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The chiral constituent quark model is applied to predict the magiticand electricE2 amplitudes of the
A~ yN transition. It is found that the one-meson-exchange quark-quark potential due to the chiral fields
enhances th&2/M1 ratio by a factor of about 2. The predictéd,+ amplitude and theE2/M1 ratio
=—1.0% are within the range determined from a recent analysis of the data of pion photoproduction.

[S0556-28187)03204-4

PACS numbgs): 13.60.Rj, 12.39.Pn, 14.20.Gk

I. INTRODUCTION

An approximate way to realize the nonperturbative phys-

Il. THE A<~ yN TRANSITION WITHIN THE CHIRAL
CONSTITUENT QUARK MODEL

Following the approach of Ref4], we assume that the

ics governed by the breaking of chiral symmetry in QCD ischiral constituent quark model can be defined by the follow-

to assume that in the low and intermediate energy regions

baryon consists of a constituent-quark sector and a meson
sector. This notion, first discussed by Manohar and Georgy —
[1], has been the basis for developing various chiral constitu-

ent quark models for baryon-baryon interacti¢@s-4]. The
same idea has been used recently by Glozman and Fa$ka

to study the baryon spectroscopy. In this work, we investi-
gate the consequence of such an approach in determining th

A~ N transition which has been the focus of recent inves
tigations [7—14] of pion photoproduction on the nucleon.
The central issue is the ratio between the eled&® and
magneticM1 amplitudes of theyN«< A transition, which
measures the deformation of thestate.

The YN« A transition has been calculated within the con-
stituent quark mode[15-19. A common feature of these
investigations is that the predictdd1 amplitude is much
smaller than the value listed by the Particle Data Gr&ig.
This was understood in Rgf14] that the discrepancy is due

i#g Hamiltonian:

e P
2m

’ OGE f
0+BO+Z +§j (VPCE+ Ve

+Z{[hwq,q<i>+hgq,q<i)+hyq,q<i>]+<H.c.)}, &)

Where Hg includes the free Hamiltonians for mesons and

photons and the associated photon-meson couplingsthe
OGE

constituent quark mas®,, is the zero point energy;
andVi‘j-Onf are, respectively, the one-gluon-exchange potential
and the confinement potential. The meson-quark vertex in-
teractionsh ., , andh,,, 4 are due to the linear realizati¢A]

of the spontaneously breaking of chiral symmetry. The
photon-quark coupling vertex is denotedrgg 4. In Eq. (1),
(H.c.) denotes taking the Hermitian conjugate of the term on
its left. To investigate therN and yN reactions, it is neces-

sary to cast the above Hamiltonian in terms of hadronic de-

to the nonresonant meson-exchange mechanism which cagrees of freedom. This is obviously a difficult task. In a
not be separated from the direct photoexcitation of theyhenomenological approach of Ref8,4], one simply as-

nucleon to theA state in a purely phenomenological ampli-

sumes that Eq(1) can lead to the following “effective”

tude analysis of the pion photoproduction data. In this workHamiltonian:

we will further verify this result of Ref[14] from the point
of view of the chiral constituent quark model. Our focus will
be on how thée2/M 1 ratio is influenced by the quark-quark
interaction due to the chiral fields.

H=Hg+H{+ X [(hep +hyee)+(He)], (2
B,B’

In Sec. I, we first present a chiral constituent quarkwhereB,B’=N,A are eigenstates of a one-baryon Hamil-
model for describing the masses and wave functions of théonianHg. The vertex interactions in Eq2) are calculated

nucleon and the\ states. The formula for calculating the
A— yN transition are then given explicitly. To compare our

predictions with the data, we establish in Sec. Il the rela-
tionship between the constructed chiral constituent quark

model and the effective Hamiltonian formulatiga4] of

pion photoproduction. Results and discussions are given in

Sec. V.
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from the quark operators,.q 4 andh,,q 4 of Eq. (1):

freer=(B|2 frqq(i)IB), 3

fee=(BI2 faq()[B). (4
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To evaluate the above matrix elements, we need to definkremains to be an unsettled theoretical issue. For our present

Hg to generate the wave functions firand A. We follow
Ref. [4] to further assume thatlg includes a one-meson-
exchange interactioldicjh"a' due to the chiral coupling terms
Nrg.q @ndhgg o in Eq. (2). It has the following form:

HB:BO+E +E (VOGE+Vconf+Vch|raI , (5)
i 1>]
where
Vchlral VW+V|‘T, (6)
with
. gch m A?
ij— 4 12m2 me(ﬂ TJ)
A8 N
Y(mwrij)_?Y(Arij) (oi-0j)
A3
+ Yz(mwrij)_ﬁYz(Arij)}Sﬂ)a (7)
and
2 2
- Yenh A
= 4c A2 2m Y(mgrij) — Y(Arij)}- (8)

In the above equations) is the cutoff parameter for regu-

larizing the potential at short distances and we have intro-

duced the following notations

> >

SJ=3(0'I Ij)(o-j Ij) gi-0j, 9
Yoo="—. (10

3 3
Yo(X)= 1+ + 5| Y(X). (11

The one-gluon-exchange interaction in Ef) takes the
following familiar form

VOGE_ ()\C )\ )_

1 T

Fij m?

X 1+

3

2. N 1
a0 UJ) 6(rij)_ WSJ}’
ij
(12

where\{ is the color SW3) matrix. We note here that within

guantum chromodynamics a rigorous expression of the one-

purpose, we follow the common practice and also neglect the
spin-orbital component in the chiral constituent quark model.
In other words, Eq(12) should be considered as a phenom-
enological residual quark-quark interaction and is not related
to the gluon-exchange dynamics in a simple way. Therefore,
the hyperfine coupling constaat of Eq.(12) can be treated
as an adjustable parameter in our calculation.

To examine the model dependence, we consider two pos-
sible confinement potentials

V(1) = —ag(Af A (13

Vi(2) = —ag(\f-NDerf(ury)), (14)
where erf is the error function. Both confinement potentials
were used4] in the investigation oNN potential.

Our first task is to calculate the energies and wave func-
tions for theN and A states. This is done by exactly diago-
nalizing the one-baryon Hamiltonian E¢b) in a chosen
model-space spanned by the harmonic-oscillator basis func-
tions. The resulting baryon wave functions in the rest frame
are then written as

Dg(p,N)=2, Copd'?(p,\,b), (15)

whereB=N,A, ¢(? is the harmonic oscillator wave func-

tion with a length parametdr and the quantum numbers
a=[2(SI),NL"];. (16)

Here 3, denotes the spin-flavor symmetry characterized by
the total spinS and total isospir, N is the energy quantum
number,L the total orbital angular momenturR, the parity,
andJ the total angular momentum. The internal coordinates
in Eq. (15) of the three-quark system are defined by

- 1. .

p= E(rl_rZ)!

- 1. . -
A= \/:(r1+r2—2r3).

6

The corresponding center of mass coordinate is defined by

- 1. . .
R: \[§(r1+r2+r3).

By using Eqs(17)—(19), we get the following useful relation
for the later calculations of thA« yN transition

f)ﬁ\ﬁﬁ
3 3

17

(18

(19

(20

gluon-exchange interaction should also include a spin-orbital

component. It was demonstrated in R that this force is

With the model Hamiltonian Eq2), the yN— A transi-

very disruptive in the constituent quark model. It can lowertion is defined byf,\ ». To evaluatef y ,, Eq. (4), we
the energies of th®-wave baryon states by about 500 MeV follow Refs.[15,16 to deduce a one-body current operator
and is completely unacceptable to the data. While some pod~q,q from taking the nonrelativistic limit of the usual

sible reasons were speculated in Réi.to explain how the

¥y, A" coupling. As discussed in RdfL7], this is valid to

spin-orbital component of the one-gluon exchange is cana large extent since an explicit calculation of relativistic cor-
celled by other dynamics within quantum chromodynamicsyections did not lead to a drastic change of the nonrelativistic
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results of Ref[15]. Explicitly, we have(with the normaliza-
tions of Goldberger and Watsd@0])

-, S 1 1 €;
<Pi|fyq,q|l3i>—ﬁmm
X (pi+p{ —iaiXK)- €5 (K)8(p{ —pi—K),
(21)

where ek(IZ) is the polarization vector of the photon with
momenturk. It is more convenient to carry out calculations
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Ol()\,k)=C\[§Vxe"‘7§k'”,

in coordinate space. The corresponding operator can be writdere we have defined an overall constant

ten as

>, N 1 1 €;
(rilfyqqlriy= N ol

FiS(F—1))e NV —ig;xKS(r— 1))

—ive s 1)
X elTi]. & (K). (22)

Taking into account the symmetry properties of khend
A wave functions and using Eq22), Eq. (4) for the

yN— A transition takes the following expression:

<‘I’5N,N|ny,A|\I'5A,A>
:3f dFldFdeédF3[\If§NYN(Fl,rez,reg)

X<Fé|fyq,q|F3>qf§A,A(Flanan)], (23

(27)
5.5k 2 TG
Ox(X k) =—Cr\/ze " Z¥AV,, (28
O4(N,K) =C(kx 5)e TN, (29)

04()\,k)=C§ke"V‘23“. (30)
31%2 3 e
CZI(E) Eﬁ (31)

Recalling the spin-isospin quantum numberdNodndA and
using the standard angular-momentum algebra, we can write
Eq. (26) as

_)iN,A(lz) = éiJNMN ,JAMA(E)

=2 2 Y30 (NMlIs M sm;)
j

X(@5 |10, ®y,), (32
where
)7{";1(%)=M2m <jmj|L1MLm>€mYLML(R), (33
L

where py and p, are, respectively, the momenta of the With

nucleon and thé\.. Each total wave function in E¢23) is a

product of a plane-wave for the center of mass motion and >

the internal wave function defined by E{.5)
* o 1 PN RAy* (2 %
Vo N(T1T2:T9) = 5 ap €PN ERR(p. ),

-

- - 1 .o -
‘P;SA,A(H-Fz,fs):We_'p”Rq’A(p,k)- (29
Substituting Eqs(22) and(24) into Eq.(23) and using the
properties Eq(19), we obtain in theA rest frame 6A=0
andpy=—K)
<‘I’§N,N|ny,A|‘I’5A,A>:5(5N+|2_ N
4
x 2, [ (K)-Op k)], (29)
where
Sha(0)= [ aXdei (5,00, KP,(5.0), (26

with

-1 . .
e+1=ﬁ(x+iy),

Lo+l . .
671=E(x—ly),

EOZZ.

From the above definitions Eq&6)—(33), it is straightfor-
ward to derive formulas for calculating the reduced matrix
elementg®, [|(0;); .||®;,) of Eq.(32). Choosingk in the

z axis of the rest frame of thé, the magneticM1 and
electricE2 of the yN— A transition amplitudes can then be
calculated from these reduced matrix elements by the follow-
ing well-known expressions

-1

M1y =——=(3Ag,+ V3Ay), (34)
2\3
1

Eir= ﬁ (Agp— \/§A1/2) , (35

where the helicity amplitudes are defined by
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3\-34 R exchange nucleon termsA exchange terms, meson-
A1,2—<2 ) > [eﬂ(k)~O'JNMN?UZ,JAMA:l,Z(k)], exchange terms, and contact terms. The details of the effec-
=1 tive Hamiltonian Egqs(39) and (40) are given in Ref[14].
(36 It is straightforward[14] to derive the formulation for

_ap 4 7N scattering from the effective Hamiltonian E489) and

A3/22(5> zl [g+ 1(|2) ) OHNMNzl/z,JAMAza/z( IZ)]. (40). The resultingmN scattering amplitude can be written as
(37 TwN,wN(E):th,wN(E)+hﬂ-N,A(E)GA(E)hA,wN(E)-( \
41

lll. THE A< yN TRANSITION IN THE DYNAMICAL

The nonresonanbackgroungltermt .y .n(E) of the above
MODEL OF PION PHOTOPRODUCTION '

equation is determined only by theN potential
We now return to Hamiltonian E¢2) to considermN _
and yN reactions. Here we need to address two problems. Eon, aN(E) =Van, ant Van, NG an(E)tan, on(E), (42)
First, extensive earlier studid44,8—11,22 have indicated ;
. - ) with
that a realistic description ofrN scattering andyN— 7N
reaction can be obtained only when the couplings witmd P.N
w vector mesons are included. In the approach of R, GinBE)==——F = (43
S . . . E-Hy+id
this is equivalent to extending E¢R) to the following form:

where P is the projection operator for theN subspace.

H=Hg+Hi+ > [(Nsa+hse+hss+h,ee) The resonant term in Eq41) is determined by the dressed
5 BB’ [(Neer e Mooie B8 A~ 7N vertices and the dressef propagator. They are
+(H.c)]. (3g  defined by

HereH | now also contains the kinetic energy terms of vector ha,an(E)=ha an[1+Gan(B)ton -n(B)], (44)
mesons and the associated photon-meson couplings. — _
The second problem is that the vertex interactions in Eq. hana(BE)=[tan,7Nn(E)Gan(E) +1]hana, (49
(38) can generate infinite number of mesons durirlg scat- g4
tering. It is necessary to introduce appropriate approxima-
tions to solve the scattering problem. In Rieif4], this prob- A
lem is solved by using an effective Hamiltonian approach. Ga(E)= E-ml—3.(E)’ (46)
The essential step is to use a unitary transformation to elimi- A=A
nate the “virtual” processaN—N with a=m,p,» in the  \whereP, is the projection operator for tha state. TheA
equations of motion such that there is no mass renormalizaself-energy is
tion problem for the nucleon in the coupled® 7N® yN L
space. Details are discussed in Ré#]. SA(E)=hy N(E)G N(E)h ya(E). (47)
Starting with the Hamiltonian Eq38) and performing the ' '
unitary transformation up to second order in coupling con- It is also straightforward to derive from the effective
stants, one can show that theN and yN reactions within  Hamiltonian Eq.(39) the yN— 7N amplitude up to the first
the coupledA @ wN@ yN space can be described by the fol- order in electromagnetic coupling constant. The resulting
lowing effective Hamiltonian: form can be castl4] into

Her=Ho+Hgt Hem, (39) T n(E) =tog(E) + Ny aGA(E) o n(E),  (48)

whereH, is the free Hamiltonian forr, N, A, and photon. wjth
The pion acquires its physical mass. The physical mass of

the nucleon and the bare masg of the A are identified tog(E) =[1+t N 2N(E)Gan(E) IVan N » (49
with the masses of the ground state and the first excited state _ _
of the chiral constituent quark model Hamiltoniaty, Eq. fa NE)=Fa ,nTha anGan(E)Van N - (50

(5). The interaction terms in Eq39) are
Clearly, the “background term't, does not involve the\

Hs=Vananthanatha ons excitation. The second term of the dresskd>yN of Eq.
(50) is due to the presence of the direct nonresonant reaction
He.m.zvyN,WN+V7TN,yN+f’yN,A+fA,yN' (40) meChanisrn\/ﬂ.Nny .

It is common to parametrizELO] the bare vertex by the
It is important to note that the vertéxy y of EQ.(38) is not  following form:
present in the effective Hamiltonian Ed0). Its effects have
been absorbed in the mass termHyf and thexrN potential fAnyzw_g‘FWuNe”, (52
V.nzn- This is a great simplification in derivingN scat-
tering formulation from Eqs(39) and (40). The two body where wy is the Rarita-Schwinger spinor angl, is the
interaction termsV .y .y and V. .y consist of direct and nucleon spinor. The transition tensor is written as
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TABLE I. The parameters for the Hamiltonian defined by E&$-(14). The linear and Erf confinement
potentials are, respectively, defined by E@k3) and (14). The E2/M 1 ratio Rgy, is defined by Eq(55).
N is the energy quantum numbers for the oscillator wave functions included in the diagonalization of the
Hamiltonian.m is quark massb is the oscillator parameter. The amplitudds+ andE,+ are in units of

(GeV)¥2x 1073,
m = 0.35 GeV ant = 0.465 fm
Vi (A =1 GeV) set to zero Included
Vicjonf Linear Erf Linear Erf
@ 0.0352(GeV)? 0.435 GeV 0.0203GeV)?>  0.253 GeV
wt 0.625 fm 0.625 fm
as of V°F 1.151 1.151 0.668 0.668
N=0,2,4 M+ 184 175 176 168
= -1.12 —-1.16 -1.92 —-1.68
Rem -0.61% —0.66% —1.09% —1.0%
Analysis of Ref.[14]: M.+ = 1795+ 45, E;+ = 0.0+ 2.28 Rem = (0.0= 1.3%
r,,= GMK}TVJr GEKEW (52) IV. RESULTS AND DISCUSSIONS

Our first task is to choose appropriate parameters for the
whereK), andK%,, are the kinematic factors which were model Hamiltonian, defined by Eqg5)—(14), to calculate
given explicitly in Ref.[10]. It can be shown that th#11  the masses and wave functions of the nucleon and the bare

and E2 amplitudes of theyN—A transition are, respec- A state. To be consistent with the dynamical model of pion

tively, determined by the paramete®s, and Gg photoproduction described in Sec. lll, the physical nucleon
mass must be identified with the ground-state energy of the

e |l2|mA 12 chiral constituen_t quark model Hamiltonian E_(&). To si_m-

My+= sz( - ) Gy, (53 plify the calculation, we follow Refd.2—4] to fix the chiral

coupling constant by the empiricatNN coupling constant
Ocen=(3/5)(M/my)g.nn- This is required to obtain the well-

e [|km, 12 2|k|m, established one-pion-exchange component in the resonant-
Eiv=— 2my |y mZ —m2 Ge. (54 group calculatiof2—4] of the NN potential using the model
A N

Hamiltonian Eq.(5). We consider the harmonic oscillator
. basis states in Eq15) only up toN<4 excitations. This is
At the resonance energy defined by =En(k) +k=1236  certainly not high enough to ensure the convergence. So we

MeV, Egs.(53) and(54) lead to a ratio employ the variational conditios(®|Ho|®y)/db=0 (b is
the length parameter of the oscillator wave functitm de-
Eq+ Ge termine the parameters of the confinement potenN{%@f
REM:M_1+ =" a (55 defined by Eqs(13) and (14). Furthermore, the constituent
my =En(k)+k quark mass must be around 1/3 of the nucleon mass to re-

produce the nucleon magnetic moment, and the oscillator

This is the quantity which reflects the deformation of theparametertb must be chosen to give a reasonable nucleon
bareA state. radius. Therefore, the free parameters in our calculations are

The main advance made in R¢fl4] is to calculate all «g of the one-gluon-exchange potential and the zero-point
terms in Eqs(48)—(50) except the bare vertefy, .\ withina  energyB,. We adjust these two parameters to reproduce the
meson-exchange model with its parameters constrained byasses of the nucleon and the Since this structure calcu-
the N data. In this way, the paramete@, and G of lation is performed in the absence of the coupling with the
fa,,n are determined from the fit to the very extensive 7N decay channel, the mass of thewe need to reproduce
yN— 7N data. The resulting ratio iRg),=0.0+1.3 %. The is not the value 1236 MeV listed in particle data table.
uncertainty is mainly due to the not-well-determined cou-Rather, we fit the bare ma9$2~1300 MeV of the dynami-
pling constant ofv meson. The detail of the analysis is given cal model[14] of pion photoproduction described in Sec. Ill.
in Ref. [14]. It is important to note that the bare vertex =~ We have performed extensive calculations for various
fa,yn is precisely defined by Ed23) within the chiral con-  choices of quark masa and oscillator parametéx. Both the
stituent quark model. Our interest in this work is therefore tomodels with and without couplings with the chiral fields are
see whether the amplitudéd,+ and E;+ calculated from constructed. It is found that fan= 0.35 GeV andb= 0.5
Egs. (34)—(37) can explain the empirical values defined by fm, the calculation converges well as the model space for
Egs.(53) and(54) as well as the rati®rg), of Eq. (55). diagonalizing the one-baryon Hamiltonian E§) increases
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from N = (0,2 to N = (0,2,9. Our results for the model slightly reduced while theE;+ is increased significantly.
space withN=(0,2,4) excitations are given in Table I. The Consequently, the E2/M1 ratio is increased to
predictedM,+ and E;+ amplitudes as well as the corre- Rgy=—1.0% which is close to the value 1.3% determined
sponding ratioRgy defined by Eq(55) are also listed there in Ref.[14]. We also note that the predicted ratio is not very
and compared with the empirical values of Réf4]. sensitive to the choice of the confinement potential. The val-
In Table I, we first observe that all of the calculated yes ofRg,, predicted from using linear and error-function
M.+ values are close to the empirical values determined ionfinement potentials are practically identical.
Ref.[14]. Clearly, the chiral field does not influence signifi-  |n conclusion, we have applied the chiral constituent
cantly the magnetidV1 transition. All of the predicted qguark model to calculate the1 andE2 amplitudes of the
M+ values are also close to the values predicted from the,N_, A transition. It is found that the predict&R/M 1 ratio
constituent quark mode[45-19; but they are much smaller s enhanced by a factor of about 2 by the coupling with the
than the value~250x10"° (GeV) " from a purely phe- chiral field. The predictedM - amplitude and theE2/M 1
nomenological amplitude analy4i81] of the pion photopro-  ratio are consistent with the values determined within a dy-

due to the nonresonant meson-exchange mechanism as de-

scribed in the second term of EGO).

The main effect of the chiral field is on the electi?
transition. In the absence of the chiral field, the only source
of the A deformation is the tensor component of the one- The authors gratefully acknowledge the support of the K.
gluon-exchange potential. The resulting deformation isC. Wong Education Foundation, Hong Kong. This work is
clearly very small withRg = —0.6% (first two columns of also supported by the U.S. Department of Energy, Nuclear
Table . By including the chiral field, theM,+ is only  Physics Division, under Contract No. W-31-109-ENG-38.
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