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Resonance states in the12C-12C Morse potential
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Department of Physics, Hokkaido University, Sapporo 060, Japan

Yasuhisa Abe
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, Japan
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We investigate resonance states of the Morse plus centrifugal potential which has been used to explain the
observed12C112C resonances by Satpathyet al. It is found that most of the enhancements in their calculated
cross sections do not correspond to real resonances, but to so-called echoes. Furthermore, resonance poles of
the Morse potential are searched exhaustively by the use of the complex scaling method. There are no
resonance poles found in the higher energy region where many resonances are observed experimentally. We
therefore conclude that the Morse potential is not appropriate for a comprehensive explanation of a series of
resonances in the12C112C system.@S0556-2813~97!01704-4#

PACS number~s!: 21.60.Gx, 25.70.Ef
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I. INTRODUCTION

Since the discovery@1# of the resonances in the12C1
12C system near the Coulomb barrier, many resonances
been observed in various combinations of lighter heavy i
in incident as well as in outgoing channels, as accelera
and detector systems are developed. At energies well ab
the Coulomb barrier, resonances were observed system
cally in inelastic channels with the excitations of the lo
lying collective states 21, 32, . . . of the incident ions,
which were successfully explained by the band cross
model ~BCM! @2#. Recently a new resonance has been
served by Wuosmaaet al. @3# in the inelastic channel of the
12C1 12C system with both12C excited to the famous 02

1

state. The new resonance state is naturally expected to h
certain structure consisting of 6a clusters, since the 02

1 state
is known to have the 3a structure.

As an interesting possibility, a linear chain configurati
of six a particles was discussed@4#. On the other hand, base
on the success of the BCM in the collective excitations,
other interpretation was proposed: The resonance has
6a-cluster configuration of weakly coupled two12C~02

1)
@5#. A simple band crossing diagram calculated with the
agonal folding potentials naturally explains the new re
nance and predicts resonances in the inelastic channels
a single excitation of12C~02

1) and with mutual excitations o
12C~02

1) and 12C~32), respectively. Coupled-channel calc
lations@6# based on the BCM turned out to bring about su
resonances in the respective outgoing channels. Furtherm
the calculated results are found to be consistent with
resonance observed in the12Cgr1

12C~02
1) channel which

has been long known, but not yet understood well@27#. It
should be noticed here that there are many other resona
observed in the12C1 12C system, most of which are not ye
understood. Some of them are known to have large de
widths in 8Be channels, etc., not in the inelastic channels@7#.
Therefore, resonances in heavy-ion reactions are consid
to be a manifestation of various nuclear configurations w
550556-2813/97/55~4!/1928~9!/$10.00
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relatively simple structures which have large overlaps w
several outgoing channels.

Nevertheless, many efforts have been made to explain
the observed resonances by the single-channel descrip
i.e., as potential resonances. Of course, if it can reprod
the energy spectrum of all the observed resonances, it w
be interesting, although the problem still remains how
explain the variety of decay properties in terms of only t
radial degree of freedom for each orbital angular momentu

Satpathyet al. @8–11# employed the long-ranged Mors
potential between two carbon nuclei in order to obtain ma
vibrational states which are compared with observed re
nance levels. They solve the following Schro¨dinger equation
analytically by the use of Flu¨gge approximation@12#:

F2
\2

2m

d2

dr2
1VM~r !1

\2

2mr 2
L~L11!GxnL~r !

5E~n,L !xnL~r !, ~1!

wherem is the reduced mass of the system andVM(r ) de-
notes the Morse potential which is supposed to stand
nuclear and Coulomb interactions,

VM~r !5A1B~e22bx22e2bx!, ~2!

x5~r2r 0!/r 0 . ~3!

The obtained energy spectrum is

E~n,L !5A2B1
\2

2mr 0
2 H 2bg~n1 1

2 !2b2~n1 1
2 !2

1L~L11!2
9~b21!2

4b4g2 L2~L11!2

2
3~b21!

bg
~n1 1

2 !L~L11!J , ~4!

whereg5AB/(\2/2mr 0
2), andL andn are the relative angu

lar momenta and vibration quanta, respectively. This exp
1928 © 1997 The American Physical Society
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55 1929RESONANCE STATES IN THE12C-12C MORSE POTENTIAL
sion of the energy spectrum has a similar form to
rotation-vibration spectrum@13# discussed by Erb and
Bromley @14# and by Cindro and Greiner@15#, though Satpa-
thy et al. @8# consider it to be more general. Thus, they cla
that the Morse potential model gives a concrete basis of
rotation-vibration approach. By fitting the experimental res
nance spectrum, they determined the values of the par
eters: A56.99 MeV, B56.30 MeV, r 056.97 fm, and
b50.957 @8#. However, for these parameter values, w
should check the applicability of the Flu¨gge approximation,
by comparing original and approximated Morse plus c
trifugal potentials. As shown in Fig. 1, the approximat
reduced potentials~dashed lines! are not anything like the
original reduced potentials~solid lines! in higher partial
waves. And we can immediately understand that the orig
potentials do not sustain any bound state above about 7 M
~barrier height!, not only in lower partial waves, but also i
higher ones. Therefore, as shown in Ref.@16#, the energy
spectrum given by Eq.~4! is false above 7 MeV, and com
parisons with the experimental data above this energy
meaningless, though most of the resonances are obse
there experimentally.

Of course, resonances could exist near barrier top e
gies, but not far above. So the above conclusion canno
changed essentially, though there could be a few st
around 7 MeV in addition to the correct bound states belo
Satpathy and Sarangi@9#, however, claimed that several res
nances exist far above the barrier, corresponding to
bound states obtained previously with the inappropriate
proximation. They, further, claimed that the potential ha
resonance atEc.m.532.5 MeV forL514 @11#, which is con-
sidered to correspond to the new resonance observed by
osmaaet al.

So the purpose of the present paper is to precisely s
resonances in the Morse potential they employed and
clarify whether the single-channel description still has
possibility to explain the observed resonances or not.

In Sec. II, we calculate the phase shifts and the cr
sections which have enhancements similar to those of Sa
thy et al.But it is found that almost all the ‘‘resonances’’ o
Satpathyet al. are not true resonances, but echoes. In or
to find out all the resonances exhaustively, we employ
complex scaling method. The resonance positions in

FIG. 1. The Morse-plus-centrifugal potentials~solid lines! and
their Flügge approximated potentials~dotted lines! for L50, 4, 8,
12, and 16.
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complex energy plane are determined for the Morse p
centrifugal potential in Sec. III. In Sec. IV, we discuss t
resonance states of the modified Morse potential which
the Coulomb tail in the asymptotic distances. The final s
tion, Sec. V, is devoted to a summary and conclusion.

II. PHASE SHIFTS OF THE MORSE POTENTIAL MODEL:
RESONANCES AND ECHOES

In order to obtain correct resonance states of the Mo
potential, we recalculate the phase shiftdL(Ec.m.) and the
cross sectionsL(Ec.m.) in the same way as Refs.@9–11#. A
channel radiusa is introduced; in the outer regionr.a, the
asymptotic solution is given by

xL,k
out~r !5kr@ j L~kr !2tandLnL~kr !#, ~5!

where j L(kr) andnL(kr) are the spherical Bessel and Ne
mann functions with momentumk5A2m(Ec.m.2A)/\2.
Here, it should be noted that the momentumk is measured
from the barrier heightA of the Morse potential. The solu
tionsxL,k

in (r ) in the inside regionr<a are calculated by nu-
merical integration of the Schro¨dinger equation~1!. The
phase shiftdL(Ec.m.) is obtained from the continuity condi
tion of logarithmic derivative at the channel radiusa. Since
the Morse potential used here has a very long range, we h
to take a>80 fm in order for the obtained phase sh
dL(Ec.m.) to be independent of the value ofa as usual. With
the phase shift, the partial cross section is calculated as

sL~Ec.m.!5
4p

k2
~2L11!sin2dL~Ec.m.!, ~6!

where an additional factor of 2 is necessary in the right-ha
side~RHS! due to the bosonic character of12C nuclei, but is
neglected for the sake of comparison with Refs.@9–11#.

The phase shifts and partial cross sections obtained
L58 and 14 are presented in Fig. 2 as typical examples.
was shown in Ref.@16# and will be discussed later, th
L58 solutions of the Morse potential have five bound stat
Then the phase shiftd8(Ec.m.) has to start from 5p at
Ec.m.5A, according to the Levinson theorem. The calculat
phase shiftd8(Ec.m.) shows a resonance behavior at very lo
energies@(Ec.m.2A),0.2 MeV#. The detailed behavior o
d8(Ec.m.) in the region of (Ec.m.2A),0.2 MeV is presented
in Fig. 3. We find a very sharp resonance atEc.m.
2A50.036 MeV with a widthG;1025 MeV. This reso-
nance has been looked over by Satpathyet al. @9,10#, per-
haps due to its extreme sharpness. One may overlook su
sharp resonance if one looks only at the phase shift. With
aid of the results of the complex scaling calculation d
cussed later, we can find a resonance behavior in the p
shifts with very small energy meshes around the resona
region.

Above the sharp resonance energy, the phase s
d8(Ec.m.) increases until (Ec.m.2A);0.14 MeV. This in-
creasing ofd8(Ec.m.) is also due to the existence of re
resonance states. However, the phase shift no longer
creases byp/2. Therefore, it is difficult to determine th
resonance energyEr with the condition of dL(Er)5p/2
~modulop). In such cases, it may be possible to determ
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1930 55KIYOSHI KATŌ AND YASUHISA ABE
the resonance energy from a crossing point of the calcul
phase shift with a hard-sphere-scattering phase shift whic
frequently displaced bynp due to the existence of bound o
resonance states at lower energies. To calculate the h
sphere-scattering phase shift, we must introduce a h
sphere-radius parameterah . For the usual short-range pote
tials between nuclei,ah is taken to be a little larger than th
sum of nuclear radii. However, in the present case of
very-long-range potential in comparison with 2 times t
carbon radius, it is not easy to know how to choose
hard-sphere radiusah . In addition, this method cannot b

FIG. 2. Phase shifts~solid lines! and cross sections~dotted lines!
of ~a! L58 and ~b! L514 states calculated with the Morse-plu
centrifugal potential.

FIG. 3. Resonance behavior in phase shift~solid line! and cross
section~dotted line! of L58 in the very low energy region.
ed
is

rd-
d-

e

e

applied to overlapping resonances where resonance wi
are larger than the distance between neighboring resonan
Actually the present Morse potential has two overlapp
resonances in the energy region of (Ec.m.2A)50.06–0.08
MeV as will be shown later.

In the energy region that (Ec.m.2A) is larger than 0.14
MeV, the phase shiftd8(Ec.m.) only decreases. The monoto
nously decreasingd8(Ec.m.) crossesp/2 ~modulop) at sev-
eral energies with negative slopes, i.e., negative derivat
with respect to energy. It is well known that the resonan
should have an increasing phase shift with energy@17#. From
this definition of resonances, we conclude that there is
resonance in energies (Ec.m.2A).0.14 MeV. However, the
cross section shows an enhancement at energies wher
phase shift crossesp/2 ~modulop), even if the energy de-
rivative is negative. Such an enhancement of the cross
tion is associated with a flux advanced rather than dela
@17#; i.e., one has a negative width if one sticks to the re
nance description. They are not true resonances but ‘‘e
oes’’ @18#.

In order to show the difference in the physical charact
of resonance and echo, we present the wave functions co
sponding to the resonances and the echoes in Fig. 4.
resonance wave functions are drastically changed by the
tential from a free wave function. For example, a wave fun
tion has (n11) nodal points in the potential range, whe
n is numbers of bound or resonance states existing below
energy of the resonance under consideration. On the o
hand, the wave function of the ‘‘echo’’ has almost no chan
even in the potential region. Therefore, we can say that
wave function of the ‘‘echo’’ is almost the same as a fr
wave function only except for a shift of the phase at
asymptotic distance, like real echoes which are reflec
back with a time delay or phase shift@18#. Since the wave
function of an echo is not concentrated in the interact
range, no enhancements are expected in other reaction c
nels even if they couple to the incident channel at the ec
Therefore, echoes should not be compared with any enha
ments observed in reaction channels.

Although the phase shift presented in Fig. 30 of Ref.@10#
shows a sharp increase like a step function at energies w
the cross section has peaks, it seems to be due to an arti
jump by p in the computer calculation of tan21(x) whose
range is2p/2,tan21(x),p/2. Therefore, we have to con
nect it smoothly by displacing byp. If there were true reso-
nances, such jumps should become dull in higher-lying re
nances from a physical point of view; the derivativ
ddL /dEc.m., which is proportional to the decaying width
becomes larger as the energy increases, because the dec
width ~lifetime! of higher energy potential resonances b
comes larger~shorter!.

As was mentioned above, the elastic cross section
enhancements also at energies of ‘‘echoes.’’ Satpathyet al.
@9–11# called all the enhancements of the cross sect
‘‘resonances.’’ But most of the peaks in the cross sections
not correspond to real resonances. The reason why m
echoes appear with rather strong enhancements in the c
section at low energies can be explained by the long-ra
character of the present Morse potential. Usually, in nucl
physics, such enhancements due to echoes do not appe
the low energy region. Phase shifts very gradually decre
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FIG. 4. Resonance and echo wave functions. Solid and dotted lines represent real and imaginary parts, respectively. ForL58, ~a!
resonance and~b! echo. ForL514, ~c! resonance and~d! echo. EnergiesEc.m.8 are measured from the asymptotic barrier constantA; i.e.,
Ec.m.8 5Ec.m.2A.
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after the resonance energy region, since the hard-spher
dius is not so large. Therefore, even if echoes appear,
‘‘widths’’ ( G}1/udd/dEc.m.u) become very large. And the
enhancements of the cross section are usually very sma

Although we have discussed only the result ofd8(Ec.m.),
the behaviors are similar in the other partial waves. Satpa
and Sarangi @11# have discussed the new resonan
(L514! observed by Wuosmaaet al. @3# with the Morse
potential. However, the peaks of the cross section assigne
the observed resonances are found to be also due to
‘‘echoes.’’ They are not resonances.

III. COMPLEX SCALING METHOD FOR THE MORSE
POTENTIAL

In order to determine unambiguously and exhaustively
resonance positions of the Morse potential, we employ a
rect method, the so-called complex scaling method@19,20#.
The complex scalingU(u) for the relative coordinater is
defined as

U~u!r→reiu, ~7!

where u is a scaling parameter with real values
0<u<umax. For the Morse potential,umax is p/2 because of
the analyticity condition of the scaled potential. This co
plex scaling transforms the Schro¨dinger equation~1! into the
form
ra-
he

y
e

to
the

e
i-

-

F2e22iu
\2

2m

d2

dr2
1VM~reiu!1e22iu

\2

2mr 2
L~L11!GxL

u~r !

5Eu~L !xL
u~r !. ~8!

According to the Aguilar-Balslev-Combes~ABC!
theorem@19#, the energies~negative real values! of bound
states are independent ofu, and resonance energies (Er) and
widths (G) of the resonance solutions are obtained
real and imaginary parts of complex energiesEu(L),
that is, Eu(L)5Er2 iG/2, independently of u for
u. 1

2tan
21(G/2Er). The complex scaled resonance wa

functions x r ,L
u (r ) have dumping asymptotic forms, thoug

they diverge exponentially in the nonscaled case. Theref
we can solve resonance states with a boundary conditio
x r ,L

u (r )→ 0 (r→`) in the same way as bound states.
We numerically solve bound and resonance states by

ing the renormalized Numerov method, which has been
veloped by Johnson@21# to calculate eigenvalues of boun
states with numerically high accuracy. We here briefly e
plain the method with an extension to resonance eigenva
in the complex scaling method.

The renormalized Numerov method is a general meth
to solve the second order differential equation

F d2dr2 1QL~r !Gx~r !50, ~9!
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1932 55KIYOSHI KATŌ AND YASUHISA ABE
by using the three-term recurrence relation@22#

~12Ti11!x i112~2110Ti !x i1~12Ti21!x i2150,
~10!

where

x i5x~r i ! and Ti52
h2

12
QL~r i !. ~11!

Hereh is a spacing between grid points, and in the pres
caseQL(r i) is given as

QL~r i !5e2iu
2m

\2 FEu~L !2VM~r ie
iu!

2e22iu
\2

2mr i
2L~L11!G . ~12!

SubstitutingFi5(12Ti)x i into Eq. ~10!, we have

Fi112UiFi1Fi2150, ~13!

Ui5~12Ti !
21~2110Ti !. ~14!

Furthermore, by defining the ratio

Ri5Fi11 /Fi , ~15!

we can express Eq.~13! in the two-term recurrence relatio

Ri5Ui2Ri21
21 . ~16!

This recurrence is easily solved with the initial valu
R0

2150 becausex(r 1)Þ0 and x(r 050)50 into the for-
ward direction.

In the same way, Eq.~13! can be solved in the inward
direction by replacingFi by the ratio

R̄i5Fi21 /Fi . ~17!

The two-term recurrence relation for the inward direction
expressed as

R̄i5Ui2R̄i11
21 . ~18!

This recurrence equation is also solved with the initial va
R̄N

2150 @or more precisely withR̄N
215exp(ikheiu)# for the

bound states and the complex scaled resonance states
u.u r @u r5~1/2!tan21(G/2Er)].

We introduce a matching pointr M , to which we solve Eq.
~16! in the forward direction and Eq.~18! in the inward
direction. Using the two solutionsRM and R̄M11 at the
matching pointr M , we define

D̄~Eu!5R̄M11
21 2RM ~19!

as a function of the energy. The equalityRM5R̄M11
21

@D̄(Eu)50# should be satisfied only ifEu is an eigenvalue.
This equality condition of the wave functionx i may be re-
placed by the continuity condition of the logarithmic deriv
tive of the wave function. From this condition, we have
functionD(Eu) @21#, instead ofD̄(Eu), which is defined as
nt

e

ith

D~Eu!5@AM11~R̄M11
21 2RM !2AM21~R̄M2RM21

21 !#

3~12TM !, ~20!

where

Ai5~ 1
22Ti !~12Ti !

21. ~21!

Searching the zero points ofD(Eu) @or D̄(Eu)# for com-
plex values ofEu, we can find the energies of bound stat
and resonance positions for an adequate scaling angleu. For
the bound state solutions, we have confirmed the previ
results of Ref.@16#. In Fig. 5, we show 1/uD(Eu)u for the
resonance solutions of the angular momentumL58. This
result has been obtained forrmax5140 fm, r M540 fm,
h50.01 fm, andu50.8 rad. The energy meshDE50.005
MeV is employed for real and imaginary parts. Three sh
peaks are found in the fourth quadrant of the complex ene
plane. The first resonance with the very small width cor
sponds to the sharp increase ofp in the phase shift
d8(Ec.m.) at (Ec.m.2A)50.036 MeV discussed in the prev
ous section. The second and third peaks correspond to r
nances newly found here. It is difficult to find them in pha
shift calculation.

The resonance energies of the second and third r
nances are very close and have large decay widths. T
therefore are called overlapping resonances. On the o
hand, it is very interesting that the third resonance ha

FIG. 5. The functionuD(Eu)u for L58 resonance states calcu
lated in the complex scaling method withu50.8 rad.

FIG. 6. Resonance positions, resonance energy (Er) vs width
(G/2!, of the Morse-plus-centrifugal potential forL50216.
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TABLE I. The bound state energies~above the dotted line! and resonance energies with widths~in parentheses! of the Morse-plus-
centrifugal potential for the12C112C system.
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larger decay width, but lower resonance energy, than
second one. This result indicates that there are no resona
at energies higher than the second resonance energy. S
property of resonance states, the existence of the maxim
resonance energies, has already been discussed by R
Elander, and Bra¨ndas @23#. They called the upper limit of
resonance energies the ‘‘complex threshold’’e thre

L . It is rea-
sonable that there exists a maximum energy for the pote
resonances, because there is no way to keep the system
long time inside the potential pocket at energies higher t
the barrier top energy. As seen in Fig. 6, the existence of
maximum energies, i.e., of the complex thresholds, is a
confirmed for other partial waves. For all the partial wav
values of the maximum energy are very small; for instan
in the L58 case, (e thre

8 2A)50.07962 i0.0437~MeV!. The
existence of a complex threshold at such low energies me
that the Morse potential cannot explain most resonance
the 12C1 12C system observed in higher energies.

One may ask whether there are resonance solutions
L58 other than the above three resonances. But if they e
they are to be found in the third quadrant of the seco
Riemann sheet for the complex energy, which correspond
the wedge region below Im(k)52Re(k) line in the fourth
quadrant of the complex momentum plane. They canno
called physical resonances anymore, because they are to
from the real energy axis, and thereby their widths are
large to observe. In Table I, we summarize numerical res
of resonance energies and widths obtained in the fo
quadrant„Re@Eu(L)#.A and Im@Eu(L)#<0… of the energy
plane forL50–16 with bound state energies. Because of
e
ces
h a
m
tby,

ial
r a
n
e
o
,
,

ns
of

ith
st,
d
to

e
far
o
ts
th

e

disappearance of a potential pocket in the Morse plus c
trifugal potential atL.16, as seen from Fig. 1, theL>16
solutions have only resonance, but no bound states.
L516 resonance states start atEc.m.57.512 MeV
(G50.021 MeV! and have the maximum resonance ene
Re(e thre

16 )57.622 MeV. Similarly, theL518 resonance state
starting atEc.m.57.893 MeV (G50.373 MeV! have a ‘‘com-
plex threshold’’ ate thre

18 57.9052 i0.443~MeV!.

IV. MODIFIED MORSE POTENTIAL WITH THE
COULOMB POTENTIAL TAIL

We have obtained the energy spectrum of the Morse
tential which has asymptotically a constant tailA. For this
potential, the solutions of energies belowA are bound states
though their energies are positive because the energy is t
measured from the12C1 12C threshold. However, as wa
mentioned in Sec. II, the momentumk is defined by
A2m(Ec.m.2A)/\2 in the phase shift calculations. Such a
artificial treatment of scattering states aboveA is due to the
asymptotically unphysical form of the Morse potential.

In order to describe collisions between heavy ions,
have to use the Coulomb potential at asymptotic distan
because of the finite range character of the nuclear poten
The Morse potential given in Eq.~2! should be interpreted to
represent the sum of the nuclear and Coulomb interact
between nuclei. However, the Morse potential has a cons
tail A which does not describe the correct Coulomb tail. It
very difficult to connect the Morse potential and the Co
lomb potential smoothly, because the latter decreases m
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1934 55KIYOSHI KATŌ AND YASUHISA ABE
than the constant tailA of the former at the asymptotic dis
tance for connection.

Satpathy and Sarangi@9# tried to connect them by force
by redefining the nuclear potential part of the Morse pot
tial assuming the Coulomb potential

VC~r !55 1.438
ZPZT
2Rc

S 32
r 2

Rc
2D , r,Rc ,

1.438
ZPZT
r

, r.Rc ,

~22!

whereRc51.3(AP
1/31AT

1/3) fm andZP(ZT) andAP(AT) are
the charge and mass numbers of a projectile~target! nuclei,
respectively. In Fig. 7, we plot the Coulomb potentialVC ,
the nuclear potential part given byVN(r )5VM(r )2VC(r )
with the Morse potentialVM . Here, we should notice that th
positive part ofVN at r.r G is put to be zero, wherer G is
defined byVM(r G)5VC(r G). Then a modified potential hav
ing the Coulomb potential tail is defined byVM1C(r )
5VN(r )1VC(r ) @9,10#. The modified Morse potentia
VM1C(r ) has a kinked barrier atr5r G , whose height is
lower thanA of the Morse potential. In large distance
VM1C(r ) has the Coulomb potential tail. Therefore, t
modified Morse potential no longer has bound states w
positive energies. Although a few low-lying bound states o
tained with the Morse potentialVM(r ) may survive as reso
nance states, almost all bound states obtained previo
with VM(r ) disappear in the modified Morse potenti
VM1C(r ).

In Fig. 8, we show the nuclear phase shiftdL
N(Ec.m.) for

L58 and 14 calculated by subtracting the Coulomb p
dL
C(Ec.m.) from the total phase shiftdL(Ec.m.) for the modi-
fied Morse potentialVM1C(r ), where we should note that th
energy is measured from the threshold, but not from
asymptotic potential heightA. SinceVM1C(r )>0.69 MeV at
the potential minimum as seen in Fig. 7, the nuclear ph
shift starts atEc.m.>0.69 MeV. From the behavior o
dL58
N , there exists a resonance at 4.34 MeV, which cor
sponds to the lowest bound state in the case of the M
potential. The second bound state in the original Morse

FIG. 7. The Coulomb potential (VC , dotted line!, the nuclear
part (VN , dash-dotted line! of the Morse potential (VM , thin line!,
the modified Morse potential (VM1C , thick line!, and the modified
Morse-plus-centrifugal (L514) potential~dashed line!.
-
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tential barely survives as a broad resonance at;6 MeV. In
dL514
N , we only obtain a broad resonance around 8 MeV.
the modified Morse potential gives a few resonances as
original one does. Furthermore, the calculated energies
few resonances, measured from the threshold, are no
agreement with observed resonances. Again, many enha
ments in the cross section calculated by Satpathy and Sar
@9# come from echoes. Thus, we conclude that the poten
VM1C does not give an energy spectrum to be compa
with the experiments.

On the other hand, Satpathy and Sarangi@9# claimed that
the resonance energies estimated from the phase shifts
culated for the modified Morse potentialVM1C(r ) had a
good correspondence with the bound state energies of
original oneVM(r ). However, it should be noticed that w
have to use the momentumk5A2mEc.m./\

2 for the modified
Morse potential, but notk5A2m(Ec.m.2A)/\2 defined in
the case of the original one. Furthermore, when the Coulo
potential works at an asymptotic distance, the resona
structure in the cross section has to be examined by subt
ing the Coulomb cross section due to its divergent prope
A direct comparison of the nuclear phase shift and cr
section obtained from the modified Morse potential sho
not be made with those calculated for the original Mor
potential which is supposed to stand for the nuclear plus
Coulomb potentials.

V. SUMMARY AND CONCLUSION

We have investigated the Morse potential model for
12C1 12C system as a typical example of the molecular re
nances observed in many lighter heavy-ion collisions. Sa

FIG. 8. Nuclear phase shiftsdL
N ~dotted lines! and total nuclear

cross sectionsL ~solid lines! of the modified Morse-plus-
centrifugal potentialVM1C with the Coulomb potential tail for
L58 ~a! and 14~b!.
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55 1935RESONANCE STATES IN THE12C-12C MORSE POTENTIAL
thy et al. @9–11# have calculated phase shifts and cross s
tions with the Morse potential, and claimed that th
obtained many resonances states in the energy region
above the barrier height of the Morse potential, which cor
spond to experiments. However, we have shown in this pa
that most of ‘‘resonances’’ obtained by Satpathyet al. are
not true resonances, but so-called echoes. Because of a
usually long-range form of the Morse potential, the pha
shift rather sharply crosses several timesp/2 ~modulus! with
negative derivative with respect to energy. Such a beha
of the phase shift is called an echo. Their wave functions
not trapped in the interaction region. Therefore they can
show up themselves in any enhancements in reaction c
nels.

Careful searches for resonances by the use of the com
scaling method have shown that there are a few true r
nances in extremely low energies, i.e., just abo
Ec.m.5A56.99 MeV, and no resonances above ‘‘the co
plex threshold;’’ for instance, Re(e tore

L )5 A10.0796 MeV
andA10.40 MeV forL58 and 14, respectively. Therefore
the Morse potential does not explain the resonances obse
in 12C1 12C systematically.

Satpathy and Sarangi@9# have proposed a Coulomb ta
correction of the Morse potential so as to have the cor
asymptotic behavior instead of the unphysical constant va
A. And their conclusion was that several states survive
resonances and correspond to experiments. However
shown above, there are only a few resonances near the
rier top and they have no correspondence, not only w
those of the Morse potential, but also with experimental d
with a caution that the definition of energy has to be chan
properly from the case of the Morse potential with a const
asymptotic value to the normal one. Particularly for the n
resonance observed atEc.m.532.5 MeV, the obtained en
hancement in Ref.@11# for L514 partial waves is again du
to an echo, but not due to a resonance.

Our conclusion on the Morse potential model is that it
not possible to explain most of the experimental resona
data of the12C1 12C system. Much experimental evidence
resonance phenomena observed through various reaction
dicate that the importance of various configurations, es
cially those of the inelastic channels. However, it is impo
sible to describe such coupling properties within a sing
channel potential model. It is rather natural to take in
v.

tt
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account the coupling with other degrees of freedom exp
itly, which has been investigated by many authors. The BC
@2# is the most promising approach among them, and gi
not only an intuitive understanding of the coupling mech
nism, but also quantitative descriptions of many observ
quantities. Recently, Hirabayashiet al. @6# have calculated
the resonance cross section by using the BCM where m
low-lying excited states including the 02

1 state of the12C
nucleus are taken into account. They successfully reprodu
the experimental excitation function and the angular dis
butions of Wuosmaaet al. @3#.

The Morse potential was first discussed in relation to
vibration-rotation model@13# only from the viewpoint of its
energy spectrum. However, it is now clear that the Mo
potential does not give the basis of the vibration-rotat
model, because its energy level structure is shown to be c
pletely different from that of the vibration-rotation model. I
order to explain many ‘‘vibrational’’ levels with the sam
spin, the potential is forced to have an unphysically lon
range form. But the long-range potential necessarily provi
a strong rotation-vibration coupling as was discussed i
previous paper@16#. In the case of the strong rotation
vibration coupling, a simple rotation-vibration model brea
down in higher quantum states, even if the ratiosErot /Evib
@24# of the elementary energy quanta are very small. It
worth noticing that the ratio of the present case is the sa
order of magnitude as the collective excitations in188Os and
190Os, but in the latter cases only states with small excitat
quanta are discussed; so if those with higher quantum st
are discussed, the rotation-vibration model would loose
validity as in the present case. Arguments based on a c
parison with Os isotopes should be made carefully.

The Morse potential, thus, does not give a description
the ‘‘rotation-vibration’’ spectrum. A physical backgroun
of the empirical energy formula suggested by the vibratio
rotation model might be realized by other approaches@25,26#
if the empirical formula is physically meaningful. Cseh an
co-workers@26# have recently developed an approach ph
nomenologically by taking into account many degrees
freedom of intrinsic excitations of12C in addition to the
elastic 12C1 12C channel.

The authors thank S. Aoyama for his help with numeric
calculations of the complex scaling method.
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@25# M. Ohkubo, K. Katō, and H. Tanaka, Prog. Theor. Phys.67,

207~1982!. Y. Suzuki and K. T. Hecht, Nucl. Phys.A338, 102
~1992!.

@26# J. Cseh, G. Le´vai, and W. Sheid, Phys. Rev. C48, 1724
~1993!; J. Cseh and G. Le´vai, Ann. Phys.~N.Y.! 230, 165
~1994!.

@27# S. F. Pate, R. W. Zurmu¨hle, P. H. Kutt, and A. H. Wuosmaa
Phys. Rev. C37, 1953~1988!.


