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Neutron-proton correlations in an exactly solvable model

J. Engel}, S. Pittel> M. Stoitsov? P. Vogel? and J. Dukelsky

1Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
2Bartol Research Institute, University of Delaware, Newark, Deleware 19716
3Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia-1784, Bulgaria
and Bartol Research Institute, University of Delaware, Newark, Deleware 19716
4Department of Physics, Caltech, 161-33, Pasadena, California 91125
SInstituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid, Spain
(Received 29 October 1996

We examine isovector and isoscalar neutron-proton correlations in an exactly solvable model based on the
algebra S@). We look particularly closely at Gamow-Teller strength and doyblecay, both to isolate the
effects of the two kinds of pairing and to test two approximation schemes: the renormalized neutron-proton
guasiparticle random phase approximati@QRPA) and generalized BCS theory. When isoscalar pairing cor-
relations become strong enough a phase transition occurs and the dependence of the Gamgsv-Teller
strength on isospin changes in a dramatic and unfamiliar way, actually increasing as neutrons are added to an
N=Z core. Renormalization eliminates the well-known instabilities that plague the QRPA as the phase tran-
sition is approached, but only by unnaturally suppressing the isoscalar correlations. Generalized BCS theory,
on the other hand, reproduces the Gamow-Teller strength more accurately in the isoscalar phase than in the
usual isovector phase, even though its predictions for energies are equally good everywhere. It also mixes
T=0 andT=1 pairing, but only on the isoscalar side of the phase transit®p556-28187)02704-(

PACS numbd(s): 21.60.Fw, 21.30.Fe, 23.40.Hc

[. INTRODUCTION ing the approximation that the ground state containspo
correlations? What are the properties of the “isoscalar
Pairing correlations are an important feature of nucleaphase,” if it is real? Is the renormalized QRRRQRPA
structure[1]. In heavy nuclei such correlations between neu{5,6], in which solutions are more stable, a good way to
trons and protons are usually neglected on the grounds thhandle the breakdown/phase transition? To what extent can
the two Fermi levels are far apart. In nuclei with~2z,  generalized BCS theory, a scheme for treatipgpairing on
however, the Fermi levels are close and neutron-proto@ more equal footing witmn andpp pairing and reviewed
(np) pairing correlations can be expected to play a signifi-in Ref. [2], quantify the interplay between the two phases?
cant role in nuclear structure and decfyr a review of work W€ address these questions here in a solvable model that
on np pairing theory see Ref2]). The importance of these incorporates both isovector and isoscalar pairing, making it

: - : - .considerably richer than the more schematic mo@els., the
proton-rich nuclei in astrophysical nucleosynthesis makes it~ *~ . S
vital that thenp correlations are well understood, and up- Elpkm model[ 7)) typically used for this kind of study.

coming experiments with radioactive beams will soon test The structure of this paper is as follows. In Sec. Il we
g experin describe the model and its analytic solution for energies and
our understanding.

. . . . Gamow-TellerB-decay matrix elements, stressing the exist-
Taking np co_r_relanon_s seriously comp_llcates _the usL_Jalence of two limiting solutions corresponding to pure isovec-
treatment of pairing, which stresses the interaction of lik&q, or jsoscalar pairing. We show that in the isoscalar phase,
particles in time-reversed orbits, i.e., the formatiorppfand  charge-changing processes have counterintuitive features.
nn pairs. As has been known for some tif&3], generaliz-  section Il contains an outline of the QRPA and RQRPA as
ing this picture raises at least two issues. First,gipenn,  realized in the solvable model, and applies them to single
andnp isovector pairs must all be treated on an equal footingand double3 decay to test the quality of the approximations.
so that isospin symmetry is respected as much as possible Sec. IV we describe generalized BCS theory for($0
[3,4]. Second, the competition between two kindsipfpair-  again with emphasisis oi-decay strength&hough we also
ing — isovector and isoscalaif&1 andT=0) — must be examine ground-state energieand again test the reliability
taken into account. This issue apparently arises even in nef the approximation scheme. Section V is a conclusion.
clei with N>Z, wherenp pairing is by most measures small.

For example, the rate of two-neutrino douldedecay within II. THE MODEL AND ITS EXACT SOLUTION
thenp quasiparticle random phase approximatiQRPA) is
extremely sensitive to the strength of isoscalar particle- We consider a set of degenerate single-particle orbitals,
particle (i.e., pairing correlations, making reliable calcula- characterized by,s=1/2,t=1/2. The total number of single-
tions difficult. When these correlations become strongParticle states i€)=2(2I+1). We make the model solv-
enough the method fails even to give finite answers. able by building a basis entirely from=0 operatorss},

The breakdown in the QRPA signals an impending phasavhich creates pairs with spi8=0 and isospinT=1 (with
transition. Is it real or an artifact of the assumption underly-projection v), and P, which creates pairs witls=1 and
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T=0 (spin projectionu). Together with the one body opera- 1
tors that generate S4) — the total spinS, the isospinT,
and the operatorry =30 (i), (i), — the L=0 pair cre-
ation and annihilation operators form the algebra&Q8].
The physics associated with this model has been studied pre- o7} =
viously [8—10], but with emphasis on energy levels; here our
focus will include charge-changing decay.
The most general Hamiltonian invariant under (80

omitting terms such aS- S andT- T that affect energies but osp

not wave functions, depends on three parameters and has the ;1
form [9]
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The first term in the Hamiltonian corresponds to isovector |G- - Overlaps between the ground state and the pure isovec-
. . . . . ._tor spin-singlet paired state vs the parameater the Hamiltonian of
spin-0 pairing, the second represents isoscalar spin-1 pairin

) ) . . . %’q. (1), for Q=12N=10 andS=T=0 (solid ling), S=0,T=2
and the last is dprimarily) particle-hole force in th& =1 (long dashes andS=0.T—4 (short dasheésHere and in Figs. 2, 4
S=1 channel. ! L

L. . . i 5, and 10 the quantity-x is used on the abscissa axis so that the
In certain important limits, analytic expressions for ener-

) . ; standard isovector phase is on the left.
gies and wave functions have been derivedx#1 and

gpn="0, the Hamiltoniar{8] conserves an S@) subalgebra ,
and corresponds to “standard” spin-singlet isovector pair- _BY Varying the parameter one can study the phase tran-

ing, with np pairs treated on an equal footing with like- sition from the standard spin-singlet isovector pairing phase,

particle pairs[11,12. The eigenstates, characterized by thethrough the SW) Wigner supermultiplet phase, into the
spin-triplet isoscalar pairing phase. In Fig. 1 we show the

number of nucleon pairs/ (we consider only nuclei with an > " \ ’
effects of this transitiorfwith g, fixed at zerg on the over-

even number of nucleohsthe isospinT, and the singlet-
. o ; lap between the ground state and the ground state of the
pairing seniorityv, have energies o ) X
standard spin-singlet paired system witl 1 andg,,=0.
9 (The abcissa is labeled by x, so that the more familiar
E(vs,T)=— g[(zN_vs)(4Q+ 6—2N—v)—4T(T+1)]. isovector phase is on the lefThe change produced by finite
gpnis illustrated in Fig. 2; wheg,,>0 increases, the Hamil-

2 tonian more nearly conserves @Ysymmetry and the phase
imilarly. for x= da-=0 th \uti transition becomes less pronounced. The overlap is an obvi-
Similarly, for x=-1 and ;=0 the exact solutions are s «gger parameter” in the model, and its point of inflec-
characterized by the spii and the triplet-pairing seniority o |ocates the phase transition. In even-even systems

v, and an analogous formula applies With-S,vs—vi. (=0, T even this point shifts to the right from the SY)-
This is the "isoscalar phase” that will cause the breakdownyt \ajue x=0 asT increases. The reason is that any excess

of the QRPA. Finally, ifx=0 the Hamiltonian is invariant o trons are necessarily in isovector pairs, making the tran-
under SUW4). The eigenstates are then labeled by a quantum

number\ corresponding to the irreducible $4) representa-
tion [A,\,0] as well as byS andT, and the eigenvalues are '-1

E()\,S,T)=—%[2./\/(94—3)—/\/2—)\()\4—4)]

+OpHAA+4)-S(S+1)-T(T+1)]. (3

overlap

S+T must be even if\/is even and odd otherwigghis is
true no matter what the Hamiltoniarirhe quantum number
N has values\=S+T,S+T+2, ... Ayax, Wherex =N
if N=<Q and 20— A otherwise.

The eigenvalues and eigenstates of the general Hamil-
tonian in Eqg.(1) can be obtained by diagonalizing in the
SU(4) basis. The matrices are tridiagonal and have very . . , ,
small dimension. Expressions for the matrix elemdntish 4 98 06 04 02 0 02 04 06 08
several typosappear in Ref[9], which, however, ignores
the particle-hole interaction. The same model with the FIG. 2. Same as Fig. 1, witB=T=0, except for different val-
particle-hole interaction included was solved approximatelyues ofg,,. The solid line corresponds tg,,=0, the long dashes to
in Ref.[13]. gpr=1.0g, and the short dashes ¢p,=2.0g.

______________________
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FIG. 3. The Gamow-Telle3* strength BGT) vs the initial FIG. 4. The Gamow-Telleg™ strength BGT) vs the Hamil-

neutron exces$,=T for O =12A=10. The solid curve is for the tonian parameter-x, for Q =12, N'=10, S=0 andg,,=0. The

pure isoscalar spin-triplet pairing phase and the dashed curve for thg)jiq curve corresponds =0, the long dashes =2, and the
standard isosvector spin-singlet phase. short dashes 17 =4 ' '

ilttjltcznlzotr?s.lsoscalar pairing more difficult for the remaining o s (N=T)(T+1)(20-N=T) o
We turn our attention now to transitions induced by the Q-T+1/2 '

Gamow-TelleGT) operatorsF: . Their matrix elements are

easily evaluated when the wave function is written in theHere the behavior of the strength @sincreases from 0 is

basis|V,\,S,T) because the operator is diagonalfand  surprisingly differentsee Fig. 3. The substantial rise at first

\ and can chang®& andT by one unit only. Explicit formu- seems counterintuitive since the neutron excess is increasing.

las can be constructed from the @WSQO4) Clebsch- Blocking is not the only factor at work, however. For lower

Gordan coefficients derived in Rdfl4]. The GT operators T the effect is overcome by the collective behavior of the

either increase or decreadé—Z (assumed to be non- bosonlikeS pairs in the final state.

negative; the corresponding strengths are callgd and In Fig. 4 we examine the behavior of the strength

B~ . The two strengths are constrained by the lkeda sum rul§(8") between the two limits, as a function efx for fixed
gph="0.[Wheng,,#0 all curves become flatter, because the

S(B7)—S(BT)=3(N-2). (4)  system is closer to the 4 limit.] As —x increases, the

strengthS(B*) decreases, vanishing when the(8UJimit is

In the SU4) limit the B* strength vanishes and one statereached and increasing again as the isoscalar pairing phase is

exhausts thgs™ strength. In the two extreme limits sur- approached until finally it is considerably larger than in the

rounding SUW4), i.e., x=1, g,,=0 (the isovector pairing isovector phase. The large strength is caused in part by the

phase¢ andx=—1, g,,=0 (the isoscalar phageve can de- transfer of protons frompp pairs, which cannot participate in

rive analytic expressions f@(3*) from the ground state as B+ decay, to isoscalanp pairs, which can. Only close to

a function of T=T,=(N—2)/2, since in those limits the x=—1, however are this effect and the parabolic isospin

Hamiltonian contains only the generators of an(9Gsub-  dependence fully present; wherx is small the strength can

group. TheB-decay operators break one p@f either kind,  be small as well and the isospin dependence complicated, as

leading to matrix elements between simple(SQepresen- is apparent from the crossings of curves in Fig. 4. A large

tations, the properties of which were studied in R&b]. In 8" strength(compared, e.g., to the Ikeda sum puleerefore

the spin-singlet isovector phase we find reflects very strong isoscalar pairing. If real, it would have
important consequences forp process nucleosynthesis.

(N=T)(T+1)(2Q-N—T)
(2T/3+1)(Q+1/2)

S(B")= ©)
lll. DOUBLE- B DECAY, THE QRPA,

. L N . AND THE RQRPA
This result applies in a singleshell with degeneracy@ as Q

well as in the model discussed here, which necessarily con- We have stresseg’ strength because of its simplicity
tains at least 2 degenerate levels in thej scheme and sensitivity to details of nuclear structure. Now, however,
(j=1%1/2). TheB™ strength is plotted as a function dffor ~ we want to discuss modifications of the QRPA, the most
0 =12, N=10 in Fig. 3. Except for the initial plateau at low frequent and controversial application of which is to double-
T the behavior of the curve is qualitatively similar to that 8 decay. Actually, in a model with as few states as this one,
obtained in BCS theory, where the neutron-proton interacthe 8* strength from the “final” nucleus f) essentially
tion is ignored. The gradual decrease in strength Witls  determines the doublg-decay matrix elemenfconsidered
caused by Pauli blocking. here in the closure approximation for simplicity and because
In the isoscalar phase the result is the energy denominator can change without a concommitant
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change in the wave functionsThe reason is that the matrix 70
element has the form 60
50
40
30
20
10
140

Mé4<c|>=<or|i2j o(i)-a()r(i)_7(j)_10])y (D)

B(GT)

and for a moderate neutron excess fhestrength, the other
relevant quantity, hardly varies witk. In realistic calcula-
tions, the QRPA, which has many desirable features, suffers
an unfortunate instability whegy,,=(1—x)g/2 becomes too
large that manifests itself through infinite values for both the 1%
B strength and the doubl@-decay rate. A number of rem- & 8
edies have been proposed recently. One that has receiveds €0

120

particular attention is the renormalized QRRRQRPA 40
[5,6], which eliminates the instability of the QRPA through a 20 / =
self-consistent calculation of the ground state. The model g — L £ ‘ ' /
presented here is ideal for examining how both QRPA and -0 -0 09 05 0 =05 00 08 10
the new approximation work.

The p-n QRPA, described, for example, in R¢13] and FIG. 5. The Gamow-Teller strength(@T) for 8~ (upper parts

applied to S@) in the same paper, begins with the ordinary of each paneland™* (lower parts of each panels — x. The exact
BCS ansatz, a coherent state of isovector neutron-neutra@suits are denoted by the solid lines and the RQRPA results by the
and proton-proton pairs, and proceeds by admixing neutrondotted lines. Calculated fd2 =12, A’=10, S=0, andg,,=g and
proton quasiparticle pairs into the ground and excited stateseveral values of the isospih labeling the corresponding panels.

In SQO(8) the procedure leads to 2 by 2 matrix equations in

each of the twaFermi/isovector pairing and Gamow-Teller/ A and() and several values df, along with the QRPA and
isoscalar pairingchannels and can be solved by simple di-RQRPA approximations to the strengths. The QRPA break-
agonalization. More specificially, the one excited state indown is reflected in the expression for tig" strength,

each channel§=0 or S=1) is written in the form which blows up at the critical value of (or g,,). By con-
_ trast the RQRPA strength is perfectly stable. The graphs
1S)=(Xd apet]-=05= Y apa,]-=°9)[0), (8)  make it clear, however, that the stability is achieved at a

significant price; the very real phase transition to a ground

wherea), o (a,, a,) create(destroy proton and neutron  state dominated by isoscalar pairing correlations changes the
quasiparticles, the brackets indicate angular momentum colehavior ofS(3%), causing the QRPA to break down, but
pling, |0) is the QRPA ground state, anX{,Y,) and (X,,  refuses to show itself at all in the RQRPA approximation.
Y,) are the “physical” eigenvectors in the spin-0, isospin-1 The reason is that in preservirtgelf-consistently the basic
(Fermi, and spin-1 isospin-0Gamow-Telley channelsad- ~QRPA ansatz the RQRPA limits the isoscalar correlations in
ditional details are in Ref13]). The two channels decouple the ground state. Put another way, the QRPA breaks down
and for two-neutrino doublg decay only the second is rel- for a reason; there really is a phase transition and it really is
evant. Associated with th®=1 eigenvector is an eigenvalue nearby, and the RQRPA erases all traces of it. Thus at the
that becomes complex whey, reaches a critical value con- Very point at which the QRPA fails the RQRPA also begins
nected with the impending phase transition. The states witéP deviate badly from the exact result. To make matters
complex eigenvalues are not normalizable and have nworse, and this has been noted elsewli&f8, renormaliza-
physical significance, so that the approximation fails to givetion destroys one of the nicest features of the QRPA, the
even an incorrect answer beyond the critical point. This igoreservation of the Ikeda sum rule E¢). In this model, at
the “collapse” referred to above and is preceded by rapideast, nothing is gained by using the RQRPA.
changes in thg8™ and doubles-decay amplitudes. To demonstrate this explicitly for doubj@-decay, we

In the RQRPA, described for charge-changing modes ishow in Fig. 6 the matrix elemenZ; for A'=12 and
Refs.[5,6], the two channels are coupled in an attempt toT=4 as a function ofj,,/gpair, Wheregp,=(1+x)/2. We
make the vacuum self-consistent and the resulting equationsse this parameter rather tharbecause it more closely re-
are nonlinear. For the §8) model the equations have seven sembles that used in realistic calculations. We have set
variables: the two sets of's andY’s, the eigenvalue asso- gpn=1.59 so that the QRPA breaks down just beyond the
ciated with each set, and a renormalization parameter. Theoint at which the matrix element crosses the origimen
iterative procedure advocated in RES] often does not con-  gpp=0pair I-€., at the SWW) point]. This is the situation in
verge here, but the model's simplicity makes the equationsnore realistic calculations as well, but our model shows it to
easy to solve by other means. Unlike the QRPA, the RQRPAe pure coincidence; the breakdown of the QRPA moves to
never exhibits the analog of the complex eigenvalues thaarger g,, as the essentially independent parametgy is
signal instability, and therefore never yields rapidly changingncreased, while the crossing point never moves, implying
matrix elements. The question is whether any importanthat nothing fundamental is behind the proximity of the
physics is lost in the process of guaranteeing a ground statgossing to the point at which the QRPA fails in realistic
that is built on the BCS state. calculations. Interestingly, the exact matrix element in our

Figure 5 presents the exg8t andB* strengths for fixed model varies smoothly as the phase transition is traversed, in
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15 theory naturally accommodates all pairing modes on an
equal footing. This includes the usyap andnn pairing as
well aspn, np, andpn pairing. Note that here and in sub-
sequent discussion we explicitly distinguish the pairing of
particles in “the same orbit'(e.g.,np) from the pairing of
particles in “time-reversed orbits(e.g.,np).

We have chosen to formulate the theory in terms of the
density matrixp(«) and the pairing tensd( «). These ma-
trices, after invoking time-reversal invariance, take the pa-
rametrized forms

p1 poe "’ 0 pse '’
pe’  p2 —pse” "’ 0
pla)=1 o —pse'’ p1 pee’ |
pse'’ 0 poe”'’ p2
a
-0 —i6 —i6
g /g . 0 tze ty toe
pp’ “pair “ig i
—tze”! 0 to€ to
FIG. 6. Doubleg decay matrix elemeril éVT VS Upp/Gpair- The (@) -t —toe'g 0 t3e'9 ©
exact results are denoted by the solid line, the RQRPA results by —te it _t _t.elf 0
0 2 3

a

the dashed line, and the QRPA results by the dotted line. Calculated

for =12, N=12,5=0,T=4 =1.59. . - . o ..
or N=12,5=0, + andgp=1.5 with the coefficients interrelated by four unitarity conditions

sharp contrast to the rapid drop in the prediction of the (1= p1—p2)po— (t1+1)to=0,
QRPA, which as noted blows up completely just past the
crossing point. The RQRPA, as in the last figure, begins to (1=p1—po)pat (t1+tr)t3=0,
fail at the same point and offers little advantage over the
QRPA itself. p1—pi—ph—pi—t5—ti—t5=0,
In more realistic calculations this last conclusion may or
may not hold. The simple model examined here contains pa—p3—pi—pi—ti—t5—t3=0. (10)

only two very collective degrees of freedom. It is certainly

possible that with less collectivity the QRPA approximation In our application to the S@) model, we impose con-

is worse and the breakdown occurs far from the actual phasgraints on the average number of neutrons and the average
transition. In that event the RQRPA would offer advantagesnhumber of protons of the system, thereby fixing the param-
especially in the region between the breakdown of the QRP&tersp; andp, according to

and the real phase transition. It would therefore be useful to
examine the approximation in a model that dilutes the col- pr=o—
lectivity of the T=0 np pairs but is still solvable. A two- 120
level version of S@), i.e., SO(8 SO(8)[10], might be a ] _
good place to start. Here we can say only that we find nd WO more parameterg, andps, are fixed from the first two

evidence supporting the validity of the RQRPA. of the unitarity conditiong10).
Our procedure is first to express the energy of the gener-

alized quasiparticle vacuum as a function of the remaining
IV. APPLICATION OF “GENERALIZED BCS THEORY" five parameters of the density matrix and pairing tensor and
then to look for local minima, rather than to solve the usual
In this section, we apply generalized pairing theory to theself-consistent eigenvalue equation. The remaining two uni-
SQ(8) model, to assess its ability to provide a meaningfultarity conditions(10) are implemented via Lagrange multi-
approximate description of the ground-state dynamics of thgliers. The system of equations arising from these variational
model in the various phases. We simplify the model slightlyconditions in principle admits several solutions, the energeti-
by settinggp;, to zero(andg to 2, which merely scales the cally lowest of which defines the generalized BCS approxi-
energies mation to the ground state of the system. In this simple
Generalized pairing theory is well reviewed in RE2]  model, all solutions correspond =0 or /2.
and thus will not be discussed in detail here. Suffice it to say Figure 7 shows the energies associated with the solutions
that the theory is founded in the Hartree-Fock-Bogoliuobowto the generalized BCS equations for the cas@ef12 and
(HFB) approximation, supplemented by the further assumpA/=5. The results are plotted as a function of the Hamil-
tion that the only nonzero matrix elements of the Hartreetonian parametex and for various values of the neutron
Fock and pair potentials are those connecting the four statesumberN. The solutions displayed in the figure have the
|ap), |an), |ap), and |an), where |a) denotes the state following character. L
obtained by time-reversal on the stdie). As such, the Solution A corresponds to purpp andnn pairing.

z N

and pzzm. (12)
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FIG. 7. Energiesin arbitrary unit$ associated with the different FIG. 8. Comparison of exact ground-state enefgplid curve
variational solutions to the generalized BCS equations, fowith the approximate result obtained in the generalized BCS ap-
Q=12N=5. The panels are labeled by the neutron numer proximation(dashed curve The results are shown fa2 =12 and
Here and in Fig. 8 the abscissa is the Hamiltonian parameter N=5, and for different values of the neutron numbkfenergies in
running from 1 to—1. The standard isovector paired state is on thearbitrary unitg.
left as in the other figures.

o o We now turn one last time to Gamow-Teller matrix ele-

Solution B corresponds to puré=1 pn andnp pairing.  ments, focusing her@s abovgon the summeg@™ strength.

It only exists whenN=2Z, where it is precisely degenerate We obtain the strength by evaluating the quasiparticle

(but does not mixwith solution A. o ___vacuum expectation value of the+2 body operator
Solution C in general involves botiT=0 pn and np
pairing andT =1 pp andnn pairing. The relative importance ¢ -3 V1w ime i me +
of these different pair correlations is dictated by the three B 1y mg o g (=) (1uz 51| 25y )
parameters,, t;, andt,. To a good approximation, the first
reflects the number of collectiv& =0 pn and np pairs, X(1—pzmg) %msz_'““)plz,ml mq — Mymy_m,
whereas the latter two reflect the number of collectpe 2
X X . . t
andnn pairs, respectively. Ag increases from-1, the so X0 e+ Plm, ] (12

lution eventually merges into solution A, ceasing to exist
beyond that “critical point.” At precisely this point, there is Herep'(p) creategannihilates a real proton ana’(n) cre-

ae%r;?gﬁfeénatgé gharr?)(;(ter}r:az];rghtermsnr%lfrr:gr:t?htg t?l.rlidsl(;;?g O'gtes(annlhllate$ a real neutron. When the ground state is
9 pp ominated by ordmarpp andnn pairing and represented by

affairs.
Figure 8 shows the generalized pairing results for the solution A, the total3* strength is given by the usual for-

ground-state energy in comparison with the exact energies

discussed earlier, again fé2=12 and N=5. Included are 3NZ

results corresponding to values of the neutron particle num- Sg+=3Z— ETR (13
ber N ranging fromN=5 to N=10. The results foN=0

throughN =4 follow from the symmetry of the problem. The  \when solution C applies, the result is

generalized pairing results correctly reproduce the trends of

the exact results, equally well in both phases. The good pre- 3Nz 22

dictions hold up for even-even nuclei, odd-odd nuclei, sym- Spr=32- E’L“Q (14)

metric nuclei withN=Z, and nuclei witiN=0 orZ=0. The

generalized pairing approximation even reproduces thé€The 8~ strengths follow from the above and the Ikeda sum
gradual shift of the phase transition to negative values of rule, which is preserved at the BCS leyeln Fig. 9, we
when the difference betweéwh andZ increases. compare the exadtEgs. (5) and (6)] and generalized BCS



55 NEUTRON-PROTON CORRELATIONS IN AN EXACTLY ... 1787

40

| TN

” 7 N
4 N
30 + // \\ %
4
4
J 4
7
& 20
m L
~,
4 ~
~
~
~ N -
10 S~
~ - - . §
0 I e L ,
0 1 2 3 4 5 6 7 8 9 10 1.0 05 0.0 05 1.0
Initial isospin T -X
FIG. 9. The Gamow-Telleg* strength BGT) for Q=12 and FIG. 11. “Numbers” of different types of pairs in the exae)

N=10 as a function of the isospif in the two limiting phases. and BCS(b) solutions as a function of x, for =12, N'=10, and
Solid lines represent the exact solutions and dashed lines the gefi,=4. The solid line measures the numbemaf pairs, the dashed
eralized BCS solutions in the isovect@ottom two lineg and isos-  line the number ofpp pairs, the dot-dashed line the number of
calar (top two lineg phases. T=0 np pairs, and the dotted line the numb@onzero only be-
cause of the rough definition of “number’dof T=1 np pairs.
results for the summed™ strength as a function df, in the
isovector and isoscalar limits whed=12 andN=10. So- B strength that shows up as the @Wlimit is approached,
lution A, which is equivalent to the ordinary BCS product however, is not described well by the generalized BCS for-
wave function, reproduces the general trends of the exaghalism, either on the isoscalar or isovector side. More accu-
B+ strength but differs significantly &6,— 0. The results in  rate results in this regime may require an extension beyond
the isoscalar limit are much better for all valuesTgf, in- our BCS approximation that fully accommodates the coex-
cludingT,=0. Only for energies are the BCS results equallyistence of all the different pairing modes on both sides of the
good in both phases. phase transition.

Figure 10 compares the exact and generalized BCS A striking feature of Fig. 10 is the rise @* strength in
strengths for the sam@ and A values as in Fig. 9. Here, the isoscalar region as x increases to 1. That this rise is
however, we only consider the results fd=14 andZ=6  correlated as noted earlier with the transfer of nucleons from
(T,=4), but for all values ok. Once again, the generalized pp andnn pairs toT =0 np pairs(in time reversed orbits —
BCS approximation provides a somewhat better reproductiowe have dropped the overscpris apparent from Fig. 11
of the trends in the exact results when the system is domiwhere we plot the number of collective pairs of different
nated by isoscalar pairing correlations. The suppression df/pes for the same system as in Fig. 10. We show both the

generalized BCS results and the “exact” results, using the
4 , : , : . . . . standard prescription for operators that roughly measure the
number of collective pairf4]. (It is this prescription, which
we believe can be improved by a better treatment of Pauli
effects, that is responsible for the appearance of low levels of
np pairs before the phase transition, where the corresponding
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Py _ pairing tensor is zerp.Part (b) of the figure clearly shows
- ya that in BCS theory the wave function does not change from
g *r 1 its product form until the phase transition is reached. It also

shows that the constant wave function is actually not so bad
an approximation wheit, is as large as in the figure. Only

ol | whenN=~Z does the theory, which will not reflectp pair-
/ ing to the left of the phase transition, fail badly. Even then,
st 1 however, the BCS approximation manages to reproduce en-
ergies well.
0 -1 -(;.8 -OI,6 -0‘4 -0‘.2 ())( 0{2 OTA OTG OjB 1

) ) V. SUMMARY AND CONCLUDING REMARKS
FIG. 10. Exact(solid) and generalized BC&lashed Gamow-

Teller 8% strength BGT) vs the Hamiltonian parameterx for We have examined the interplay between isovector and
0=12, N=10, andT,=4. isoscalar pairing modes in an exactly solvable(®0nodel,
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focusing on the matrix elements of charge-changing opera- The shortcomings of the RQRPA and the successes of
tors. The behavior of th8™ strength in the isoscalar phase is generalized pairing theory raise the following question: Can
counterintuitive, rising with increasing neutron excess in-the generalized quasiparticle vacuum be used as a starting
stead of falling. Doublg8 decay, by contrast, varies point for a “generalized QRPA” that works even in the re-
smoothly and predictably on both sides of the phase transgion of the phase transition? Something along these lines has
tion. This behavior is in sharp contrast to the predictions obeen attempted in Ref18], but only after forcing the BCS
the QRPA, which fails when isoscalar pairing becomes todo mix isoscalar and isovector pairing in an artifical way. Our
strong. BCS also appears not to mix the two kinds of pairs except to
Partly for this reason, we have tested two approximatiorthe right of the critical point, a region that is probably un-
schemes that purport to better accommodate neutron-protghysical in nuclei that undergo doubk-decay. Perhaps a
correlations. One, the RQRPA, works well in the isovectormore fruitful approach, therefore, will be a more self-
phase but fails completely to capture the physics of the phassonsistent QRPA, in which the RPA and BCS equations are
transition. Ironically the second approximation, provided bycoupled. Such a procedure can rescue the lkeda sum rule
generalized BCS theory, does a better job for the totaJ19] and could conceivably facilitate isoscalar-isovector mix-
B-decay strength in the isoscalar phase than in the isovectang at the BCS level even to the left of the critical point.
phase.(It successfully reproduces ground-state energies evother modifications of the basic BCS procedure, including
erywhere, however, even in the vicinity of the transitjon. approximations to projection, may also mix the pairing
The reason is that the strength operator is a scalar in spaeeodes without complicating the method too severely. Which
and spin, and is therefore not sensitive to the spin “deformaef these approaches is the simplest and most useful remains
tion” that inhabits the BCS wave function in the isoscalarto be seen.
phase. On the other hand, the isospin deformation in the
isovector phase distorts the expectation value of the strength
operator, which contains isoscalar, isovector, and isotensor
pieces. In Refl4] it was shown in a simpler model, based on  This work was supported in part by the National Science
SQ(5) and containing only isovector pairing interactions, thatFoundation under Grant Nos. PHY-9303041, PHY-9600445,
projection of the generalized BCS quasiparticle vacuum ont@nd INT-9224875, by the U.S. Department of Energy under
states with good isospin after variation can fix this problemGrant Nos. DE-FG05-94ER40827 and DE-FGO03-88ER-
(though there the analog of solution B was used as thd0397, by NATO under Grant No. CRG.900466, by the Bul-
“isointrinsic state”). It is far from clear, however, that pro- garian National Foundation for Scientific Research under
jection will allow the dynamical mixing of isoscalar and is- Contract No.®-527, by the DIGICYT(Spair under Con-
ovector pairing before the phase transition is reached. Rdract No. PB95/0123, and by the European Union under Con-
cently[17], the Lipkin-Nogami method was shown to do the tract No. CIT*-CT94-0072. One of the authord.V.S.)
trick at least in part, and it would be interesting to test it in awould like to acknowledge the support of the Fulbright
model like this one. On the other hand, the phases are mixeBoundation, and two othefs.E. and P.\j.the hospitality of
even at the BCS level on the isoscalar side of the criticathe Institute for Nuclear Theory at the University of Wash-
point. ington, where some of this work was carried out.
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