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Resonance states in thé’C-1%C Morse potential

Kiyoshi Kato
Department of Physics, Hokkaido University, Sapporo 060, Japan

Yasuhisa Abe
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, Japan
(Received 23 October 1995; revised manuscript received 29 July) 1996

We investigate resonance states of the Morse plus centrifugal potential which has been used to explain the
observed*?C+ *2C resonances by Satpathyal. It is found that most of the enhancements in their calculated
cross sections do not correspond to real resonances, but to so-called echoes. Furthermore, resonance poles of
the Morse potential are searched exhaustively by the use of the complex scaling method. There are no
resonance poles found in the higher energy region where many resonances are observed experimentally. We
therefore conclude that the Morse potential is not appropriate for a comprehensive explanation of a series of
resonances in th&C+ 1%C system[S0556-281®7)01704-4

PACS numbgs): 21.60.Gx, 25.70.Ef

I. INTRODUCTION relatively simple structures which have large overlaps with
several outgoing channels.
Since the discovery1] of the resonances in th&C+ Nevertheless, many efforts have been made to explain all

12C system near the Coulomb barrier, many resonances hay@e observed resonances by the single-channel description,
been observed in various combinations of lighter heavy ioné€., @s potential resonances. Of course, if it can reproduce
in incident as well as in outgoing channels, as acceleratore energy spectrum of all the observed resonances, it would

and detector systems are developed. At energies well aboR§ interesting, although the problem still remains how to

the Coulomb barrier, resonances were observed systemafiXPlain the variety of decay properties in terms of only the
radial degree of freedom for each orbital angular momentum.

cally in inelastic channels with the excitations of the low- Satpathvet al. [811 loved the | d M
lying collective states 2, 37, ... of the incident ions, atpathye al. [8-11] employe he long-rangéd Morse
otential between two carbon nuclei in order to obtain many

which were successfully explained by the band crossing., . X :

model (BCM) [2]. Recently a new resonance has been ob- |brat|o|nal Ista_}_(;s Whlcl:h a;]e fco”rnpqredsy\gm observeq reso-
; . i nan vels. Vi win ioger ion

served by Wuosmaet al. [3] in the inelastic channel of the ance levels. They solve the following Sc er equatio

analytically by the use of Flyge approximationl2]:
12C+ 12C system with both!“C excited to the famous ;D ytically by Bge app 112)

state. The new resonance state is naturally expected to have a
certain structure consisting of¥clusters, since the D state
is known to have the @ structure.

As an interesting possibility, a linear chain configuration =E(n,L) xnu(r), @

of six « particles was discuss¢d]. On the other hand, based where 4 is the reduced mass of the system afg(r) de-

on the success of the BCM in the collective excitations, anhotes the Morse potential which is supposed to stand for

other interpretation was proposed: The resonance has ﬂ?’ﬁjclear and Coulomb interactions
6a-cluster configuration of weakly coupled tw&C(0;) '

h2 d? #2
"o W+Vm(r)+ m'—('ﬁrl) XnL(1)

[5]. A simple band crossing diagram calculated with the di- Vu(r)=A+B(e 2Px—2e %), (2
agonal folding potentials naturally explains the new reso-
nance and predicts resonances in the inelastic channels with X=(r—rg)lrg. 3

a single excitation of2C(05) and with mutual excitations of

12C(05) and %C(37), respectively. Coupled-channel calcu-

lations[6] based on the BCM turned out to bring about such 72

resonances in the respective outgoing channels. Furthermore, E(n,L)=A—B+ —rz[ 2Bvy(n+3)—B3(n+3)?
0

The obtained energy spectrum is

the calculated results are found to be consistent with the 2u

resonance observed in théCy+'*C(0;) channel which 9(8—1)2

has been long known, but not yet understood W2a#]. It +L(L+1)— W'-Z(LﬁLl)2

should be noticed here that there are many other resonances

observed in the”’C+ 1C system, most of which are not yet 3(B—-1) 1

understood. Some of them are known to have large decay B By (n+2)L(L+D)r, )

widths in 8Be channels, etc., not in the inelastic chanfé]s
Therefore, resonances in heavy-ion reactions are consideretherey= \/B/(ﬁzlz,uroz), andL andn are the relative angu-
to be a manifestation of various nuclear configurations witHar momenta and vibration quanta, respectively. This expres-
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1 —— complex energy plane are determined for the Morse plus
Sk 3 1 centrifugal potential in Sec. Ill. In Sec. IV, we discuss the
resonance states of the modified Morse potential which has
~ 15 the Coulomb tail in the asymptotic distances. The final sec-
> | tion, Sec. V, is devoted to a summary and conclusion.
2 |
— 10 3 Il. PHASE SHIFTS OF THE MORSE POTENTIAL MODEL:
g/ i RESONANCES AND ECHOES
St In order to obtain correct resonance states of the Morse
potential, we recalculate the phase shift(E.,,) and the
ol D cross sectionr (E. ;) in the same way as Reff9-11]. A
0 5 10 15 20 25 30 35 channel radius is introduced; in the outer regiarn>a, the
r (fm) asymptotic solution is given by
FIG. 1. The Morse-plus-centrifugal potentigkolid lineg and ngﬁ(r)=kr[j,_(kr)—tané‘,_n,_(kr)], (5)
their Fligge approximated potentia{dotted lines for L=0, 4, 8,
12, and 16. wherej, (kr) andn(kr) are the spherical Bessel and Neu-

sion of the energy spectrum has a similar form to themann functions with momentunk= y2u(E¢m—A)/A".
rotation-vibration gsy ecptrum[13] discussed by Erb and Here, it should be noted that the momenturis measured
P y from the barrier heighA of the Morse potential. The solu-

Bromiey[14] and by Cindro and Greingll5), though Satpa- tions X‘L’"k(r) in the inside regiom<a are calculated by nu-

thy et al.[8] consider it to be more general. Thus, they claim™ - ¢ : o .
that the Morse potential model gives a concrete basis of th@encal integration .Of the' Schdmnger equathn(;). The'
cm) is obtained from the continuity condi-

rotation-vibration approach. By fitting the experimental reso-p.hase shifts, (E

nance spectrum, they determined the values of the pararﬂﬁon of Iogarithmip derivative at the channel radiasSince
eters: A=6.99 MeV, B=6.30 MeV, r,=6.97 fm, and the Morse potentlal_used here has a very I_ong range, we have
3=0.957 [8]. However, for these parameter values, wel© take a=80 .fm in order for the obtained phase _shlft
should check the applicability of the Fjge approximation, 9L(Ecm) to be independent of the value afas usual. With
by comparing original and approximated Morse plus centhe phase shift, the partial cross section is calculated as
trifugal potentials. As shown in Fig. 1, the approximated .
redgced potentlal$dashgd Ime)sarg not.anyyhmg like _the 0L (Eeum) = o (2L +1)SiPS,(Ec ), (6)
original reduced potential¢solid lineg in higher partial k
waves. And we can immediately understand that the original N ) ) _
potentials do not sustain any bound state above about 7 MeWhere an additional factor of 2 is necessary in the right-hand
(barrier heighl, not only in lower partial waves, but also in Side(RHS) due to the bosonic character &iC nuclei, but is
higher ones. Therefore, as shown in Ref6], the energy Nneglected for the sake of comparison with R¢gs-11].
spectrum given by Eq4) is false above 7 MeV, and com- The phase shifts and partial cross sections obtained for
parisons with the experimental data above this energy are=8 and 14 are presented in Fig. 2 as typical examples. As
meaningless, though most of the resonances are observiéd®s shown in Ref[16] and will be discussed later, the
there experimentally. L =8 solutions of the Morse potential have five bound states.
Of course, resonances could exist near barrier top enefhen the phase shiftg(E.,) has to start from & at
gies, but not far above. So the above conclusion cannot becm=A, according to the Levinson theorem. The calculated
changed essentially, though there could be a few statgghase shifidg(Ec,) shows a resonance behavior at very low
around 7 MeV in addition to the correct bound states belowenergies[ (E. ,—A)<0.2 MeV]. The detailed behavior of
Satpathy and Saranf], however, claimed that several reso- ds(E.m) in the region of E;, —A)<0.2 MeV is presented
nances exist far above the barrier, corresponding to th#n Fig. 3. We find a very sharp resonance &t
bound states obtained previously with the inappropriate ap—A=0.036 MeV with a widthI'~10"° MeV. This reso-
proximation. They, further, claimed that the potential has anance has been looked over by Satpahyl. [9,10], per-
resonance & ,,=32.5 MeV forL=14[11], which is con- haps due to its extreme sharpness. One may overlook such a
sidered to correspond to the new resonance observed by Waharp resonance if one looks only at the phase shift. With the
osmaaet al. aid of the results of the complex scaling calculation dis-
So the purpose of the present paper is to precisely studgussed later, we can find a resonance behavior in the phase
resonances in the Morse potential they employed and tshifts with very small energy meshes around the resonance
clarify whether the single-channel description still has theregion.
possibility to explain the observed resonances or not. Above the sharp resonance energy, the phase shift
In Sec. Il, we calculate the phase shifts and the cros®s(E.m) increases until E;,,—A)~0.14 MeV. This in-
sections which have enhancements similar to those of Satpareasing ofdg(E. ) is also due to the existence of real
thy et al. But it is found that almost all the “resonances” of resonance states. However, the phase shift no longer in-
Satpathyet al. are not true resonances, but echoes. In ordegreases byr/2. Therefore, it is difficult to determine the
to find out all the resonances exhaustively, we employ th@esonance energ¥, with the condition of 6, (E,)= /2
complex scaling method. The resonance positions in thémodulo 7). In such cases, it may be possible to determine
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2500 applied to overlapping resonances where resonance widths

3 are larger than the distance between neighboring resonances.
Actually the present Morse potential has two overlapping
resonances in the energy region d&.(,—A)=0.06-0.08
MeV as will be shown later.

In the energy region thatH; ,,—A) is larger than 0.14
MeV, the phase shif6g(E. ) only decreases. The monoto-
nously decreasingg(E. ,) crossess/2 (modulo ) at sev-
eral energies with negative slopes, i.e., negative derivatives
with respect to energy. It is well known that the resonance
] should have an increasing phase shift with en¢igy. From

7 this definition of resonances, we conclude that there is no
resonance in energieg€{,—A)>0.14 MeV. However, the
150 cross section shows an enhancement at energies where the

] phase shift crosses/2 (modulo ), even if the energy de-
rivative is negative. Such an enhancement of the cross sec-
tion is associated with a flux advanced rather than delayed
[17]; i.e., one has a negative width if one sticks to the reso-
nance description. They are not true resonances but “ech-
oes” [18].

In order to show the difference in the physical characters
of resonance and echo, we present the wave functions corre-
sponding to the resonances and the echoes in Fig. 4. The
, ] resonance wave functions are drastically changed by the po-
L P P U 48 tential from a free wave function. For example, a wave func-

E -A  (MeV) tion has 6+ 1) nodal points in the potential range, where

cm. n is numbers of bound or resonance states existing below the
energy of the resonance under consideration. On the other
hand, the wave function of the “echo” has almost no change
even in the potential region. Therefore, we can say that the
wave function of the “echo” is almost the same as a free
wave function only except for a shift of the phase at an
the resonance energy from a crossing point of the calculateglsymptotic distance, like real echoes which are reflected
phase shift with a hard-sphere-scattering phase shift which isack with a time delay or phase shjft8]. Since the wave
frequently displaced bp7 due to the existence of bound or function of an echo is not concentrated in the interaction
resonance states at lower energies. To calculate the hartknge, no enhancements are expected in other reaction chan-
sphere-scattering phase shift, we must introduce a hardkels even if they couple to the incident channel at the echo.
sphere-radius parametay. For the usual short-range poten- Therefore, echoes should not be compared with any enhance-
tials between nucleg,, is taken to be a little larger than the ments observed in reaction channels.
sum of nuclear radii. However, in the present case of the Although the phase shift presented in Fig. 30 of R&€]
very-long-range potential in comparison with 2 times theshows a sharp increase like a step function at energies where
carbon radius, it is not easy to know how to choose thehe cross section has peaks, it seems to be due to an artificial
hard-sphere radiua,,. In addition, this method cannot be jump by 7 in the computer calculation of tart(x) whose
range is— mw/2<tan~1(x) < w/2. Therefore, we have to con-
nect it smoothly by displacing by. If there were true reso-
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FIG. 2. Phase shiftssolid line9 and cross sectior(glotted line$
of (a) L=8 and(b) L=14 states calculated with the Morse-plus-
centrifugal potential.

= Ii' rrT T T ] ?? nances, such jumps should become dull in higher-lying reso-
g ! E — @ nances from a physical point of view; the derivative
3 ! ‘58( s dé, /dE.,, which is proportional to the decaying width,
o 6xf ] 10 e becomes larger as the energy increases, because the decaying
e f L=8 _ s width (lifetime) of higher energy potential resonances be-
- 1 = comes largecshortej.
= 1 =2 As was mentioned above, the elastic cross section has
ﬁ - i m enhancements also at energies of “echoes.” Satpattal.
@ —_G_BEE) - [9-11] called all the enhancements of the cross section
£ P -] 10° § “resonances.” But most of the peaks in the cross sections do
[ S i TS A S B o not correspond to real resonances. The reason _Why many
0 0.05 0.1 0.15 0.2 echoes appear with rather strong enhancements in the cross
Eom " A (MeV) section at low energies can be explained by the long-range

character of the present Morse potential. Usually, in nuclear
FIG. 3. Resonance behavior in phase stsftlid line) and cross  physics, such enhancements due to echoes do not appear in
section(dotted ling of L=8 in the very low energy region. the low energy region. Phase shifts very gradually decrease
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FIG. 4. Resonance and echo wave functions. Solid and dotted lines represent real and imaginary parts, respectively, (br
resonance antb) echo. ForL =14, (c) resonance ant) echo. Energie€/ ,, are measured from the asymptotic barrier consterite.,
Eé.m.: Ec.m._A-

after the resonance energy region, since the hard-sphere rd- K2 g2 K2
—e2¢ L(L+1)|x{(r)

dius is not so large. Therefore, even if echoes appear, th Z—WJFVm(Fe'e)JFefz'GZ 2
“widths” (T« 1/|d8/dE, ,|) become very large. And then ® H®
enhancements of the cross section are usually very small. =E%L)xl(r). (8)
Although we have discussed only the resultSgtE. ),
the behaviors are similar in the other partial waves. Satpathy According to the Aguilar-Balslev-Combes(ABC)
and Sarangi[11] have discussed the new resonancetheorem[19], the energiegnegative real valugsof bound
(L=14) observed by Wuosmaet al. [3] with the Morse states are independent 6fand resonance energies; | and
pOtential. HOWeVer, the peaks of the cross section assigned Widths (1_‘) of the resonance solutions are obtained as
the observed resonances are found to be also due to thgal and imaginary parts of complex energi&d(L),

“echoes.” They are not resonances. that is, E’(L)=E,—il'/2, independently of ¢ for
6>3tan"Y(I'/2E,). The complex scaled resonance wave
Ill. COMPLEX SCALING METHOD FOR THE MORSE functions Xf,,_(r) have dumping asymptotic forms, though
POTENTIAL they diverge exponentially in the nonscaled case. Therefore,

. . . we can solve resonance states with a boundary condition of
In order to determine unambiguously and exhaustively the 4 .
(r)— 0 (r—) in the same way as bound states.

resonance positions of the Morse potential, we employ a diXr.L

rect method, the so-called complex scaling methb@i 20 in Vﬁc/r?enri?grr:g::!yesdomerggru(;]dnig?hg?jsonﬁ'r;%ehjgtgzeay dues—-
The complex scalingJ(6) for the relative coordinate is Ing 12 u v » Whi

defined as veloped _by JohnsQﬁZl] to calculate eigenvalues of.bound

states with numerically high accuracy. We here briefly ex-
U()r—re'”, @ plain the method Wii.ih an extension to resonance eigenvalues

in the complex scaling method.

where 6 is a scaling parameter with real values of The renormalized Numer_ov me’ghod is a general method

0= 0<6,,,,. For the Morse potentiali, is /2 because of to solve the second order differential equation

the analyticity condition of the scaled potential. This com-

plex scaling transforms the Schilinger equatiorfl) into the

form

2

d
g2 TN [x(nN=0, ©
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by using the three-term recurrence relatj@a)]

0.080-i0.044

0.036-i10°°

(I-TiiDxit1—(2+10T) xi +(1-Ti—1)xi-1=0,
(10 y .
‘ .{é:':‘f“:" :.... : @
where v e &
2 o
xi=x(r;) and Ti:_l_ZQL(ri)- (11 /D'agf‘naf

Hereh is a spacing between grid points, and in the present
caseQ, (r;) is given as ety

QL(ri):ezmz—ﬂ

72 E%(L)—Vu(rie'?

FIG. 5. The functionfD(E?| for L=8 resonance states calcu-
lated in the complex scaling method with=0.8 rad.

K2
—e*2“92 Ir2L(L+1) . (12 o o
KT D(E’)=[Au+ 1Ryt 1~ Ru) = Au-1(Ru— Ryt )]
SubstitutingF; = (1—T,) x; into Eq. (10), we have X(1=Ty), (20)
I:i+l_UiFi-"—Fi—lzor (13) where
Ui=(1-T,) Y(2+10T). (14

A=(G-Tp(A-T) 4 (21)
Furthermore, by defining the ratio ) ) —
Searching the zero points &f(E?) [or D(E?)] for com-
Ri=Fi;1/F;. (15)  plex values ofE?, we can find the energies of bound states
and resonance positions for an adequate scaling ahdter
we can express Eq13) in the two-term recurrence relation the bound state solutions, we have confirmed the previous
results of Ref[16]. In Fig. 5, we show 1D(E?)| for the
resonance solutions of the angular momentum8. This
result has been obtained fat,,=140 fm, ry=40 fm,
h=0.01 fm, and#=0.8 rad. The energy meshE=0.005
MeV is employed for real and imaginary parts. Three sharp
peaks are found in the fourth quadrant of the complex energy
plane. The first resonance with the very small width corre-
sponds to the sharp increase af in the phase shift
O0g(Ecm) at (Ecm—A)=0.036 MeV discussed in the previ-
ous section. The second and third peaks correspond to reso-

The two-term recurrence relation for the inward direction ishances newly found here. Itis difficult to find them in phase

R=U—-R}. (16)

This recurrence is easily solved with the initial value
Rglzo becausey(r,)#0 and x(ro=0)=0 into the for-
ward direction.

In the same way, Eq(13) can be solved in the inward
direction by replacing~; by the ratio

Ri=F;_1/F;. (17)

expressed as shift calculation. . _
. o The resonance energies of the second and third reso-
R=U—-R_}. (18  nhances are very close and have large decay widths. They

therefore are called overlapping resonances. On the other

This recurrence equation is also solved with the initial valuehand, it is very interesting that the third resonance has a
Ry =0 [or more precisely wittRy*=exp(khe'?)] for the
bound states and the complex scaled resonance states with 78—
6> 6, [6,=(1/2tan" }(I'/2E,)]. L=16

We introduce a matching point, , to which we solve Eq.
(16) in the forward direction and Eql8) in the inward
direction. Using the two solution®,, and Ry, ., at the
matching pointry,, we define

N
o

Resonance Energy E (MeV)
~ ~
N S
. : T
~
=

FEINSS TR TR B R

r

— — 0
D(E’)=Ry%1~Ru (19 ,
. . — [ 46 -
as_a function of the energy. The equaht?M:R,\,ﬁ1 6 8'24 | , lA 6']99 M?V
[D(E% =0] should be satisfied only &’ is an eigenvalue. "0 02 04 06 08 1 12
This equality condition of the wave functiop may be re- Resonance Width '/2 (MeV)

placed by the continuity condition of the logarithmic deriva-
tiVe Of the wave function. From th|S Condition, we ha.Ve a FIG. 6. Resonance positions’ resonance eneEJy (/S width
function D(E’) [21], instead ofD (E?), which is defined as (I'/2), of the Morse-plus-centrifugal potential far=0—16.
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TABLE I. The bound state energidabove the dotted lineand resonance energies with widttis parenthesgsof the Morse-plus-
centrifugal potential for thé?C+ 2C system.
IN\n O 1 2 3 4 5 6 7 8 9
0 1.314 2.465 3.486 4.377 5.137 5.767 6.267 6.636 6.875 6.983

2 1713 2852 3853 4714 5437 6.021 6478 6778 6953 | 6.992
: (0.011)
4 2468  3.548 4477 5260 5.896  6.388  6.733  6.946 . 7.005  6.949
: (0.019) (0.328)

6 3390 4377 5.8 5857 6.377 6.748 6.970 '@ 7.029  6.985

| (0.039) (0.168)

8 4361 5207 5895 6428  6.807 | 7.026 7.070 7.019  6.900
L (107%)  (0.087) (0.276) (0.400)

10 5308 6.004 6540 6914 | 7.110 7.136 7.082  6.934
£ (0.010) (0.181) (0.442) (0.730)

12 6.182 6710  7.040 i 7.067  7.220  7.240  T.180
D (107%)  (0.055) (0.324) (0.672)

14 6941 | 7265 7.390 7.340  7.210
} (0.001) (0.522) (0.954) (1.42)

16 7512 7622 7573 7.255
(0.021) (0.730) (1.230) (2.30)

larger decay width, but lower resonance energy, than thdisappearance of a potential pocket in the Morse plus cen-
second one. This result indicates that there are no resonandesugal potential atL=16, as seen from Fig. 1, tHe=16
at energies higher than the second resonance energy. Suclsautions have only resonance, but no bound states. The
property of resonance states, the existence of the maximum=16 resonance states start &f.,,=7.512 MeV
resonance energies, has already been discussed by Rittlfy;=0.021 Me\) and have the maximum resonance energy
Elander, and Biadas[23]. They called the upper limit of Re(eio)=7.622 MeV. Similarly, the. =18 resonance states
resonance energies the “complex threshold;,.. It is rea-  starting atE,. ,, = 7.893 MeV (" =0.373 Me\) have a “com-
sonable that there exists a maximum energy for the potentigllex threshold” ate;o.=7.905-i0.443(MeV).
resonances, because there is no way to keep the system for a
long tim.e inside the potential po.cke.t at energie§ higher than  \\, \MODIEIED MORSE POTENTIAL WITH THE
the l:_)arrler top energy. As seen in Fig. 6, the existence of the COULOMB POTENTIAL TAIL
maximum energies, i.e., of the complex thresholds, is also
confirmed for other partial waves. For all the partial waves, We have obtained the energy spectrum of the Morse po-
values of the maximum energy are very small; for instancetential which has asymptotically a constant tail For this
in the L=8 case, €5,.—A)=0.0796-10.0437(MeV). The  potential, the solutions of energies beldware bound states,
existence of a complex threshold at such low energies meariBough their energies are positive because the energy is to be
that the Morse potential cannot explain most resonances sheasured from the'’C+°C threshold. However, as was
the 2C+ 12C system observed in higher energies. mentioned in Sec. Il, the momenturk is defined by
One may ask whether there are resonance solutions withi2u(E.m—A)/%? in the phase shift calculations. Such an
L =8 other than the above three resonances. But if they exisartificial treatment of scattering states abadvés due to the
they are to be found in the third quadrant of the secondasymptotically unphysical form of the Morse potential.
Riemann sheet for the complex energy, which corresponds to In order to describe collisions between heavy ions, we
the wedge region below Irkf=—Re(k) line in the fourth have to use the Coulomb potential at asymptotic distances
guadrant of the complex momentum plane. They cannot bbecause of the finite range character of the nuclear potential.
called physical resonances anymore, because they are too fline Morse potential given in E¢2) should be interpreted to
from the real energy axis, and thereby their widths are togepresent the sum of the nuclear and Coulomb interactions
large to observe. In Table |, we summarize numerical resultbetween nuclei. However, the Morse potential has a constant
of resonance energies and widths obtained in the fourtkail A which does not describe the correct Coulomb tail. It is
quadrant(Rg E?(L)]>A and InfE’(L)]<0) of the energy very difficult to connect the Morse potential and the Cou-
plane forL =0-16 with bound state energies. Because of thdomb potential smoothly, because the latter decreases more
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FIG. 7. The Coulomb potentiaM., dotted ling, the nuclear
part (Vy, dash-dotted lineof the Morse potential\{y, , thin line),
the modified Morse potentiaMy, . ¢, thick line), and the modified
Morse-plus-centrifugall{ = 14) potential(dashed ling
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6N

than the constant tal of the former at the asymptotic dis-

tance for connection. I ]
Satpathy and Saran{®] tried to connect them by force P ——— '3'0‘ E—

by redefining the nuclear potential part of the Morse poten- E (MeV)

tial assuming the Coulomb potential e

FIG. 8. Nuclear phase shif@‘ (dotted line$ and total nuclear

2
1_4382Pi 3— r_z r<R cross sectiono (solid lineg of the modified Morse-plus-
2R, RS ' ¢’ centrifugal potentialVy,, ¢ with the Coulomb potential tail for
Ve(r)= (22)  L=8(a) and 14(b).
ZpZt
1438——, >R, tential barely survives as a broad resonance -&tMeV. In

5\'_ 14, We only obtain a broad resonance around 8 MeV. So
the modified Morse potential gives a few resonances as the
the charge and mass numbers of a projectiege) nuclei original one does. Furthermore, the calculated energies of'a
respectively. In Fig. 7, we plot the Coulomb potential © few resonances, measured from the thre;hold, are not in
h | ' ¢ t'.l ’ * ai iy iy ' agreement with observed resonances. Again, many enhance-
t € nuclear potential part given BY(r) M(r). c(r) ments in the cross section calculated by Satpathy and Sarangi
\F’)V(')tg tticg 'glaorrtsﬁff/mzrt‘t;a!?" : ::Isep:i,t \;\;e sgzuelfonc\’l\tl'ﬁgr;hafsthe [9] come from echoes. Thus, we conclude that the potential
N G y G .
defined byVy(rs) =V(r o). Then a modified potential hav- \Yv?fﬁ?hgoeispgr?rtngrlw\g an energy spectrum to be compared
ing the Coulomb potential tail is. _defined by"/HC(r), On the other hand., Satpathy and Sard®giclaimed that
=Vn(r)+Ve(r) [9,10. The modified Morse potential o resonance energies estimated from the phase shifts cal-
Vi+c(r) has a kinked barrier at=rg, whose height is o 15teq for the modified Morse potenti®,, . (r) had a
lower thanA of the Morse potentlal. In' large distances, good correspondence with the bound state energies of the
Vm+c(r) has the Coulomb potential tail. Therefore, the giqina| onev,,(r). However, it should be noticed that we
modified Morse potential no longer has bound states W'”have to use the momentuka \2 xE, . /72 for the modified
positive energies. Although a few low-lying bound states ob—NIorse potential, but nok— \/Zu(EccTn——A)/ﬁz defined in

tained with the Morse potentiady(r) may SUrvive as reso- }he case of the original one. Furthermore, when the Coulomb
nance states, almost all bound states obtained prev'ousﬁlotential works at an asvmptotic distance. the resonance
with V(r) disappear in the modified Morse potential ymp '

Vv structure in the cross section has to be examined by subtract-

'V”C(r)' ing the Coulomb cross section due to its divergent property.
In Fig. 8, we show the nuclear phgse Smﬁ(EC-m) for A direct comparison of the nuclear phase shift and cross

LC:8 and 14 calculated by subtracting the Coulomb parkection obtained from the modified Morse potential should

6((Ecm) from the total phase shié (Ecm) for the modi- ot e made with those calculated for the original Morse

fied Morse potentiaVy .. c(r), where we should note that the potential which is supposed to stand for the nuclear plus the

energy is measured from the threshold, but not from thezoylomb potentials.

asymptotic potential height. SinceVy, . c(r)=0.69 MeV at

the potential minimum as seen in Fig. 7, the nuclear phase

shift starts atE.,,=0.69 MeV. From the behavior of V. SUMMARY AND CONCLUSION

5\'_g, there exists a resonance at 4.34 MeV, which corre- We have investigated the Morse potential model for the

sponds to the lowest bound state in the case of the Mors&C+ 2C system as a typical example of the molecular reso-

potential. The second bound state in the original Morse ponances observed in many lighter heavy-ion collisions. Satpa-

whereR,=1.3(AL*+AY3) fm and Zp(Z;) and Ap(A;) are
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thy et al. [9—-11] have calculated phase shifts and cross secaccount the coupling with other degrees of freedom explic-
tions with the Morse potential, and claimed that theyitly, which has been investigated by many authors. The BCM
obtained many resonances states in the energy region fg2] is the most promising approach among them, and gives
above the barrier height of the Morse potential, which correnot only an intuitive understanding of the coupling mecha-
spond to experiments. However, we have shown in this pape&fism, but also quantitative descriptions of many observed
that most of “resonances” obtained by Satpattlyal. are  guantities. Recently, Hirabayasht al. [6] have calculated
not true resonances, but so-called echoes. Because of an YRe resonance cross section by using the BCM where many
usually long-range form of the Morse potential, the phasqow-lying excited states including the}Ostate of the?C

shift rather sharply Crosses several time8 (modulug with . nucleus are taken into account. They successfully reproduced
negative derivative with respect to energy. Such a behavig

of the phase shift is called an echo. Their wave functions artrhe_ experimental excitation function and the angular distri-
. > : ) utions of Wuosmaat al. [3].
not trapped in the interaction region. Therefore they canno

show up themselves in any enhancements in reaction chan- Thg Morse.potennal was first dISCUSSGd. In relgtlon to the
nels. vibration-rotation mode[13] only from the viewpoint of its

Careful searches for resonances by the use of the comple%pergy spectrum. However, it is now clear that the Morse

scaling method have shown that there are a few true res(;)a_otential does not give the basis of the vibration-rotation

nances in extremely low energies, ie. just abovemOdeI' because its energy level structure is shown to be com-

E. =A=6.99 MeV. and no resonances above “the com pletely different from that of the vibration-rotation model. In
cm— M Y. ’ -

plex threshold:” for instance Reb)g— A+0.0796 MeV order to explain many “vibrational” levels with the same
1 3 r - .

= . spin, the potential is forced to have an unphysically long-
andA+0.40 MeV forL =8 and 14, respectively. Therefore, range form. But the long-range potential necessarily provides

the Morse potential does not explain the resonances observi : o ; : ;
in 2C+ 12C systematically £ strong rotation-vibration coupling as was discussed in a
Satpath ds .h d a Coulomb tail previous paper{16]. In the case of the strong rotation-
atpatny an arang®] ave proposed a toulomb tail ;i ation coupling, a simple rotation-vibration model breaks
correction of the Morse potential so as to have the correc own in higher quantum states, even if the ratig/E,p,
1 VI

asymptotic behavior instead of the unphysical constant valu%4] of the elementary energy quanta are very small. It is
A. And their conclusion was that several states survive a orth noticing that the ratio of the present case is the same

resonances and correspond to experiments. However, Brder of magnitude as the collective excitations‘#0s and
shown above, there are only a few resonances near the bafy

i ~990s, but in the latter cases only states with small excitation
rier top and they have no correspondence, not only Wltfh

those of the Morse potential, but also with experimental data uanta are discussed; so if those with higher quantum states
with & caution that t?]e defini’tion of ener haz t0 be chan e@re discussed, the rotation-vibration model would loose its

gy has K 9 alidity as in the present case. Arguments based on a com-
properly from the case of the Morse potential with a consta\r,:})

asymptotic value to the normal one. Particularly for the ne arison with Os isotopes shouild be made carefully.
resonance observed &, =32.5 MeV, the obtained en- The Morse potential, thus, does not give a description of

. B . ) . the “rotation-vibration” spectrum. A physical background
hancement in Re{11] for L =14 partial waves is again due of the empirical energy formula suggested by the vibration-
to an echo, but not due to a resonance.

: . . .. ._rotation model might be realized by other approadl2es26
Our cqnclusmn on.the Morse potential _model is that it ISif the empirical formula is physically meaningful. Cseh and
not possible to explain most of the experimental resonanc

80-workers[26] have recently developed an approach phe-
12 1 . . .

data of the'*C+C system. Much experlment_al ewdenqe In nomenologically by taking into account many degrees of
resonance phenpmena observed t_hrough vanous_reactmns feedom of intrinsic excitations of?’C in addition to the
dicate that the importance of various configurations, espe

. : . S ¢lastic 1C+ 1%C channel.

cially those of the inelastic channels. However, it is impos- !

sible to describe such coupling properties within a single- The authors thank S. Aoyama for his help with numerical
channel potential model. It is rather natural to take intocalculations of the complex scaling method.
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