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The o-0o model of nuclei is studied at leading order in thé\l¢xpansion thereby introducing the self-
consistent Hartree approximation, the Dirac sea corrections and the one fermion loop meson self-energies in a
unified way. For simplicity, the Dirac sea is further treated within a semiclassical expansion to all orders. The
well-known Landau pole vacuum instability appearing in this kind of theory is removed by means of a scheme
recently proposed in this context. The effect of such a removal on the low momentum effective parameters of
the model, relevant to describe nuclear matter, finite nuclei Nikdorce, is analyzed. The one fermion loop
meson self-energies are found to have a sizeable contribution to these parameters. However, such contribution
turns out to come mostly from the Landau poles and is thus spurious. We conclude that the fermionic loop can
only be introduced consistently in the w nuclear model if the Landau pole problem is dealt with properly.

We comment on the possibility of a nonperturbative formulation of the m@¢86556-281®37)02604-9

PACS numbgs): 21.60—n, 11.10.Gh, 11.55.Fv, 21.10.Dr

[. INTRODUCTION nation of the correlation energy for nuclear mattee., one
fermion loop plus a boson logpUnlike quantum electrody-
The relativistic approach to nuclear physics has attractedamics, where the instability takes place far beyond its do-
much attention. From a theoretical point of view, it allows main of applicability, in quantum hadrodynamics it occurs at
one to implement, in principle, the important requirements ofthe length scale of 0.2 fm that is comparable to the nucleon
relativity, unitarity, causality, and renormalizabilitfl].  size and mass. Therefore, the existence of the instability con-
From the phenomenological side, it has also been successfuhdicts the original motivation that lead to the introduction
in reproducing a large body of experimental dbta-5]. In  of the field theoretical model itself. In such a situation sev-
the context of finite nuclei a large amount of work has beereral possibilities arise. First, one may argue that the model is
done at the Hartree level but considering only the positivedefined only as an effective theory, subjected to inherent
energy single particle nucleon states. The Dirac sea has al$imitations regarding the Dirac sea. Namely, the sea may at
been studied since it is required to preserve the unitarity obest be handled semiclassically, hence reducing the scope of
the theory. In addition, the only limit in which the Dirac sea applicability of the model. This interpretation is intellectu-
contribution becomes negligible corresponds to that of infi-ally unsatisfactory since the semiclassical treatment would
nite nucleon mass, which also coincides with the nonrelativhe an approximation to an inexistent mean-field description.
istic limit. If the sea were negligible a fully relativistic Alternatively, and taking into account the phenomenological
framework would be superfluous from a theoretical point ofsuccess of the model, one may take more seriously the spirit
view. Actually, Dirac sea corrections have been found to beof the original proposdll], namely, to use specific renormal-
non-negligible using a semiclassical expansion which, ifizable Lagrangians where the basic degrees of freedom are
computed to fourth order, seems to be quickly convergentepresented by nucleon and meson fields. Such a path has
[6]. Therefore, it would appear that the overall theoreticalbeen explored in a series of papé®s-11] inspired by the
and phenomenological picture suggested by the relativistiearly work of Redmond and Bogolyubast al. on nonas-
approach is rather reliable. ymptotically free theorie$12,13. The key feature of this
However, it has been known for ten years that such &ind of theory is that they are only defined in a perturbative
description is internally inconsistent. The vacuum of thesense. According to the latter authors, it is possible to
theory is unstable due to the existence of tachyonic poles isupplement the theory with a prescription based on an exact
the meson propagators at high Euclidean momgntaAl- fulfillment of the Kadlén-Lehmann representation of the two-
ternatively, a translationally invariant mean-field vacuumpoint Green’s functions. The interesting aspect of this pro-
does not correspond to a minimum; the Dirac sea vacuurposal is that the Landau poles are removed in such a way that
energy can be lowered by allowing small size mean-fieldhe perturbative content of the theory remains unchanged. In
solutions[8]. Being a short-distance instability it does not particular, this guarantees that the perturbative renormaliz-
show up for finite nuclei at the one fermion loop level andability is preserved. It is, however, not clear whether this
within a semiclassical expansiomwvhich is an asymptotic result can be generalized to three- and higher-point Green’s
large size expansignFor the same reason, it does not appearfunctions in order to end up with a completely well-behaved
either in the study of nuclear matter if translational invari-field theory. Although the prescription to eliminate the
ance is imposed as a constraint. However, the instability seghosts may seem to la&l hog it certainly agrees more with
in either in an exact mean-field valence plus $e@, one the original proposal and provides a workable calculational
fermion loop calculation for finite nuclei or in the determi- scheme.
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The above-mentioned prescription has already been Used:(x)=W(x){yﬂ[iﬁ“—gvvl‘(x)]—[M —gsp(X) [} (x)
in the context of nuclear physics. In Rg14], it was applied ) - )
to ghost removal in ther exchange in theNN potential. +3[0,P(X)*H(X) = M5 (X)] = zF ., (X)F#"(X)
More recently, a study of the correlation energy in nuclear 1.2
matter in theo-w model[11] and also in the evaluation of 2,V (X)VEX) + SL(X). @

response functions within a local density approximafi®h W(x) is the isospinor nucleon fields(x) the scalar field,

has been explored. Although this model is rather simple, iR/ (X) the w-meson field, andF,,=a,V,—d,V, . In the
" ’ pwr— uVr YV

embod|_es the essgn_tlal field theoretical aspects of t_he pmt?()rmer expression the necessary counterterms required by
lem while still providing a reasonable phenomenological de

L . . ‘renormalization are accounted for by the extra Lagrangian
scription. We will use ther-w model in the present work, to Y grang

. - - A term 8£(x) (including meson self-couplings

estimate the blnd|_ng energy (.)f f|n_|te nu_clel within a self- Including Dirac sea corrections requires taking care of
consuste_nt mean-field desc_npuon, .|ncllud|ng the effects du(?‘enormalization issues. The best way of doing this in the
to thf Dirac ?.e?d aft?r ?ﬁphcnslm'?an?r? of tlhe ghostz. ANpresent context is to use an effective action formalism which
exact mean-ield calcuiation, both for the vaience and seg, manifestly renormalization group invariant. Further we

does make sense in the absence of a vacuum instability but | ", specify the approximation scheme. The effective ac-
practice it becomes a technlcally_cumbersome problem. Th'ﬁon will be computed at lowest order in theNLexpansion

is due to the presence of a considerable number of negatlvlg '

energy bound states in addition to the continuum stggs being the number of nucleon specigath gs andg, of

Therefore, it seems advisable to use a simpler computation%l{)i%rnls@%’i;h?ér'fé:potﬁ dgnte()f?r:rglag:?rgz ?d :Z)E;(einliat;ﬁ)lriofror
scheme to obtain a numerical estimate. This will allow us tq, ' P PP

see whether the elimination of the ghosts induces dramati]::ermlon.S mcludmg the Dirac ?e[a5]- .
In principle, the full effective action would have to be

changes in the already satisfactory description of nuclea(r:Om uted by introducing bosonic and fermionic sources

properties. In this work we keep the full Hartree equationsHoer):ver sir)llce we will cg:]onsider only stationar situations.

for the valence part but employ a semiclassical approxima- ’ . only y '
e do not need to introduce fermionic sources. Instead, we

tion for the Dirac sea. This is in fact the standard procedure . . : -
. éNI“ proceed as usual by integrating out exactly the fermionic

[3-5]. As already mentioned, and discussed in previou L . . .
work [6], this expansion converges rather quickly and there_degrees of freedom. This gives directly the bosonic effective

fore might be reliably used to estimate the sea energy up tgcnon at leading order in the Nl/expansion:

possible corrections due to shell effects. e V=T V14T i 2
The paper is organized as follows. In Sec. Il we present [$:VI=Tel ¢ VI+ T[4V, @

the o-w model of nuclei in the N leading approximation, \here

the semiclassical treatment of the Dirac sea, the renormaliza-

tion prescriptions, and the different parameter fixing schemes L 2 00 1

that we will consider. This is done within the effective action FB[‘ZS:V]:I [3(d,pd*p—m5p) —5F , F*"
formalism. In Sec. Ill we discuss the vacuum instability

problem of the model and Redmond’s proposal. We also +%meMV“]d4x 3

study the implications of the ghost subtraction on the low-

momentum effective parameters. Based on the existence éd

nontrivial ultraviolet fixed points, we argue that there is a ) )

perturbatively equivalent action which becomes amenable to I FL#,V]=—ilnDefy,(i*~g,V*)—(M—gs¢)]

a lattice treatment. In Sec. IV we present our numerical re-

sults for the parameters, binding energies, and mean qua- +J SL(x)d*x. (4)
dratic charge radii of some closed-shell nuclei and the

nucleon-nucleon potential mediated bymeson exchange. The fermionic determinant can be computed perturbatively,
Qur conclusions are presented in Sec. V Explicit exprespy adding up the one-fermion loop amputated graphs with
sions for the zero momentum renormalized meson selfany number of bosonic legs, using a gradient expansion or by
energies and related formulas are given in the Appendix. any other technique. The ultraviolet divergences are to be
canceled with the counterterms by using any renormalization
scheme; all of them give the same result after fitting to physi-
cal observables.

In this section we revise the-w model description of The effective action so obtained is uniquely defined and
finite nuclei disregarding throughout the instability problem;completely finite. However, there still remains the freedom
this will be considered in the next section. The Dirac seao choose different variables to express it. Actually, the nu-
corrections are included at the semiclassical level and renomerical value of the effective action is independent of the
malization issues as well as the various ways of fixing therenormalization poinf16]. We will work with fields renor-
parameters of the model are also discussed here. malized at zero momentum. That is, the bosonic fields
#(x) andV ,(x) are normalized so that their kinetic energy
term is the canonical one. This is the choice shown above in
I's[ #,V]. Another usual choice is the on-shell one, namely,

Our starting point is the Lagrangian density of thew  to rescale the fields so that the residue of the propagator at
model[1,3-5 given by the meson pole is unity. Note that the Lagrangian mass pa-

Il. - MODEL OF NUCLEI

A. Field theoretical model
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rametersmgs and m, do not correspond to the physical and higher order terms are ultraviolet finite as follows from
massegwhich will be denotedn, andm,, in what follows dimensional counting. The first two terms, being renormal-
since the latter are defined as the position of the poles in thized at zero momentum, do not contain operators with di-
corresponding propagators. The difference comes from theension four or less, such @&, ¢*, or (VV)?, since they
fermion loop self-energy i ¢,V] that contains terms are already accounted for in the bosonic téigh ¢,V]. Note
quadratic in the boson fields with higher order gradients. that the theory has been renormalized so that there are no
Let us turn now to the fermionic contributidi:[ ¢,V].  three- or four-point bosonic interactions in the effective ac-
We will consider nuclear ground states of spherical nucleition at zero momenturf3].
therefore the spacelike components of themeson field By definition, the true value of the classical fielde., the
vanish[5] and the remaining fieldg(x) andV,(x) are sta- value in the absence of external soujcissto be found by
tionary. As is well known, for stationary fields the fermionic minimization of the effective action or, in the stationary case,
energy, i.e., minus the actidrie[ ¢,V] per unit time, can be of the energy
formally written as the sum of single particle energies of the

fermions moving in the bosonic backgrouftb, E[ ¢,V]=Eg[ ¢, V]+EP[ ¢, V]+EST ¢, V]. (9)
EF[¢1VO]:Z E, (5) Such _mir_1imization yields the equations of motion for the
n bosonic fields,

and (V2= m2) (%) = — g p2(x) + pSAX) ],
{1 aV+g,Vo(x)+ BIM—ged(X) 1 ¢hn(X) = Enthn(x). (6)

Note that what we have called the fermionic energy contains
not only the fermionic kinetic energy, but also the potential — . :
energy coming from the interaction with the bosons. H(exr)e - <%(T?L)é,\?x()§)?ééxggr Igniéhoene.scalar density and
The orbitals, and thus the fermionic energy, can be dif y '
vided into valence and sea, i.e., positive and negative energy

(VZ=m2)Vo(x)= —g,[p"¥(x) +p**Ex)]. (10

. ... . R val (sea
orbitals. In realistic cases there is a gap in the spectrum pval(sea(x):_i SEF
which makes such a separation a natural one. The valence s Os O¢(x) ’
energy is therefore given by
val (seg
val val pval(sea(x) =+ i 6EF— (11
EffgvI=2 B Y g, Vo(X)

On the other hand, the sea energy is ultraviolet divergent anghe set of bosonic and fermionic equations, Ed€) and

requires the renormalization mentioned abg@¢ The (at  (6). respectively, are to be solved self-consistently. Let us
zero momentutnrenormalized sea energy is known in a gra-rémark that treating the fermionic sea energy using a gradi-
dient or semiclassical expansion up to fourth order and i€nt or semiclassical expansion is a further approximation on

given by[6] top of the mean-field ap_proximation since it n_eglects pos-
sible shell effects in the Dirac sea. However, a direct solution

o N i o (P 4D gep T(gsd\? of the mean-field equations including renormalization of the
Eo=— WM d>x M |nm+ M 2\ M sum of single-particle energies would not give a physically

acceptable solution due to the presence of Landau ghosts.
13/gsp\® 25/ g.p\? They will be considered in the next section.
+ ( ' At this point it is appropriate to make some comments on
renormalization. As we have said, one can choose different
N 2 ® normalizations for the mesonic fields and there are also sev-
EZ‘*EFJ dgx[ §|nm(VV)2—|nm(VCD)2}, eral sets of mesonic masses, namely, on-shell and at zero
m momentum. If one were to write the mesonic equations of

motion directly, by similarity with a classical treatment,

ES*%= N 2] d3x{— 11D 4Vd)* there would be an ambiguity as to which set should be used.
2880m The effective action treatment makes it clear that the me-
— 22D 4(VV)2(VD)2+ 44D [ (V,D)(V;V)]? sonic field and masses are those at zero momentum. In this
regard, let us note that a similar set of equations derived in
— 44D 3[(V,;®)(V;V)(V2V)— 8D ~4(VV)* Ref. [9] incorrectly ignore a wave-function renormalization

_3,02 2 _3 PP factor since they are used for on-shell parameters. On the
+2205(VER)(VO) ™+ 14 (VV)5(V7D) other hand, since we have not included bosonic loops, the
— 18D 2(V2D)2+ 24D ~2(V2V)2}. ®) fermionic operators in the Lagrangian are not renormalized
and there are no proper vertex corrections. Thus the nucleon
Here,V=g,V,, ®=M—g.¢, andN is the isospin degen- massM, the nuclear densities?¥'), and the combinations
eracy of the nucleofti.e., N=2 in the real world. The sea gs¢(x) andg,V ,(x) are fixed unambiguously in the renor-
energy is obtained by adding up the terms above. The fourtmalized theory. The fermionic enerdy[ ¢,V], the poten-
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tials ®(x) andV(x), and the nucleon single particle orbitals pole, which is underestimated. We will refer to this proce-
are all free from renormalization ambiguities at leading ordedure as thaaive schemeNote that when the Dirac sea is not
in 1/N. included at all, the right viewpoint is to consider the theory
at the tree level, and the-shell and the naive schemes co-
B. Fixing of the parameters incide.
The o-w and related theories are effective models of
nuclear interaction, and hence their parameters are to be
fixed to experimental observables within the considered ap- As already mentioned, the-» model, and more gener-
proximation. Several procedures to perform the fixing can bally any Lagrangian which couples bosons with fermions by
found in the literaturd2,4,5); the more sophisticated ver- means of a Yukawa-like coupling, exhibits a vacuum insta-
sions try to adjust, by minimizing the approprigté func-  bility [7,8]. This instability prevents the actual calculation of
tion, as many experimental values as possible through thehysical quantities beyond the mean-field valence approxi-
whole nuclear tabl¢4]. These methods are useful when themation in a systematic way. Recently, however, a proposal
theory implements enough physical elements to provide &y Redmond12] that explicitly eliminates the Landau ghost
good description of atomic nuclei. The particular model wehas been implemented to describe relativistic nuclear matter
are dealing with can reproduce the main features of nuclean a series of paperf9-11]. The main features of such a
force, such as saturation and the correct magic numberspethod are contained already in the original papégs13
however, it lacks many of the important ingredients ofand belongs to the body of some standard field theory text-
nuclear interaction, namely Coulomb interaction ghdnd  books[18,19. Many details have also been discussed re-
7 mesons. Therefore, we will use the simple fixing schemegarding its application to nuclear matter and response func-
proposed in Ref[2] for this model. tions [9-11]. For the sake of clarity, we review here the
Initially there are five free parameters: the nucleon massnethod(correcting the above-mentioned error in Réf) in
(M), two boson Lagrangian massesyandm,), and the a way that is easily applied to the calculation of Dirac sea
corresponding coupling constantgg(and g,). The five effects for closed-shell finite nuclei and tiNN potential.
physical observables to be reproduced are taken to be th&'e also consider some aspects of the lagexpansion in
physical nucleon mass, the physiealmeson mass,, the the present context and argue that the ghost subtracted theory
saturation properties of nuclear matidinding energy per may be a perfectly well-defined quantum field theory beyond
nucleonB/A and Fermi momenturkg), and the mean qua- finite order perturbation theory, possibly suited to a lattice
dratic charge radius df°Ca. In our approximation, the equa- formulation.
tion of state of nuclear matter at zero temperature, and hence
its saturation properties, depends only on the nucleon mass A. Landau instability
and onmg, andgs, through the combinations3] (in fact,

minus the meson exchange nucleon-nucleon potentials %tu(j;n;re dg;lesi Lar\:\fjea\tl‘v”'ln;’éa?r':'%’ it‘)?“’s"lz eliiF;l altLeeaSZcih rie(r)?
zero four momentuin ty, gin by g

the o-w theory. On a very general basis, namely, Poincare

IIl. LANDAU INSTABILITY SUBTRACTION

. 2 ) 2MZ invariance, unitarity, causality, and uniqueness of the
CS:gSF, =9, me (12)  vacuum state, one can show that the two point Green’s func-
S v tion (time ordered produgtfor a scalar field admits the

) _ ) ) ] Kallén-Lehmann representatigao]
At this point, there still remain two parameters to be fixed,

e.g.,m, andgs. Now we implement the physica)-meson , o L

mass constraint. From the expression of éheropagator at D(x _X):f dup(u)Do(X" —X; 1), (13
the leading IN approximation, we can obtain the value of

the physicalw pole as a function of the Lagrangian param-where the full propagator in the vacuum is

etersM, g,, andm, or more conveniently as a function of

M, C,, andm, (see Appendix Identifying thew pole and D(x"—x)=—i(0[T¢(x") $(x)|0) (14
the physicalw mass, and given thafl andC, have already

been fixed, we obtain the value of, . Finally, the value of ~2and the free propagator reads

g is adjusted to fit the mean quadratic charge radius of 4 ip( —x)

40Ca. We will refer to this fixing procedure as theshell dp e

It ) —
schemethe name stresses the correct association between Do(X" =X %) (2m)* p>— ul+in’ (15)
the pole of thew-meson propagator and the physiaamass _ _ .
[17]. The above fixing procedure gives different values ofThe spectral density(u?) is defined as
mg and gs depending on the order at which the Dirac sea
F\?)e.rgy is included in the semiclassical expangie®e Sec. p(q2)=(277)3; 5*(pa— ) (0] $(0)|n)2. (16)

Throughout the literature the standard fixing procedure
when the Dirac sea is included has been to give to the Lakl is non-negative, Lorentz invariant, and vanishes for space-
grangian massn, the value of the physicab mass[4,5] like four momentumg.
(see, however, Refd.17,10,§). Of course, this yields a The Kdlén-Lehmann representability is a necessary con-
wrong value for the position of the-meson propagator dition for any acceptable theory, yet it is violated by the
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o-w model when the meson propagators are approximatehg order in a IN expansion, the existence of the Landau
by their leading IN term. It is not clear whether this failure ghost in the meson propagator gives rise to a pole ambiguity.
is tied to the theory itself or is an artifact of the approxima- This is unlike physical timelike poles, which can be properly
tion —it is well known that approximations to the full propa- handled by the customary i » rule, and thus an additional
gator do not necessarily preserve thdl&aLehmann repre- ad hocprescription is needed. This ambiguity reflects in turn
sentability. The former possibility would suppose a seriousn the Borel transform of the perturbative series; the Borel
obstacle for the theory to be a reliable one. transform presents singularities known as renormalons in the
In the above-mentioned approximation, E@.3) still literature[21]. In recovering the sum of the perturbative se-
holds both for ther and thew casedin the latter case with ries through inverse Borel transformation a prescription is
obvious modification to account for the Lorentz strucjure then needed, and Redmond’s proposal provides a particularly

but the spectral density gets modified to be suitable way of fixing such ambiguity. Nevertheless, it
should be noted that even if Redmond’s prescription turns
p(p?)=p*(u?) —Rad(u?+M3), (17)  out to be justified, there still remains the problem of how to

extend it to the case of three and more point Green’s func-
where p(u?) is a physically acceptable spectral density,tions, since the corresponding ia-Lehmann representa-
satisfying the general requirements of a quantum fieldions have been less studied. As noted below, this problem
theory. On the other hand, however, the extra term spoilgannot occur at any finite order in theNLéxpansion.
these general principles. The residuég is negative, thus
indicating the appearance of a Landau ghost state which con-
tradicts the usual quantum mechanical probabilistic interpre- ) o )
tation. Moreover, thes function is located at the spacelike ~ TO implement Redmond’s prescription in detail we start
squared four momentura M2 indicating the occurrence of with the zero-momentum renormalized propagator in terms
a tachyonic instability. As a perturbative analysis shows, th@f the proper self-energy for the scalar figll similar con-
dependence oRg and Mg on the fermion-meson coupling struction can be carried out for the vector field as yyell
constantg in the weak-coupling regime iBg~ a/Ng? and N2 2 2—1
MZ~MZ2exp@Ng>+B), where M is the nucleon mass, Ds(p9)=[p"=ms— (P91 (19

a=8w? pB=8/3 for the scalar meson, and=127 wherem, is the zero-momentum meson mass and the corre-
B="5/3 for the vector meson. Therefore the perturbative con- S

tent of p(?) and p(?) is the same, i.e., both quantities sponding renormalization conditions arH(0)=11;(0)

S . ; . =0. The explicit formulas for the scalar and vector meson
coincide order by order in a power series expansiorg of ; ; . :
keei 2 = . : self-energies at leading order in the lafyeexpansion are
eepingu” fixed. This can also be seen in the propagator”. . : o\ i X
form of the previous equation given in the Append|x. Of cours@s(p ) is just the inverse

of the quadratic part of the effective actisty(p?). Accord-
ing to the previous section, the propagator presents a tachy-

(18 onic pole. Since the ghost subtraction is performed at the
level of the two-point Green’s function, it is clear that the
corresponding Lagrangian counterterm must involve a qua-
ratic operator in the mesonic fields. The counterterm kernel
AK4(p?) must be such that cancels the ghost term in the

ropagatoD(p?) in Eq.(18). The subtraction neither modi-

B. Instability subtraction

Rs
—DXL(p)—
D(p)=D™(P) = 7z
For fixed four momentum, the ghost term vanishes a
exp(—a/Ng?) when the coupling constant goes to zero. As

noted by RedmonflL2], it is therefore possible to modify the
theory by adding a suitable counterterm to the action th

properties andNN potentials. This will be discussed further
in the next section.
Straightforward calculation yields

physically acceptable and free from vacuum instability at
leading order in the N expansion.

It is not presently known whether the stability problems
of the originalo-w theory are intrinsic or due to the approxi- RS
mation used, thus Redmond’s procedure can be interpreted AK(p?)=— >~ —5 5 GSZ .
either as a fundamental change of the theory or as a modifi- Ds(p%) Rg+(p“+Mg°)Ds(p?)
cation of the approximation scheme. Although both interpre-
tations use the perturbative expansion as a constraint, it is néts stated, this expression vanishes as explg?) for
possible, at the present stage, to decide between them. dtmall g at fixed momentum. Therefore it is a genuine non-
should be made quite clear that in spite of the seeminglyperturbative counterterm. It is also nonlocal as it depends in
arbitrariness of the no-ghost prescription, the original theorya nonpolynomial way on the momentum. In any case, it does
itself was ambiguous regarding its nonperturbative regimenot introduce new ultraviolet divergences at the one fermion
In fact, being a nonasymptotically free theory, it is not obvi- loop level. However, it is not known whether the presence of
ous how to define it beyond finite order perturbation theorythis term spoils any general principle of quantum field
For the same reason, it is not Borel summable and hendiseory.
additional prescriptions are required to reconstruct the Proceeding in a similar way with the-meson field
Green’s functions from perturbation theory to all orders. AsV ,(x), the following change in the total original action is
an example, if the nucleon self-energy is computed at leadnduced:

(20
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11 d% ) follows. Nevertheless, a more compelling argument would
AS= Ef W(ﬁ(—p)AKs(p )(p) be needed to make a reliable choice between both possibili-
ties.
10 d%

V(A2
2 (277)4\/“(_ PAK(PIV.(P),  (2D) C. Field theoretical aspects of the largeN expansion
Perhaps the most attractive feature of the la¥gexpan-
where¢(p) andV ,(p) are the Fourier transform of the sca- sion lies in its systematic summation of perturbative Feyn-
lar and vector fields in coordinate spag€x) andV,(x),  man diagrams while being itself a nonperturbative method.
respectively. Note that at the tree level for bosons, as we ar@ctually, if one introduces new diagrams using as building
considering throughout, this modification of the action is toblocks the old nucleon line and vertices and the leading
be added directly to the effective action —in fact, this is thel/N meson propagator as new meson line, a new expansion
simplest way to derive Eq20). Therefore, in the case of arises. The Feynman rules remain the same besides the fact
static fields, the total mean-field energy after ghost eliminathat one should not include nucleon loops attached to two
tion reads meson lines, since they are already accounted for by the new
meson line. The important property is that at each order of
_pval, sea the 1N expansion there are only a finite humber of new
E=Eet BBt AR, 2 diagrams. E)I'his comes about begause each vertex carries a
val —sea . . factor 1A/N and for each nucleon loop a factbr appears.
whereEg", Eg™, andEg were given in Sec. Il and Therefore, any nucleon loop subdiagram wit3 meson
legs is suppressed by a factor (W)~ 2. It is noteworthy
110 5 ) that these features remain the same after removing the ghost.
AEW’V]:EJ d*Xp(X)AK(V) () In particular, this implies that no new ghost may appear
within a finite order of the ™ expansion, although a sum-
mation of an infinite number of diagrams may give rise to
new ghost singularities. A further aspect of the method used
in the case of thas meson is given by gauge invariance

One can proceed by minimizing the mean-field total energyslnce the Lorentz structure of the propagator remains un-

. . L Zchanged. As a consequence the perturbative renormalizabil-
as a functional of the bosonic and fermionic fields. This., . . S .
; . X . ity (in the 1N senseg of the theory is maintained, since the
yields the usual set of Dirac equations for the fermions, Eq":’I'on itudinal components of the propagator still cancel due
(6), and modifies the left-hand side of the bosonic Ed6) 9 P propag

by adding a linear nonlocal term. This will be our startingto the coupling to the conserved baryonic current. A similar

point to study the effect of eliminating the ghosts in the.remark can be made for the case of quantum electrodynam-

description of finite nuclei. We note that the instability is ICS. The ghost subtraction together W'th.the Iargesxpan—
removed at the Lagrangian level, i.e., the nonlocal counter>'o" render the theory Borel summable in the coupling con-
L tant at any finite order in the M/expansion. Nothing is of

terms are taken to be new terms of the starting Lagrangial T - :
which is then used to describe the vacuum, nuclear mattefC""~€ implied for the Borel summability of theNLseries.

and finite nuclei. Therefore no new prescriptions are needefne should note that in spite of having a nonlocal looking

. o , : agrangian, the physical requirement of causality is fulfilled.
in addition to Redmond's to specify how the vacuum and th All these remarks indicate that the ghost subtracted theory is

medium parts of the effective action are modified by the . O L .
perfectly consistent, i.e., it satisfies the general requirements

removal of the ghosts. RS, -
So far, the new counterterms, although induced througf?f an acceptable relativistic field theory within d\1éxpan-
' ' Sion formulation.

the Yukawa coupling with fermions, have been treated a The eliminati f the ahost h furth ithouah
purely bosonic terms. Therefore, they do not contribute di- t de glmlrt]a 'on_l%. N gbos asg ur ef't?‘ (t)kl:g rel—
rectly to bilinear fermionic operators such as baryonic andated. advantage. This can be seen by computing the analo-

scalar densities. An alternative viewpoint would be to takedOUS 10 the Gell-Mann—Low’ function[23], defined as

—% f d3xVo(x) AK®(V2)Vo(x). (23

them rather as fermionic terms, i.e., agnanlocal and non- da
perturbative redefinition of the fermionic determinant. The V(a)= (M=)’ (24)

energy functional, and thus the mean-field equations and
their solutions, coincide in the bosonic and fermionic inter- —
pretations of the new term, but the baryonic densities anei"herfe the momentum depeg“’?”t ar_1d renormalization group
related observables would differ, since they pick up a neWnvariant effective charge(q°) is defined as

contribution given by the corresponding formulas similar to o
Egs. (11). Ambiguities and redefinitions are ubiquitous in 2= 2 (?—m?\D 25
guantum field theories, due to the well known ultraviolet di- (@) 477(q )D(@)- 29

vergences. However, in well-behaved theories the only free-

dom allowed in the definition of the fermionic determinant Here m? is the on-shell physical meson mass agjcand
comes from adding counterterms which are local and polyD(q) are the renormalized coupling constant and meson
nomial in the fieldg(see, e.g.[22]). Since the new counter- propagator. The effective charge has been defined so that
terms induced by Redmond’s method are not of this forma(m?)=g?/4= with g the on-shell coupling constant. Note
we will not pursue such alternative point of view in what that the combinatiorg?D(q) is renormalization group in-
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allows us to apply a derivative or low-momentum expansion.

‘\\ ' ' ,;'\G ' ' The quality of the gradient expansion can be testqubste-
03 1 ;' {03 riori by a direct computation. The practical implementation
\ ! of this idea consists of treating the teryS by expanding
4 s ! each of the kerneldK (p?) in a power series of the momen-
—~oz2| | ! loo tum squared around zero
3 \ |
= / KL
\ AK(p?)= 2 (p?)"AKzy. (26)
01} “(\ { o1 "
\\ The first two terms are given explicitly by
\
\ 4
. TR S . : 0.0 ___MRs
R o ' 20 0(21 22 AKo= MZ—m?Rg’
FIG. 1. The Gell-Mann—Low¥ function for the @ meson AK :mZRG(mZ_mZRG+2M<23) 27
¥ (a)=(g?°—m?2)da/dg? as a function of the effective charge 2 (MZ—m?Rg)? '

a(9?) =g?(q?—m?)D(q?)/4r, for the ghost unsubtracte¢) and

ghost free(KL) as obtained from the Kign-Lehmann representa- The explicit expressions of the tachyonic pole parameters
tion. The arrows indicate the direction of increasing)® starting Mg andRg for each meson can be found below.

from the on-shell pointj?=m2 . Note that the curve without ghost Numerically, we have found that the fourth and higher
has a nontrivial ultraviolet stable fixed point, whereas the ghosbrders in this gradient expansion are negligible as compared
unsubtracted curve has a trivial one for imaginary values of theg zeroth and second orders. In fact, in Rif] the same
coupling constant. We have takéh=939 MeV, m,=783 MeV,  pehavior was found for the correction to the Dirac sea con-

and on-shell coupling constagt,= 15.9 tribution to the binding energy of a nucleus. As a result, even

variant, i.e., it is independent of the renormalization point™r light nuclei, Ez%in Eq. (8) can be safely neglected. Fur-

used. We will see below that this combination is tkél  thermore, it has been shoW®6] that the fourth order termin
meson exchange potential at |eading Order Nﬂhe re|_ the grad|ent eXpanS|On of the valence energy, if treated semi-
evance of thel’ function relies on the possibility of studying classically, is less important than shell effects. So, it seems to
nontrivial ultraviolet fixed point§24]. We remind the reader be a general rule that, for the purpose of describing static
that the zeros of this function are the renormalization groughuclear properties, only the two lowest order terms of a gra-
fixed points. In Fig. 1 we display¥(«) for the particular ~dient expansion need to be considered. We warn, however,
case of thew meson before and after ghost elimination andthat the convergence of the gradient or semiclassical expan-
for the same value of the renormalized parameters, namelgjon does not imply convergence to the exact mean-field re-
M =939 MeV, m,=783 MeV, and on-shell coupling con- sult, since there could be shell effects not accounted for by
stantg,=15.9 (see the Appendix for the relation between this expansion at any finite order. Such effects certainly exist
zero momentum and on-shell parameteBy construction, in the valence parft26]. Even in such a seemingly safe case
in both cases the first positive zero corresponds to the oras infinite nuclear matter, where only the zeroth order has a
shell point and they have the same slope there. Howevehonvanishing contribution, something is left out by the gra-
both curves exhibit a completely different behavior as thegient expansion since the exact mean-field solution does not
four momentum transfer goes into the Euclidean region. Agyist due to the Landau ghost instabilityf course, the situ-
can be clearly seen, the vacuum unstable theory does ngfion may change if the Landau pole is removed other
show an ultraviolet fixed point, whereas the ghost free theo%ords, although a gradient expansion might appear to be

QOfseIT,ses onethwr]llch dcorr_e‘sifp%n?]s to a double ZZ%:B -Ofexact in the nuclear matter case, it hides the very existence of
ctually, near the fixed poin¥ behaves asd— a..)“/3mw, the vacuum instability.

indicating a rather slow approach to the large momentum From the previous discussion it follows that the whole

coupling constant. One should say that the unstable theor, oo :
also has a ultraviolet fixed point, namely at zero coupling,gffeCt of the ghost subtraction is represented by adding a

which, however, is approached from imaginary values of the® " AS to the effective action with the same form as the
coupling constant. Finally, the Méan-Lehmann representa- P9SONIC part of the original theotlyg[ ¢,V] in Eq. (3). This

tion guarantees that, apart from the on-shell polrta) will amounts to a modification of the zero-momentum parameters
not have other zeros beforeq?— + . Therefore, despite of the effective action. The new zero-momentum scalar field
the nonlocality of the action, the ghost-free theory seems téi-€-, With canonical kinetic energymass, and coupling con-
be well defined in a nonperturbative way. This opens thestant in terms of those of the original theory are given by
possibility of a full nonperturbative calculation using, say, a
lattice regularization method. We note here that some at- %) — s\1/2 —
tempts have been carried out in this direction but with the $00=(1+4K3) b0, Mg
naive action and in the valence approximati@s.

mg—AKg)m

1+AKS )
N S\ —1/2

D. Application to finite nuclei gs=(1+AK3) Os- (28)

In this section we will take advantage of the smooth be-The new coupling constant is obtained recalling that
havior of the mesonic mean fields in coordinate space whiclgs¢(x) should be invariant. Similar formulas hold for the
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vector meson. With these definitioqsand keeping only
AKg,(p?) to second order ip?] one find3

Egl #,V;mg,m,]=Eg[ ¢,V;ms,m, ]+ AE[ $,V;mg,m, ],

Re K,(p?)

Er[¢.V:i95.0,1=E[ 4,V:05.9,]. (29
The bosonic equations for the new meson fields after ghost
removal are hence identical to those of the original theory
using

-20 10 20 30

_,(ME—m?Rg)?
Mg+ m*Rg

N2 FIG. 2. Real part of the inverse scalar meson propagator
K<(p?) as a function of the squared four momentum using the no-

ghost(sea 2ndl set of parameters of Table |. The dashed line rep-

resents the one-loop result without ghost subtraction. The solid line
as zero-momentum masses and coupling constants, respécihe result after ghost elimination. The dotted line shows the free
tively. In the limit of large ghost masses or vanishing ghostinverse propagator. In all cases the slope at zero momentum is
residues, the reparametrization becomes trivial, as it shouldnity. Units are in nucleon mass.

be. Let us note that although the zero-momentum parameters

of the effective actiomﬁs‘v and@syv are the relevant ones for
nuclear structure properties, the parameteys andg, , are
the (zero-momentum renormalized.agrangian parameters
and they are also needed, since they are those appearing in
the Feynman rules in a perturbative treatment of the modefFixing the saturation density and binding energy to their ob-
Of course, both sets of parameters coincide when the ghosgerved values yields, of course, the same numerical values
are not removed or if there were no ghosts in the theory. for C§ andCi as in the original theory. After this is done, all

To finish this section we give explicitly the fourth order static properties of nuclear matter are determined and thus
coefficient in the gradient expansion AE, taking into ac- they are insensitive to the ghost subtraction. Therefore, at
count the rescaling of the mesonic fields, namely, leading order in the N expansion, to see any effect one
should study either static nuclear matter properties at higher
orders as done in Refl1] or finite nuclei. In Ref.[10]
response functions have been computed within a local den-
sity approximation. In this paper we focus on finite nuclei
structure.

It is remarkable that if all the parameters of the model
were to be fixed exclusively by a set of nuclear structure

MZ—m?R

~2 202 G G
=m*Mz —/——
m=mMMe i T miRg
(30)

(32

AK, Rg(M2+m?)?
1+AK,  (ME+m'Rg)(MZ—m?Rg)

Ng2 m’Rg(m?Rg—2M32)
 am?M? Mé+m4RG

(31)

where « is 80 for the scalar meson and 60 for the vector
meson. As already stated, for typical mesonic profiles th
contribution of these fourth order terms are found to be n
merically negligible. Simple order of magnitude estimate
show that squared gradients are suppressed by a fact
(RMg) 2, R being the nuclear radius, and therefore highe
orders can also be neglected. That the low-momentum regi
is the one relevant to nuclear physics can also be seen fro
the kernelK(p?), shown in Fig. 2. From Eq21), this ker-
nel is to be compared with the function(p) that has a
width of the order ofR™ 1. It is clear from the figure that at
this scale all the structure of the kernel at higher momenta
irrelevant toAE.

E. Fixing of the parameters after ghost subtraction

S

f
o

properties, the ghost subtracted and the original theories
would be indistinguishable regarding any other static nuclear

u%rediction, because bosonic and fermionic equations of mo-

tion have the same form in both theories. They would differ,
however, far from the zero-four-momentum region where the
flncation of the ghost kerelsK(p?) at orderp? is no
longer justified. In practice, the predictions will change after
fhost removal because themeson mass is quite large and
IS one of the observables to be used in the fixing of the
parameters. If thew-meson mass were larger, the zero-
momentum region would be dominated by the ghost pole
resulting in an odd sign for the slope of the on-shell renor-
Thalized propagator at zero momentum. This would imply
negative values for the zero-momentum paramegérand
mf. Likewise, if the on-shellw coupling constant were suf-
ficiently strong the ghost pole would shift towards the region

As noted in Sec. Il, the equation of state at zero temperadf _smaller momentum yielding a similar result as be_for_e.
ture for nuclear matter depends only on the dimensionles§his imposes some upper bounds regarding the admissible

quantitiesC2 andC?, that now become

Note thatEg ¢[] refer to the functional¢the same at both sides
of the equationsand not to their value as is also usual in physics
literature.

values of the on-shell parameters for the theory with ghosts.
On the contrary, the ghost-free theory does not exhibit these
constraints.

To fix the parameters of the theory we choose the same
observables as in Sec. Il. Let us consider first the vector

meson parametelﬁav and @U. We proceed as follows.
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(1) We choose a trial value fag, (the zero-momentum
coupling constant of the original thegryThis value and the
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gs should be adjusted to reproduce these two quantities. We
will refer to the set of masses and coupling constants so

known physical values of the-meson and nucleon masses, obtained as th@o-ghost schemparameters.

m,, andM, respectively, determines, (the zero-momentum
mass of the original theoyynamely

, o, Ng& [4 5mi 2 m?2
m=m,t 2 2MY 3t g mz 3| 2 w2

4M [ m,
X A\f 2 —larcsi vl (33

w

F. Application to the nucleon-nucleon potential

Traditionally, theo-ow model is meant to be applied to
finite nuclei. However, the most immediate consequence of
the ghost subtraction can be found by looking at the momen-
tum dependence of the nucleon-nucleon interaction. We re-
mind that, for the quantum field theory to make sense, it is
absolutely mandatory to get rid of the ghost. Clearly, since

(This, as well as the formulas given below, can be deduce&he number of parameters of the model is small, some pre-

from those in the Appendix.

dictive power can be attained by examining tR&l force

(2) g, andm, provide the values of the tachyonic param- throughout a sensible range of energies and conclusions

etersRg andMg . They are given by

o 2M
¢ K5—1,
14 Ngg K3+ 3 lKU+1 Kf 1
oS T 22\ 4 Tak,) -1 2 6]

(39

where the quantity, is the real solution of the following

might be drawn whether ghost subtractiotasRedmond is
experimentally favored at momentum transfers well below
the occurrence of the ghost. Due to the fact that we are
dealing with a model where the degrees of freedom are
nucleons and mesons, the obvious framework to undertake
this comparison is the Bonn one-meson exchange potential
(OBEP [27]. This allows us to compare each mesonic con-
tribution to the potential in a separate way, instead of com-
paring the outcoming phase shifts. The only subtlety arises
from the absence of experimental error bars in the OBEP
parameters so we cannot judge quantitatively the quality of

equation(there is an imaginary solution which correspondsthe model and our approximation, namely, the laxggmit.

to the w-meson polg

2 2 3
m, 2 Ng, K, 3K,| K, *T1 2 8
1+ w2t 1)+127T2[(7 > =1 3
=0. (35

(3) Knowng,, m,, M%, andR%, the values ofn, and

év are obtained from Eqg30). They are then inserted in
Egs. (32) to yield Cﬁ. If necessary, the initial trial value of

g, should be readjusted so that the vaIueC@fso obtained

We note that in the Hartree mean-field approximation, sym-
metric closed-shell nuclei data constrain only theand w
mesons parameters. The coupling and masses of the remain-
ing meson(i.e., 7, 5, p, and ) are not fixed by the above-
mentioned nuclei. It would be interesting to relax the isospin
zero constraint in order to obtain a more realistic description
of finite nuclei and simultaneously to impose some condi-
tions on thep meson parameters. In this work, it is not our
aim to achieve a fully realistic description BN scattering
data but rather to get some insight into the implications of
removing the ghost. In addition, this comparison should be

coincides with that determined by the saturation properties oflone within the same energy range used in the OBEP fits.

nuclear matter.
The procedure to fix the parameterng and g is similar

More specifically, we compare the OBEP reduction of the
full Bonn potential with the potential obtained in the leading

but S||ght|y Simp'er since the physica' mass of the Sca|a|!argeN eXpanSion with and without ghOSt subtraction. While

mesonm,, is not used in the fit. Some trial values fog and
gs are proposed. This allows us to compitg and Rg by
means of the formulas

M= 2M
N KS—ly
~ Ng2 ([ k2 3Bk ketl ., 8
R, T 8a2|l2 2 [ kem1 ST3)
(36)
wherek, is the real solution of
2 2
mg Ngs | 5 wstl , 2|
1+ z(ks—1) 8772("5'”,(5—1 25— 3(=0. (37

One can then compute, andg, and thusC2 and the mean
quadratic charge radius 4fCa. The initial values ofng and

in the former one considers elementary mesons with phe-
nomenological form factors, in our case the mesons are
dressed through their coupling to virtubiN pairs and no
additional form factors in the meson-nucleon vertices appear,
as dictated by the W expansion. In the spirit of the model
such phenomenological form factors are not necessary due to
its renormalizability and would arise naturally when comput-
ing next to leading M contributions. Of course, they should
be required to account for the underlying nucleon substruc-
ture at sufficiently high momentum.

IV. NUMERICAL RESULTS AND DISCUSSION
A. Finite nuclei

As explained in Sec. Il, the parameters of the theory are
fitted to five observables. For the latter we take the following
numerical values: M=939 MeV, m,=783 MeV,
B/A=15.75 MeV,ke=1.3 fm~1, and 3.82 fm for the mean
quadratic charge radius dfCa.
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TABLE I. Zero momentum renormalized Lagrangian param-  TABLE lll. Binding energy per nucleon of some closed-shell
eters in several schemes. Masses are in MeV. The meaning of thruclei computed in several ways: not including the Dirac sea in the
labels no sea, sea Oth, sea 2aeshell, and no-ghost are as in Table parameter fixingno-seg, including the Dirac sea at lowest order in
Ill. The naive scheme corresponds to not including the meson selfa gradient expansiotsea Oth, including the Dirac sea at all orders
energy. The numbers in brackets are the zero-momentum paranisea 2ng, and the experimental valugexp). The entry w-shell
eters of the effective action for the no-ghost scheflge,, and corresponds to use the set of parameters that reproduce the
és’v. In all casesm, and m,, stand for the poles in the meson ©@-MesoN mass after including the meson s_elf-energy. The entry
propagators after including the one fermion loop self-energy and'©-9host corresponds to the parameters obtained by applying Red-
using the corresponding Lagrangian parameters. Note that by cof?ond’s prescription.
struction the vector meson parameters coincide in the sea Oth and

sea 2nd cases. B/A (MeV)
no sea sea Oth sea 2nd exp.
Os me m, g, m, m, X no-ghost w-shell no-ghost w-shell
no sea 9.062 449.9 439.8 1381 783 673.65Ca  6.28 6.00 6.10 6.33 6.43 855

w-shell 6.153 382.8 379.8 11.78 910.8 783 3Ni  7.24 6.51 6.60 6.80 6.90 8.64
seaOth no-ghost 5996 370.0 368.3 14.86 978.6 783%7;  g36  7.99 8.07 8.92 830 871
(5.929 (368.9 (10.17 (786.D %5, g8l 843 850 862 869 836

naive 5922 3684 365.9 10.13 783 711.2 20
2%Pb  9.84 9.55 9.61 9.70 9.76  7.87

w-shell 6.846 4259 420.3 11.78 910.8 783

sea 2nd no-ghost 6.664 410.8 406.5 14.86 978.6 783 . A
(6.544 (407.1 (10.17 (786.1 momentum parameters of the effective actiony, and

naive 6.536 406.6 402.6 10.13 783 711.2 QS,U (in the other schemes they coincide with the Lagrangian
parameterns Againm, andm,, refer to the scalar and vector
propagator-pole masses after including the one fermion loop
If the Dirac sea is not included at all, the numerical valuesself-energy for each set of Lagrangian parameters. Table Il
that we find for the nuclear matter combinatic(h§ and Cf shows the ghost masses and residues corresponding to the
are zero-momentum renormalized propagators. The no-ghost
5 5 scheme parameters have been used.

Cs=357.7, C,;=274.1. (38 The binding energies per nucleémithout center-of-mass

) . correction$ and mean quadratic charge ra@iithout con-
The corresponding Lagrangian parameters are shown if|ution with the nucleon form factoof several closed-shell
Table I. There we also shom, andm,, that correspond 10 ;¢ are shown in Tables Il and IV for the shell and for

the position of the poles in the propagators after includingna naive and no-ghost schem@bese two latter schemes
the one-loop meson self-energy. They are an output of thﬁive the same numbersas well as for the case of not in-

calculation and are given for illustration purposes. _ cluding the Dirac sea. The experimental data are taken from
When the Dirac sea is included, nuclear matter propertleﬁefs_[zg_:;q_
fix the following values: From Table | it follows that the zero-momentum vector

(39) meson mass, in the w-shell scheme is considerably larger
than the physical mass. This is somewhat unexpected. Let us
Note that in nuclear matter only the zeroth ord&f® is recall that the naive treatment, which neglects the meson

needed in the gradient expansion of the sea energy, since tfE/-€Nergy, is the most used in practice. It has been known
meson fields are constant. Tkzero-momentum renormal- 10F @long time[31,17 that thew-shell scheme is, as a matter

ized Lagrangian meson masses , and coupling constants of principle', the correct procedure but on the basis of rough

9., are shown in Table | in various schemes namelyestlmates it was assumed that neglecting the meson self-
S,v ) [}

w-shell, no-ghost, and naive schemes, previously defined. TABLE IV. M dratic ch dIMOCR) of |

The scalar meson parameters differ if the Dirac sea energy i - Mean quadratic charge radiMQCR) of severa

included at zeroth order or at all ordefis practice zeroth co§ed-shell nuclei. Meaning of the labels and experimental values

plus second ordeiin the gradient expansion. For the sake of as in Table Ill

completeness, both possibilities are shown in the table. The MQCR (fm)

numbers in brackets in the no-ghost scheme are the zero-

C2=227.8, C2=1475.

no sea sea Oth sea 2nd exp.

A
TABLE II. Residue(up to a sigh and masgin MeV) of the 2% no-ghost w-shell no-ghost w-shell

ghosts in the zero-momentum rehormalized meson propagators usicax  3.48 3.48 3.48 3.48 348 3.48
ing the no-ghost sets of Lagrangian parameters in Table I.

SoNi 3.72 3.79 3.79 3.79 3.80
R Mg RY MY Sozr 4.22 4.23 4.24 4.25 425 427
13
sea Oth 1.748 4605 0.6090 1457 sSn  4.60 4.66 4.66 4.68 4.68

sea 2nd 1.584 3863 0.6090 1457  2¥Pb 535 5.39 5.39 5.41 541 5.0
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20 : — . and the ghost-free propagator below threshold. A similar re-
/ sult is obtained for the vector meson.
15 / 1 One may wonder how these conclusions reflect on the sea
energy. Given that we have found that most of the fermion
/ loop is spurious in the meson self-energy it seems necessary
to revise the sea energy as well since it has the same origin.
Technically, no such problem appears in our treatment. In-
b ] deed the ghost is found in the fermion loop attached to two
meson external legs, i.e., terms quadratic in the fields. How-
h : - - 2 ever, the sea energy used, namé&g*-E3*% does not con-
P tain such terms. Quadratic terms would correspond to a mass
term in E3*and a kinetic energy term i&3%%, but they are
FIG. 3. Imaginary part of the inverse scalar meson propagatoabsent from the sea energy due to the zero-momentum renor-
Ks(p?). Units and meaning of the lines as in Fig. 1. malization prescription used. On the other hand, terms with
L more than two gradients were found to be negligifté
energy would be a good approximation for the meson mas%Ievertheless, there still exists the possibility of ghostlike

We find here that this is not so. o . ; .
; . contributions in vertex functions corresponding to three or
Regarding the consequences of removing the ghost, wé

o ] - A more mesons, similar to the spurious contributions existing
find in Table | that the effective parameterg,, andgs, in in the two-point function. In this case the total sea energy

the no-ghost scheme are similar, within a few per thousandyqoyid have to be reconsidered. The physically acceptable
to those of the naive scheme. This similarity reflects in t“rf‘dispersion relations for three or more fields have been much

on the predicted nuclear properties: the results shown ifygs studied in the literature hence no answer can be given to
Tables Ill and IV for the no-ghost scheme coincide, within ;g possibility at present.

the indicated precision, with those of the naive schénat
shown in the table It is amazing that the outcoming param-
eters from such a sophisticated fitting procedure, namely, the
no-ghost scheme, resemble so much the parameters corre-In all cases the potential at zero-four-momentum transfer
sponding to the naive treatment. We believe this result to bgields not only the corresponding scattering length in Born
rather remarkable for it justifiea posteriorithe nowadays approximation, but also the relevant paramet@év in-
traditional calculations made with the naive scheme. volved in the description of nuclear matter. These numbers
The above observation is equivalent to the fact that theurn out to depend dramatically on the inclusion of the Dirac
Zero-momentum massfrg,v and the propagator-pole massessea and also, to a less extent, on the precise value of the
m, ., are very similar in the no-ghost scheme. This impliesFermi momentum. The OBEP valu€§=271(obtained by
that the effect of removing the ghosts cancels to a large exaveraging the isospin zero and isospin one chaireaisl
tent with that introduced by the meson self-energies. Not£§=192 are closer to the ones where the Dirac sea is in-
that separately the two effects are not small; as was notegluded[see Eqs(38) and(39)]. In fact, in the sea included
abovem, is much larger tham, in the w-shell scheme. To case, a good agreement between the nuclear matter results
interpret this result, it will be convenient to recall the struc-and the corresponding OBEP can be achieved by choosing a
ture of the meson propagators. In the leadiny approxi-  slightly different value of the Fermi momentum from that
mation, there are three kinds of states that can be created @ged above, namelk-=1.2 fm~1. Similarly, the no-sea
the vacuum by the meson fields. Correspondingly, the specase can reproduce the OBEP Va|uesczifv by taking
tral density functionsp(q?) have support in three clearly k.=1.4 fm~1. However, one should keep in mind that if
separated regions, namely, at the ghost mass squarite  heavier mesons than the low lying ones were introduced in
Euclidean regiop at the physical meson mass squared, andhe spirit of the OBEP, lower values of the potentials at zero
above theNN pair production threshold (@)2 (in the time-  momentum could be accommodated without destroying the
like region. The full meson propagator is obtained by con-typical values of the potentials at higher momenta. Such a
volution of the spectral density function with the masslessramework would presumably make compatible the nucleon-
propagator ¢*+i7) ~* as follows from the KBén-Lehmann  nucleon and nuclear matter data including the Dirac sea.
representation, Eq13). The large cancellation found after  The effect of subtracting the ghost can be best exempli-
removing the ghosts leads to the conclusion that, in the zerdied by analyzing thev-exchange potential. Since in the re-
momentum region, most of the correction induced by thegion 0<g?<m2 no direct experimental data are available,
fermion loop on the meson propagators, and thereby on thghe extrapolation of the OBEP to that region requires further
quadratic kernelK(p?), is spurious since it is due to un- assumptions. To account for the uncertainty in the OBEP
physical ghost states rather than to virthdll pairs. This can  form factors in the timelike region, we adopt two extreme
also be seen from Figs. 2 and 3. There, we represent the regdses regarding the value of thkemeson coupling constant,
and imaginary parts oK¢(p?) respectively, in three cases, namely, we either trust the OBEP coupling constant at zero
namely, before ghost elimination, after ghost elimination,momentum or else at the on-shell point. In both cases we
and the free inverse propagator. In all three cases the slope kéep fixed the physical mass of the meson. We always com-
the real part at zero momentum is equal to one and the ngpare the field theoretical model potenti@eithout phenom-
ghost(sea secondset of parameters from Table | has beenenological form factonswith the Bonn potentia(with phe-
used. We note the strong resemblance of the free propagatoomenological form factojs In Fig. 4 we adjust the

Im K,(p?)
~

'
<]

B. Nucleon-nucleon potential
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0 . : . at much lower ghost mass&%=0.305 Ge\#, which lies
well within the momentum range used in the OBEP analysis
of NN scattering data.

Altogether the ghost subtracted potential resembles the
OBEP much more than the ghost unsubtracted one. The
similarity can be qualitatively understood by observing that
the ghost-free propagator is numerically indistinguishable
from the free one. In other words, most of one-loop effect
goes into producing the ghost contribution. The difference
between the ghost subtracted and OBE potentials stems from
the inclusion of phenomenological form factors. Our results
support the idea that the elimination of the ghost is not only
a desirable procedure from the quantum field theoretical
point of view but also produceNN potentials which com-
pare favorably with phenomenological meson exchange fits.

FIG. 4. w-exchange contribution to thBIN potential for the ~ Similar conclusions follow for other mesons, including the
ghost subtractedKL ), ghost unsubtractetz), and one-boson ex- o meson, with renormalizable couplings due to the common
change(OBE) potentials. The coupling constants have been chosemne-loop nature of the corresponding self-energies. Particu-
in order to reproduce the value of the OBEP at zero momentum. larly interesting in this regard is the pion since its coupling to

the nucleon is best known, the form factor effects are negli-
w-exchange potential to the OBEP at zero-four momentungible at the momentum scales under discussion and the ex-
both for ghost unsubtracte@) and ghost freéKL) poten-  trapolation to the on-shell point is least sensitive as com-
tials. This corresponds tog®=9.87, g<'=11.5, and pared to other mesons. This should be done with the
gSBE: 15.9. As we see the nonelimination of the ghost pro-pseudoscalar coupling as required by renormalizability. Here
duces a sizable effect in the low-energy region used to dethe effect of the ghost subtraction goes in the right direction
termine the OBEP parameters (°<0.6 Ge\?). Note that  although it is less pronounced as compared todhease.
the ghost curve will eventually display an unphysical pole at
higher momentum transfers. On the other hand, the ghost-
free potential is virtually identical to the free boson exchange . )
potential in the spacelike region. The difference with the W& Summarize our points. In the present paper, we have
OBEP stems mainly from the phenomenological form factorStudied the consequences of eliminating the vacuum insta-
in the latter. bilities which take place in ther-o model. This has been

In Fig. 5 we consider the opposite point of view, i.e., we done using Redmond’s prescription which imposes the valid-
adjust the on-shell coupling constant to the OBEP valud® Of t,he Kalen-Lehmann representation for the two-point
(g(u))BE: 15.9). Here, the effect for the ghost unsubtracteoG_reens functions. We have dlscu_ssed possible interpreta-
curve is even more dramatic than in the previous case sindi"S 0 such a method and have given arguments to regard
the coupling constant renormalized at zero momentum woul ed.m"”d S methoq asa nonpgrturbatlve and nonlocal_ qu|—
became imaginary. This follows from the opposite slope a ication of the starting Lagrangian. In fact, no obstruction is

the origin. Also in this case the onset of the instability occurgN€t 10 formulate the theory within a large expansion.
Moreover, it seems that a nonperturbative definition of the

o-ow model is allowed due to the existence of nontrivial ul-

50
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-0.75 0.00

V. CONCLUSIONS AND FINAL REMARKS

800 e ———= > traviolet fixed points in the largl limit after ghost elimina-
T tion. This point deserves further investigation for it opens the
Op———mommoem . OBE otherwise unexpected possibility of a lattice formulation be-
. ke yond a valence approximation.
8 =500 | i . Numerically we have found that, contrary to the naive
3 o1 ! expectation, the effect of including fermionic loop correc-
< 1000t /,% Bt tions to the mesonic propagators-ghell schemgis not
S 0 pes=== W = p small. However, it largely cancels with that of removing the
Z -850 | g 7 1 unphysical Landau polesA priori, this is a rather unex-
A A 7 physi au p A priori, this i her unex
= 10° N / pected result which in fact seems to justify previous calcula-
-2000 ¢ -1.00 -0.50 0.00 / . . . . . .
/G tions carried out in the literature using a naive scheme. Ac-
! tually, as compared to that scheme and after proper
-2500 ‘ . Lt :
~1.00 —0.75 —0.50 ~0.25 0.00 readjustment of the parameters to selected nuclear matter and
ad (GeVd) finite nuclei properties, the numerical effect becomes rather

moderate on nuclear observables. The two schemes, naive
FIG. 5. w-exchange contribution to thiN potential for the ~and no-ghost, are, however, completely different beyond the
ghost Subtracteﬂ(L), ghost unsubtracte(ﬁ)’ and one-boson ex- zero-four-momentum region and for instance pl’ediCt differ-
change(OBE) potentials. The coupling constant has been chosen ifent values for the vector meson mass. Also important is the
order to reproduce the pole and residue of the OBEP at the mesagffect upon the outcoming exchange contribution to the
on-shell point(not shown in the figure NN potentials as confronted with well-established parametri-
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zations such as the one-boson exchange potential. Here tid¥ant No. FQM0225. One of u6l.C) acknowledges the

inclusion of the Dirac sea is favored to achieve agreemen8panish Ministerio de Educacioy Ciencia for a research

between nuclear matter data and the nucleon-nucleon potegrant.

tials at low momentum. On the other hand, only the ghost-

free model is _able to_rep_roducg the momentum dependence APPENDIX

of the OBEP in a region including zero momentum and the

meson pole. The theory with ghosts exhibits a very weird

behavior for reasonable values of the coupling constants.
Therefore it seems that, in this model, most of the fermi- As stated in the main text, the leading order in thil 1/

onic loop contribution to the meson self-energy is spuriousexpansion K being the number of nucleon spegieis

The inclusion of the fermionic loop in the meson propagatorachieved by considering one-fermion loop and zero-boson

can only be regarded as an improvement if the Landau gho#0p Feynman graphs in the effective action. This corre-

problem is dealt with simultaneously. We have seen that théponds to compute the meson self-energies at the one-loop

presence of Landau ghosts does not reflect on the sea energgproximation.

but it is not known whether there are other spurious ghostlike For the o meson, the bare self-energy in terms of the

contributions coming from three- or higher-point vertex Lagrangian coupling constant is obtained as

functions induced by the fermionic loop.

1. Meson self-energies in the leadinyN expansion

Our calculation involves a semiclassical estimate of the d*— 2k i
Dirac sea contribution to the mean-field energy. As wasHB,s(pziM,S,S):—iézsf (277)428-”[- Y
shown in a previous work, the semiclassical expansion nu- prk=M-+iz
merically converges very quickly in a way that the series can |
be truncated at second order. From a variational point of xigs+igs.]. (Al)
view, the mean-field solution can be regarded as a local kK—M+ign

minimum of the energy functional. In the theory with ghosts
the occurrence of the instability in the vacuum sector—Imposing zero-momentum renormalization we get
through the formation of small size inhomogeneities—

suggests a lowering of the energy for finite nuclei configu- Hs(p2)=HB,S(p2)—HB,S(O)—HQVS(O)p2
rations also. As a consequence, the semiclassical solution,

which is obtained within a large size expansion, can hardly __ giN (ZMZ— + 2) I( p? +p_2 (A2)
be interpreted as an approximation to the inexistent exact A7 2P M2z T3
solution. On the contrary, in the ghost-free theory the local
minimum obtained within a semiclassical treatment is ex-where the functiori (y) is defined as
pected to be an approximation of the true minimum. This
aspect can only be made more precise after a full Hartree 1
calculation including the negative energy discrete and con- |(Y)=J dxin[1-yx(1—x)—in]
tinuum levels. The subtlety is that Dirac sea shell effects are 0
missed by the semiclassical expansion and they may turn the k+1
series from convergent to asymptotic. A detailed investiga- wIn——-2, y<0
tion of this point is left for future research.
A model of nucleons and mesons can only be considered ={ 2«karcsir\y/4) -2, 0<y<4
as an approximation to the real world since it ignores the 1+«
underlying subnuclear degrees of freedom. Nevertheless it is «In —2—imk, 4<y,

rewarding that it is able to reproduce semiquantitatively a 1=«

diversity of physical situations of direct interest to nuclear 12
physics. At the same time this is achieved by a relativisticVhere«<=[1—(44)| "= _ o o

quantum field theory which only after elimination of the _|h€w-meson self-energy is obtained in a similar way but
ghosts incorporates well-established principles and allow&King care of its Lorentz structure,

for a systematic expansion. In our view this combination of )

phenomenological and theoretical consistency in the  118,(P5M,&,8)

model makes it worthwhile to pursue the approach adopted

in this work by inclusion of the remaining low lying mesons d4-2= i

and baryons as well as considering higher orders in the large = —iéz“:f 5 42£Tr[ —(—ig,) "

N expansion in a systematic way. (2) ptk=M+izy
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The explicit expression of the-meson self-energy renor-
malized at zero momentum is

I1,(p?)=11g ,(p?) — g, (0)— g ,(0)p?
2 2 2
{(2M2+p2)|(IO +% )

T 127 (A5)

2. Poles and residues
The relation between the Lagrangian mass of a bason
and its physical mass\g, is given by

mZ—m?—TI(m3)=0, (AB)

where the self-energli(p?) is assumed to be renormalized

at zero momentum. Likewise for the coupling constants,

2

gsh 1 ma (m2 (A7)

From the expression of its self-energy given above w

find that theo-meson physical polen, can be obtained in
terms of the Lagrangian parametesandmg by solving the
transcendental equation

NgZ 4 m2 2
m§=m§— 47T2M2 4—§—2+ —4+W
4|\/|2

(A8)

T ]
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Similarly, the equation to solve for the particle is
2 2 2
v e 4727 |3 9 M2 3 M?
4|\/|2
1arcsn? (A9)

It is interesting to note that sometimes the combination
C%2=M?2g?/m? is taken to be fixed by nuclear matter prop-
erties. This allows one to write the Lagrangian coupling con-
stantg as a function ofC and the Lagrangian mass. In-
serting thew version of this expression into the previous
equation permits us to solve the Lagrangian mass in terms of
C, and the physicalb massm,,. If Egs. (A8) and(A9) are
conveniently extended to thragr-complex plane they can be
used to obtain the Landau ghost masses as [welter ex-

ressions for numerical calculation are found in the main text
n Egs.(37) and(35)].

Once a Landau pole has been computed, the value of its

zero-momentum residue Rg is easily obtained as

Rg=—[1-1I"(-M2)]" L. (A10)

The particular expressions of this equation for th@nd »
meson are given in Eq$36) and (34), respectively.
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