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Elimination of the vacuum instability for finite nuclei in the relativistic s-v model
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The s-v model of nuclei is studied at leading order in the 1/N expansion thereby introducing the self-
consistent Hartree approximation, the Dirac sea corrections and the one fermion loop meson self-energies in a
unified way. For simplicity, the Dirac sea is further treated within a semiclassical expansion to all orders. The
well-known Landau pole vacuum instability appearing in this kind of theory is removed by means of a scheme
recently proposed in this context. The effect of such a removal on the low momentum effective parameters of
the model, relevant to describe nuclear matter, finite nuclei, andNN force, is analyzed. The one fermion loop
meson self-energies are found to have a sizeable contribution to these parameters. However, such contribution
turns out to come mostly from the Landau poles and is thus spurious. We conclude that the fermionic loop can
only be introduced consistently in thes-v nuclear model if the Landau pole problem is dealt with properly.
We comment on the possibility of a nonperturbative formulation of the model.@S0556-2813~97!02604-6#
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I. INTRODUCTION

The relativistic approach to nuclear physics has attrac
much attention. From a theoretical point of view, it allow
one to implement, in principle, the important requirements
relativity, unitarity, causality, and renormalizability@1#.
From the phenomenological side, it has also been succe
in reproducing a large body of experimental data@1–5#. In
the context of finite nuclei a large amount of work has be
done at the Hartree level but considering only the posit
energy single particle nucleon states. The Dirac sea has
been studied since it is required to preserve the unitarity
the theory. In addition, the only limit in which the Dirac se
contribution becomes negligible corresponds to that of i
nite nucleon mass, which also coincides with the nonrela
istic limit. If the sea were negligible a fully relativistic
framework would be superfluous from a theoretical point
view. Actually, Dirac sea corrections have been found to
non-negligible using a semiclassical expansion which
computed to fourth order, seems to be quickly converg
@6#. Therefore, it would appear that the overall theoreti
and phenomenological picture suggested by the relativ
approach is rather reliable.

However, it has been known for ten years that suc
description is internally inconsistent. The vacuum of t
theory is unstable due to the existence of tachyonic pole
the meson propagators at high Euclidean momenta@7#. Al-
ternatively, a translationally invariant mean-field vacuu
does not correspond to a minimum; the Dirac sea vacu
energy can be lowered by allowing small size mean-fi
solutions@8#. Being a short-distance instability it does n
show up for finite nuclei at the one fermion loop level a
within a semiclassical expansion~which is an asymptotic
large size expansion!. For the same reason, it does not app
either in the study of nuclear matter if translational inva
ance is imposed as a constraint. However, the instability
in either in an exact mean-field valence plus sea~i.e., one
fermion loop! calculation for finite nuclei or in the determ
550556-2813/97/55~4!/1767~14!/$10.00
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nation of the correlation energy for nuclear matter~i.e., one
fermion loop plus a boson loop!. Unlike quantum electrody-
namics, where the instability takes place far beyond its
main of applicability, in quantum hadrodynamics it occurs
the length scale of 0.2 fm that is comparable to the nucle
size and mass. Therefore, the existence of the instability c
tradicts the original motivation that lead to the introducti
of the field theoretical model itself. In such a situation se
eral possibilities arise. First, one may argue that the mode
defined only as an effective theory, subjected to inher
limitations regarding the Dirac sea. Namely, the sea may
best be handled semiclassically, hence reducing the scop
applicability of the model. This interpretation is intellectu
ally unsatisfactory since the semiclassical treatment wo
be an approximation to an inexistent mean-field descripti
Alternatively, and taking into account the phenomenologi
success of the model, one may take more seriously the s
of the original proposal@1#, namely, to use specific renorma
izable Lagrangians where the basic degrees of freedom
represented by nucleon and meson fields. Such a path
been explored in a series of papers@9–11# inspired by the
early work of Redmond and Bogolyubovet al. on nonas-
ymptotically free theories@12,13#. The key feature of this
kind of theory is that they are only defined in a perturbat
sense. According to the latter authors, it is possible
supplement the theory with a prescription based on an e
fulfillment of the Källén-Lehmann representation of the two
point Green’s functions. The interesting aspect of this p
posal is that the Landau poles are removed in such a way
the perturbative content of the theory remains unchanged
particular, this guarantees that the perturbative renorma
ability is preserved. It is, however, not clear whether th
result can be generalized to three- and higher-point Gre
functions in order to end up with a completely well-behav
field theory. Although the prescription to eliminate th
ghosts may seem to bead hoc, it certainly agrees more with
the original proposal and provides a workable calculatio
scheme.
1767 © 1997 The American Physical Society
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The above-mentioned prescription has already been u
in the context of nuclear physics. In Ref.@14#, it was applied
to ghost removal in thes exchange in theNN potential.
More recently, a study of the correlation energy in nucle
matter in thes-v model @11# and also in the evaluation o
response functions within a local density approximation@9#
has been explored. Although this model is rather simple
embodies the essential field theoretical aspects of the p
lem while still providing a reasonable phenomenological
scription. We will use thes-v model in the present work, to
estimate the binding energy of finite nuclei within a se
consistent mean-field description, including the effects d
to the Dirac sea, after explicit elimination of the ghosts.
exact mean-field calculation, both for the valence and s
does make sense in the absence of a vacuum instability b
practice it becomes a technically cumbersome problem. T
is due to the presence of a considerable number of nega
energy bound states in addition to the continuum states@5#.
Therefore, it seems advisable to use a simpler computati
scheme to obtain a numerical estimate. This will allow us
see whether the elimination of the ghosts induces dram
changes in the already satisfactory description of nuc
properties. In this work we keep the full Hartree equatio
for the valence part but employ a semiclassical approxim
tion for the Dirac sea. This is in fact the standard proced
@3–5#. As already mentioned, and discussed in previo
work @6#, this expansion converges rather quickly and the
fore might be reliably used to estimate the sea energy u
possible corrections due to shell effects.

The paper is organized as follows. In Sec. II we pres
the s-v model of nuclei in the 1/N leading approximation,
the semiclassical treatment of the Dirac sea, the renorma
tion prescriptions, and the different parameter fixing schem
that we will consider. This is done within the effective actio
formalism. In Sec. III we discuss the vacuum instabil
problem of the model and Redmond’s proposal. We a
study the implications of the ghost subtraction on the lo
momentum effective parameters. Based on the existenc
nontrivial ultraviolet fixed points, we argue that there is
perturbatively equivalent action which becomes amenabl
a lattice treatment. In Sec. IV we present our numerical
sults for the parameters, binding energies, and mean
dratic charge radii of some closed-shell nuclei and
nucleon-nucleon potential mediated byv-meson exchange
Our conclusions are presented in Sec. V. Explicit expr
sions for the zero momentum renormalized meson s
energies and related formulas are given in the Appendix

II. s-v MODEL OF NUCLEI

In this section we revise thes-v model description of
finite nuclei disregarding throughout the instability proble
this will be considered in the next section. The Dirac s
corrections are included at the semiclassical level and re
malization issues as well as the various ways of fixing
parameters of the model are also discussed here.

A. Field theoretical model

Our starting point is the Lagrangian density of thes-v
model @1,3–5# given by
ed

r

it
b-
-

e

a,
in
is
ve

al
o
tic
ar
s
-
e
s
-
to

t

a-
s

o
-
of

to
-
a-
e

-
f-

;
a
r-
e

L~x!5C~x!$gm@ i ]m2gvV
m~x!#2@M2gsf~x!#%C~x!

1 1
2 @]mf~x!]mf~x!2ms

2f2~x!#2 1
4Fmn~x!Fmn~x!

1 1
2mv

2Vm~x!Vm~x!1dL~x!. ~1!

C(x) is the isospinor nucleon field,f(x) the scalar field,
Vm(x) the v-meson field, andFmn5]mVn2]nVm . In the
former expression the necessary counterterms required
renormalization are accounted for by the extra Lagrang
term dL(x) ~including meson self-couplings!.

Including Dirac sea corrections requires taking care
renormalization issues. The best way of doing this in
present context is to use an effective action formalism wh
is manifestly renormalization group invariant. Further w
have to specify the approximation scheme. The effective
tion will be computed at lowest order in the 1/N expansion,
N being the number of nucleon species~with gs andgv of
order 1/AN), that is, up to one fermion loop and tree level f
bosons. This corresponds to the Hartree approximation
fermions including the Dirac sea@15#.

In principle, the full effective action would have to b
computed by introducing bosonic and fermionic sourc
However, since we will consider only stationary situation
we do not need to introduce fermionic sources. Instead,
will proceed as usual by integrating out exactly the fermio
degrees of freedom. This gives directly the bosonic effect
action at leading order in the 1/N expansion:

G@f,V#5GB@f,V#1GF@f,V#, ~2!

where

GB@f,V#5E @ 1
2 ~]mf]mf2ms

2f2!2 1
4FmnF

mn

1 1
2mv

2VmV
m#d4x ~3!

and

GF@f,V#52 i lnDet@gm~ i ]m2gvV
m!2~M2gsf!#

1E dL~x!d4x. ~4!

The fermionic determinant can be computed perturbative
by adding up the one-fermion loop amputated graphs w
any number of bosonic legs, using a gradient expansion o
any other technique. The ultraviolet divergences are to
canceled with the counterterms by using any renormaliza
scheme; all of them give the same result after fitting to phy
cal observables.

The effective action so obtained is uniquely defined a
completely finite. However, there still remains the freedo
to choose different variables to express it. Actually, the n
merical value of the effective action is independent of t
renormalization point@16#. We will work with fields renor-
malized at zero momentum. That is, the bosonic fie
f(x) andVm(x) are normalized so that their kinetic energ
term is the canonical one. This is the choice shown abov
GB@f,V#. Another usual choice is the on-shell one, name
to rescale the fields so that the residue of the propagato
the meson pole is unity. Note that the Lagrangian mass
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55 1769ELIMINATION OF THE VACUUM INSTABILITY FOR . . .
rametersms and mv do not correspond to the physic
masses~which will be denotedms andmv in what follows!
since the latter are defined as the position of the poles in
corresponding propagators. The difference comes from
fermion loop self-energy inGF@f,V# that contains terms
quadratic in the boson fields with higher order gradients.

Let us turn now to the fermionic contributionGF@f,V#.
We will consider nuclear ground states of spherical nuc
therefore the spacelike components of thev-meson field
vanish@5# and the remaining fieldsf(x) andV0(x) are sta-
tionary. As is well known, for stationary fields the fermion
energy, i.e., minus the actionGF@f,V# per unit time, can be
formally written as the sum of single particle energies of
fermions moving in the bosonic background@15#,

EF@f,V0#5(
n

En ~5!

and

$2 ia¹1gvV0~x!1b@M2gsf~x!#%cn~x!5Encn~x!. ~6!

Note that what we have called the fermionic energy conta
not only the fermionic kinetic energy, but also the potent
energy coming from the interaction with the bosons.

The orbitals, and thus the fermionic energy, can be
vided into valence and sea, i.e., positive and negative en
orbitals. In realistic cases there is a gap in the spect
which makes such a separation a natural one. The vale
energy is therefore given by

EF
val@f,V#5(

n
En
val . ~7!

On the other hand, the sea energy is ultraviolet divergent
requires the renormalization mentioned above@3#. The ~at
zero momentum! renormalized sea energy is known in a gr
dient or semiclassical expansion up to fourth order and
given by @6#

E0
sea52

N

8p2M
4E d3xH S F

M D 4lnF

M
1
gsf

M
2
7

2 S gsfM D 2
1
13

3 S gsfM D 32 25

12S gsfM D 4J ,
E2
sea5

N

8p2E d3xH 23lnF

M
~¹V!22 ln

F

M
~¹F!2J ,

E4
sea5

N

2880p2E d3x$211F24~¹F!4

222F24~¹V!2~¹F!2144F24@~¹ iF!~¹ iV!#2

244F23@~¹ iF!~¹ iV!#~¹2V!28F24~¹V!4

122F23~¹2F!~¹F!2114F23~¹V!2~¹2F!

218F22~¹2F!2124F22~¹2V!2%. ~8!

Here,V5gvV0, F5M2gsf, andN is the isospin degen
eracy of the nucleon~i.e., N52 in the real world!. The sea
energy is obtained by adding up the terms above. The fo
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and higher order terms are ultraviolet finite as follows fro
dimensional counting. The first two terms, being renorm
ized at zero momentum, do not contain operators with
mension four or less, such asf2, f4, or (¹V)2, since they
are already accounted for in the bosonic termGB@f,V#. Note
that the theory has been renormalized so that there are
three- or four-point bosonic interactions in the effective a
tion at zero momentum@3#.

By definition, the true value of the classical fields~i.e., the
value in the absence of external sources! is to be found by
minimization of the effective action or, in the stationary ca
of the energy

E@f,V#5EB@f,V#1EF
val@f,V#1EF

sea@f,V#. ~9!

Such minimization yields the equations of motion for t
bosonic fields,

~¹22ms
2!f~x!52gs@rs

val~x!1rs
sea~x!#,

~¹22mv
2!V0~x!52gv@rval~x!1rsea~x!#. ~10!

Here, rs(x)5^C̄(x)C(x)& is the scalar density and
r(x)5^C†(x)C(x)& the baryonic one:

rs
val ~sea!~x!52

1

gs

dEF
val ~sea!

df~x!
,

rval ~sea!~x!51
1

gv

dEF
val ~sea!

dV0~x!
. ~11!

The set of bosonic and fermionic equations, Eqs.~10! and
~6!, respectively, are to be solved self-consistently. Let
remark that treating the fermionic sea energy using a gr
ent or semiclassical expansion is a further approximation
top of the mean-field approximation since it neglects p
sible shell effects in the Dirac sea. However, a direct solut
of the mean-field equations including renormalization of t
sum of single-particle energies would not give a physica
acceptable solution due to the presence of Landau gho
They will be considered in the next section.

At this point it is appropriate to make some comments
renormalization. As we have said, one can choose diffe
normalizations for the mesonic fields and there are also s
eral sets of mesonic masses, namely, on-shell and at
momentum. If one were to write the mesonic equations
motion directly, by similarity with a classical treatmen
there would be an ambiguity as to which set should be us
The effective action treatment makes it clear that the m
sonic field and masses are those at zero momentum. In
regard, let us note that a similar set of equations derived
Ref. @9# incorrectly ignore a wave-function renormalizatio
factor since they are used for on-shell parameters. On
other hand, since we have not included bosonic loops,
fermionic operators in the Lagrangian are not renormaliz
and there are no proper vertex corrections. Thus the nuc
massM , the nuclear densitieŝCC̄&, and the combinations
gsf(x) andgvVm(x) are fixed unambiguously in the reno
malized theory. The fermionic energyEF@f,V#, the poten-
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tialsF(x) andV(x), and the nucleon single particle orbita
are all free from renormalization ambiguities at leading or
in 1/N.

B. Fixing of the parameters

The s-v and related theories are effective models
nuclear interaction, and hence their parameters are to
fixed to experimental observables within the considered
proximation. Several procedures to perform the fixing can
found in the literature@2,4,5#; the more sophisticated ver
sions try to adjust, by minimizing the appropriatex2 func-
tion, as many experimental values as possible through
whole nuclear table@4#. These methods are useful when t
theory implements enough physical elements to provid
good description of atomic nuclei. The particular model
are dealing with can reproduce the main features of nuc
force, such as saturation and the correct magic numb
however, it lacks many of the important ingredients
nuclear interaction, namely Coulomb interaction andr and
p mesons. Therefore, we will use the simple fixing sche
proposed in Ref.@2# for this model.

Initially there are five free parameters: the nucleon m
(M ), two boson Lagrangian masses (ms andmv), and the
corresponding coupling constants (gs and gv). The five
physical observables to be reproduced are taken to be
physical nucleon mass, the physicalv-meson massmv , the
saturation properties of nuclear matter~binding energy per
nucleonB/A and Fermi momentumkF), and the mean qua
dratic charge radius of40Ca. In our approximation, the equa
tion of state of nuclear matter at zero temperature, and he
its saturation properties, depends only on the nucleon m
and onms,v andgs,v through the combinations@3# ~in fact,
minus the meson exchange nucleon-nucleon potential
zero four momentum!

Cs
25gs

2M
2

ms
2 , Cv

25gv
2M

2

mv
2 . ~12!

At this point, there still remain two parameters to be fixe
e.g.,mv andgs . Now we implement the physicalv-meson
mass constraint. From the expression of thev propagator at
the leading 1/N approximation, we can obtain the value
the physicalv pole as a function of the Lagrangian param
etersM , gv , andmv or more conveniently as a function o
M , Cv , andmv ~see Appendix!. Identifying thev pole and
the physicalv mass, and given thatM andCv have already
been fixed, we obtain the value ofmv . Finally, the value of
gs is adjusted to fit the mean quadratic charge radius
40Ca. We will refer to this fixing procedure as thev-shell
scheme; the name stresses the correct association betw
the pole of thev-meson propagator and the physicalv mass
@17#. The above fixing procedure gives different values
ms and gs depending on the order at which the Dirac s
energy is included in the semiclassical expansion~see Sec.
IV !.

Throughout the literature the standard fixing proced
when the Dirac sea is included has been to give to the
grangian massmv the value of the physicalv mass@4,5#
~see, however, Refs.@17,10,6#!. Of course, this yields a
wrong value for the position of thev-meson propagato
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pole, which is underestimated. We will refer to this proc
dure as thenaive scheme. Note that when the Dirac sea is no
included at all, the right viewpoint is to consider the theo
at the tree level, and thev-shell and the naive schemes c
incide.

III. LANDAU INSTABILITY SUBTRACTION

As already mentioned, thes-v model, and more gener
ally any Lagrangian which couples bosons with fermions
means of a Yukawa-like coupling, exhibits a vacuum ins
bility @7,8#. This instability prevents the actual calculation
physical quantities beyond the mean-field valence appr
mation in a systematic way. Recently, however, a propo
by Redmond@12# that explicitly eliminates the Landau gho
has been implemented to describe relativistic nuclear ma
in a series of papers@9–11#. The main features of such
method are contained already in the original papers@12,13#
and belongs to the body of some standard field theory t
books @18,19#. Many details have also been discussed
garding its application to nuclear matter and response fu
tions @9–11#. For the sake of clarity, we review here th
method~correcting the above-mentioned error in Ref.@9#! in
a way that is easily applied to the calculation of Dirac s
effects for closed-shell finite nuclei and theNN potential.
We also consider some aspects of the largeN expansion in
the present context and argue that the ghost subtracted th
may be a perfectly well-defined quantum field theory beyo
finite order perturbation theory, possibly suited to a latt
formulation.

A. Landau instability

Since the Landau instability shows up already at z
nuclear density, we will begin by considering the vacuum
the s-v theory. On a very general basis, namely, Poinc´
invariance, unitarity, causality, and uniqueness of
vacuum state, one can show that the two point Green’s fu
tion ~time ordered product! for a scalar field admits the
Källén-Lehmann representation@20#

D~x82x!5E dm2r~m2!D0~x82x;m2!, ~13!

where the full propagator in the vacuum is

D~x82x!52 i ^0uTf~x8!f~x!u0& ~14!

and the free propagator reads

D0~x82x;m2!5E d4p

~2p!4
e2 ip~x82x!

p22m21 ih
. ~15!

The spectral densityr(m2) is defined as

r~q2!5~2p!3(
n

d4~pn2q!u^0uf~0!un&u2. ~16!

It is non-negative, Lorentz invariant, and vanishes for spa
like four momentumq.

The Källén-Lehmann representability is a necessary c
dition for any acceptable theory, yet it is violated by th
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s-v model when the meson propagators are approxima
by their leading 1/N term. It is not clear whether this failur
is tied to the theory itself or is an artifact of the approxim
tion —it is well known that approximations to the full propa
gator do not necessarily preserve the Ka¨llén-Lehmann repre-
sentability. The former possibility would suppose a serio
obstacle for the theory to be a reliable one.

In the above-mentioned approximation, Eq.~13! still
holds both for thes and thev cases~in the latter case with
obvious modification to account for the Lorentz structu!
but the spectral density gets modified to be

r~m2!5rKL~m2!2RGd~m21MG
2 !, ~17!

whererKL(m2) is a physically acceptable spectral densi
satisfying the general requirements of a quantum fi
theory. On the other hand, however, the extra term sp
these general principles. The residue2RG is negative, thus
indicating the appearance of a Landau ghost state which
tradicts the usual quantum mechanical probabilistic interp
tation. Moreover, thed function is located at the spacelik
squared four momentum2MG

2 indicating the occurrence o
a tachyonic instability. As a perturbative analysis shows,
dependence ofRG andMG on the fermion-meson couplin
constantg in the weak-coupling regime isRG;a/Ng2 and
MG

2;M2exp(a/Ng21b), where M is the nucleon mass
a58p2, b58/3 for the scalar meson, anda512p2,
b55/3 for the vector meson. Therefore the perturbative c
tent of r(m2) andrKL(m2) is the same, i.e., both quantitie
coincide order by order in a power series expansion og
keepingm2 fixed. This can also be seen in the propaga
form of the previous equation

D~p!5DKL~p!2
RG

p21MG
2 . ~18!

For fixed four momentum, the ghost term vanishes
exp(2a/Ng2) when the coupling constant goes to zero.
noted by Redmond@12#, it is therefore possible to modify th
theory by adding a suitable counterterm to the action t
exactly cancels the ghost term in the meson propagator w
out changing the perturbative content of the theory. In t
way the full meson propagator becomesDKL(p) which is
physically acceptable and free from vacuum instability
leading order in the 1/N expansion.

It is not presently known whether the stability problem
of the originals-v theory are intrinsic or due to the approx
mation used, thus Redmond’s procedure can be interpr
either as a fundamental change of the theory or as a mo
cation of the approximation scheme. Although both interp
tations use the perturbative expansion as a constraint, it is
possible, at the present stage, to decide between them
should be made quite clear that in spite of the seemin
arbitrariness of the no-ghost prescription, the original the
itself was ambiguous regarding its nonperturbative regim
In fact, being a nonasymptotically free theory, it is not ob
ous how to define it beyond finite order perturbation theo
For the same reason, it is not Borel summable and he
additional prescriptions are required to reconstruct
Green’s functions from perturbation theory to all orders.
an example, if the nucleon self-energy is computed at le
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ing order in a 1/N expansion, the existence of the Land
ghost in the meson propagator gives rise to a pole ambigu
This is unlike physical timelike poles, which can be prope
handled by the customary1 ih rule, and thus an additiona
ad hocprescription is needed. This ambiguity reflects in tu
in the Borel transform of the perturbative series; the Bo
transform presents singularities known as renormalons in
literature@21#. In recovering the sum of the perturbative s
ries through inverse Borel transformation a prescription
then needed, and Redmond’s proposal provides a particu
suitable way of fixing such ambiguity. Nevertheless,
should be noted that even if Redmond’s prescription tu
out to be justified, there still remains the problem of how
extend it to the case of three and more point Green’s fu
tions, since the corresponding Ka¨llén-Lehmann representa
tions have been less studied. As noted below, this prob
cannot occur at any finite order in the 1/N expansion.

B. Instability subtraction

To implement Redmond’s prescription in detail we st
with the zero-momentum renormalized propagator in ter
of the proper self-energy for the scalar field~a similar con-
struction can be carried out for the vector field as well!,

Ds~p
2!5@p22ms

22Ps~p
2!#21, ~19!

wherems is the zero-momentum meson mass and the co
sponding renormalization conditions arePs(0)5Ps8(0)
50. The explicit formulas for the scalar and vector mes
self-energies at leading order in the largeN expansion are
given in the Appendix. Of course,Ds(p

2) is just the inverse
of the quadratic part of the effective actionKs(p

2). Accord-
ing to the previous section, the propagator presents a ta
onic pole. Since the ghost subtraction is performed at
level of the two-point Green’s function, it is clear that th
corresponding Lagrangian counterterm must involve a q
dratic operator in the mesonic fields. The counterterm ker
DKs(p

2) must be such that cancels the ghost term in
propagatorDs(p

2) in Eq. ~18!. The subtraction neither modi
fies the position of the physical meson pole nor its resid
but it will change the zero-momentum parameters and a
the off-shell behavior. Both features are relevant to nucl
properties andNN potentials. This will be discussed furthe
in the next section.

Straightforward calculation yields

DKs~p
2!52

1

Ds~p
2!

RG
s

RG
s 1~p21MG

s 2!Ds~p
2!
. ~20!

As stated, this expression vanishes as exp(24p2/gs
2) for

small gs at fixed momentum. Therefore it is a genuine no
perturbative counterterm. It is also nonlocal as it depend
a nonpolynomial way on the momentum. In any case, it d
not introduce new ultraviolet divergences at the one ferm
loop level. However, it is not known whether the presence
this term spoils any general principle of quantum fie
theory.

Proceeding in a similar way with thev-meson field
Vm(x), the following change in the total original action
induced:
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DS5
1

2E d4p

~2p!4
f~2p!DKs~p

2!f~p!

2
1

2E d4p

~2p!4
Vm~2p!DKv

mn~p2!Vn~p!, ~21!

wheref(p) andVm(p) are the Fourier transform of the sc
lar and vector fields in coordinate spacef(x) and Vm(x),
respectively. Note that at the tree level for bosons, as we
considering throughout, this modification of the action is
be added directly to the effective action —in fact, this is t
simplest way to derive Eq.~20!. Therefore, in the case o
static fields, the total mean-field energy after ghost elimi
tion reads

E5EF
val1EF

sea1EB1DE, ~22!

whereEF
val , EF

sea, andEB were given in Sec. II and

DE@f,V#5
1

2E d3xf~x!DKs~¹2!f~x!

2
1

2E d3xV0~x!DKv
00~¹2!V0~x!. ~23!

One can proceed by minimizing the mean-field total ene
as a functional of the bosonic and fermionic fields. Th
yields the usual set of Dirac equations for the fermions, E
~6!, and modifies the left-hand side of the bosonic Eqs.~10!
by adding a linear nonlocal term. This will be our startin
point to study the effect of eliminating the ghosts in t
description of finite nuclei. We note that the instability
removed at the Lagrangian level, i.e., the nonlocal coun
terms are taken to be new terms of the starting Lagrang
which is then used to describe the vacuum, nuclear ma
and finite nuclei. Therefore no new prescriptions are nee
in addition to Redmond’s to specify how the vacuum and
medium parts of the effective action are modified by t
removal of the ghosts.

So far, the new counterterms, although induced thro
the Yukawa coupling with fermions, have been treated
purely bosonic terms. Therefore, they do not contribute
rectly to bilinear fermionic operators such as baryonic a
scalar densities. An alternative viewpoint would be to ta
them rather as fermionic terms, i.e., as a~nonlocal and non-
perturbative! redefinition of the fermionic determinant. Th
energy functional, and thus the mean-field equations
their solutions, coincide in the bosonic and fermionic int
pretations of the new term, but the baryonic densities
related observables would differ, since they pick up a n
contribution given by the corresponding formulas similar
Eqs. ~11!. Ambiguities and redefinitions are ubiquitous
quantum field theories, due to the well known ultraviolet
vergences. However, in well-behaved theories the only fr
dom allowed in the definition of the fermionic determina
comes from adding counterterms which are local and po
nomial in the fields~see, e.g.,@22#!. Since the new counter
terms induced by Redmond’s method are not of this fo
we will not pursue such alternative point of view in wh
re
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follows. Nevertheless, a more compelling argument wo
be needed to make a reliable choice between both poss
ties.

C. Field theoretical aspects of the largeN expansion

Perhaps the most attractive feature of the largeN expan-
sion lies in its systematic summation of perturbative Fe
man diagrams while being itself a nonperturbative meth
Actually, if one introduces new diagrams using as buildi
blocks the old nucleon line and vertices and the lead
1/N meson propagator as new meson line, a new expan
arises. The Feynman rules remain the same besides the
that one should not include nucleon loops attached to
meson lines, since they are already accounted for by the
meson line. The important property is that at each order
the 1/N expansion there are only a finite number of ne
diagrams. This comes about because each vertex carr
factor 1/AN and for each nucleon loop a factorN appears.
Therefore, any nucleon loop subdiagram withk>3 meson
legs is suppressed by a factor (1/AN)k22. It is noteworthy
that these features remain the same after removing the g
In particular, this implies that no new ghost may appe
within a finite order of the 1/N expansion, although a sum
mation of an infinite number of diagrams may give rise
new ghost singularities. A further aspect of the method u
in the case of thev meson is given by gauge invarianc
since the Lorentz structure of the propagator remains
changed. As a consequence the perturbative renormaliz
ity ~in the 1/N sense! of the theory is maintained, since th
longitudinal components of thev propagator still cancel due
to the coupling to the conserved baryonic current. A simi
remark can be made for the case of quantum electrodyn
ics. The ghost subtraction together with the largeN expan-
sion render the theory Borel summable in the coupling c
stant at any finite order in the 1/N expansion. Nothing is of
course implied for the Borel summability of the 1/N series.
One should note that in spite of having a nonlocal looki
Lagrangian, the physical requirement of causality is fulfille
All these remarks indicate that the ghost subtracted theor
perfectly consistent, i.e., it satisfies the general requirem
of an acceptable relativistic field theory within a 1/N expan-
sion formulation.

The elimination of the ghost has a further, although
lated, advantage. This can be seen by computing the an
gous to the Gell-Mann–LowC function @23#, defined as

C~a!5
da

dln~m22q2!
, ~24!

where the momentum dependent and renormalization gr
invariant effective chargea(q2) is defined as

a~q2!5
g2

4p
~q22m2!D~q!. ~25!

Here m2 is the on-shell physical meson mass andg and
D(q) are the renormalized coupling constant and me
propagator. The effective charge has been defined so
a(m2)5g2/4p with g the on-shell coupling constant. Not
that the combinationg2D(q) is renormalization group in-
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variant, i.e., it is independent of the renormalization po
used. We will see below that this combination is theNN
meson exchange potential at leading order in 1/N. The rel-
evance of theC function relies on the possibility of studyin
nontrivial ultraviolet fixed points@24#. We remind the reade
that the zeros of this function are the renormalization gro
fixed points. In Fig. 1 we displayC(a) for the particular
case of thev meson before and after ghost elimination a
for the same value of the renormalized parameters, nam
M5939 MeV,mv5783 MeV, and on-shell coupling con
stantgv515.9 ~see the Appendix for the relation betwee
zero momentum and on-shell parameters!. By construction,
in both cases the first positive zero corresponds to the
shell point and they have the same slope there. Howe
both curves exhibit a completely different behavior as
four momentum transfer goes into the Euclidean region.
can be clearly seen, the vacuum unstable theory does
show an ultraviolet fixed point, whereas the ghost free the
possesses one which corresponds to a double zero oC.
Actually, near the fixed pointC behaves as (a2a`)

2/3p,
indicating a rather slow approach to the large moment
coupling constant. One should say that the unstable the
also has a ultraviolet fixed point, namely at zero coupli
which, however, is approached from imaginary values of
coupling constant. Finally, the Ka¨llén-Lehmann representa
tion guarantees that, apart from the on-shell point,C(a) will
not have other zeros before2q2→1`. Therefore, despite
the nonlocality of the action, the ghost-free theory seem
be well defined in a nonperturbative way. This opens
possibility of a full nonperturbative calculation using, say
lattice regularization method. We note here that some
tempts have been carried out in this direction but with
naive action and in the valence approximation@25#.

D. Application to finite nuclei

In this section we will take advantage of the smooth b
havior of the mesonic mean fields in coordinate space wh

FIG. 1. The Gell-Mann–LowC function for the v meson
C(a)5(q22mv

2 )da/dq2 as a function of the effective charg
a(q2)5gv

2(q22mv
2 )D(q2)/4p, for the ghost unsubtracted~G! and

ghost free~KL ! as obtained from the Ka¨llén-Lehmann representa
tion. The arrows indicate the direction of increasing2q2 starting
from the on-shell pointq25mv

2 . Note that the curve without ghos
has a nontrivial ultraviolet stable fixed point, whereas the gh
unsubtracted curve has a trivial one for imaginary values of
coupling constant. We have takenM5939 MeV,mv5783 MeV,
and on-shell coupling constantgv515.9
t
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allows us to apply a derivative or low-momentum expansi
The quality of the gradient expansion can be testeda poste-
riori by a direct computation. The practical implementati
of this idea consists of treating the termDS by expanding
each of the kernelsDK(p2) in a power series of the momen
tum squared around zero

DK~p2!5 (
n>0

~p2!nDK2n . ~26!

The first two terms are given explicitly by

DK052
m4RG

MG
2 2m2RG

,

DK25
m2RG~m22m2RG12MG

2 !

~MG
2 2m2RG!2

. ~27!

The explicit expressions of the tachyonic pole parame
MG andRG for each meson can be found below.

Numerically, we have found that the fourth and high
orders in this gradient expansion are negligible as compa
to zeroth and second orders. In fact, in Ref.@6# the same
behavior was found for the correction to the Dirac sea c
tribution to the binding energy of a nucleus. As a result, ev
for light nuclei,E4

seain Eq. ~8! can be safely neglected. Fu
thermore, it has been shown@26# that the fourth order term in
the gradient expansion of the valence energy, if treated se
classically, is less important than shell effects. So, it seem
be a general rule that, for the purpose of describing st
nuclear properties, only the two lowest order terms of a g
dient expansion need to be considered. We warn, howe
that the convergence of the gradient or semiclassical exp
sion does not imply convergence to the exact mean-field
sult, since there could be shell effects not accounted for
this expansion at any finite order. Such effects certainly e
in the valence part@26#. Even in such a seemingly safe ca
as infinite nuclear matter, where only the zeroth order ha
nonvanishing contribution, something is left out by the g
dient expansion since the exact mean-field solution does
exist due to the Landau ghost instability~of course, the situ-
ation may change if the Landau pole is removed!. In other
words, although a gradient expansion might appear to
exact in the nuclear matter case, it hides the very existenc
the vacuum instability.

From the previous discussion it follows that the who
effect of the ghost subtraction is represented by addin
term DS to the effective action with the same form as t
bosonic part of the original theoryGB@f,V# in Eq. ~3!. This
amounts to a modification of the zero-momentum parame
of the effective action. The new zero-momentum scalar fi
~i.e., with canonical kinetic energy!, mass, and coupling con
stant in terms of those of the original theory are given by

f̂~x!5~11DK2
s!1/2f~x!, m̂s5Sms

22DK0
s

11DK2
s D 1/2,

ĝs5~11DK2
s!21/2gs . ~28!

The new coupling constant is obtained recalling th
gsf(x) should be invariant. Similar formulas hold for th

t
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vector meson. With these definitions@and keeping only
DKs,v(p

2) to second order inp2# one finds1

EB@f̂,V̂;m̂s ,m̂v#5EB@f,V;ms ,mv#1DE@f,V;ms ,mv#,

EF@f̂,V̂;ĝs ,ĝv#5EF@f,V;gs ,gv#. ~29!

The bosonic equations for the new meson fields after gh
removal are hence identical to those of the original the
using

m̂25m2MG
2
MG

2 2m2RG

MG
4 1m4RG

, ĝ25g2
~MG

2 2m2RG!2

MG
4 1m4RG

,

~30!

as zero-momentum masses and coupling constants, re
tively. In the limit of large ghost masses or vanishing gh
residues, the reparametrization becomes trivial, as it sh
be. Let us note that although the zero-momentum parame
of the effective actionm̂s,v andĝs,v are the relevant ones fo
nuclear structure properties, the parametersms,v andgs,v are
the ~zero-momentum renormalized! Lagrangian parameter
and they are also needed, since they are those appeari
the Feynman rules in a perturbative treatment of the mo
Of course, both sets of parameters coincide when the gh
are not removed or if there were no ghosts in the theory

To finish this section we give explicitly the fourth orde
coefficient in the gradient expansion ofDE, taking into ac-
count the rescaling of the mesonic fields, namely,

DK4

11DK2
52

RG~MG
2 1m2!2

~MG
4 1m4RG!~MG

2 2m2RG!

2
Ng2

ap2M2

m2RG~m2RG22MG
2 !

MG
4 1m4RG

, ~31!

wherea is 80 for the scalar meson and 60 for the vec
meson. As already stated, for typical mesonic profiles
contribution of these fourth order terms are found to be
merically negligible. Simple order of magnitude estima
show that squared gradients are suppressed by a fa
(RMG)

22, R being the nuclear radius, and therefore high
orders can also be neglected. That the low-momentum re
is the one relevant to nuclear physics can also be seen
the kernelKs(p

2), shown in Fig. 2. From Eq.~21!, this ker-
nel is to be compared with the functionf(p) that has a
width of the order ofR21. It is clear from the figure that a
this scale all the structure of the kernel at higher moment
irrelevant toDE.

E. Fixing of the parameters after ghost subtraction

As noted in Sec. II, the equation of state at zero tempe
ture for nuclear matter depends only on the dimension
quantitiesCs

2 andCv
2 , that now become

1Note thatEB,F@ # refer to the functionals~the same at both side
of the equations! and not to their value as is also usual in phys
literature.
st
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Cs
25ĝs

2M
2

m̂s
2
, Cv

25ĝv
2M

2

m̂v
2
. ~32!

Fixing the saturation density and binding energy to their o
served values yields, of course, the same numerical va
for Cs

2 andCv
2 as in the original theory. After this is done, a

static properties of nuclear matter are determined and
they are insensitive to the ghost subtraction. Therefore
leading order in the 1/N expansion, to see any effect on
should study either static nuclear matter properties at hig
orders as done in Ref.@11# or finite nuclei. In Ref.@10#
response functions have been computed within a local d
sity approximation. In this paper we focus on finite nuc
structure.

It is remarkable that if all the parameters of the mod
were to be fixed exclusively by a set of nuclear structu
properties, the ghost subtracted and the original theo
would be indistinguishable regarding any other static nucl
prediction, because bosonic and fermionic equations of m
tion have the same form in both theories. They would diff
however, far from the zero-four-momentum region where
truncation of the ghost kernelsDK(p2) at orderp2 is no
longer justified. In practice, the predictions will change af
ghost removal because thev-meson mass is quite large an
is one of the observables to be used in the fixing of
parameters. If thev-meson mass were larger, the zer
momentum region would be dominated by the ghost p
resulting in an odd sign for the slope of the on-shell ren
malized propagator at zero momentum. This would imp
negative values for the zero-momentum parametersgv

2 and
mv
2 . Likewise, if the on-shellv coupling constant were suf

ficiently strong the ghost pole would shift towards the regi
of smaller momentum yielding a similar result as befo
This imposes some upper bounds regarding the admiss
values of the on-shell parameters for the theory with gho
On the contrary, the ghost-free theory does not exhibit th
constraints.

To fix the parameters of the theory we choose the sa
observables as in Sec. II. Let us consider first the vec
meson parametersm̂v and ĝv . We proceed as follows.

FIG. 2. Real part of the inverse scalar meson propaga
Ks(p

2) as a function of the squared four momentum using the
ghost~sea 2nd! set of parameters of Table I. The dashed line re
resents the one-loop result without ghost subtraction. The solid
is the result after ghost elimination. The dotted line shows the f
inverse propagator. In all cases the slope at zero momentum
unity. Units are in nucleon mass.
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~1! We choose a trial value forgv ~the zero-momentum
coupling constant of the original theory!. This value and the
known physical values of thev-meson and nucleon masse
mv andM , respectively, determinesmv ~the zero-momentum
mass of the original theory!, namely

mv
25mv

21
Ngv

2

4p2M
2H 431

5

9

mv
2

M2 2
2

3 S 21
mv
2

M2D
3A4M2

mv
2 21arcsinS mv

2M D J . ~33!

~This, as well as the formulas given below, can be dedu
from those in the Appendix.!

~2! gv andmv provide the values of the tachyonic param
etersRG

v andMG
v . They are given by

MG
v 5

2M

Akv
221

,

1

RG
v 5211

Ngv
2

12p2 H S kv
3

4
1

3

4 kv
D lnkv11

kv21
2

kv
2

2
2
1

6 J ,
~34!

where the quantitykv is the real solution of the following
equation~there is an imaginary solution which correspon
to thev-meson pole!:

11
mv
2

4M2 ~kv
221!1

Ngv
2

12p2 H S kv
3

2
2
3 kv

2 D lnkv11

kv21
2kv

21
8

3 J
50. ~35!

~3! Known gv , mv , MG
v , andRG

v , the values ofm̂v and

ĝv are obtained from Eqs.~30!. They are then inserted in
Eqs. ~32! to yield Cv

2 . If necessary, the initial trial value o
gv should be readjusted so that the value ofCv

2 so obtained
coincides with that determined by the saturation propertie
nuclear matter.

The procedure to fix the parametersms andgs is similar
but slightly simpler since the physical mass of the sca
mesonms is not used in the fit. Some trial values forms and
gs are proposed. This allows us to computeMG

s andRG
s by

means of the formulas

MG
s 5

2M

Aks
221

,

1

RG
s 5212

Ngs
2

8p2 H S ks
3

2
2
3 ks

2 D lnks11

ks21
2ks

21
8

3 J ,
~36!

whereks is the real solution of

11
ms
2

4M2 ~ks
221!2

Ngs
2

8p2 H ks
3ln

ks11

ks21
22ks

22
2

3 J 50 . ~37!

One can then computem̂s and ĝs and thusCs
2 and the mean

quadratic charge radius of40Ca. The initial values ofms and
,

d

of

r

gs should be adjusted to reproduce these two quantities.
will refer to the set of masses and coupling constants
obtained as theno-ghost schemeparameters.

F. Application to the nucleon-nucleon potential

Traditionally, thes-v model is meant to be applied t
finite nuclei. However, the most immediate consequence
the ghost subtraction can be found by looking at the mom
tum dependence of the nucleon-nucleon interaction. We
mind that, for the quantum field theory to make sense, i
absolutely mandatory to get rid of the ghost. Clearly, sin
the number of parameters of the model is small, some p
dictive power can be attained by examining theNN force
throughout a sensible range of energies and conclus
might be drawn whether ghost subtraction a` la Redmond is
experimentally favored at momentum transfers well bel
the occurrence of the ghost. Due to the fact that we
dealing with a model where the degrees of freedom
nucleons and mesons, the obvious framework to under
this comparison is the Bonn one-meson exchange pote
~OBEP! @27#. This allows us to compare each mesonic co
tribution to the potential in a separate way, instead of co
paring the outcoming phase shifts. The only subtlety ari
from the absence of experimental error bars in the OB
parameters so we cannot judge quantitatively the quality
the model and our approximation, namely, the largeN limit.
We note that in the Hartree mean-field approximation, sy
metric closed-shell nuclei data constrain only thes andv
mesons parameters. The coupling and masses of the rem
ing meson~i.e.,p, h, r, andd) are not fixed by the above
mentioned nuclei. It would be interesting to relax the isos
zero constraint in order to obtain a more realistic descript
of finite nuclei and simultaneously to impose some con
tions on ther meson parameters. In this work, it is not o
aim to achieve a fully realistic description ofNN scattering
data but rather to get some insight into the implications
removing the ghost. In addition, this comparison should
done within the same energy range used in the OBEP
More specifically, we compare the OBEP reduction of t
full Bonn potential with the potential obtained in the leadin
largeN expansion with and without ghost subtraction. Wh
in the former one considers elementary mesons with p
nomenological form factors, in our case the mesons
dressed through their coupling to virtualNN̄ pairs and no
additional form factors in the meson-nucleon vertices app
as dictated by the 1/N expansion. In the spirit of the mode
such phenomenological form factors are not necessary du
its renormalizability and would arise naturally when comp
ing next to leading 1/N contributions. Of course, they shoul
be required to account for the underlying nucleon substr
ture at sufficiently high momentum.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Finite nuclei

As explained in Sec. II, the parameters of the theory
fitted to five observables. For the latter we take the followi
numerical values: M5939 MeV, mv5783 MeV,
B/A515.75 MeV,kF51.3 fm21, and 3.82 fm for the mean
quadratic charge radius of40Ca.
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1776 55J. CARO, E. RUIZ ARRIOLA, AND L. L. SALCEDO
If the Dirac sea is not included at all, the numerical valu
that we find for the nuclear matter combinationsCs

2 andCv
2

are

Cs
25357.7, Cv

25274.1. ~38!

The corresponding Lagrangian parameters are shown
Table I. There we also showms andmv that correspond to
the position of the poles in the propagators after includ
the one-loop meson self-energy. They are an output of
calculation and are given for illustration purposes.

When the Dirac sea is included, nuclear matter proper
fix the following values:

Cs
25227.8, Cv

25147.5. ~39!

Note that in nuclear matter only the zeroth orderE0
sea is

needed in the gradient expansion of the sea energy, sinc
meson fields are constant. The~zero-momentum renormal
ized! Lagrangian meson massesms,v and coupling constant
gs,v are shown in Table I in various schemes, name
v-shell, no-ghost, and naive schemes, previously defin
The scalar meson parameters differ if the Dirac sea energ
included at zeroth order or at all orders~in practice zeroth
plus second order! in the gradient expansion. For the sake
completeness, both possibilities are shown in the table.
numbers in brackets in the no-ghost scheme are the z

TABLE I. Zero momentum renormalized Lagrangian para
eters in several schemes. Masses are in MeV. The meaning o
labels no sea, sea 0th, sea 2nd,v-shell, and no-ghost are as in Tab
III. The naive scheme corresponds to not including the meson s
energy. The numbers in brackets are the zero-momentum pa

eters of the effective action for the no-ghost schemem̂s,v and

ĝs,v . In all cases,ms andmv stand for the poles in the meso
propagators after including the one fermion loop self-energy
using the corresponding Lagrangian parameters. Note that by
struction the vector meson parameters coincide in the sea 0th
sea 2nd cases.

gs ms ms gv mv mv

no sea 9.062 449.9 439.8 13.81 783 67

v-shell 6.153 382.8 379.8 11.78 910.8 78
sea 0th no-ghost 5.996 370.9 368.3 14.86 978.6 7

~5.928! ~368.8! ~10.17! ~786.1!
naive 5.922 368.4 365.9 10.13 783 711

v-shell 6.846 425.9 420.3 11.78 910.8 78
sea 2nd no-ghost 6.664 410.8 406.5 14.86 978.6 7

~6.544! ~407.1! ~10.17! ~786.1!
naive 6.536 406.6 402.6 10.13 783 711

TABLE II. Residue ~up to a sign! and mass~in MeV! of the
ghosts in the zero-momentum renormalized meson propagator
ing the no-ghost sets of Lagrangian parameters in Table I.

RG
s MG

s RG
v MG

v

sea 0th 1.748 4605 0.6090 1457
sea 2nd 1.584 3863 0.6090 1457
s

in

g
e

s

the

,
d.
is

f
e
ro-

momentum parameters of the effective action,m̂s,v and
ĝs,v ~in the other schemes they coincide with the Lagrang
parameters!. Againms andmv refer to the scalar and vecto
propagator-pole masses after including the one fermion l
self-energy for each set of Lagrangian parameters. Tab
shows the ghost masses and residues corresponding t
zero-momentum renormalized propagators. The no-gh
scheme parameters have been used.

The binding energies per nucleon~without center-of-mass
corrections! and mean quadratic charge radii~without con-
volution with the nucleon form factor! of several closed-shel
nuclei are shown in Tables III and IV for thev shell and for
the naive and no-ghost schemes~these two latter scheme
give the same numbers!, as well as for the case of not in
cluding the Dirac sea. The experimental data are taken f
Refs.@28–30#.

From Table I it follows that the zero-momentum vect
meson massmv in thev-shell scheme is considerably larg
than the physical mass. This is somewhat unexpected. Le
recall that the naive treatment, which neglects the me
self-energy, is the most used in practice. It has been kno
for a long time@31,17# that thev-shell scheme is, as a matte
of principle, the correct procedure but on the basis of rou
estimates it was assumed that neglecting the meson

-
the

lf-
m-

d
n-
nd

3

us-

TABLE III. Binding energy per nucleon of some closed-she
nuclei computed in several ways: not including the Dirac sea in
parameter fixing~no-sea!, including the Dirac sea at lowest order i
a gradient expansion~sea 0th!, including the Dirac sea at all order
~sea 2nd!, and the experimental values~exp.!. The entryv-shell
corresponds to use the set of parameters that reproduce
v-meson mass after including the meson self-energy. The e
no-ghost corresponds to the parameters obtained by applying
mond’s prescription.

B/A ~MeV!

no sea sea 0th sea 2nd exp

Z
AX no-ghost v-shell no-ghost v-shell

20
40Ca 6.28 6.00 6.10 6.33 6.43 8.55

28
56Ni 7.24 6.51 6.60 6.80 6.90 8.64

40
90Zr 8.36 7.99 8.07 8.22 8.30 8.71

50
132Sn 8.81 8.43 8.50 8.62 8.69 8.36

82
208Pb 9.84 9.55 9.61 9.70 9.76 7.87

TABLE IV. Mean quadratic charge radii~MQCR! of several
closed-shell nuclei. Meaning of the labels and experimental va
as in Table III.

MQCR ~fm!

no sea sea 0th sea 2nd exp

Z
AX no-ghost v-shell no-ghost v-shell

20
40Ca* 3.48 3.48 3.48 3.48 3.48 3.48

28
56Ni 3.72 3.79 3.79 3.79 3.80

40
90Zr 4.22 4.23 4.24 4.25 4.25 4.27

50
132Sn 4.60 4.66 4.66 4.68 4.68

82
208Pb 5.35 5.39 5.39 5.41 5.41 5.50
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energy would be a good approximation for the meson m
We find here that this is not so.

Regarding the consequences of removing the ghost,
find in Table I that the effective parametersm̂s,v and ĝs,v in
the no-ghost scheme are similar, within a few per thousa
to those of the naive scheme. This similarity reflects in tu
on the predicted nuclear properties: the results shown
Tables III and IV for the no-ghost scheme coincide, with
the indicated precision, with those of the naive scheme~not
shown in the table!. It is amazing that the outcoming param
eters from such a sophisticated fitting procedure, namely,
no-ghost scheme, resemble so much the parameters c
sponding to the naive treatment. We believe this result to
rather remarkable for it justifiesa posteriori the nowadays
traditional calculations made with the naive scheme.

The above observation is equivalent to the fact that
zero-momentum massesm̂s,v and the propagator-pole mass
ms,v are very similar in the no-ghost scheme. This impl
that the effect of removing the ghosts cancels to a large
tent with that introduced by the meson self-energies. N
that separately the two effects are not small; as was n
abovemv is much larger thanmv in thev-shell scheme. To
interpret this result, it will be convenient to recall the stru
ture of the meson propagators. In the leading 1/N approxi-
mation, there are three kinds of states that can be create
the vacuum by the meson fields. Correspondingly, the sp
tral density functionsr(q2) have support in three clearl
separated regions, namely, at the ghost mass squared~in the
Euclidean region!, at the physical meson mass squared, a
above theNN̄ pair production threshold (2M )2 ~in the time-
like region!. The full meson propagator is obtained by co
volution of the spectral density function with the massle
propagator (q21 ih)21 as follows from the Ka¨llén-Lehmann
representation, Eq.~13!. The large cancellation found afte
removing the ghosts leads to the conclusion that, in the z
momentum region, most of the correction induced by
fermion loop on the meson propagators, and thereby on
quadratic kernelsK(p2), is spurious since it is due to un
physical ghost states rather than to virtualNN̄ pairs. This can
also be seen from Figs. 2 and 3. There, we represent the
and imaginary parts ofKs(p

2) respectively, in three case
namely, before ghost elimination, after ghost eliminatio
and the free inverse propagator. In all three cases the slop
the real part at zero momentum is equal to one and the
ghost~sea second! set of parameters from Table I has be
used. We note the strong resemblance of the free propag

FIG. 3. Imaginary part of the inverse scalar meson propag
Ks(p

2). Units and meaning of the lines as in Fig. 1.
s.
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and the ghost-free propagator below threshold. A similar
sult is obtained for the vector meson.

One may wonder how these conclusions reflect on the
energy. Given that we have found that most of the ferm
loop is spurious in the meson self-energy it seems neces
to revise the sea energy as well since it has the same or
Technically, no such problem appears in our treatment.
deed the ghost is found in the fermion loop attached to t
meson external legs, i.e., terms quadratic in the fields. H
ever, the sea energy used, namely,E0

sea1E2
sea, does not con-

tain such terms. Quadratic terms would correspond to a m
term inE0

seaand a kinetic energy term inE2
sea, but they are

absent from the sea energy due to the zero-momentum re
malization prescription used. On the other hand, terms w
more than two gradients were found to be negligible@6#.
Nevertheless, there still exists the possibility of ghostli
contributions in vertex functions corresponding to three
more mesons, similar to the spurious contributions exist
in the two-point function. In this case the total sea ene
would have to be reconsidered. The physically accepta
dispersion relations for three or more fields have been m
less studied in the literature hence no answer can be give
this possibility at present.

B. Nucleon-nucleon potential

In all cases the potential at zero-four-momentum trans
yields not only the corresponding scattering length in Bo
approximation, but also the relevant parametersCs,v

2 in-
volved in the description of nuclear matter. These numb
turn out to depend dramatically on the inclusion of the Dir
sea and also, to a less extent, on the precise value of
Fermi momentum. The OBEP valuesCs

25271 ~obtained by
averaging the isospin zero and isospin one channels! and
Cv
25192 are closer to the ones where the Dirac sea is

cluded@see Eqs.~38! and ~39!#. In fact, in the sea included
case, a good agreement between the nuclear matter re
and the corresponding OBEP can be achieved by choosi
slightly different value of the Fermi momentum from th
used above, namely,kF51.2 fm21. Similarly, the no-sea
case can reproduce the OBEP values ofCs,v

2 by taking
kF51.4 fm21. However, one should keep in mind that
heavier mesons than the low lying ones were introduced
the spirit of the OBEP, lower values of the potentials at ze
momentum could be accommodated without destroying
typical values of the potentials at higher momenta. Suc
framework would presumably make compatible the nucle
nucleon and nuclear matter data including the Dirac sea

The effect of subtracting the ghost can be best exem
fied by analyzing thev-exchange potential. Since in the re
gion 0<q2<mv

2 no direct experimental data are availab
the extrapolation of the OBEP to that region requires furt
assumptions. To account for the uncertainty in the OB
form factors in the timelike region, we adopt two extrem
cases regarding the value of thev-meson coupling constant
namely, we either trust the OBEP coupling constant at z
momentum or else at the on-shell point. In both cases
keep fixed the physical mass of the meson. We always c
pare the field theoretical model potentials~without phenom-
enological form factors! with the Bonn potential~with phe-
nomenological form factors!. In Fig. 4 we adjust the

or
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v-exchange potential to the OBEP at zero-four moment
both for ghost unsubtracted~G! and ghost free~KL ! poten-
tials. This corresponds togv

G59.87, gv
KL511.5, and

gv
OBE515.9. As we see the nonelimination of the ghost p
duces a sizable effect in the low-energy region used to
termine the OBEP parameters (2q2<0.6 GeV2). Note that
the ghost curve will eventually display an unphysical pole
higher momentum transfers. On the other hand, the gh
free potential is virtually identical to the free boson exchan
potential in the spacelike region. The difference with t
OBEP stems mainly from the phenomenological form fac
in the latter.

In Fig. 5 we consider the opposite point of view, i.e., w
adjust the on-shell coupling constant to the OBEP va
(gv

OBE515.9). Here, the effect for the ghost unsubtrac
curve is even more dramatic than in the previous case s
the coupling constant renormalized at zero momentum wo
became imaginary. This follows from the opposite slope
the origin. Also in this case the onset of the instability occ

FIG. 4. v-exchange contribution to theNN potential for the
ghost subtracted~KL !, ghost unsubtracted~G!, and one-boson ex
change~OBE! potentials. The coupling constants have been cho
in order to reproduce the value of the OBEP at zero momentum

FIG. 5. v-exchange contribution to theNN potential for the
ghost subtracted~KL !, ghost unsubtracted~G!, and one-boson ex
change~OBE! potentials. The coupling constant has been chose
order to reproduce the pole and residue of the OBEP at the m
on-shell point~not shown in the figure!.
-
e-

t
t-
e

r

e
d
ce
ld
t
s

at much lower ghost massesMG
v 50.305 GeV2, which lies

well within the momentum range used in the OBEP analy
of NN scattering data.

Altogether the ghost subtracted potential resembles
OBEP much more than the ghost unsubtracted one.
similarity can be qualitatively understood by observing th
the ghost-free propagator is numerically indistinguisha
from the free one. In other words, most of one-loop effe
goes into producing the ghost contribution. The differen
between the ghost subtracted and OBE potentials stems
the inclusion of phenomenological form factors. Our resu
support the idea that the elimination of the ghost is not o
a desirable procedure from the quantum field theoret
point of view but also producesNN potentials which com-
pare favorably with phenomenological meson exchange
Similar conclusions follow for other mesons, including th
s meson, with renormalizable couplings due to the comm
one-loop nature of the corresponding self-energies. Part
larly interesting in this regard is the pion since its coupling
the nucleon is best known, the form factor effects are ne
gible at the momentum scales under discussion and the
trapolation to the on-shell point is least sensitive as co
pared to other mesons. This should be done with
pseudoscalar coupling as required by renormalizability. H
the effect of the ghost subtraction goes in the right direct
although it is less pronounced as compared to thev case.

V. CONCLUSIONS AND FINAL REMARKS

We summarize our points. In the present paper, we h
studied the consequences of eliminating the vacuum in
bilities which take place in thes-v model. This has been
done using Redmond’s prescription which imposes the va
ity of the Källén-Lehmann representation for the two-poi
Green’s functions. We have discussed possible interpr
tions to such a method and have given arguments to re
Redmond’s method as a nonperturbative and nonlocal m
fication of the starting Lagrangian. In fact, no obstruction
met to formulate the theory within a largeN expansion.
Moreover, it seems that a nonperturbative definition of
s-v model is allowed due to the existence of nontrivial u
traviolet fixed points in the largeN limit after ghost elimina-
tion. This point deserves further investigation for it opens
otherwise unexpected possibility of a lattice formulation b
yond a valence approximation.

Numerically we have found that, contrary to the nai
expectation, the effect of including fermionic loop corre
tions to the mesonic propagators (v-shell scheme! is not
small. However, it largely cancels with that of removing t
unphysical Landau poles.A priori, this is a rather unex-
pected result which in fact seems to justify previous calcu
tions carried out in the literature using a naive scheme.
tually, as compared to that scheme and after pro
readjustment of the parameters to selected nuclear matte
finite nuclei properties, the numerical effect becomes rat
moderate on nuclear observables. The two schemes, n
and no-ghost, are, however, completely different beyond
zero-four-momentum region and for instance predict diff
ent values for the vector meson mass. Also important is
effect upon the outcomingv exchange contribution to the
NN potentials as confronted with well-established parame

n

in
on
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zations such as the one-boson exchange potential. Her
inclusion of the Dirac sea is favored to achieve agreem
between nuclear matter data and the nucleon-nucleon po
tials at low momentum. On the other hand, only the gho
free model is able to reproduce the momentum depende
of the OBEP in a region including zero momentum and
meson pole. The theory with ghosts exhibits a very we
behavior for reasonable values of the coupling constants

Therefore it seems that, in this model, most of the ferm
onic loop contribution to the meson self-energy is spurio
The inclusion of the fermionic loop in the meson propaga
can only be regarded as an improvement if the Landau g
problem is dealt with simultaneously. We have seen that
presence of Landau ghosts does not reflect on the sea en
but it is not known whether there are other spurious ghost
contributions coming from three- or higher-point vert
functions induced by the fermionic loop.

Our calculation involves a semiclassical estimate of
Dirac sea contribution to the mean-field energy. As w
shown in a previous work, the semiclassical expansion
merically converges very quickly in a way that the series c
be truncated at second order. From a variational poin
view, the mean-field solution can be regarded as a lo
minimum of the energy functional. In the theory with ghos
the occurrence of the instability in the vacuum secto
through the formation of small size inhomogeneities
suggests a lowering of the energy for finite nuclei config
rations also. As a consequence, the semiclassical solu
which is obtained within a large size expansion, can har
be interpreted as an approximation to the inexistent ex
solution. On the contrary, in the ghost-free theory the lo
minimum obtained within a semiclassical treatment is
pected to be an approximation of the true minimum. T
aspect can only be made more precise after a full Har
calculation including the negative energy discrete and c
tinuum levels. The subtlety is that Dirac sea shell effects
missed by the semiclassical expansion and they may turn
series from convergent to asymptotic. A detailed investi
tion of this point is left for future research.

A model of nucleons and mesons can only be conside
as an approximation to the real world since it ignores
underlying subnuclear degrees of freedom. Nevertheless
rewarding that it is able to reproduce semiquantitatively
diversity of physical situations of direct interest to nucle
physics. At the same time this is achieved by a relativis
quantum field theory which only after elimination of th
ghosts incorporates well-established principles and allo
for a systematic expansion. In our view this combination
phenomenological and theoretical consistency in thes-v
model makes it worthwhile to pursue the approach adop
in this work by inclusion of the remaining low lying meson
and baryons as well as considering higher orders in the la
N expansion in a systematic way.
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APPENDIX

1. Meson self-energies in the leading1/N expansion

As stated in the main text, the leading order in the 1N
expansion (N being the number of nucleon species! is
achieved by considering one-fermion loop and zero-bo
loop Feynman graphs in the effective action. This cor
sponds to compute the meson self-energies at the one-
approximation.

For the s meson, the bare self-energy in terms of t
Lagrangian coupling constant is obtained as

PB,s~p
2;M ,j,«!52 i j2«E d422«k

~2p!422«TrH . i

p”1k”2M1 ih

3 igs
i

k”2M1 ih
igs .J . ~A1!

Imposing zero-momentum renormalization we get

Ps~p
2!5PB,s~p

2!2PB,s~0!2PB,s8 ~0!p2

52
gs
2N

4p2 H S 2M22
1

2
p2D I S p2M2D1

p2

3 J , ~A2!

where the functionI (y) is defined as

I ~y!5E
0

1

dxln@12yx~12x!2 ih#

55
k ln

k11

k21
22, y,0

2karcsin~Ay/4!22, 0,y,4

k ln
11k

12k
222 ipk, 4,y,

wherek5u12(4/y)u1/2.
Thev-meson self-energy is obtained in a similar way b

taking care of its Lorentz structure,

PB,v
mn ~p2;M ,«,j!

52 i j2«E d422«k

~2p!422«TrH i

p”1k”2M1 ih
~2 igv!g

m

3
i

k”2M1 ih
~2 igv!g

nJ , ~A3!

which is highly simplified by baryonic current conservatio

PB,v
mn ~p2!5S 2gmn1

pmpn

p2 DPB,v~p
2!. ~A4!
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The explicit expression of thev-meson self-energy renor
malized at zero momentum is

Pv~p
2!5PB,v~p

2!2PB,v~0!2PB,v8 ~0!p2

5
Ngv

2

12p2 H ~2M21p2!I S p2M2D1
p2

3 J . ~A5!

2. Poles and residues

The relation between the Lagrangian mass of a bosom
and its physical massmsh is given by

msh
2 2m22P~msh

2 !50 , ~A6!

where the self-energyP(p2) is assumed to be renormalize
at zero momentum. Likewise for the coupling constants,

gsh
2 5

g2

12P8~msh
2 !

. ~A7!

From the expression of its self-energy given above
find that thes-meson physical polems can be obtained in
terms of the Lagrangian parametersgs andms by solving the
transcendental equation

ms
25ms

22
Ngs

2

4p2M
2F42

4

3

ms
2

M2 1S 241
ms
2

M2D
3A4M2

ms
2 21arcsin

ms

2M G . ~A8!
-

s.

.

s

e

Similarly, the equation to solve for thev particle is

mv
25mv

21
Ngv

2

4p2M
2F431

5

9

mv
2

M2 2
2

3 S 21
mv
2

M2D
3A4M2

mv
2 21arcsin

mv

2M G . ~A9!

It is interesting to note that sometimes the combinat
C25M2g2/m2 is taken to be fixed by nuclear matter pro
erties. This allows one to write the Lagrangian coupling co
stantg as a function ofC and the Lagrangian massm. In-
serting thev version of this expression into the previou
equation permits us to solve the Lagrangian mass in term
Cv and the physicalv massmv . If Eqs. ~A8! and ~A9! are
conveniently extended to themsh-complex plane they can b
used to obtain the Landau ghost masses as well@better ex-
pressions for numerical calculation are found in the main t
in Eqs.~37! and ~35!#.

Once a Landau pole has been computed, the value o
zero-momentum residue2RG is easily obtained as

RG52@12P8~2MG
2 !#21. ~A10!

The particular expressions of this equation for thes andv
meson are given in Eqs.~36! and ~34!, respectively.
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