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Neutron-proton correlations in an exactly solvable model
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We examine isovector and isoscalar neutron-proton correlations in an exactly solvable model based on the
algebra SO~8!. We look particularly closely at Gamow-Teller strength and doubleb decay, both to isolate the
effects of the two kinds of pairing and to test two approximation schemes: the renormalized neutron-proton
quasiparticle random phase approximation~QRPA! and generalized BCS theory. When isoscalar pairing cor-
relations become strong enough a phase transition occurs and the dependence of the Gamow-Tellerb1

strength on isospin changes in a dramatic and unfamiliar way, actually increasing as neutrons are added to an
N5Z core. Renormalization eliminates the well-known instabilities that plague the QRPA as the phase tran-
sition is approached, but only by unnaturally suppressing the isoscalar correlations. Generalized BCS theory,
on the other hand, reproduces the Gamow-Teller strength more accurately in the isoscalar phase than in the
usual isovector phase, even though its predictions for energies are equally good everywhere. It also mixes
T50 andT51 pairing, but only on the isoscalar side of the phase transition.@S0556-2813~97!02704-0#

PACS number~s!: 21.60.Fw, 21.30.Fe, 23.40.Hc
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I. INTRODUCTION

Pairing correlations are an important feature of nucl
structure@1#. In heavy nuclei such correlations between ne
trons and protons are usually neglected on the grounds
the two Fermi levels are far apart. In nuclei withN'Z,
however, the Fermi levels are close and neutron-pro
(np) pairing correlations can be expected to play a sign
cant role in nuclear structure and decay~for a review of work
on np pairing theory see Ref.@2#!. The importance of these
proton-rich nuclei in astrophysical nucleosynthesis make
vital that thenp correlations are well understood, and u
coming experiments with radioactive beams will soon t
our understanding.

Taking np correlations seriously complicates the usu
treatment of pairing, which stresses the interaction of l
particles in time-reversed orbits, i.e., the formation ofpp and
nn pairs. As has been known for some time@2,3#, generaliz-
ing this picture raises at least two issues. First, thepp, nn,
andnp isovector pairs must all be treated on an equal foot
so that isospin symmetry is respected as much as pos
@3,4#. Second, the competition between two kinds ofnp pair-
ing — isovector and isoscalar (T51 andT50) — must be
taken into account. This issue apparently arises even in
clei withN.Z, wherenp pairing is by most measures sma
For example, the rate of two-neutrino double-b decay within
thenp quasiparticle random phase approximation~QRPA! is
extremely sensitive to the strength of isoscalar partic
particle ~i.e., pairing! correlations, making reliable calcula
tions difficult. When these correlations become stro
enough the method fails even to give finite answers.

The breakdown in the QRPA signals an impending ph
transition. Is it real or an artifact of the assumption under
550556-2813/97/55~4!/1781~8!/$10.00
r
-
at

n
-

it

t

l
e

g
ble

u-

-

g

e
-

ing the approximation that the ground state contains nonp
correlations? What are the properties of the ‘‘isosca
phase,’’ if it is real? Is the renormalized QRPA~RQRPA!
@5,6#, in which solutions are more stable, a good way
handle the breakdown/phase transition? To what extent
generalized BCS theory, a scheme for treatingnp pairing on
a more equal footing withnn andpp pairing and reviewed
in Ref. @2#, quantify the interplay between the two phase
We address these questions here in a solvable model
incorporates both isovector and isoscalar pairing, makin
considerably richer than the more schematic models~e.g., the
Lipkin model @7#! typically used for this kind of study.

The structure of this paper is as follows. In Sec. II w
describe the model and its analytic solution for energies
Gamow-Tellerb-decay matrix elements, stressing the exi
ence of two limiting solutions corresponding to pure isove
tor or isoscalar pairing. We show that in the isoscalar pha
charge-changing processes have counterintuitive featu
Section III contains an outline of the QRPA and RQRPA
realized in the solvable model, and applies them to sin
and doubleb decay to test the quality of the approximation
In Sec. IV we describe generalized BCS theory for SO~8!,
again with emphasisis onb-decay strengths~though we also
examine ground-state energies!, and again test the reliability
of the approximation scheme. Section V is a conclusion.

II. THE MODEL AND ITS EXACT SOLUTION

We consider a set of degenerate single-particle orbit
characterized byl ,s51/2,t51/2. The total number of single
particle states isV5( l(2l11). We make the model solv
able by building a basis entirely fromL50 operators:Sn

† ,
which creates pairs with spinS50 and isospinT51 ~with
projectionn), andPm

† , which creates pairs withS51 and
1781 © 1997 The American Physical Society
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1782 55ENGEL, PITTEL, STOITSOV, VOGEL, AND DUKELSKY
T50 ~spin projectionm). Together with the one body opera
tors that generate SU~4! — the total spinSW , the isospinTW ,
and the operatorFn

m5( is( i )mt( i )n — the L50 pair cre-
ation and annihilation operators form the algebra SO~8! @8#.
The physics associated with this model has been studied
viously @8–10#, but with emphasis on energy levels; here o
focus will include charge-changing decay.

The most general Hamiltonian invariant under SO~8!,
omitting terms such asSW •SW andTW •TW that affect energies bu
not wave functions, depends on three parameters and ha
form @9#

H52
g~11x!

2 (
n

Sn
†Sn2

g~12x!

2 (
m

Pm
†Pm1gphFn

m†Fn
m .

~1!

The first term in the Hamiltonian corresponds to isovec
spin-0 pairing, the second represents isoscalar spin-1 pai
and the last is a~primarily! particle-hole force in theT51
S51 channel.

In certain important limits, analytic expressions for en
gies and wave functions have been derived. Ifx51 and
gph50, the Hamiltonian@8# conserves an SO~5! subalgebra
and corresponds to ‘‘standard’’ spin-singlet isovector pa
ing, with np pairs treated on an equal footing with like
particle pairs@11,12#. The eigenstates, characterized by t
number of nucleon pairsN ~we consider only nuclei with an
even number of nucleons!, the isospinT, and the singlet-
pairing seniorityvs , have energies

E~vs ,T!52
g

8
@~2N2vs!~4V1622N2vs!24T~T11!#.

~2!

Similarly, for x521 and gph50 the exact solutions ar
characterized by the spinS and the triplet-pairing seniority
v t , and an analogous formula applies withT→S,vs→v t .
This is the ‘‘isoscalar phase’’ that will cause the breakdo
of the QRPA. Finally, ifx50 the Hamiltonian is invarian
under SU~4!. The eigenstates are then labeled by a quan
numberl corresponding to the irreducible SU~4! representa-
tion @l,l,0# as well as byS andT, and the eigenvalues ar

E~l,S,T!52
g

4
@2N~V13!2N22l~l14!#

1gph@l~l14!2S~S11!2T~T11!#. ~3!

S1T must be even ifN is even and odd otherwise~this is
true no matter what the Hamiltonian!. The quantum numbe
l has valuesl5S1T,S1T12, . . . ,lMax , wherelMax5N
if N<V and 2V2N otherwise.

The eigenvalues and eigenstates of the general Ha
tonian in Eq.~1! can be obtained by diagonalizing in th
SU~4! basis. The matrices are tridiagonal and have v
small dimension. Expressions for the matrix elements~with
several typos! appear in Ref.@9#, which, however, ignores
the particle-hole interaction. The same model with t
particle-hole interaction included was solved approximat
in Ref. @13#.
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By varying the parameterx one can study the phase tra
sition from the standard spin-singlet isovector pairing pha
through the SU~4! Wigner supermultiplet phase, into th
spin-triplet isoscalar pairing phase. In Fig. 1 we show
effects of this transition~with gph fixed at zero! on the over-
lap between the ground state and the ground state of
standard spin-singlet paired system withx51 andgph50.
~The abcissa is labeled by2x, so that the more familiar
isovector phase is on the left.! The change produced by finit
gph is illustrated in Fig. 2; whengph.0 increases, the Hamil
tonian more nearly conserves SU~4! symmetry and the phas
transition becomes less pronounced. The overlap is an o
ous ‘‘order parameter’’ in the model, and its point of infle
tion locates the phase transition. In even-even syste
(S50, T even! this point shifts to the right from the SU~4!-
limit valuex50 asT increases. The reason is that any exc
neutrons are necessarily in isovector pairs, making the t

FIG. 1. Overlaps between the ground state and the pure iso
tor spin-singlet paired state vs the parameterx in the Hamiltonian of
Eq. ~1!, for V512,N510 andS5T50 ~solid line!, S50,T52
~long dashes!, andS50,T54 ~short dashes!. Here and in Figs. 2, 4,
5, and 10 the quantity2x is used on the abscissa axis so that t
standard isovector phase is on the left.

FIG. 2. Same as Fig. 1, withS5T50, except for different val-
ues ofgph. The solid line corresponds togph50, the long dashes to
gph51.0g, and the short dashes togph52.0g.
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55 1783NEUTRON-PROTON CORRELATIONS IN AN EXACTLY . . .
sition to isoscalar pairing more difficult for the remainin
nucleons.

We turn our attention now to transitions induced by t
Gamow-Teller~GT! operatorsFn

m . Their matrix elements are
easily evaluated when the wave function is written in t
basisuN,l,S,T& because the operator is diagonal inN and
l and can changeS andT by one unit only. Explicit formu-
las can be constructed from the SU~4!/SO~4! Clebsch-
Gordan coefficients derived in Ref.@14#. The GT operators
either increase or decreaseN2Z ~assumed to be non
negative!; the corresponding strengths are calledb1 and
b2. The two strengths are constrained by the Ikeda sum

S~b2!2S~b1!53~N2Z!. ~4!

In the SU~4! limit the b1 strength vanishes and one sta
exhausts theb2 strength. In the two extreme limits su
rounding SU~4!, i.e., x51, gph50 ~the isovector pairing
phase! andx521, gph50 ~the isoscalar phase! we can de-
rive analytic expressions forS(b1) from the ground state a
a function of T5Tz5(N2Z)/2, since in those limits the
Hamiltonian contains only the generators of an SO~5! sub-
group. Theb-decay operators break one pair~of either kind!,
leading to matrix elements between simple SO~5! represen-
tations, the properties of which were studied in Ref.@15#. In
the spin-singlet isovector phase we find

S~b1!5
~N2T!~T11!~2V2N2T!

~2T/311!~V11/2!
. ~5!

This result applies in a singlej shell with degeneracy 2V as
well as in the model discussed here, which necessarily c
tains at least 2 degenerate levels in thej2 j scheme
( j5 l61/2). Theb1 strength is plotted as a function ofT for
V512,N510 in Fig. 3. Except for the initial plateau at low
T the behavior of the curve is qualitatively similar to th
obtained in BCS theory, where the neutron-proton inter
tion is ignored. The gradual decrease in strength withT is
caused by Pauli blocking.

In the isoscalar phase the result is

FIG. 3. The Gamow-Tellerb1 strength B~GT! vs the initial
neutron excessTz5T for V512,N510. The solid curve is for the
pure isoscalar spin-triplet pairing phase and the dashed curve fo
standard isosvector spin-singlet phase.
le

n-

-

S~b1!5
~N2T!~T11!~2V2N2T!

V2T11/2
. ~6!

Here the behavior of the strength asT increases from 0 is
surprisingly different~see Fig. 3!. The substantial rise at firs
seems counterintuitive since the neutron excess is increa
Blocking is not the only factor at work, however. For low
T the effect is overcome by the collective behavior of t
bosonlikeS pairs in the final state.

In Fig. 4 we examine the behavior of the streng
S(b1) between the two limits, as a function of2x for fixed
gph50. @WhengphÞ0 all curves become flatter, because t
system is closer to the SU~4! limit.# As 2x increases, the
strengthS(b1) decreases, vanishing when the SU~4! limit is
reached and increasing again as the isoscalar pairing pha
approached until finally it is considerably larger than in t
isovector phase. The large strength is caused in part by
transfer of protons frompp pairs, which cannot participate in
b1 decay, to isoscalarnp pairs, which can. Only close to
x521, however are this effect and the parabolic isos
dependence fully present; when2x is small the strength can
be small as well and the isospin dependence complicated
is apparent from the crossings of curves in Fig. 4. A lar
b1 strength~compared, e.g., to the Ikeda sum rule! therefore
reflects very strong isoscalar pairing. If real, it would ha
important consequences forr -p process nucleosynthesis.

III. DOUBLE- b DECAY, THE QRPA,
AND THE RQRPA

We have stressedb1 strength because of its simplicit
and sensitivity to details of nuclear structure. Now, howev
we want to discuss modifications of the QRPA, the m
frequent and controversial application of which is to doub
b decay. Actually, in a model with as few states as this o
the b1 strength from the ‘‘final’’ nucleus (f ) essentially
determines the double-b decay matrix element~considered
here in the closure approximation for simplicity and becau
the energy denominator can change without a concommi

he

FIG. 4. The Gamow-Tellerb1 strength B~GT! vs the Hamil-
tonian parameter2x, for V512, N510, S50, andgph50. The
solid curve corresponds toT50, the long dashes toT52, and the
short dashes toT54.
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1784 55ENGEL, PITTEL, STOITSOV, VOGEL, AND DUKELSKY
change in the wave functions!. The reason is that the matri
element has the form

MGT
2n ~cl !5^0 f

1u(
i , j

sW ~ i !•sW ~ j !t~ i !2t~ j !2u0i
1& ~7!

and for a moderate neutron excess theb2 strength, the other
relevant quantity, hardly varies withx. In realistic calcula-
tions, the QRPA, which has many desirable features, suf
an unfortunate instability whengpp[(12x)g/2 becomes too
large that manifests itself through infinite values for both
b1 strength and the double-b-decay rate. A number of rem
edies have been proposed recently. One that has rece
particular attention is the renormalized QRPA~RQRPA!
@5,6#, which eliminates the instability of the QRPA through
self-consistent calculation of the ground state. The mo
presented here is ideal for examining how both QRPA a
the new approximation work.

The p-n QRPA, described, for example, in Ref.@13# and
applied to SO~8! in the same paper, begins with the ordina
BCS ansatz, a coherent state of isovector neutron-neu
and proton-proton pairs, and proceeds by admixing neut
proton quasiparticle pairs into the ground and excited sta
In SO~8! the procedure leads to 2 by 2 matrix equations
each of the two~Fermi/isovector pairing and Gamow-Telle
isoscalar pairing! channels and can be solved by simple
agonalization. More specificially, the one excited state
each channel (S50 or S51) is written in the form

uS&5~XS@ap
†an

†#L50,S2YS@apan#
L50,S!u 0̃ &, ~8!

whereap
† , an

† (ap , an) create~destroy! proton and neutron
quasiparticles, the brackets indicate angular momentum
pling, u 0̃& is the QRPA ground state, and (X0,Y0) and (X1,
Y1) are the ‘‘physical’’ eigenvectors in the spin-0, isospin
~Fermi!, and spin-1 isospin-0~Gamow-Teller! channels~ad-
ditional details are in Ref.@13#!. The two channels decoupl
and for two-neutrino double-b decay only the second is re
evant. Associated with theS51 eigenvector is an eigenvalu
that becomes complex whengpp reaches a critical value con
nected with the impending phase transition. The states w
complex eigenvalues are not normalizable and have
physical significance, so that the approximation fails to g
even an incorrect answer beyond the critical point. This
the ‘‘collapse’’ referred to above and is preceded by ra
changes in theb1 and double-b-decay amplitudes.

In the RQRPA, described for charge-changing modes
Refs. @5,6#, the two channels are coupled in an attempt
make the vacuum self-consistent and the resulting equat
are nonlinear. For the SO~8! model the equations have seve
variables: the two sets ofX’s andY’s, the eigenvalue asso
ciated with each set, and a renormalization parameter.
iterative procedure advocated in Ref.@5# often does not con-
verge here, but the model’s simplicity makes the equati
easy to solve by other means. Unlike the QRPA, the RQR
never exhibits the analog of the complex eigenvalues
signal instability, and therefore never yields rapidly chang
matrix elements. The question is whether any import
physics is lost in the process of guaranteeing a ground s
that is built on the BCS state.

Figure 5 presents the exactb2 andb1 strengths for fixed
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N andV and several values ofT, along with the QRPA and
RQRPA approximations to the strengths. The QRPA bre
down is reflected in the expression for theb1 strength,
which blows up at the critical value ofx ~or gpp). By con-
trast the RQRPA strength is perfectly stable. The gra
make it clear, however, that the stability is achieved a
significant price; the very real phase transition to a grou
state dominated by isoscalar pairing correlations changes
behavior ofS(b1), causing the QRPA to break down, b
refuses to show itself at all in the RQRPA approximatio
The reason is that in preserving~self-consistently! the basic
QRPA ansatz the RQRPA limits the isoscalar correlations
the ground state. Put another way, the QRPA breaks d
for a reason; there really is a phase transition and it reall
nearby, and the RQRPA erases all traces of it. Thus at
very point at which the QRPA fails the RQRPA also begi
to deviate badly from the exact result. To make matt
worse, and this has been noted elsewhere@16#, renormaliza-
tion destroys one of the nicest features of the QRPA,
preservation of the Ikeda sum rule Eq.~4!. In this model, at
least, nothing is gained by using the RQRPA.

To demonstrate this explicitly for double-b decay, we
show in Fig. 6 the matrix elementMGT

2n for N512 and
T54 as a function ofgpp /gpair, wheregpair5(11x)/2. We
use this parameter rather thanx because it more closely re
sembles that used in realistic calculations. We have
gph51.5g so that the QRPA breaks down just beyond t
point at which the matrix element crosses the origin@when
gpp5gpair i.e., at the SU~4! point#. This is the situation in
more realistic calculations as well, but our model shows it
be pure coincidence; the breakdown of the QRPA move
larger gpp as the essentially independent parametergph is
increased, while the crossing point never moves, imply
that nothing fundamental is behind the proximity of th
crossing to the point at which the QRPA fails in realis
calculations. Interestingly, the exact matrix element in o
model varies smoothly as the phase transition is traverse

FIG. 5. The Gamow-Teller strength B~GT! for b2 ~upper parts
of each panel! andb1 ~lower parts of each panel! vs2x. The exact
results are denoted by the solid lines and the RQRPA results by
dotted lines. Calculated forV512, N510, S50, andgph5g and
several values of the isospinT labeling the corresponding panels
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55 1785NEUTRON-PROTON CORRELATIONS IN AN EXACTLY . . .
sharp contrast to the rapid drop in the prediction of
QRPA, which as noted blows up completely just past
crossing point. The RQRPA, as in the last figure, begins
fail at the same point and offers little advantage over
QRPA itself.

In more realistic calculations this last conclusion may
may not hold. The simple model examined here conta
only two very collective degrees of freedom. It is certain
possible that with less collectivity the QRPA approximati
is worse and the breakdown occurs far from the actual ph
transition. In that event the RQRPA would offer advantag
especially in the region between the breakdown of the QR
and the real phase transition. It would therefore be usefu
examine the approximation in a model that dilutes the c
lectivity of the T50 np pairs but is still solvable. A two-
level version of SO~8!, i.e., SO(8)3SO(8) @10#, might be a
good place to start. Here we can say only that we find
evidence supporting the validity of the RQRPA.

IV. APPLICATION OF ‘‘GENERALIZED BCS THEORY’’

In this section, we apply generalized pairing theory to
SO~8! model, to assess its ability to provide a meaning
approximate description of the ground-state dynamics of
model in the various phases. We simplify the model sligh
by settinggph to zero~andg to 2, which merely scales th
energies!.

Generalized pairing theory is well reviewed in Ref.@2#
and thus will not be discussed in detail here. Suffice it to
that the theory is founded in the Hartree-Fock-Bogoliuob
~HFB! approximation, supplemented by the further assum
tion that the only nonzero matrix elements of the Hart
Fock and pair potentials are those connecting the four st
uap&, uan&, uāp&, and uān&, where uā& denotes the state
obtained by time-reversal on the stateua&. As such, the

FIG. 6. Double-b decay matrix elementMGT
2n vs gpp /gpair . The

exact results are denoted by the solid line, the RQRPA result
the dashed line, and the QRPA results by the dotted line. Calcul
for V512,N512,S50, T54, andgph51.5g.
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theory naturally accommodates all pairing modes on
equal footing. This includes the usualpp̄ andnn̄ pairing as
well aspn̄, np̄, andpn pairing. Note that here and in sub
sequent discussion we explicitly distinguish the pairing
particles in ‘‘the same orbit’’~e.g.,np) from the pairing of
particles in ‘‘time-reversed orbits’’~e.g.,np̄).

We have chosen to formulate the theory in terms of
density matrixr(a) and the pairing tensort(a). These ma-
trices, after invoking time-reversal invariance, take the
rametrized forms

r~a!5S r1 r0e
2 iu 0 r3e

2 iu

r0e
iu r2 2r3e

2 iu 0

0 2r3e
iu r1 r0e

iu

r3e
iu 0 r0e

2 iu r2
D

a

,

t~a!5S 0 t3e
2 iu t1 t0e

2 iu

2t3e
2 iu 0 t0e

iu t2

2t1 2t0e
iu 0 t3e

iu

2t0e
2 iu 2t2 2t3e

iu 0

D
a

, ~9!

with the coefficients interrelated by four unitarity condition

~12r12r2!r02~ t11t2!t050,

~12r12r2!r31~ t11t2!t350,

r12r1
22r0

22r3
22t0

22t1
22t3

250,

r22r2
22r0

22r3
22t0

22t2
22t3

250. ~10!

In our application to the SO~8! model, we impose con-
straints on the average number of neutrons and the ave
number of protons of the system, thereby fixing the para
etersr1 andr2 according to

r15
Z

2V
and r25

N

2V
. ~11!

Two more parameters,r0 andr3, are fixed from the first two
of the unitarity conditions~10!.

Our procedure is first to express the energy of the gen
alized quasiparticle vacuum as a function of the remain
five parameters of the density matrix and pairing tensor
then to look for local minima, rather than to solve the usu
self-consistent eigenvalue equation. The remaining two u
tarity conditions~10! are implemented via Lagrange mult
pliers. The system of equations arising from these variatio
conditions in principle admits several solutions, the energ
cally lowest of which defines the generalized BCS appro
mation to the ground state of the system. In this sim
model, all solutions correspond tou50 or p/2.

Figure 7 shows the energies associated with the solut
to the generalized BCS equations for the case ofV512 and
N55. The results are plotted as a function of the Ham
tonian parameterx and for various values of the neutro
numberN. The solutions displayed in the figure have t
following character.

Solution A: corresponds to purepp̄ andnn̄ pairing.
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Solution B: corresponds to pureT51 pn̄ andnp̄ pairing.
It only exists whenN5Z, where it is precisely degenera
~but does not mix! with solution A.

Solution C: in general involves bothT50 pn̄ and np̄
pairing andT51 pp̄ andnn̄ pairing. The relative importance
of these different pair correlations is dictated by the th
parameterst0, t1, andt2. To a good approximation, the firs
reflects the number of collectiveT50 pn̄ and np̄ pairs,
whereas the latter two reflect the number of collectivepp̄
andnn̄ pairs, respectively. Asx increases from21, the so-
lution eventually merges into solution A, ceasing to ex
beyond that ‘‘critical point.’’ At precisely this point, there i
a change in the character of the ground state predicte
generalized BCS approximation that mirrors the true state
affairs.

Figure 8 shows the generalized pairing results for
ground-state energy in comparison with the exact ener
discussed earlier, again forV512 andN55. Included are
results corresponding to values of the neutron particle n
ber N ranging fromN55 to N510. The results forN50
throughN54 follow from the symmetry of the problem. Th
generalized pairing results correctly reproduce the trend
the exact results, equally well in both phases. The good
dictions hold up for even-even nuclei, odd-odd nuclei, sy
metric nuclei withN5Z, and nuclei withN50 orZ50. The
generalized pairing approximation even reproduces
gradual shift of the phase transition to negative values ox
when the difference betweenN andZ increases.

FIG. 7. Energies~in arbitrary units! associated with the differen
variational solutions to the generalized BCS equations,
V512,N55. The panels are labeled by the neutron numberN.
Here and in Fig. 8 the abscissa is the Hamiltonian parametx
running from 1 to21. The standard isovector paired state is on
left as in the other figures.
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We now turn one last time to Gamow-Teller matrix el
ments, focusing here~as above! on the summedb1 strength.
We obtain the strength by evaluating the quasiparti
vacuum expectation value of the 112 body operator

Ŝb153 (
l1 ,ml1

,ms1
,l2 ,ml2

,ms2,m
,m

~2 !m~1m 1
2 ms1

u 1
2 ms1

1m!

3~12m 1
2 ms2

u 1
2 ms2

2m!pl2 ,ml2
,ms2

2m
† nl2 ,ml2

,ms2

3nl1 ,ml1
,ms1

1m
† pl1 ,ml1

,ms1
. ~12!

Herep†(p) creates~annihilates! a real proton andn†(n) cre-
ates~annihilates! a real neutron. When the ground state
dominated by ordinarypp̄ andnn̄ pairing and represented b
solution A, the totalb1 strength is given by the usual for
mula

Sb153Z2
3NZ

2V
. ~13!

When solution C applies, the result is

Sb153Z2
3NZ

2V
14V2r0

2. ~14!

~Theb2 strengths follow from the above and the Ikeda su
rule, which is preserved at the BCS level.! In Fig. 9, we
compare the exact@Eqs. ~5! and ~6!# and generalized BCS

r

e

FIG. 8. Comparison of exact ground-state energy~solid curve!
with the approximate result obtained in the generalized BCS
proximation~dashed curve!. The results are shown forV512 and
N55, and for different values of the neutron numberN ~energies in
arbitrary units!.
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results for the summedb1 strength as a function ofTz in the
isovector and isoscalar limits whenV512 andN510. So-
lution A, which is equivalent to the ordinary BCS produ
wave function, reproduces the general trends of the e
b1 strength but differs significantly asTz→0. The results in
the isoscalar limit are much better for all values ofTz , in-
cludingTz50. Only for energies are the BCS results equa
good in both phases.

Figure 10 compares the exact and generalized BCSb1

strengths for the sameV andN values as in Fig. 9. Here
however, we only consider the results forN514 andZ56
(Tz54), but for all values ofx. Once again, the generalize
BCS approximation provides a somewhat better reproduc
of the trends in the exact results when the system is do
nated by isoscalar pairing correlations. The suppressio

FIG. 9. The Gamow-Tellerb1 strength B~GT! for V512 and
N510 as a function of the isospinT in the two limiting phases.
Solid lines represent the exact solutions and dashed lines the
eralized BCS solutions in the isovector~bottom two lines! and isos-
calar ~top two lines! phases.

FIG. 10. Exact~solid! and generalized BCS~dashed! Gamow-
Teller b1 strength B~GT! vs the Hamiltonian parameter2x for
V512,N510, andTz54.
ct
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of

b1 strength that shows up as the SU~4! limit is approached,
however, is not described well by the generalized BCS f
malism, either on the isoscalar or isovector side. More ac
rate results in this regime may require an extension bey
our BCS approximation that fully accommodates the co
istence of all the different pairing modes on both sides of
phase transition.

A striking feature of Fig. 10 is the rise ofb1 strength in
the isoscalar region as2x increases to 1. That this rise i
correlated as noted earlier with the transfer of nucleons fr
pp andnn pairs toT50 np pairs~in time reversed orbits —
we have dropped the overscore! is apparent from Fig. 11
where we plot the number of collective pairs of differe
types for the same system as in Fig. 10. We show both
generalized BCS results and the ‘‘exact’’ results, using
standard prescription for operators that roughly measure
number of collective pairs@4#. ~It is this prescription, which
we believe can be improved by a better treatment of P
effects, that is responsible for the appearance of low level
np pairs before the phase transition, where the correspon
pairing tensor is zero.! Part ~b! of the figure clearly shows
that in BCS theory the wave function does not change fr
its product form until the phase transition is reached. It a
shows that the constant wave function is actually not so
an approximation whenTz is as large as in the figure. Onl
whenN'Z does the theory, which will not reflectnp pair-
ing to the left of the phase transition, fail badly. Even the
however, the BCS approximation manages to reproduce
ergies well.

V. SUMMARY AND CONCLUDING REMARKS

We have examined the interplay between isovector
isoscalar pairing modes in an exactly solvable SO~8! model,

en-

FIG. 11. ‘‘Numbers’’ of different types of pairs in the exact~a!
and BCS~b! solutions as a function of2x, for V512,N510, and
Tz54. The solid line measures the number ofnn pairs, the dashed
line the number ofpp pairs, the dot-dashed line the number
T50 np pairs, and the dotted line the number~nonzero only be-
cause of the rough definition of ‘‘number’’! of T51 np pairs.
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focusing on the matrix elements of charge-changing op
tors. The behavior of theb1 strength in the isoscalar phase
counterintuitive, rising with increasing neutron excess
stead of falling. Double-b decay, by contrast, varie
smoothly and predictably on both sides of the phase tra
tion. This behavior is in sharp contrast to the predictions
the QRPA, which fails when isoscalar pairing becomes
strong.

Partly for this reason, we have tested two approximat
schemes that purport to better accommodate neutron-pr
correlations. One, the RQRPA, works well in the isovec
phase but fails completely to capture the physics of the ph
transition. Ironically the second approximation, provided
generalized BCS theory, does a better job for the to
b-decay strength in the isoscalar phase than in the isove
phase.~It successfully reproduces ground-state energies
erywhere, however, even in the vicinity of the transition!
The reason is that the strength operator is a scalar in s
and spin, and is therefore not sensitive to the spin ‘‘deform
tion’’ that inhabits the BCS wave function in the isosca
phase. On the other hand, the isospin deformation in
isovector phase distorts the expectation value of the stre
operator, which contains isoscalar, isovector, and isoten
pieces. In Ref.@4# it was shown in a simpler model, based o
SO~5! and containing only isovector pairing interactions, th
projection of the generalized BCS quasiparticle vacuum o
states with good isospin after variation can fix this probl
~though there the analog of solution B was used as
‘‘isointrinsic state’’!. It is far from clear, however, that pro
jection will allow the dynamical mixing of isoscalar and i
ovector pairing before the phase transition is reached.
cently @17#, the Lipkin-Nogami method was shown to do th
trick at least in part, and it would be interesting to test it in
model like this one. On the other hand, the phases are m
even at the BCS level on the isoscalar side of the crit
point.
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The shortcomings of the RQRPA and the successes
generalized pairing theory raise the following question: C
the generalized quasiparticle vacuum be used as a sta
point for a ‘‘generalized QRPA’’ that works even in the re
gion of the phase transition? Something along these lines
been attempted in Ref.@18#, but only after forcing the BCS
to mix isoscalar and isovector pairing in an artifical way. O
BCS also appears not to mix the two kinds of pairs excep
the right of the critical point, a region that is probably u
physical in nuclei that undergo double-b decay. Perhaps a
more fruitful approach, therefore, will be a more se
consistent QRPA, in which the RPA and BCS equations
coupled. Such a procedure can rescue the Ikeda sum
@19# and could conceivably facilitate isoscalar-isovector m
ing at the BCS level even to the left of the critical poin
Other modifications of the basic BCS procedure, includ
approximations to projection, may also mix the pairin
modes without complicating the method too severely. Wh
of these approaches is the simplest and most useful rem
to be seen.
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