diquark propagator
Dab5^ba* bb&. This series is drawn as a sum of Feynm
diagrams in Fig. 1. For the calculation of bound states i
only necessary to consider the quark exchange graphs in
series~3.24!. Neglecting the self-interaction graphs is jus
fied because we have an effective interaction and there
all self-interaction graphs can be absorbed in the effec
coupling constants. This simplification is nothing else th
the well-known ladder approximation which has the adv
tage that the baryon propagator can summed up comple

4An analogous procedure has been employed in Ref.@41# to nor-
malize the kaon wave function in the bound state approach.
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~GB
val!ab5G0Dab1G0DadGdiq

g G̃0G̃diq
d DgbG0

1G0DadGdiq
g G̃0G̃diq

d DghGdiq
e G̃0G̃diq

h DebG01•••

5~GB
0 !ab1~GB

0 !adH
gd~GB

0 !gb

1~GB
0 !adH

gd~GB
0 !ghH

eh~GB
0 !eb1•••

5@12~GB
0 !adH

gd#21~GB
0 !gb . ~3.25!

Here we have introduced the quark-diquark propagator~in
the soliton background!

~GB
0 !ab5G0Dab ~3.26!

and the quark exchange operator

Hgd5Gdiq
g G̃0G̃diq

d . ~3.27!

Similarly the contribution due toAq can be obtained. Here,
however, the external diquark indices are contracted. Hence
the only interaction mediated by this term proceeds via
quark-diquark loops which should be omitted for consistency
with the above introduced ladder approximation.

We are now able to integrate over the baryon source fields
Ca,C̄a. This leads to the effective baryon action

Abary
~2! 5B̄a~GB

val!ab
21Bb ~3.28!

for the baryon fieldsB̄a5PnB̄n
a undBa5Bn

aPn. The inver-
sion of the baryon propagator

~GB
val!ab

215~GB
0 !ab

212Hab ~3.29!

follows directly from Eq.~3.25!. Using

FIG. 1. Feynman diagrams of the series~3.24! for the baryon
propagatorGB

val .
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dAbary
~2!

dB̄a
50 ~3.30!

one finally arrives at the Faddeev equation in operator fo

~GB
val!ab

21Bb50. ~3.31!

In the next step we construct the kernel of the mat
(GB

val)ab
21 . For this purpose we expand the baryon field

B~x,y!5E dvdE(
a

(
n

~en.0!

aan~E,v!Ban
0 ~xW ,x4 ;yW ,y4!

~3.32!

in eigenfunctions

Ban
0 ~xW ,x4 ;yW ,y4!5

1

~2p!2
Da~xW !e2 ivx4Cn~yW !e2 iEy4

~3.33!

of the quark-diquark propagator

~GB
0 !ab

21Bbn
0 ~xW ,x4 ;yW ,y4!52b~ iE2en!

3~v21vb
2 !Bbn

0 ~xW ,x4 ;yW ,y4! .

~3.34!

For feasibility this propagator has been approximated by
harmonic order in the diquark energy which just compris
the pole decomposition for a single diquark state.5 Since by
construction the baryon number operator is additive in qu
and diquark contributions the states characterized byBan

0

possess unit baryon number becauseDa and Cn , respec-
tively, have baryon numbers 2/3 and 1/3, cf. Eq.~3.21!. The
projection operatorPb ~2.7! on the third quark projects ou
the positive energy eigenstates (en.0). Transforming the
energy variablesE,v to the total energyV5E1v and the
relative energyṼ5 1

2(v2E) we obtain the Faddeev equatio
in terms of the coefficientsaan( iV,i Ṽ):

F12 iV2 i Ṽ2enGF S 12V1ṼD 21va
2 Gaan~ iV,i Ṽ! ~3.35!

1
1

4E dṼ8 (
b,m,k

^nuGdiq
b uk&^kuGdiq

a um&

i ~Ṽ1Ṽ8!1ek

abm~ iV,i Ṽ8!50.

The summation runs over the one-particle quark eigenst
um& and uk& of hQ . To reduce the numerical effort we re
strict the diquark states to the energetically lowest s
Gdiq

a 5Gdiq .
6 In fact, this is the only bound state; all othe

states lie above the two quark threshold and, if at all, in
ence the quark-diquark bound state only weakly.

It is important to equip the absolute and relative energ
V andṼ, respectively, with a physical meaning. These qu

5This treatment also avoids the appearance of singularities du
the two-quark thresholds.
6In the following we suppress all diquark indices, e.

aa,m( iV,i Ṽ)5am( iV,i Ṽ).
:
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s
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tities do not yet have apparent interpretations since due to
presence of the static and localized soliton Lorentz cov
ance is lost. Hence we are still lacking an energy scale
order to define a physically relevant energy scale we c
sider the limit of vanishing diquark-quark couplin
(Gdiq→0). In this limit the different quark states decoup
and the Faddeev equation reduces to a purely algebraic e
tion. For the valence quark part we have the three soluti
iV52(i Ṽ1eval) and iV54(2 i Ṽ6vdiq). When the energy
transfer vanishes, i.e.,Ṽ50, we should obtain the physicall
reasonable solutioniV5vdiq1eval for the energy of a free
baryon. This result can only be realized if we enforce t
variable substitutionṼ→Ṽ1( i /2)(eval2vdiq). Thus, two of
the three solutions join the physical solution. The third o
yielding a negative solution is rejected because we have
jected to positive energy states. Since the limit of vanish
diquark-quark coupling should continuously emerge fro
the complete solution of the Faddeev equation it
necessary to perform the variable substitutio7

Ṽ→Ṽ1( i /2)(eval2vdiq) also in the Faddeev equatio
~3.35!.

As the Faddeev equation~3.35! is a linear~integral! equa-
tion for the amplitudesaan no normalization condition can
be extracted. This condition will arise from demanding c
nonical commutation relations. Again this can be related
demanding the proper normalization of Noether charg
e.g., unit baryon number for the whole configuration.

For the numerical solution of this integral equation8 we
discretize the integration variableṼj5 jDṼ; j50, . . . ,N,
yielding the kernel as anN3N matrix. We then generalize
the matrix equation to the eigenvalue equation

F12 ~ iV1eval22en2vdiq!2 i Ṽj G
3F S Ṽj1

i

2
$eval2vdiq2 iV% D 21vdiq

2 Gan~ iV,i Ṽj !

1
1

4(l ,k DṼ
^nuGdiquk&^kuGdiqum&

i ~Ṽj1Ṽl !1vdiq1ek2eval
am~ iV,i Ṽj !

5l j~ iV!an~ iV,i Ṽj !. ~3.36!

A solution of the Faddeev equation is given for a vanish
eigenvaluel j ( iVB)50 with the energyVB . Within this for-
mulation there exists only one positive energy solution w
VB,eval1vdiq . Possible negative solutions will again b
rejected. If we replaceGdiq in Eq. ~3.36! with xGdiq we can
explore the dependence of the solution on the coupling
tween quark and diquark. In this manner we observe t
VB approaches the free solutioneval1vdiq for decreasing
x. This justifies the above described procedure.

to7A similar variable substitution was implemented by Ishiiet al.
@27#.
8A similar approach was employed for the solution of the diqua

Bethe-Salpeter equation@30#.
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IV. NUMERICAL RESULTS AND DISCUSSION

In the first step we calculate9 the chiral angleQsc(r ) self-
consistently in a box with radiusD by extremizing the en-
ergy functional~3.13!. In order to later estimate the influence
of the quark-quark and the diquark-quark bound states on
soliton we introduce a dimensionless parametera, which
measures the extension of the soliton profile, v
Q(r )5Qsc(r /a). This choice is motivated by the softness o
the scaling mode, i.e., a weak dependence of the total soli
energy on the parametera in comparison to other variables
The energy of the valence quark, on the other hand, depe
sensitively ona. As shown in Fig. 2 the soliton energy for
the scaling mode is almost constant in the displayed ran
For comparison the dependencies for two alternative para
etrizations are presented. Both profiles are chosen such
they not only fulfill the usual boundary conditions but als
the derivatives at the boundaries are unchanged.

In the next step we solve the Bethe-Salpeter equat
~3.17! for the diquark fields.10 In Table I we display the
solution of the Bethe-Salpeter equation for different solito
profiles. The important result is that the diquarks are bou
(vdiq,2eval) for all considered profiles. Furthermore, th
binding energyBqq52eval2vdiq decreases with growing
soliton size. For a small soliton extension (a,0.4) the di-
quark energy is almost independent of the soliton. Note, th
the limit a→0 corresponds to a diquark in an empty box. Fo
small a the quark fields are indeed free~spherical! spinors
and any correlation on top of those discussed in Ref.@22# are
due to the boundary conditions imposed by the soliton c
culation. Therefore we consider these correlations just
formal comparison rather than equipping them with a phy
cal interpretation. On the contrary, for larger soliton exte
sion (a.0.5) we observe a strong dependence on the scal
factor a. This behavior of the diquark energy is inherite

9A complete description of the numerical treatment is given
@42#.
10A test of the numerical treatment in the finite box is given i

Appendix A.

FIG. 2. Dependence of the soliton energy from the valen
quark energy for three different parameterizations of the solit
profile. Results are form5450 MeV.
he
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from the one of the valence quark energy. This indicates
the properties of the diquark are essentially determined
the valence quarks.

A further interesting point is the increasing diquark bin
ing energy with growing constituent quark mass when
self-consistent soliton is employed as can be seen from T
II. This feature is particularly astonishing because the
lence quark energy decreases simultaneously.

These results for the diquark serve as input to the solu
of the Faddeev equation~3.36!. In Fig. 3 we display the
resulting energyVB as a function of the scaling variablea
for a constituent quark massm5450 MeV. For comparison
the energy of three uncorrelated valence quarks and the
ergy of a free diquark-quark pair are also shown. Again,
the entire region the diquark and quark are bound, altho
only weakly. In Table III we compare the quark-qua
(Bqq52eval2vdiq) and diquark-quark (Bqd5eval1vdiq
2VB) binding energies to the total binding energy

Btot53eval2VB5Bqq1Bqd ~4.1!

for a diquark coupling constantg25g1. We notice that the
binding energy is carried to a large extent by the quark-qu
correlations. While these have their maximal value for a v
ishing soliton (a→0) the residual diquark-quark interactio
develops a maximum for moderate soliton extension. M
distinct is the situation~Table IV! for a diquark coupling
constant twice as large, i.e.,g252g1. In particular, the total
binding energy is strongly dominated by the diquark bindi
and is maximal for a vanishing soliton.

In the past some authors have used instantaneou
static approximations to solve the integral equation~3.35!
@22,24–26,43#. The instantaneous approximation corr
sponds to a quark exchange with vanishing relative ene

e
n

TABLE I. The energyvdiq of the diquark in the soliton, the
energy 2eval of two uncorrelated quarks, and the binding energy
the diquarkBqq52eval2vdiq in dependence on the scaling param
etera for constituent quark massm5450 MeV andg25g1.

a vdiq/MeV 2eval Bqq/MeV

0.0 759 934 175
0.2 761 934 173
0.4 758 929 171
0.6 672 808 136
0.8 465 560 95
1.0 295 360 65
1.2 161 208 47

TABLE II. The same as Table I in dependence on the const
ent quark massm for the self-consistent soliton andg25g1.

m/MeV vdiq/MeV 2eval Bqq/MeV

350 455 495 40
400 368 421 53
450 295 360 65
500 225 303 78
600 80 189 109
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2038 55U. ZÜCKERT, R. ALKOFER, H. WEIGEL, AND H. REINHARDT
Ṽ50 in Eq. ~3.36!. Then the different quark channels d
couple and the Faddeev equation simplifies to a purely a
braic equation:

@ iV2eval2vdiq#@~eval2vdiq2 iV!224vdiq
2 #

22(
k

^valuGdiquk&^kuGdiquval&
vdiq1ek2eval

50. ~4.2!

In the static approximation in addition the sum over the
changed quark is restricted to the valence quark:

@ iV2eval2vdiq#@~eval2vdiq2 iV!224vdiq
2 #

22
^valuGdiquval&^valuGdiquval&

vdiq
50. ~4.3!

The presence of the energy denominator indicates that t
approximations should be well suited for large quark a
diquark masses. In fact, Table V confirms this assessm
For a vanishing soliton the error is one per cent. When
soliton extension grows the valence quark as well as
diquark energy become smaller and therefore the error r
to about 20%. This emphasizes the importance of a comp
solution of the Faddeev equation for a solitonic backgrou
In addition, this table shows only a small difference betwe
both approximations. In comparison to the complete solut
of the Faddeev equation both treatments possess an enh

FIG. 3. Solution of the Faddeev equation~solid line!, the energy
of a free diquark-quark pair~short dashed line!, and the energy of
three uncorrelated valence quarks~long dash line! in dependence on
the scaling factora for a constituent quark massm5450 MeV and
g25g1.

TABLE III. The solutionVB of the Faddeev equation as well a
the quark-quark (Bqq) and diquark-quark binding energyBqd and
the total binding energyBtot of the three valence quarks for a co
stituent quark massm5450 MeV andg25g1.

a VB/MeV Bqq/MeV Bqd/MeV Btot/MeV

0.0 1221 175 6 181
0.2 1222 173 6 179
0.4 1215 171 8 179
0.6 1010 136 66 202
0.8 705 95 40 135
1.0 452 65 24 89
1.2 249 47 15 62
e-

-

se
d
nt.
e
e
es
te
.
n
n
ced

binding energy. Hence we conclude that retardation effe
in the full calculation have a repulsive character. Both a
proximations also elucidate the importance of the above
scribed variable substitution, because the free solu
iV5vdiq1eval is obvious for vanishing diquark-quark cou
pling (Gdiq→0). If we improperly had carried out the stat
approximation in Eq.~3.35! we would have had two un
physical solutionsiV52eval and iV56vdiq .

V. A HYBRID MODEL FOR BARYONS

Given the results of the last section we now conside
soliton configuration with correlated valence quarks. For t
purpose we replace the contribution 3eval of the three uncor-
related valence quarks in the energy functional~3.13! by the
solution of the Faddeev equation. In principle the compl
energy functional would also include contributions
Tr log(GB

val) which eventually would be expressed as
~regularized! sum over all energy eigenvalues of the Fadde
equation. When considering the above described config
tion we restrict that sum to the dominating lowest ener
contribution. Similarly, diquark correlations within the Dira
sea are omitted and only the lowest nontrivial contribution
taken into account. The total energy of this configuration
given by

Esol
~B!5Esea1VB5Esol2Btot,Esol~5Esea13eval! ~5.1!

and is shown in Fig. 4 as a function of the scaling parame
a for the constituent quark mass of 450 MeV. For compa
son, the energy of the pure soliton~3.13! Esol5Esea13eval
and the energy of the additive diquark-quark soliton mo

TABLE IV. The same as Table III for the coupling consta
g252g1.

a VB/MeV Bqq/MeV Bqd/MeV Btot/MeV

0.0 952 433 16 449
0.2 957 428 17 445
0.4 949 401 43 444
0.6 787 315 110 425
0.8 547 169 124 293
1.0 374 108 59 167
1.2 249 75 36 111

TABLE V. The solutionVB of the Faddeev equation~ 3.36! as
well as the solution of the static approximationVB

(stat) ~ 4.3! and the
instantaneous approximationVB

(inst) ~ 4.2! in dependence of the sca
ing factora.

a VB/MeV VB
(stat)/MeV VB

(inst)/MeV

0.0 1221 1202 1201
0.2 1222 1204 1202
0.4 1215 1194 1189
0.6 1010 935 924
0.8 705 630 628
1.0 452 394 393
1.2 249 203 202
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55 2039BARYONS AS HYBRIDS OF SOLITONS AND THREE- . . .
Esol
(diq)5Esea1vdiq1eval defined in@30# are also shown. As

compared to the additive diquark-quark soliton picture
soliton with correlated valence quarks has a lower energ
the entire range shown. The minimum of this curve defin
the hybrid model. Two other points in this figure also hav
special meaning: First, the pointa50 on the same curve
marks the model where a baryon is described as a bo
state of a quark and a diquark with the meson fields fixed
their vacuum expectation values@25,27#. Note, that this con-
figuration only corresponds to a local minimum of the e
ergy. The other important point is the minimum ofEsol at
a51 which is nothing else than the self-consistent soli
solution without any valence quark correlations@20#. Also
the energy of this configuration is larger than the energy
the hybrid model.

In Table VI we display results for the lowest energy co
figuration for different constituent quark masses. This ta
shows that for a large enough constituent quark mass
hybrid soliton in fact is the minimal energy configuratio
The lower limit of stability for the hybrid soliton is aroun
m'430 MeV. Below this value the energy of the baryo
Esol
(B)5VB is completely carried by the valence quarks. Th

feature is inherited from the pure soliton sector where soli
solutions exist form.330 MeV, however, their energy i
larger than the one of three uncorrelated valence quark
long asm,450 MeV @20#. In the context of the hybrid
model we expect that the boundm'430 MeV will be low-
ered when an expanded variational space for the solito
employed. In the region where the soliton does not repre

FIG. 4. The energy of the soliton with correlated valence qua
~solid line!, the energy of the additive diquark-quark–soliton mod
~dash-dotted line! and the energy of the soliton with uncorrelate
valence quarks~long dashed line! in dependence of the scaling fac
tor a for a constituent quark mass 450 MeV.

TABLE VI. The total energy of the lowest energy configuratio
Esol
B as well as the contribution from the Dirac seaEseaand from the

correlated valence quarksVB for g25g1. Furthermore displayed is
the scaling parametera and the effective energyvdiq of the diquark.

m ~MeV! 350 400 450 500 600

Esol
B ~MeV! 1057 1140 1142 1108 1011

Esea~MeV! 0 0 570 569 606
VB ~MeV! 1057 1140 572 539 405
a 0 0 0.90 0.85 0.80
vdiq ~MeV! 688 725 375 356 283
e
in
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n

f

-
e
he

n

as

is
nt

the lowest energy configuration the diquark possesses a
fective energy of about 700 MeV. In comparison, f
m'450 MeV the total energy of the self-consistent solit
configuration is composed half by the valence quarks
half by the polarized sea. The effective diquark energy dr
down to the range 2802380 MeV.

Finally we would like to discuss the dependence on
diquark couplingg2. We observe that stronger diquark co
relations, i.e., largerg2, counteract the formation of a soliton
As can be seen from Fig. 5 the meson configuration, wh
minimizesEsol

(B) , is shrinking with increasingg2. Starting at a
critical coupling a path is open to a vanishing soliton. T
displayed curves correspond to four special cases. The
soliton is given for g250, whereas the second on
(g25g1) describes the Fierz-symmetric case. In the c
g252g1 the energyEsol

(B) is identical to the physical nucleo
mass @22# in the range where no soliton is prese
(a,0.4). Finally, in the last caseg253g1 we have an addi-
tional symmetry—the Pauli-Gu¨rsey symmetry@44–46#—
giving the diquarks the same mass as the pions. Howe
this symmetry cannot be realized in nature since otherw
the baryon masses should be much smaller.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have constructed a hybrid model for
description of baryons within the framework of the NJ
model. Using functional integral techniques we have co
verted the pure quark model into an effective theory of m
sons, diquarks, and baryons. Apart from the approximati
made to keep the calculation feasible this treatment avo
any kind of double counting.

As a first step we have solved the Bethe-Salpeter equa
for anS-wave scalar diquark in the background of a solit
configuration. We have found that this diquark is kinema
cally stable against the decay into the two lightest qua
even in case the masses of the latter are strongly reduce
their interaction with the chiral soliton. In the next step w
have integrated out the diquark fields, thereby inducing
interaction between quarks and the bound diquark thro
quark exchange. Using the ladder approximation for this
change interaction a Faddeev type of equation has been
rived, which includes the solitonic background field. Th
equation yields a three-quark bound state in the solito
background. Using this result the hybrid has been c

s
l

FIG. 5. The energy of the soliton with correlated valence qua
for different diquark coupling constants for a constituent qua
mass 450 MeV.
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2040 55U. ZÜCKERT, R. ALKOFER, H. WEIGEL, AND H. REINHARDT
structed combining the three-quark bound state with the
larized sea. The energy of this hybrid is~for constituent
quark massesm.430 MeV! smaller than either the energ
of the soliton with three uncorrelated quarks or the energy
the three-quark bound state with no soliton present. He
the formation of such a hybrid is dynamically preferred
compared to either picture alone. In addition, the soliton s
of the hybrid is smaller than the size of the soliton w
uncorrelated quarks, and the Faddeev amplitude, i.e.,
baryon wave function in terms of quarks, deviates from
case without soliton. These results show that baryons
presumably very much like hybrids containing both soliton
meson clouds and three-quark correlations, and that
implementation of both features is crucial for a proper d
scription of baryons. Unfortunately, the question whethe
baryon is dominated by the valence quark structure or
soliton is still an open question. For example, if one includ
for the soliton also~axial-! vector mesons the baryon curre
is completely carried by the polarized Dirac sea@47,48#. To
clarify the situation one should in addition include at t
mean-field level static diquark fields. The solution of such
improved soliton calculation would show whether there
still room for valence quark degrees of freedom beside v
tor meson degrees of freedom or whether they would excl
each other.

In this work we have considered the NJL model which
well suited for low-energy properties of hadrons. Neverth
less, for energies higher than twice the constituent qu
mass, threshold effects associated with the unphysical d
into free quarks disturb the calculation. Therefore, a gen
alization to bilocal chiral models seems necessary in orde
effectively incorporate quark confinement. Within the
models there can also exist confined diquarks@49# on the one
hand. On the other hand, soliton calculations have sho
that inside a soliton propagating quarks@50–52# also can
exist. Thus, the hybrid model introduced in this work pr
sents a well suited starting point for further generalizatio
which appear necessary to deepen our understanding o
structure of baryons.
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APPENDIX A: TEST OF THE NUMERICAL TREATMENT
IN THE FINITE BOX

In order to test the numerical treatment in the finite b
we compare the solution of Eq.~3.17! for a vanishing chiral
angleQ(r )50 with the solution in the continuum. The ma
of the diquark is obtained from the Bethe-Salpeter equa
@53#

F2p2A~p2!12m2B2
mp
2 f p

2

6m0mg2 /g1
G
p252m

diq
2

50 ~A1!

with
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ce
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A~p2!5
1

16p2E
0

1

daGS 0,m21a~12a!p2

L2 D ,
B5

1

16p2GS 21,
m2

L2D . ~A2!

When we compare the solutions of the Bethe-Salpe
equations in the continuum~A1! and in the spherical box
~3.17! we observe a relatively large difference~cf. the second
and third column in Table VII!. However, we have to take
into account that in a finite box the quarks always poss
finite momenta and therefore an increased ene
em56Am21(mp/D)2. Now, we can consider two limits
First, in the limit of vanishing diquark coupling (g2→0) a
diquark consists of two free quarks (vdiq52eval). From this
we obtain the approximation

vdiq
~1!5Amdiq

2 14~p/D !2 ~A3!

for the energy of a diquark in a spherical box. Second,
consider the limit of a large quark-quark coupling. In th
case, the diquark is a highly correlated state which can
viewed as an independent particle, hence

vdiq
~2!5Amdiq

2 1~p/D !2. ~A4!

As can be seen from Table VII and from Fig. 6 the d
quark energy always lies within the two boundaries~A3! and
~A4!. In fact, in the limit of vanishing diquark coupling

TABLE VII. The massmdiq of a diquark in the continuum, the
energyvdiq of a diquark as the solution of the Bethe-Salpeter eq
tion in a spherical boxvdiq

(1) , andvdiq
(2) from the approximation of

Eq. ~A3! and Eq.~A4!, respectively, in dependence ofg2 /g1.

g2 /g1 mdiq/MeV vdiq/MeV vdiq
(1)/MeV vdiq

(2)/MeV

0.0 900 934 934 909
0.5 884 904 919 893
1.0 736 759 778 747
1.5 595 625 646 608
2.0 463 502 527 480
2.5 326 380 412 350
3.0 140 241 288 188

FIG. 6. The energy of the diquark in a spherical box~solid line!
in dependence ofg2 /g1, the dashed lines corresponds to the upp
(vdiq

(1)) and lower (vdiq
(2)) limit of the energy of the diquark.
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(g2→0) the energy of the diquarkvdiq is very well approxi-
mated byvdiq

(1) . The difference at large coupling constan
betweenvdiq andvdiq

(2) appears because of numerical effe
at the boundary where the wave functions do not van
completely. In the context of the hybrid model we consid
bound states in the solitonic background. In this case,
wave functions are localized at the origin and the bound
effects are negligible.

APPENDIX B: THE BARYON PROPAGATOR

The baryon propagator can be evaluated by compariso
Eqs.~2.20! and ~2.13!,

1

2
C̄a~GB

val!abCb5
1

2
j̄Gj. ~B1!

Using the definitions ofj and j̄ ~2.14! we can write

~GB
val!ab5S DaG11Db* 2DaG12Db

2Da*G21Db* Da*G22Db
D , ~B2!
h
r
e
y

of

where we have used the inversion of the quark propagat

G05SG11 G12

G21 G22
D ~B3!

which is obtained from Eq.~2.15! by neglecting the baryon
sources on the diagonal elements. The elements of this
trix are given by

G115~11G0DCV21G̃0D̃VC!21G0 , ~B4!

G1252G0DCV21~11G̃0VCD̃G0DCV21!21G̃0V,

G2152V21G̃021VCD̃~11G0CV21DG̃0VCD̃!21G0 ,

G2252V21~11G̃0VCD̃G0DCV21!21G̃0V.

A useful identity to verify this result is

G0DCV21~11G̃0VCD̃G0DCV21!21

5~11G0DCV21G̃0D̃VC!21G0DCV21 . ~B5!
s.
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