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E2/M1 ratio of the D↔gN transition within the chiral constituent quark model
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The chiral constituent quark model is applied to predict the magneticM1 and electricE2 amplitudes of the
D↔gN transition. It is found that the one-meson-exchange quark-quark potential due to the chiral fields
enhances theE2/M1 ratio by a factor of about 2. The predictedM11 amplitude and theE2/M1 ratio
.21.0% are within the range determined from a recent analysis of the data of pion photoproduction.
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I. INTRODUCTION

An approximate way to realize the nonperturbative ph
ics governed by the breaking of chiral symmetry in QCD
to assume that in the low and intermediate energy regio
baryon consists of a constituent-quark sector and a me
sector. This notion, first discussed by Manohar and Ge
@1#, has been the basis for developing various chiral cons
ent quark models for baryon-baryon interactions@2–4#. The
same idea has been used recently by Glozman and Risk@5#
to study the baryon spectroscopy. In this work, we inve
gate the consequence of such an approach in determinin
D↔gN transition which has been the focus of recent inv
tigations @7–14# of pion photoproduction on the nucleon
The central issue is the ratio between the electricE2 and
magneticM1 amplitudes of thegN↔D transition, which
measures the deformation of theD state.

ThegN↔D transition has been calculated within the co
stituent quark model@15–19#. A common feature of these
investigations is that the predictedM1 amplitude is much
smaller than the value listed by the Particle Data Group@21#.
This was understood in Ref.@14# that the discrepancy is du
to the nonresonant meson-exchange mechanism which
not be separated from the direct photoexcitation of
nucleon to theD state in a purely phenomenological amp
tude analysis of the pion photoproduction data. In this w
we will further verify this result of Ref.@14# from the point
of view of the chiral constituent quark model. Our focus w
be on how theE2/M1 ratio is influenced by the quark-quar
interaction due to the chiral fields.

In Sec. II, we first present a chiral constituent qua
model for describing the masses and wave functions of
nucleon and theD states. The formula for calculating th
D→gN transition are then given explicitly. To compare o
predictions with the data, we establish in Sec. III the re
tionship between the constructed chiral constituent qu
model and the effective Hamiltonian formulation@14# of
pion photoproduction. Results and discussions are give
Sec. IV.
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II. THE D↔gN TRANSITION WITHIN THE CHIRAL
CONSTITUENT QUARK MODEL

Following the approach of Ref.@4#, we assume that the
chiral constituent quark model can be defined by the follo
ing Hamiltonian:

H5H081B01(
i

Sm1
pi
2

2mD 1(
i. j

~Vi j
OGE1Vi j

conf!

1(
i

$@hpq,q~ i !1hsq,q~ i !1hgq,q~ i !#1~H.c.!%, ~1!

whereH08 includes the free Hamiltonians for mesons a
photons and the associated photon-meson couplings,m is the
constituent quark mass,B0 is the zero point energy,Vi j

OGE

andVi j
conf are, respectively, the one-gluon-exchange poten

and the confinement potential. The meson-quark vertex
teractionshpq,q andhsq,q are due to the linear realization@4#
of the spontaneously breaking of chiral symmetry. T
photon-quark coupling vertex is denoted ashgq,q . In Eq.~1!,
~H.c.! denotes taking the Hermitian conjugate of the term
its left. To investigate thepN andgN reactions, it is neces
sary to cast the above Hamiltonian in terms of hadronic
grees of freedom. This is obviously a difficult task. In
phenomenological approach of Refs.@3,4#, one simply as-
sumes that Eq.~1! can lead to the following ‘‘effective’’
Hamiltonian:

H5HB1H081 (
B,B8

@~hpB,B81hgB,B8!1~H.c.!#, ~2!

whereB,B85N,D are eigenstates of a one-baryon Ham
tonianHB . The vertex interactions in Eq.~2! are calculated
from the quark operatorshpq,q andhgq,q of Eq. ~1!:

f pB,B85^Bu(
i
f pq,q~ i !uB8&, ~3!

f gB,B85^Bu(
i
f gq,q~ i !uB8&. ~4!
2024 © 1997 The American Physical Society
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55 2025E2/M1 RATIO OF THED↔gN TRANSITION WITHIN . . .
To evaluate the above matrix elements, we need to de
HB to generate the wave functions forN andD. We follow
Ref. @4# to further assume thatHB includes a one-meson
exchange interactionVi j

chiral due to the chiral coupling term
hpq,q andhsq,q in Eq. ~1!. It has the following form:

HB5B01(
i

Sm1
pi
2

2mD 1(
i. j

~Vi j
OGE1Vi j

conf1Vi j
chiral!, ~5!

where

Vi j
chiral5Vi j

p1Vi j
s , ~6!

with

Vi j
p5

gch
2

4p

mp
2

12m2

L2

L22mp
2 mp~tW i•tW j !

3S FY~mpr i j !2
L3

mp
3 Y~Lr i j !G~sW i•sW j !

1FY2~mpr i j !2
L3

mp
3 Y2~Lr i j !GSi j D , ~7!

and

Vi j
s 52

gch
2

4p

L2

L22ms
2msFY~msr i j !2

L

ms
Y~Lr i j !G . ~8!

In the above equations,L is the cutoff parameter for regu
larizing the potential at short distances and we have in
duced the following notations

Si j53~sW i• r̂ i j !~sW j• r̂ i j !2sW i•sW j , ~9!

Y~x!5
e2x

x
, ~10!

Y2~x!5S 11
3

x
1

3

x2DY~x!. ~11!

The one-gluon-exchange interaction in Eq.~5! takes the
following familiar form

Vi j
OGE5~l i

c
•l j

c!
as

4

3F 1r i j 2
p

m2 S 11
2

3
sW i•sW j D d~rW i j !2

1

4m2r i j
3 Si j G ,

~12!

wherel i
c is the color SU~3! matrix. We note here that within

quantum chromodynamics a rigorous expression of the o
gluon-exchange interaction should also include a spin-orb
component. It was demonstrated in Ref.@6# that this force is
very disruptive in the constituent quark model. It can low
the energies of theP-wave baryon states by about 500 Me
and is completely unacceptable to the data. While some
sible reasons were speculated in Ref.@6# to explain how the
spin-orbital component of the one-gluon exchange is c
celled by other dynamics within quantum chromodynami
ne

-

e-
al

r

s-

-
,

it remains to be an unsettled theoretical issue. For our pre
purpose, we follow the common practice and also neglect
spin-orbital component in the chiral constituent quark mod
In other words, Eq.~12! should be considered as a pheno
enological residual quark-quark interaction and is not rela
to the gluon-exchange dynamics in a simple way. Therefo
the hyperfine coupling constantas of Eq. ~12! can be treated
as an adjustable parameter in our calculation.

To examine the model dependence, we consider two p
sible confinement potentials

Vi j
conf~1!52ac~l i

c
•l j

c!r i j , ~13!

Vi j
conf~2!52ac~l i

c
•l j

c!erf~mr i j !, ~14!

where erf is the error function. Both confinement potenti
were used@4# in the investigation ofNN potential.

Our first task is to calculate the energies and wave fu
tions for theN andD states. This is done by exactly diago
nalizing the one-baryon Hamiltonian Eq.~5! in a chosen
model-space spanned by the harmonic-oscillator basis fu
tions. The resulting baryon wave functions in the rest fra
are then written as

FB~rW ,lW !5(
a

Ca,Bf~a!~rW ,lW ,b!, ~15!

whereB5N,D, f (a) is the harmonic oscillator wave func
tion with a length parameterb and the quantum numbers

a5@S~SI!,NLP#J . ~16!

HereS denotes the spin-flavor symmetry characterized
the total spinS and total isospinI , N is the energy quantum
number,L the total orbital angular momentum,P the parity,
andJ the total angular momentum. The internal coordina
in Eq. ~15! of the three-quark system are defined by

rW 5A1

2
~rW12rW2!, ~17!

lW 5A1

6
~rW11rW222rW3!. ~18!

The corresponding center of mass coordinate is defined

RW 5A1

3
~rW11rW21rW3!. ~19!

By using Eqs.~17!–~19!, we get the following useful relation
for the later calculations of theD↔gN transition

rW352A2

3
lW 1A1

3
RW . ~20!

With the model Hamiltonian Eq.~2!, the gN→D transi-
tion is defined byf gN,D . To evaluatef gN,D , Eq. ~4!, we
follow Refs. @15,16# to deduce a one-body current operat
f gq,q from taking the nonrelativistic limit of the usua
c̄gmcAm coupling. As discussed in Ref.@17#, this is valid to
a large extent since an explicit calculation of relativistic co
rections did not lead to a drastic change of the nonrelativi
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results of Ref.@15#. Explicitly, we have~with the normaliza-
tions of Goldberger and Watson@20#!

^pW i8u f gq,qupW i&5
1

A2k
1

A~2p!3
ei
2m

3~pW i1pW i82 isW i3kW !•eWl* ~kW !d~pW i82pW i2kW !,

~21!

where el(kW ) is the polarization vector of the photon wit
momentumkW . It is more convenient to carry out calculation
in coordinate space. The corresponding operator can be
ten as

^rW i8u f gq,qurW i&5
1

A2k
1

A~2p!3
ei
2m

@2 i¹Q eik
W
•rW id~rW i2rW i8!

1 id~rW i2rW i8!eik
W
•rW i¹W 2 isW i3kWd~rW i2rW i8!

3eik
W
•rW i#•eWl* ~kW !. ~22!

Taking into account the symmetry properties of theN and
D wave functions and using Eq.~22!, Eq. ~4! for the
gN→D transition takes the following expression:

^CpWN ,N
u f gN,DuCpW D ,D&

53E drW1drW2drW38drW3@CpWN ,N
* ~rW1 ,rW2 ,rW38!

3^rW38u f gq,qurW3&CpW D ,D~rW1 ,rW2 ,rW3!#, ~23!

where pWN and pW D are, respectively, the momenta of th
nucleon and theD. Each total wave function in Eq.~23! is a
product of a plane-wave for the center of mass motion
the internal wave function defined by Eq.~15!

CpWN ,N
* ~rW1 ,rW2 ,rW3!5

1

~2p!3/2
eip

W
N•R

W
FN* ~rW ,lW !,

CpW D ,D~rW1 ,rW2 ,rW3!5
1

~2p!3/2
e2 ipW D•R

W
FD~rW ,lW !. ~24!

Substituting Eqs.~22! and~24! into Eq.~23! and using the
properties Eq.~19!, we obtain in theD rest frame (pW D50
andpWN52kW )

^CpWN ,N
u f gN,DuCpW D ,D&5d~pWN1kW2pW D!

3(
i51

4

@eWlg
* ~kW !•OW N,D

i ~kW !#, ~25!

where

OW N,D
i ~kW !5E dlWdrW FN* ~rW ,lW !Ôi~lW ,kW !FD~rW ,lW !, ~26!

with
it-

d

Ô1~lW ,kW !5CA2

3
¹Q le

2 iA2/3kW•lW , ~27!

Ô2~lW ,kW !52CA2

3
e2 iA2/3kW•lW ¹W l , ~28!

Ô3~lW ,kW !5C~kW3sW !e2 iA2/3kW•lW , ~29!

Ô4~lW ,kW !5C
i

3
kWe2 iA2/3kW•lW . ~30!

Here we have defined an overall constant

C5 i S 3

2p D 3/2 3

A2k
e3
2m

. ~31!

Recalling the spin-isospin quantum numbers ofN andD and
using the standard angular-momentum algebra, we can w
Eq. ~26! as

OW N,D
i ~kW !5OW JNMN ,JDMD

i ~kW !

5(
jmj

(
L

yW L1
jm~ k̂!^JNMNuJD jM Dmj&

3^FJN
uu~Ôi ! j ,LuuFJD

&, ~32!

where

yW L1
jmj~ k̂!5 (

MLm
^ jmj uL1MLm&eWmYLML

~ k̂!, ~33!

with

eW 115
21

A2
~ x̂1 i ŷ !,

eW 215
11

A2
~ x̂2 i ŷ !,

eW05 ẑ.

From the above definitions Eqs.~26!–~33!, it is straightfor-
ward to derive formulas for calculating the reduced mat
elementŝFJN

uu(Ôi) j ,LuuFJD
& of Eq. ~32!. ChoosingkW in the

z axis of the rest frame of theD, the magneticM1 and
electricE2 of thegN→D transition amplitudes can then b
calculated from these reduced matrix elements by the follo
ing well-known expressions

M115
21

2A3
~3A3/21A3A1/2!, ~34!

E115
1

2A3
~A3/22A3A1/2!, ~35!

where the helicity amplitudes are defined by
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A1/25S 3

2p D 23/2

(
i51

4

@eW 11~kW !•OW JNMN521/2,JDMD51/2
i ~kW !#,

~36!

A3/25S 3

2p D 23/2

(
i51

4

@eW 11~kW !•OW JNMN51/2,JDMD53/2
i ~kW !#.

~37!

III. THE D↔gN TRANSITION IN THE DYNAMICAL
MODEL OF PION PHOTOPRODUCTION

We now return to Hamiltonian Eq.~2! to considerpN
and gN reactions. Here we need to address two proble
First, extensive earlier studies@14,8–11,22# have indicated
that a realistic description ofpN scattering andgN→pN
reaction can be obtained only when the couplings withr and
v vector mesons are included. In the approach of Ref.@14#,
this is equivalent to extending Eq.~2! to the following form:

H5HB1H081 (
B,B8

@~hpB,B81hgB,B81hrB,B81hvB,B8!

1~H.c.!#. ~38!

HereH08 now also contains the kinetic energy terms of vec
mesons and the associated photon-meson couplings.

The second problem is that the vertex interactions in
~38! can generate infinite number of mesons duringpN scat-
tering. It is necessary to introduce appropriate approxim
tions to solve the scattering problem. In Ref.@14#, this prob-
lem is solved by using an effective Hamiltonian approa
The essential step is to use a unitary transformation to el
nate the ‘‘virtual’’ processaN↔N with a5p,r,v in the
equations of motion such that there is no mass renorma
tion problem for the nucleon in the coupledD % pN% gN
space. Details are discussed in Ref.@14#.

Starting with the Hamiltonian Eq.~38! and performing the
unitary transformation up to second order in coupling co
stants, one can show that thepN and gN reactions within
the coupledD % pN% gN space can be described by the fo
lowing effective Hamiltonian:

Heff5H01Hst1He.m., ~39!

whereH0 is the free Hamiltonian forp, N, D, and photon.
The pion acquires its physical mass. The physical mas
the nucleon and the bare massmD

0 of the D are identified
with the masses of the ground state and the first excited s
of the chiral constituent quark model HamiltonianHB , Eq.
~5!. The interaction terms in Eq.~39! are

Hst5VpN,pN1hpN,D1hD,pN ,

He.m.5VgN,pN1VpN,gN1 f gN,D1 f D,gN. ~40!

It is important to note that the vertexhpN,N of Eq. ~38! is not
present in the effective Hamiltonian Eq.~40!. Its effects have
been absorbed in the mass term ofH0 and thepN potential
VpN,pN . This is a great simplification in derivingpN scat-
tering formulation from Eqs.~39! and ~40!. The two body
interaction termsVpN,pN andVgN,pN consist of direct and
s.

r

.

-

.
i-

a-

-

of

te

exchange nucleon terms,D exchange terms, meson
exchange terms, and contact terms. The details of the e
tive Hamiltonian Eqs.~39! and ~40! are given in Ref.@14#.

It is straightforward@14# to derive the formulation for
pN scattering from the effective Hamiltonian Eqs.~39! and
~40!. The resultingpN scattering amplitude can be written a

TpN,pN~E!5tpN,pN~E!1h̄pN,D~E!GD~E!h̄D,pN~E!.
~41!

The nonresonant~background! term tpN,pN(E) of the above
equation is determined only by thepN potential

tpN,pN~E!5VpN,pN1VpN,pNGpN~E!tpN,pN~E!, ~42!

with

GpN~E!5
PpN

E2H01 id
, ~43!

wherePpN is the projection operator for thepN subspace.
The resonant term in Eq.~41! is determined by the dresse
D↔pN vertices and the dressedD propagator. They are
defined by

h̄D,pN~E!5hD,pN@11GpN~E!tpN,pN~E!#, ~44!

h̄pN,D~E!5@ tpN,pN~E!GpN~E!11#hpN,D , ~45!

and

GD~E!5
PD

E2mD
02SD~E!

, ~46!

wherePD is the projection operator for theD state. TheD
self-energy is

SD~E!5hD,pN~E!GpN~E!h̄pN,D~E!. ~47!

It is also straightforward to derive from the effectiv
Hamiltonian Eq.~39! thegN→pN amplitude up to the first
order in electromagnetic coupling constant. The result
form can be cast@14# into

TpN,gN~E!5tbg~E!1h̄pN,DGD~E! f̄ D,gN~E!, ~48!

with

tbg~E!5@11tpN,pN~E!GpN~E!#VpN,gN , ~49!

f̄ D,gN~E!5 f D,gN1h̄D,pNGpN~E!VpN,gN . ~50!

Clearly, the ‘‘background term’’tbg does not involve theD
excitation. The second term of the dressedD↔gN of Eq.
~50! is due to the presence of the direct nonresonant reac
mechanismVpN,gN .

It is common to parametrize@10# the bare vertex by the
following form:

fD,gN5w̄D
mGmnuNen, ~51!

where wD
m is the Rarita-Schwinger spinor anduN is the

nucleon spinor. The transition tensor is written as
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TABLE I. The parameters for the Hamiltonian defined by Eqs.~5!–~14!. The linear and Erf confinemen
potentials are, respectively, defined by Eqs.~13! and ~14!. TheE2/M1 ratio REM is defined by Eq.~55!.
N is the energy quantum numbers for the oscillator wave functions included in the diagonalization
Hamiltonian.m is quark mass,b is the oscillator parameter. The amplitudesM11 andE11 are in units of
~GeV!1/2310-3.

m 5 0.35 GeV andb 5 0.465 fm
Vi j
chiral (L51 GeV! set to zero Included

Vi j
conf Linear Erf Linear Erf

ac 0.0352~GeV!2 0.435 GeV 0.0203~GeV!2 0.253 GeV
m21 0.625 fm 0.625 fm

as of Vi j
OGE 1.151 1.151 0.668 0.668

N50,2,4 M11 184 175 176 168
E11 21.12 21.16 21.92 21.68
REM 20.61% 20.66% 21.09% 21.0%

Analysis of Ref.@14#: M11 5 179.56 4.5, E11 5 0.06 2.28 REM 5 ~0.06 1.3!%
e

-

he

ve

u
n
x

t

by

the

bare
ion
on
the

-
ant-
l
r

we

t
re-
tor
on
are
int
the
-
he

le.

I.
us

re

for
Gmn5GMKmn
M 1GEKmn

E , ~52!

whereKmn
M and Kmn

E are the kinematic factors which wer
given explicitly in Ref.@10#. It can be shown that theM1
and E2 amplitudes of thegN→D transition are, respec
tively, determined by the parametersGM andGE

M115
e

2mN
S ukW umD

mN
D 1/2GM , ~53!

E1152
e

2mN
S ukW umD

mN
D 1/2 2ukW umD

mD
22mN

2 GE . ~54!

At the resonance energy defined bymD5EN(k)1k51236
MeV, Eqs.~53! and ~54! lead to a ratio

REM5
E11

M11
U
mD5EN~k!1k

52
GE

GM
. ~55!

This is the quantity which reflects the deformation of t
bareD state.

The main advance made in Ref.@14# is to calculate all
terms in Eqs.~48!–~50! except the bare vertexfD,gN within a
meson-exchange model with its parameters constrained
the pN data. In this way, the parametersGM and GE of
f D,gN are determined from the fit to the very extensi
gN→pN data. The resulting ratio isREM50.061.3 %. The
uncertainty is mainly due to the not-well-determined co
pling constant ofv meson. The detail of the analysis is give
in Ref. @14#. It is important to note that the bare verte
f D,gN is precisely defined by Eq.~23! within the chiral con-
stituent quark model. Our interest in this work is therefore
see whether the amplitudesM11 and E11 calculated from
Eqs. ~34!–~37! can explain the empirical values defined
Eqs.~53! and ~54! as well as the ratioREM of Eq. ~55!.
by

-

o

IV. RESULTS AND DISCUSSIONS

Our first task is to choose appropriate parameters for
model Hamiltonian, defined by Eqs.~5!–~14!, to calculate
the masses and wave functions of the nucleon and the
D state. To be consistent with the dynamical model of p
photoproduction described in Sec. III, the physical nucle
mass must be identified with the ground-state energy of
chiral constituent quark model Hamiltonian Eq.~5!. To sim-
plify the calculation, we follow Refs.@2–4# to fix the chiral
coupling constant by the empiricalpNN coupling constant
gch5(3/5)(m/mN)gpNN . This is required to obtain the well
established one-pion-exchange component in the reson
group calculation@2–4# of theNN potential using the mode
Hamiltonian Eq.~5!. We consider the harmonic oscillato
basis states in Eq.~15! only up toN<4 excitations. This is
certainly not high enough to ensure the convergence. So
employ the variational condition]^FNuH0uFN&/]b50 (b is
the length parameter of the oscillator wave function! to de-
termine the parameters of the confinement potentialsVi j

conf

defined by Eqs.~13! and ~14!. Furthermore, the constituen
quark mass must be around 1/3 of the nucleon mass to
produce the nucleon magnetic moment, and the oscilla
parameterb must be chosen to give a reasonable nucle
radius. Therefore, the free parameters in our calculations
as of the one-gluon-exchange potential and the zero-po
energyB0. We adjust these two parameters to reproduce
masses of the nucleon and theD. Since this structure calcu
lation is performed in the absence of the coupling with t
pN decay channel, the mass of theD we need to reproduce
is not the value 1236 MeV listed in particle data tab
Rather, we fit the bare massmD

0;1300 MeV of the dynami-
cal model@14# of pion photoproduction described in Sec. II

We have performed extensive calculations for vario
choices of quark massm and oscillator parameterb. Both the
models with and without couplings with the chiral fields a
constructed. It is found that form. 0.35 GeV andb. 0.5
fm, the calculation converges well as the model space
diagonalizing the one-baryon Hamiltonian Eq.~5! increases
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from N 5 ~0,2! to N 5 ~0,2,4!. Our results for the mode
space withN5(0,2,4) excitations are given in Table I. Th
predictedM11 and E11 amplitudes as well as the corre
sponding ratiosREM defined by Eq.~55! are also listed there
and compared with the empirical values of Ref.@14#.

In Table I, we first observe that all of the calculate
M11 values are close to the empirical values determined
Ref. @14#. Clearly, the chiral field does not influence signi
cantly the magneticM1 transition. All of the predicted
M11 values are also close to the values predicted from
constituent quark models@15–19#; but they are much smalle
than the value;25031023 ~GeV! 21/2 from a purely phe-
nomenological amplitude analysis@21# of the pion photopro-
duction data. As discussed in Ref.@14#, the discrepancy is
due to the nonresonant meson-exchange mechanism a
scribed in the second term of Eq.~50!.

The main effect of the chiral field is on the electricE2
transition. In the absence of the chiral field, the only sou
of the D deformation is the tensor component of the on
gluon-exchange potential. The resulting deformation
clearly very small withREM. 20.6% ~first two columns of
Table I!. By including the chiral field, theM11 is only
c

n

v

ys

ys
in

e

de-

e
-
s

slightly reduced while theE11 is increased significantly
Consequently, the E2/M1 ratio is increased to
REM.21.0% which is close to the value21.3% determined
in Ref. @14#. We also note that the predicted ratio is not ve
sensitive to the choice of the confinement potential. The v
ues ofREM predicted from using linear and error-functio
confinement potentials are practically identical.

In conclusion, we have applied the chiral constitue
quark model to calculate theM1 andE2 amplitudes of the
gN→D transition. It is found that the predictedE2/M1 ratio
is enhanced by a factor of about 2 by the coupling with
chiral field. The predictedM11 amplitude and theE2/M1
ratio are consistent with the values determined within a
namical model@14# of pion photoproduction.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
C. Wong Education Foundation, Hong Kong. This work
also supported by the U.S. Department of Energy, Nucl
Physics Division, under Contract No. W-31-109-ENG-38.
@1# A. Manohar and H. Georgi, Nucl. Phys.B234, 189 ~1984!.
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