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Transport coefficients for shape degrees in terms of Cassini ovaloids

F. A. Ivanyuk,1,2 H. Hofmann,1 V. V. Pashkevich,3 and S. Yamaji4
1Physik-Department der Technischen Universita¨t München, D-85747 Garching, Germany
2Institute for Nuclear Research of the Ukrainian Academy of Sciences, Kiev-28, Ukraine

3Joint Institute for Nuclear Research, 141980 Dubna, Russia
4Cyclotron Laboratory, Riken, Wako, Saitama, 351-01, Japan

~Received 10 July 1996!

Previous computations of the potential landscape with the shapes parametrized in terms of Cassini ovaloids
are extended to collective dynamics at finite excitations. Taking fission as the most demanding example of
large scale collective motion, transport coefficients are evaluated along a fission path. We concentrate on those
for average motion, namely, stiffnessC, friction g, and inertiaM . Their expressions are formulated within a
locally harmonic approximation and with the help of linear response theory. Different approximations are
examined and comparisons are made with both previous studies, which involved different descriptions of
single-particle dynamics, and macroscopic models. Special attention is paid to an appropriate definition of the
deformation of the nuclear density and its relation to that of the single-particle potential. For temperatures
above 3 MeV the inertia agrees with that of irrotational flow to less than a factor of 2, but shows larger
deviations below, in particular in its dependence on the shape. Also, friction exhibits large fluctuations along
the fission path for small excitations. They get smoothed out above 3–4 MeV whereg attains values in the
range of the wall formula. ForT>2 MeV the inverse relaxation timeb5g/M turns out to be rather insensitive
to the shape and increases withT. @S0556-2813~97!01304-6#

PACS number~s!: 21.60.Ev, 21.60.Cs, 24.10.Pa, 24.751i
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I. INTRODUCTION

One of the oldest but still most challenging problems
nuclear physics is an adequate description of collective
tion at finite excitations. As the prime example one m
quote nuclear fission which has attracted the attention of b
experimentalists as well as theoreticians since its discov
To date it is still an open question which type of configu
tions the system undergoes on its way from the poten
minimum over the saddle region down to scission. Wher
in the early days those of the compound model were cle
favored in theoretical pictures, after the discovery of the sh
model that of independent particle motion came into fash
more and more. This development was enhanced after c
puters became fast enough such that Hartree-Fock type c
putations could be done in every laboratory.

However, there can be little doubt that this picture fails
describe collective motion at finite excitations where one
compelled almost by experimental evidence that the dyn
ics shows irreversible behavior, not only by the very nat
of the decay process itself, but by the appearance of f
tional forces. It is more than questionable that this feat
can adequately be met by introducing simpleminded co
sion terms. Decent descriptions of fission in terms of
one-body density operator most likely require one to c
sider correlations beyond the independent particle pict
together with non-Markovian effects. This is a difficult pro
lem in itself, not to mention the computational task of so
ing this equation of motion for the one-body density.

For these reasons it may still be interesting and wo
while to start from a more phenomenological point of vie
introducing the shape parameters as collective variables.
true that in this way again the picture of independent p
ticles will serve as a starting point, in the form of the d
550556-2813/97/55~4!/1730~17!/$10.00
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formed shell model. However, the latter is simple and fle
ible enough to allow one to consider residual interactions
one way or another. As we shall see, it may be possible
gain insight into their importance by studying dynamical a
pects. Likewise, we may be able to get information on
complexity of the configurations which are to be consider

Such a task becomes more feasible in the case where
lective motion is sufficiently slow. Then one may exploit th
quasistatic picture which reduces the complexity of the f
problem drastically. Under such circumstances one may
tually linearize the problem and treat collective motion l
cally within a harmonic approximation. In this way one ma
take advantage of the benefits of linear response theory.

One of the major problems in theories of this type is
find a decent guess for the relevant macroscopic variable
problem which is familiar almost from all transport theorie
For nuclear fission there exists some kind of guiding pr
ciple through the liquid drop model. The latter is known
represent the static energy for temperatures above 1–2 M
Since at these temperatures one expects motion to
strongly damped, it will most likely follow somehow the lin
of steepest decent. Possible shapes which a fissio
nucleus may assume on its way to scission have been loo
for in @1# by minimizing the liquid drop energy. This mini
mization has been done for some realistic energy den
functional under the constraint of fixing a parameter wh
measures the distance between the evolving fragments.
dentally, it is the same parameter which we are going
exploit later on in our approach. It so turns out that t
shapes found in this way can be approximated fairly well
the Cassini ovaloids introduced to nuclear physics in@2#.
Later in @3# a single-particle model has been constructed
such a parametrization of shapes, which was based on
Woods-Saxon potential.
1730 © 1997 The American Physical Society
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55 1731TRANSPORT COEFFICIENTS FOR SHAPE DEGREES IN . . .
In this paper we are going to use this model for comp
tations of transport coefficients, after some suitable mod
cations which are necessary to incorporate the effects m
tioned above. One of our goals will be to study avera
motion along the fission path for different temperatures, a
is reflected in the associated transport coefficients of ine
friction, and local stiffness. In this sense the aim of o
present work is similar to the one of@4#, where a two-center
shell model was used. The latter feature renders the prev
model simpler on the computational level. On the other ha
the parametrization of the shape by means of Cassini o
loids opens the possibility of treating more realistic shap
which are perhaps better suited to describe the later stag
a fission process. Furthermore, it is fair to say that
Woods-Saxon potential may be supposed to resemble m
the ‘‘true’’ mean field.

For Cassini ovaloids commonly a few parameters suf
to treat in simple terms a whole variety of realistic shap
including very compact ones as well as strongly deform
ones with a well-developed neck or even those correspo
ing to separated fragments. In this sense this parametriza
may be considered superior to expansions in terms of sph
cal harmonics~see@5#!. In the ideal case one would then b
able to compute transport tensors for all the parameters
collective degrees of freedom, one claims to be relev
This is a tremendous task and so far has been carried thr
only for a two-dimensional model@6#, without utilizing
though the full microscopic potential of linear respon
theory. In this paper we want to restrict ourselves to
one-dimensional case. The main reason for that is found
course, in the simplification one gains by this restrictio
However, it may be said that at present most of the appl
tions of macroscopic equations of motion to fission at fin
excitation adhere to a similar confinement; see, e.g.,@7–10#.
Evidently one then needs to rely on the ‘‘right’’ guess of t
fission path. As said before and for arguments given there
presume it to be represented well enough by the line al
the valley of the static energy. Possible improvements h
to be left for future studies.

II. DEFORMED SHELL MODEL

A. Shape parametrization

We follow the suggestion put forward in@3#, but would
like to repeat the most important elements for convenien
The Cassini ovaloids are obtained by rotating the curve

r~z,e!5R0@Aa414ez2/R0
22z2/R0

22e#1/2 ~2.1!

around thez axis, withz andr being cylindrical coordinates
The constanta is defined by volume conservation, implyin
that the family of shapes Eq.~2.1!, depends only on one
deformation parametere. As is easily recognized from Eq
~2.1! the value of e50 corresponds to a sphere. F
0,e,0.4 the form resembles very much that of a spher
with the ratio of the axes given by

shorter axes

longer axes
5
122e/3

11e/3
. ~2.2!
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At e'0.5 a neck appears and ate51.0 the nucleus separate
into two fragments. A few examples of the family~2.1! are
shown in Fig. 1.

It is possible to describe a more general class of axia
symmetric shapes by exploiting an expansion about the
face given by Eq.~2.1!. We may introduce two new coordi
natesR and x such thatR5const5R0 corresponds to the
Cassini ovals~2.1!. The coordinatex specifies the position o
a point on the line given by Eq.~2.1!; see@3# for details.
With these two variables at our disposal we may paramet
a new shape. The latter is meant to express the devia
from the ovaloid given by Eq.~2.1! by means of an expan
sion into a series of Legendre polynomials,

R~x!5R0S 11(
n

anPn~x! D . ~2.3!

The full set of collective variables or parameters then
cludes the coefficientsan in addition to thee from before.

Sometimes it is convenient to introduce a measure for
overall elongation of the nucleus instead ofe. One may
chose, for instance, the distanceR12 between the left and
right center of masses. To have a dimensionless quantity
may divideR12 by the diameter 2R0 of the sphere~of iden-
tical volume! to get

r 12[
R12

2R0
5

* uz2zc.m.udV
R0*dV

, ~2.4!

with zc.m. being thez coordinate of the center of mass of th
the whole complex. The integration is carried out over t
volume within the sharp surface specified by Eq.~2.3!. As-
ymptotically, ther 12 turns into half of the distance betwee
centers of mass of the fission fragments. Incidentally, t
variable is defined uniquely for any parametrization of t
shape and has been used in the past by many authors.
feature facilitates comparisons to theories which are base
shell models with different shape variables. The relation
tweenr 12 ande is demonstrated in Fig. 2.

FIG. 1. The parametrization of the shape of the nuclear surf
in terms of Cassini ovaloids. The values of the deformation para
etere @see Eq.~2.1!# are indicated in the figure.
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B. Single-particle Hamiltonian

The single-particle Hamiltonianĥipm will be constructed
as in @3#. It has terms for the kinetic energyT̂, the radial
potentialV̂, the spin-orbit couplingV̂s.o., and the Coulomb
potentialV̂Coul:

ĥipm5T̂1V̂1V̂s.o.1V̂Coul. ~2.5!

The radial partV̂ is represented by a finite depth Wood
Saxon potential

V~r,z!5V0$11exp@ l ~r,z!/a#%21, ~2.6!

wherel (r,z) is the shortest distance from the point (r,z) to
the sharp surface anda is the diffuseness parameter which
assumed to be constant along the surface. The spin-orbi
tential may be written in a way which makes apparent tha
is proportional to the gradient of the potential given in E
~2.6!,

V̂s.o.}@sW,pW #¹V. ~2.7!

Here pW and sW stand for the nucleon’s momentum and t
spin. The Coulomb potential is calculated for a charge d
tributed uniformly inside the sharp surface~2.3! or ~2.1!.

The single-particle energies and wave functions are de
mined by diagonalizing the matrix of the Hamiltonian~2.5!
calculated with the wave functions of a deformed axia
symmetric oscillator potential; see@11#. An example of the
deformation dependence of the single-particle energie
shown in Fig. 3. As the result of diagonalization one obta
not only energies and wave functions of bound states,
also those of discrete states of positive energy, which for
Woods-Saxon potential lies in the continuum. The density
these states depends on the number of oscillator shells
cluded in the basis. In the computations within the shell c
rection method the number of oscillator shells is optimiz
by the requirement that the states with positive energies
vide a smooth extrapolation of the density of bound sta
into the continuum. Accounting for such states with posit
energy improves considerably the ‘‘plateau’’ of the shell c
rection as a function of the averaging interval. In the pres
paper we do so not only when calculating deformation en
gies but also in the computation of transport coefficients. T

FIG. 2. The relation betweenr 12 ande ~solid line!; the deriva-
tive dr12/de is shown by a dashed line.
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cutoff in the single-particle energy was set equal to 20 Me
We have checked that a variation of the cutoff energy wit
the interval 5–20 MeV does not change much the values
the transport coefficients. This may be understood from
fact that these transport coefficients reflect the truly low f
quency behavior of the system.

C. Deformation energy

The deformation energyEdef at zero temperature is calcu
lated according to the shell correction method@12,13# as the
sum of the liquid drop energyEdef

LDM and the shell correction
dEn,p1dPn,p ~including the one for the pairing energy!:

Edef5Edef
LDM1(

p,n
~dEp,n1dPp,n!. ~2.8!

The liquid drop energy is computed as the contributions fr
the CoulombECoul and surfaceES energies according to
@12,13#

Edef
LDM5ECoul1ES2~ECoul

0 1ES
0!, ~2.9!

whereECoul
0 and ES

0 are the corresponding energies of t
spherical shape. As an example, Fig. 4 exhibits the result
the calculation ofEdef and Edef

LDM at zero temperature fo
224Th as a function of the parameterse anda3.
The temperature dependence of Coulomb and surface

ergy is accounted for by using the forms

ECoul~T!5ECoul~T50!~12aT2!,

ES~T!5ES~T50!~12bT2!, ~2.10!

with a50.000 763 MeV22 andb5 0.005 53 MeV22 @14#.
To compute the shell correction at finite temperature we
the phenomenological ansatz proposed in@5#:

dE~T!1dP~T!5@dE~0!1dP~0!#
t

sinht
, ~2.11!

FIG. 3. The energiesek of single-particle states~for a fixed z
component of angular momentum and parity,j z

p53/22) as func-
tions of e. The line with stars marks the position of the chemic
potential computed forT51 MeV. The circle marks the
pseudocrossing which ate50.3 is closest to the chemical potentia
see text.
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FIG. 4. The liquid drop~top! and total~bot-
tom! deformation energies of224Th atT50 as a
function of e anda3.
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with t52p2T/\v0 and \v0541A21/3, A being the mass
number of the fissioning nucleus.

For temperatures larger than 1 MeV~as considered in the
present paper! the shell effects are strongly suppressed.
ready atT51 MeV the minimum of the total deformatio
energy almost coincides with the bottom of the liquid dr
valley. As said before the latter can be approximated ra
well just by the Cassini ovaloids. Thus we restricted our
of deformation parameters to the one parametere only, with
all thean put equal to zero. However, instead ofe we prefer
to user 12 defined by Eq.~2.4!. The r 12 dependence of the
total deformation energy and that of the liquid drop a
shown in Fig. 5.

FIG. 5. The total~solid! and liquid~dashed! drop components of
the deformation energy along the liquid drop fission valley
224Th.
-
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III. DYNAMICS IN A LOCAL HARMONIC
APPROXIMATION

In the following we will assume to be given a many-bod

Hamiltonian Ĥ„x̂i ,p̂i ,Q(t)… which depends parametricall
on the collective variableQ which specifies the shape of th
nuclear surface. Although for the computations to be p
sented below it will mostly be identical tor 12, in this section
we still prefer to use the general notationQ instead, last but
not least to indicate the general validity of the discussion
come. This Hamiltonian is assumed to represent the syste
total energy. On the level of the shell model this means a
ing somec-number terms to the sum over those sing
particle Hamiltonians introduced in Eq.~2.5! ~see@15#!. As
will be discussed in the next section, later on we want
account for collisional damping, which from a princip
point of view requires adding a two-body interactio

V̂res
(2)( x̂i ,p̂i). For the moment it is not very important to kno

details about the way it will be handled, besides the fact t
we claim this interaction to be independent ofQ.

As a consequence of the latter feature, the generator
collective motion, namely,

]Ĥ~ x̂i ,p̂i ,Q!/]Q[F̂~ x̂i ,p̂i ,Q!,

is of pure one-body nature. This operator defines the m
source of the coupling between the collective degree of fr
domQ(t) and the nucleonic ones. Indeed, within the loc
harmonic approximation~LHA ! the effective Hamiltonian
can be written as
r
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Ĥ~Q!5Ĥ~Q0!1~Q2Q0!F̂

1
1

2
~Q2Q0!

2K ]2Ĥ

]Q2 ~Q0!L
Q0 ,T0

qs

. ~3.1!

In the second order term the ‘‘nucleonic’’ part appears o
as an average of the corresponding operator. Consiste
with the harmonic approximation, this average is to be b
with that density operatorrqs(Q0) which in the quasistatic
picture is to be calculated with the Hamiltonian atQ0,
namely,Ĥ(Q0). It is here where thermal concepts come in
play. In this ‘‘unperturbed’’ density operator~for the nucle-
ons! one needs to specify the amount of heat the nucleo
~or intrinsic! degrees of freedom have at the given config
ration parametrized byQ0. The simplest possibility is of-
fered by the canonical distribution1 rqs(Q0)
}exp@2Ĥ(Q0)/T#, to which our computations will be re
stricted. Clearly this picture has to rely on the assumption
a quick relaxation of the relevant internal degrees of fr
dom; we will come back to this question later on.

Details about this LHA can be found in many referenc
see, e.g.,@16–18#: There it is also described how this loc
dynamics can be handled within a suitable application
linear response theory. For this reason, we will only rec
the most important theoretical issues.

A. Collective response function

The local motion in theQ variable can be described i
terms of the so-called collective response functionxcoll(v).
It can be derived by introducing a~hypothetical! external
force F̂ f̃ ext(t) and by evaluating how the deviation of^F̂&v

from some properly chosen static value reacts to this exte
field in linear order:

d^F̂&v52xcoll~v! f ext~v!. ~3.2!

As shown in@17# and@16# thexcoll(v) can be brought to the
form

xcoll~v!5
x~v!

11kx~v!
. ~3.3!

Here a response functionx(v) for ‘‘intrinsic’’ motion ap-
pears: Thex(v) measures how, at some given shapeQ0 and
for some temperatureT0, the nucleonic degrees of freedo
react to the couplingF̂dQ(v). Its time-dependent versio
reads

x̃~ t2s!5Q~ t2s!
i

\
tr$r̂qs~Q0 ,T0!@ F̂~ t !,F̂~s!#%

[2iQ~ t2s!x̃9~ t2s!. ~3.4!

In this expression the time development of the field opera
is defined by the same HamiltonianĤ( x̂i ,p̂i ,Q0) which ap-

1For a discussion of the general problems of using the concep
temperature for an isolated system see@16#.
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pears in the densityr̂qs. The functionx̃9(t2s) on the right
stands for the so-called dissipative part. In Fourier space
full response separates into real and imaginary parts
x(v)5x8(v)1 ix9(v), the x8(v) sometimes being called
the reactive part.

As one may guess from the very construction, the deri
tion of Eq. ~3.3! relies on quasistatic properties of the nuc
onic degrees of freedom. For instance, such properties ap
in the coupling constantk which is to be determined from

2k215S ]2E

]Q2D
S

1x~v50![C~0!1x~0!. ~3.5!

Moreover, the nucleonic degrees of freedom are assume
behave ergodic in the sense of having the adiabatic sus
tibility xad52d^F̂&/dQuS be identical to the isolated one
the static responsex(0):

x~0!5xad. ~3.6!

As has been demonstrated in@18# this condition is not ful-
filled in the deformed shell model, which implies that spec
measures are to be taken to which we will come to below

It should be noted that the derivation of Eq.~3.3! involves
a self-consistency relation between the deformationQ of the
mean field and the one of the density. The latter may
measured by the expectation value^F̂& t . For linearized dy-
namics this self-consistency condition reduces to the eq
tion

k^F̂& t5Q~ t !2Q0 , ~3.7!

well known from the case of undamped vibrations@5,15#.
Realize, that the quantitŷF̂& t is to be calculated with the
actual dynamical nuclear states accounting for their app
priate occupations.

Before concluding this subsection we like to write down
more convenient form for the stiffnessC(0) appearing in Eq.
~3.5!. It is defined as the second derivative of the intern
energyE(Q,S) with respect to deformation at fixed entrop
S. Since it is not easy to calculate such a derivative, it
better to reexpress it by the one of the free energyf at fixed
temperature@see Eqs.~A.18! and ~A.19! of @17##:

C~0!5S ]2f

]Q2D
T

1S ]T

]QD
S

]2f ~Q,T!

]Q]T
. ~3.8!

In @17# it was found that for temperatures larger than 1.5–
MeV the change ofT with the collective coordinateQ is
small such that the second term on the right-hand side of
~3.8! can be neglected. Below we would like to use the sh
correction method when calculating static energies. In t
method usually the intrinsic energy is involved, rather th
the free energy. Thus one needs to relate the derivative
the free and the intrinsic energy both taken at a fixed te
perature. This can be done by differentiating the relat
E5 f1TSwith respect to deformation and obeying that t
entropy can be expressed asS52(] f /]T)Q . As a result one
gets
of
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C~0!'S ]2E

]Q2D
T

1T
]

]TS ]2f

]Q2D
T

'S ]2E

]Q2D
T

. ~3.9!

As before, the expression on the right is justified for larg
temperatures, where the change of]2f /]Q2 with T is small.
This approximation is used in the computations presen
below. In Fig. 6 the stiffness~3.9! of the energy~2.8!–~2.11!
is shown as function of the deformation parameterr 12. It is
seen that its liquid drop part becomes negative forr 12>0.5
and the total stiffness exhibits rather strong fluctuations d
to shell structure.

B. Transport coefficients

In general the frequency dependence ofxcoll(v) exhibits
a complex structure. Its dissipative partxcoll9 (v) represents
the strength distribution over all possible modes of the who
nucleus which can be excited by an external force like t
one introduced above, namely,F̂ f̃ ext(t). Rewriting Eq.~3.2!
as

~xcoll~v!!
21d^F̂&v52 f ext~v!, ~3.10!

it follows that the inverse of the collective response functio
can be interpreted as an integral kernel for the effective eq
tion of motion for the time-dependent quantityd^F̂& t . Evi-
dently, this time-dependent form of the equation of motio
must be expected to contain non-Markovian effects. Ho
ever, there may be situations for which it becomes possi
to reduce this complicated structure to differential form. Th
clue to this simplification can be found by recalling the ca
of the damped oscillator for which Eq.~3.10! takes the form

xosc
21~v!d^F̂&v5~2MFv22gFiv1CF!d^F̂&v

52 f ext~v!. ~3.11!

Here the following effective ‘‘forces’’ appear: an inertia
one, a friction force, and the conservative one which is r
lated to the derivative of the effective collective potentia
calculated in linearized form. The associated ‘‘transport c

FIG. 6. The zero frequency limit~3.8! for the stiffness of the
total ~left! and liquid drop~right! static energies. The dotted, short
dashed, long-dashed, and dot-dashed lines correspond to temp
turesT51, 2, 3, and 4 MeV.
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efficients’’ have been marked by a superscriptF to indicate
that they are associated with the quantityd^F̂&.

Now the strategy of how to handle the general case
clear: Whenever there is a pronounced peak in the stre
distributionxcoll9 (v) we may approximate it by a Lorentzian
Since the latter is defined by three quantities, like the wid
the position of the maximum, and its height, one may ded
the three transport coefficients which appear in the oscilla
response, for instance, as given by Eq.~3.11!. In principle,
such a procedure may be applied to any one of the peak
the original strength distribution, which allows one to dedu
these transport coefficients for all the possible collect
modes, the low frequency ones as well as the high freque
ones. As a matter of fact, such a scheme is commo
adopted for the description of collective vibrations, as d
cussed in@5,15#. The difference from the present applicatio
is seen in the fact that we want to apply this procedure
describe global dynamics in a local harmonic fashion. T
latter aspect puts an additional constraint. As mentioned
lier, our application of linear response theory goes alo
with the assumption that collective motion is slow, such th
the nucleonic degrees of freedom follow closely a therm
equilibrium. We may recall that in some formulas give
above, this equilibrium has been parametrized by the qu
static density operatorr̂qs(Q,T). Estimates of the time scal
on which such a relaxation can be expected to occur will
given below. But already on this level of information, it
clear that the whole concept would probably not work if hi
frequency collective modes were be important. For this r
son we are bound to concentrate on low frequency one
the construction of the transport coefficients is to be con
tent with the basic assumptions for the applicability of t
quasistatic picture.

In practice the ‘‘fit’’ of the strength distributions of the
oscillator model to the ‘‘correct’’ one involves the full re
sponse functions, not only their dissipative parts. In sh
such an adjustment may be characterized

@xcoll(v)#
21d^F̂&v.@xosc(v)#

21d^F̂&v . A more correct
form can be written as a variational procedure

dE
0

vmax
dvUk2xcoll~v!2

1

2M ~v1!v
22 ig~v1!v1C~v1!

U2
50, ~3.12!

with the variation to be performed with respect to the co
ficients C(v1), g(v1), andM (v1). In this way both real
and imaginary parts ofxcoll(v) are fitted simultaneously
Fortunately, for the practical applications to be discussed
low it turns out that the coefficientsC(v1), g(v1), and
M (v1) are rather insensitive to the upper integration lim
vmax. The value of the latter was fixed to be\vmax55 MeV.

The reader will have noticed the appearance of the fa
k2 in Eq. ~3.12!, as well as the fact that we have left out th
superscriptF in the transport coefficients. This change
easily understood by referring to the self-consistency con
tion ~3.7!. The latter can be interpreted as a transformat
from theF mode to theQ mode. It implies a correspondin
transformation both for the response functions as well as
the transport coefficients~for details see@16#!. In this sense

era-
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thek2xcoll(v) and the transport coefficientsT5M ,g,C stand
for the collective response and the coefficients of theQ
mode, respectively, withT F5k2T.

It may turn out that collective motion is so slow, as com
pared to the dynamics of the nucleons, that the trans
coefficients can be deduced by expanding the response f
tions aroundv50. At first such a procedure has been a
plied to the intrinsic response~cf. @19#!. In this way one may
get an approximate solution of the secular equation for
position of the poles of the collective response~3.3!. One
may write

1

k
1x~v!'S 1k1x~0! D1vS ]x

]v D
v50

1v2S 12 ]2x

]v2D
v50

50.

~3.13!

This form invites us to define coefficients for frictiong(0)
and inertiaM (0) by

g~0!52 i
]x~v!

]v U
v50

5
]x9~v!

]v U
v50

~3.14!

and

M ~0!5
1

2

]2x~v!

]v2 U
v50

5
1

2

]2x8~v!

]v2 U
v50

, ~3.15!

which in the past have been called the coefficients in
‘‘zero frequency’’ limit. The effective stiffnessC(0) is seen
to be identical to the local stiffness of the quasistatic ene
@keep in mind Eq.~3.5!#, as one would expect to hold true fo
slow motion, indeed. Incidentally, the expression for the
ertia can be shown to be a generalization of the one of
cranking model to the case of damped motion@19#. Unfortu-
nately, for strong damping thisM (0) becomes very small
and sometimes even negative. For practical applications
does not always lead to problems, as usually damping m
be so strong that inertia must drop out of the macrosco
equations of motion. Nevertheless, this behavior of the in
tia M (0) is very unpleasant, but fortunately one can do b
ter.

Rather than concentrate just on the denominator of
~3.3!, it is better to take into account the full informatio
contained in this expression. As we may recall this was d
implicitly when constructing the transport coefficien
M (v1), g(v1), andC(v1) by approximating Eq.~3.10! by
Eq. ~3.11!. An equation like Eq.~3.11! may be obtained by
expanding@xcoll(v)#

21 in Eq. ~3.10! to second order inv.
In this way one gets

C'
1

k2xcoll~v!
U

v50

5
x~0!1C~0!

x~0!
C~0!, ~3.16!

g'
1

k2
]~xcoll~v!!

21

]v U
v50

5
@x~0!1C~0!#2

x2~0!
g~0!,

~3.17!

and
-
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M'
1

2k2
]2~xcoll~v!!

21

]v2 U
v50

5
~x~0!1C~0!!2

x2~0! SM ~0!1
g2~0!

x~0! D . ~3.18!

As compared to the zero frequency limit defined above, th
are two modifications: Whereas all three coefficients obta
factor of proportionality, only the inertia gets an addition
contribution. In most practical applications this proportion
ity factor is not very important, as usually the static respon
is much larger than the static stiffness:x(0)@uC(0)u. It is
only for small excitations and for deformed oscillator sh
models, in particular, that the size ofuC(0)u becomes com-
parable to that ofx(0). However, the additional term in Eq
~3.18! ensures that the modified inertia does not drop ind
nitely anymore with increasing damping. Later on we w
demonstrate with the help of numerical results that E
~3.17! and ~3.18! approximate the self-consistent frictio
g(v1) and inertiaM (v1) very well at temperaturesT>2
MeV. To distinguish from the zero frequency limit~3.14!
and ~3.15! we will associate the approximation~3.17! and
~3.18! to ‘‘the zero frequency limit for the collective re
sponse function.’’

Finally, we should like to mention that relations similar
the ones given in Eqs.~3.16!–~3.18! were obtained earlier in
@20#, namely, for the model case that the collective respo
function just consists of one~approximately Lorentzian!
peak. Solving the equations forC(0), g(0), and M (0)
given in @20# with respect toC, g, andM one gets Eqs.
~3.16!–~3.18!.

C. Transformation to sharp densities

In the previous section we found microscopic expressi
of transport coefficients for large scale motion. For ma
reasons it is desirable to compare them with those of ‘‘m
roscopic models’’@21#, such as the liquid drop model for th
inertia and the wall formula for dissipation—not to mentio
stiffness, which we have seen to become identical to the
of the static energy anyway, as soon as collective mot
becomes sufficiently slow. In@18# many points of the prin-
cipal nature have been clarified about how the macrosco
limit can be obtained in microscopic theories, concentrat
largely on vibrations around stable configurations. Here
like to look at another, more practical, albeit very importa
issue.

By its very nature, these macroscopic models assume
nuclear density to be constant inside some surface at w
the density drops from the nuclear matter value down to z
within the zero range. Commonly this surface is para
etrized with the same set of shape variables which in
description define the deformation of the mean field,
which in the present discussion we have chosen the one
lective coordinateQ. Contrary to the macroscopic picture
the microscopic calculation leads to a density distribut
with a soft surface, which in addition depends essentially
the occupation of states. Take the simple case of a sphe
potential: If a shell with fixed angular momentuml is not
filled completely, the corresponding density distribution w
not be spherically symmetric. On the other hand, it is cl
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55 1737TRANSPORT COEFFICIENTS FOR SHAPE DEGREES IN . . .
that the transport coefficientsT will depend sensibly on the
distribution of matter. Thus one needs to employ some s
cific transformation to relate them from one case to the oth
This is best done looking at the mean value~or moment! of
the operatorF̂, as a representative for the average densit

In the case of our microscopic picture, we have seen
self-consistency condition~3.7! to imply the relation
T F5k2T between the transport coefficients of theF andQ
modes. All we need to do is to search for a similar condit
which translates theF motion into that of the sharp densit
distribution, with the latter being expressed through the c
responding shape parameter. Such a relation can be foun
applying the hypothesis, which we will substantiate belo
that the averagêF&sharp, calculated with a density distribu
tion having a sharp surface, can be approximated well
applying an appropriate Strutinsky smoothing to the sh
model density. The latter is defined as

^F&sharp'(
j
F j j ñ j , ~3.19!

where theñ j are smoothed occupation numbers@12,13#. How
they may be used not only to calculate static expecta
values as in Eq.~3.19!, but of corresponding response fun
tions as well has been studied in@22# and @18#. The desired
relation between̂F&sharpandQ may now be obtained simply
by applying to Eq.~3.19! the derivative with respect toQ.
One finds

]^F̂&sharp
]Q

'
]

]Q(
j
F j j ñ j5(

jk

ñ j2ñk
e j2ek

uF jku21(
j

]ñ j
]Q

]e j
]Q

[2xg, ~3.20!

which may be used to deduceTsharp5(xg)2 T sharpF . Here,
Tsharp represents the transport coefficients for the sharp d
sity distribution, but calculated for the associatedQ mode.
Combining this relation with the previous one, we get

Tsharp5~xg!2T sharpF '~xg!2T F~v1!

5~kxg!2T~v1!. ~3.21!

As the only one further approximation we have assumed
both density distributions lead to the same averaged valu
the field operatorF̂. In Eq. ~3.21! there appear on the ver
left and on the right the transport coefficients for theQ
mode, once for the sharp surface of the macroscopic mo
and once for the collective coordinate specifying the me
field. We may add here that the quantityxg has a physical
meaning similar to that of a static susceptibility, hence
choice of this symbol. The only difference from the isothe
mal susceptibility is found in using the smoothed occupat
numbersñ j (ej ) instead ofnj (ej ;T).

Let us turn now to ‘‘prove’’ the hypothesis made. Th
can be done explicitly for the simple case of the deform
oscillator potential. For the more general case we wan
appeal to physical intuition, to the extent of accepting
idea that by its very construction Strutinsky smoothing co
monly does lead to the macroscopic picture.
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Suppose we are given a spheroid whose deformationQ is
fixed by the ratio between the semiaxes in thez direction and
the one perpendicular to it:Q5z0 /y05v' /vz. The sharp
surfaceS is then given by

x21y2

y0
2 1

z2

z0
2 51. ~3.22!

The deformation of the sharp density may be classified by
the average of the quadrupole operatorQ̂2(rW)52z22x2

2y2 calculated as

^Q2&sharp5E Q2~rW !r0~rW !drW5
2A

5
~z0

22y0
2!. ~3.23!

Here, r0(rW) measures the density of homogeneous nuclea
matter representingA nucleons distributed uniformly within
this surface. In Fig. 7 the quadrupole moment~3.23! is plot-
ted by the line with stars as function of the deformation
parameterQ5v' /vz .

Conversely, the surface~3.22! may be interpreted as an
equipotential surface of the corresponding deformed oscilla
tor potential.2 For such a potential one may compute single-
particle wave functionsw i(rW) and from them the moment of
the microscopic density as

^Q2&dens5E Q2~rW !(
j
nj uw j~rW !u2drW. ~3.24!

Obviously this moment̂Q2&densdepends on the occupation
numbersnj . In Fig. 7 we show curves corresponding to three
choices ofnj : Dotted line: the occupation numbers are fixed
at the spherical shape, where the lowest energy states a
filled, and kept constant, independent ofQ ~‘‘diabatic’’ situ-
ation!. Dashed curve: at each crossing of states the particle
and holes are redistributed in such a way that always th
lowest states are occupied~‘‘adiabatic’’ situation!. Solid

2For this case the quadrupole operatorQ̂2 would be related to our

field operatorF̂ taken at spherical shape byFuQ5152
1
3mv0

2Q̂2.

FIG. 7. A demonstration of the problem of consistency between
the deformation of potential and density, exemplified at the de-
formed oscillator; for details, see text.
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1738 55IVANYUK, HOFMANN, PASHKEVICH, AND YAMAJI
curve: here, the smoothed occupation numbers of the s
correction method are used. We see that for the diabatic
cupation numbers the quadrupole moment~3.24! differs sub-
stantially from that of the sharp density distributio
^Q2&sharp ~line with stars!, approximately by a factor of 2
Recall that this sharp density distribution reflects the de
mation of the potential.

On the contrary, the density computed with the adiaba
occupation numbers follows the deformation of the poten
on average. It can be said that this feature is one of the ba
elements of the Copenhagen picture of collective motion@5#
~see also@15#!. Indeed, such a redistribution of particle
leads to a consistency between the shapes of the pote
and the density. For static situations, this leads to the w
known relation between the occupation numbers in the v
ous directions and the corresponding frequencies of the
tential. In the treatment of@5# this relation is fulfilled for
specific deformations. In Fig. 7, the latter correspond to
points where the dashed line crosses that with the stars.
this dashed line it is hardly possible to define precisely
derivative of^Q2&denswith respect to the deformation param
eter. On the other hand, the condition just mentioned can
fulfilled everywhere using the Strutinsky smoothed occu
tion numbers. In this way the derivative is well defined. F
thermore, the quadrupole moment of the density compu
with the smoothed occupation numbers practically coinci
with that of the sharp surface distribution.

IV. MICROSCOPIC INPUT

In this section we are going to specify further details
our treatment of nucleonic dynamics. It has already b
mentioned that the mere shell model is not sufficient.
finite excitations the effects of collisions cannot be n
glected; one even expects them to become the more im
tant the higher the nucleonic temperature will be. To tr
collisions on the basis of an explicit form of a two-bod
interactionV̂res

(2)( x̂i ,p̂i) is hardly possible. Therefore we fo
low another path and parametrize the effect it would have
the single-particle energies. Details of this method can
found in the publications mentioned before, in particular
@16# ~see also@23,24,18#!.

A. Intrinsic response function

The Fourier transform of the intrinsic response functi
given in Eq.~3.4! can be expressed as the sum over sing
particle states,

x~v!5(
jk

x jk~v!uF jku2, ~4.1!

with

x jk~v!52E
2`

` dV

2p\
n~V!@%k~V!Gj~V1v1 i e!

1% j~V!Gk~V2v2 i e!#. ~4.2!
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Heren(x) is the Fermi function determining the occupatio
of single-particle levels. The%k(v) represents the distribu
tion of single-particle strength over more complicated sta
It may be parametrized by

%k~v!5
G~v!

@\v2ek2S8~v!#21„G~v!/2…2
~4.3!

in terms of the real and imaginary parts of the self-ene
S(v,T)5S8(v,T)2 iG(v,T)/2 which are assumed to hav
the following forms:

G~v,T!5
1

G0

~\v2m!21p2T2

11@~\v2m!21p2T2#/c2
~4.4!

and

S8~v,T!5
2c2

2G0

~\v2m!/Ac21p2T2

11@~\v2m!21p2T2#/c2
. ~4.5!

Both are connected to each other by a Kramers-Kronig r
tion. Them in Eqs.~4.4! and ~4.5! is the chemical potentia
and the cutoff parameterc accounts for the fact that th
imaginary part of the self-energy does not increase ind
nitely when the excitations get away from the Fermi ener
In the present calculation we chooseG0533 MeV and
c520 MeV. TheGk appearing in Eq.~4.2! is the one-body
Green function

Gk~v6 i e!5
1

\v2ek2S8~v,T!6 iG~v,T!/2
, ~4.6!

which is related to the spectral density%k by

%k~v!5 i @Gk~v1 i e!2Gk~v2 i e!#. ~4.7!

Details about the evaluation of the integral in Eq.~4.2! are
given in the Appendix.

For future purpose we want to use this form~4.2! of the
response function and write down a more detailed expres
for the friction coefficient in the zero frequency limit:

g~0!52E d\V

4p

]n~V!

]V (
jk

uF jku2%k~V!% j~V!.

~4.8!

It is obtained~see@18#! by substituting Eqs.~4.1! and ~4.2!
into Eq. ~3.14!.

B. Problem of ergodicity

In Sec. III A it was mentioned that the condition of erg
icity, Eq. ~3.6!, is hard to fulfill in the deformed shell mode
This statement refers to the study presented in@18#, where it
was shown that even collisional damping does not help
least in the version as used to date. One important reason
seen to lie in the fact that our renormalized single-parti
energies have the same degeneracies as those of the
shell model. But these degeneracies are by far larger
happen much more often than one would expect for confi
rations of the compound nucleus. If one believes the latte
be important — which should be the case for a fission
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FIG. 8. The heat pole contribution to the relaxation and response functions, calculated atT51 MeV.
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system which has to overcome a large barrier — one ne
to take special measures to cure the problem just mentio

One way to make the deficiencies apparent is to look
the heat pole which shows up either in the correlation fu
tion c9(v) or in the relaxation functionF9(v). Both are
related to the dissipative response as

x9~v!5
1

\
tanhS \v

2T Dc9~v!,

F9~v!5x9~v!/v ~4.9!

~see@18# or @16# for more details as well as for references
the original literature!. Both functions have a peak a
v50, whose widthGT was seen to be twice the single
particle width~4.4! calculated at the chemical potential, i.e
GT52G(v5m,T). On very general grounds, the height
this peak can be seen to be proportional to the differenc
isothermal and isolated susceptibilities,xT2x(0). Numeri-
cal calculations in@18# showed this height to be large. Re
writing this difference as (xT2xad)1@xad2x(0)# and re-
calling that in the nuclear case the difference between
isothermal and adiabatic susceptibility, (xT2xad), is small
@17,18#, the origin is identified to come from a large viola
tion of ergodicity:xadÞx(0).

This discussion indicates what we can do to cure t
problem: Cut the contributions of the heat pole to all fun
tions mentioned previously down to the magnitude it wou
have in case the system were ergodic. This means to re
the height of this peak atv50 by the factor
(xT2xad)/@xad2x(0)#. In @18# a system was studied wer
xT2xad vanishes identically, such that the reduction of t
heat pole amounted to neglecting contributions from
states having the same energy. Such a correction can e
ds
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e

s
-
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be done. In expressions such as Eq.~4.1! one simply has to
restrict the summations in a proper way. Here we like
adopt a similar procedure, in the sense of neglecting the
fluence of a finite differencexT2xad. At the temperatures
considered it will be very small, indeed. On the other ha
we go one step further and neglect also contributions fr
neighboring states whose energy is finite but smaller than
collisional width of the particles, which as we just saw al
reflects the width of the heat pole.

The consequences of such a manipulation are show
Fig. 8 for the intrinsic response~left part!, the corresponding
relaxation functionF9(v) ~upper right part!, and the collec-
tive strength distributionxcoll9 (v) ~lower right part!. All of
them have been computed forT51 MeV. The solid lines
correspond to calculations where all matrix elements
taken into account. For the dashed curves matrix elem
F jk between states of energy differenceu(ek2ej )u
<G(m,T) have been discarded. Their contribution to the
laxation function is exhibited in the upper right part by th
dotted line. This plot demonstrates nicely that the heat p
can be associated to a Lorentzian of widthGT around
v50, and thus corresponds to a pole on the imaginary a
@18,16#.

It is interesting to note that for the present calculati
99% of this Lorentzian is made out only by tw
pseudocrossingsof single-particle states which takes pla
close to the Fermi energy. By pseudocrossing we mea
situation where as a function ofQ two levels come close bu
never cross; one such event is encircled in Fig. 3. The la
contribution to friction in the zero frequency limit of Eq
~3.14! @or Eq. ~3.17!# which results from this heat pole ca
be estimated looking at the upper right part of Fig. 8: T
slope of the solid line is much larger than the one of t
dashed line. On the other hand, contributions tog(0) from
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1740 55IVANYUK, HOFMANN, PASHKEVICH, AND YAMAJI
real crossingsof levels are very small. This is due to the fa
that the matrix elementsuF jku vanish exactly at the crossin
points and are very small in the vicinity of such a~real!
crossing.

The influence of the heat pole~in the intrinsic system! on
the collective strength distribution can be inferred from t
lower right part of Fig. 8. The solid line shows a small pe
at very small frequencies, say,\v'0.2–0.3 MeV. Com-
pared to the much larger strength found in the peak at ab
1.5–2 MeV one is inclined to just ‘‘forget’’ the small pea
when one wants to define the transport coefficients. Indee
somehow looks very natural to associate the larger pea
the genuine low frequency mode. This may be understoo
another argument for leaving out the contribution of the h
pole to the transport coefficients, besides the one involv
ergodicity for intrinsic motion. All computations to be re
ported below were done along this line; i.e., contributions
the response function from the states with the energy dif
enceu(ek2ej )u<G(m,T) were not taken into account.

C. Influence of collisional damping on nucleonic relaxation

The whole formulation of our theory is based on the
sumption that the nucleonic degrees of freedom stay clos
a thermal equilibrium. The latter is not fixed, however; rath
it continuously gets disturbed by collective motion itself, fo
getting for the moment a possible evaporation of light p
ticles or gammas. It should thus be of interest to have so
estimate of an appropriate relaxation time. The best ca
date for this is offered by the ‘‘generator’’ of collective mo
tion, namely, theF̂( x̂i ,p̂i ,Q0), which defines the coupling
of the collective variable to the nucleons. It is predominat
this quantity which ‘‘decides’’ which kind of modes of th
intrinsic degrees of freedom get excited. We may recall fr
the discussion in Sec. III the close relation of thisF̂ to the
nucleonic response function appearing in our theory: T
x(v) parametrizes that average ‘‘excitation’’d^F̂&v which
comes about through a change of the collective varia
dQ. If we are just interested in estimating the timet after
which the d^F̂& t has decayed to its static value, we m
study the time-dependent functionx̃(t) given in Eq.~3.4!. In
a literal sense it represents thed^F̂& t if excited by a sharp
pulse likedQ(t)}d(t). Notice that fort.0 the x̃(t) is pro-
portional to the derivative of the Fourier-transformed rela
ation function, namely,x̃(t)}dF̃9(t)/dt @see Eqs.~3.4! and
~4.9!#. Thus the information contained inx̃(t) is equaivalent
to that ofF9(t) up to an additive constant. The latter me
sures the long time limit ofF9(t); it is related to the strength
of the heat pole. At the moment we are interested only in
behavior for finite times.

In Fig. 9 results of two different computations ofx̃(t) are
shown. One case just refers to the deformed shell model
the other one, collisional damping is taken into account. I
clearly seen that only by way of such collisions may w
speak of genuine relaxation. It is also observed that the la
does not depend much on the shape. However, the relax
time t decreases considerably with increasing temperat
The latter effect is expected of course from the very form
which the temperature appears in the single-particle wid
~4.4!. From the solid lines of Fig. 9 one may deduce fort
ut
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values like (0.5,0.3,0.1)\/MeV for T51,2,5 MeV. @This
may, for instance, be done by approximating the envelop
x̃(t) by an exponential such thatt may be defined through
the ‘‘width’’ at half maximum.# Later on in Sec. IV C we are
going to compare them with typical time scales of collecti
motion, but we may say already here that this microsco
time t is at least one order of magnitude smaller than the
which measures motion in the collective variableQ.

Finally, we should like to mention that the results foun
from the present computation are in accordance with th
reported in@25#.

V. NUMERICAL RESULTS FOR COLLECTIVE
TRANSPORT COEFFICIENTS

In this section we will discuss the numerical results f
transport coefficientsT computed along the fission path o
224Th. As was already mentioned, for temperatures abov
MeV the fission path is parametrized in terms of Cass
ovaloids by only one deformation parametere. Since we
prefer to use the parameterr 12 instead ofe, we have to relate
the transport coefficients accordingly. This can be done
exploiting the following relation, obeying that thean’s are
fixed:

Tr12r125TeeS dr12de D 22

, ~5.1!

which simply follows from general properties of coordina
transformations. The derivative]r 12/]e is obtained by dif-
ferentiating Eq.~2.4!; the result is shown by dashed line
Fig. 2. Recall that the deformation dependence of the tra
port coefficients is defined essentially by the choice of
collective variables. For example,Tr12r12 decreases withr 12
but Tee increases as a function ofe. Both in the figures as
well as in the text below we will omit the indicesr 12r 12,
keeping in mind that the transport coefficients are defin
with respect tor 12 ~even if sometimes they will be shown a
function of e).

A. Accuracy of the zero frequency limit
for the collective response function

The friction coefficient g(v1) and mass paramete
M (v1) defined according to Eq.~3.12! are shown in Fig. 10
by solid lines as function of the deformation parameterr 12
for temperatures between 1 and 3 MeV. They are compa
with calculations for which the approximation~3.17! and
~3.18! is used for friction and inertia, respectively. The latt
results are marked by dashed curves. As can be seen,
approximation is quite accurate forT>2 MeV. This implies
that for such temperatures one may avoid the tim
consuming computation of the frequency dependence of
collective response function. One may compute friction a
inertia directly from Eqs.~3.17! and ~3.18!. As for the large
fluctuations seen atT51 MeV we expect them to becom
much smaller as soon as pairing correlations are taken
account, which shall be the subject of future studies.

For comparison we also show in Fig. 10~by the lines with
stars! wall friction gwf and the inertia of irrotational flow.
According to @26# wall friction gwf is proportional to the
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FIG. 9. The time-dependent function for the nucleonic response, calculated within the pure shell model~dashed curve! and for collisional
damping~solid line!.
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squared normal velocityun
2(s) of the surface, integrated ove

the nuclear surface. Following@26# this may be deduced
from the loss of~collective! energy which is given by

Ė5
3

4
rvF R un

2~s!ds5gwfṙ 12
2 ~ t !, ~5.2!

wherer andvF are the nucleons’ density and Fermi velocit
For axially symmetric shapes the surface velocityun(s) can
be expressed in terms of the profile functionr(z,e) from Eq.
~2.1! as

un~z!5ūn~z! ṙ 12~ t !, ūn~z!5
1

L~z!

]r

]r 12
,

L~z!5A11„]r~z,e!/]z…2. ~5.3!

The mass parameter of an incompressible irrotational fl
has been computed as suggested in@27#. It can be written as

M irr5m R j~s!ūn~s!ds, ~5.4!
id

with the potentialj(rW) for the velocity field expressed by th
potential of some ‘‘surface charge’’ distribution

j~rW !5
1

2p R n~s8!

urW2rW~s8!u
ds8. ~5.5!

The substitution of Eq.~5.5! into the Neumann equation

Dj50, ~nW ¹j!S5un~s! ~5.6!

leads to some integral equation for the density of the ‘‘s
face charge’’n(s) which was solved iteratively starting with

n0~s!52ūn~s! ~5.7!

as a zeroth approximation ton(s); for details see@27#. We
have checked that for the particular case of the shape fa
~2.1! the Werner-Wheeler method@28# turns out to be a very
accurate approximation to the mass parameter~5.4!. Both
results coincide within the thickness of the lines in the figu
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FIG. 10. The friction coefficient and the mass parameter at finite frequency~solid lines! and for the approximation~3.17! and ~3.18!
~dashed lines!.
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B. Temperature and deformation dependence
of friction and inertia

In Figs. 11 and 12 the friction coefficient and the ma
parameter are presented as a function of the deformation
rametere for five different temperaturesT51–5 MeV. They
have been calculated from the oscillator fit~3.12!, but trans-
formed to sharp densities according to Eq.~3.21!. The pa-
rametere is chosen for reasons to be given below. In bo
figures results of the commonly adopted macroscopic m
els, namely,gwf andM irr , are shown by the lines with star
Several observations can be made.

FIG. 11. The deformation dependence of friction; the dott
short-dashed, long-dashed, dot-dashed, and solid lines corres
to temperaturesT51, 2, 3, 4, and 5 MeV.
s
a-

d-

~i! To some extent thegwf andM irr can be said to be
reached at the higher temperatures. The very fact that
statement is more true for the inertia but less so for frict
can be understood as follows. As shown in@18#, gwf may be
considered the macroscopic limit of our model only if su
subtleties as collisional damping are left out. Conversely,
high temperature limit of the inertia is related to the value
the energy weighted sum, and the latter is known to be
sociated toM irr . This is true at least when one treats vibr
tions within simple models~see@5,15# for the situations of
T50 and@30# at TÞ0).

,
ond

FIG. 12. The deformation dependence of the mass paramete
temperaturesT51–5 MeV. Different temperatures are marked b
the same lines as in Fig. 11.
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~ii ! As has been demonstrated in@4#, in the general case
the evaluation of the sum rule value becomes somewhat
cate for collisional damping. The nice feature of reaching
M irr automatically can be considered a proof of the use
ness of the transformation~3.21!.

~iii ! As in the calculations of@4#, on average friction is
seen to increase withT whereas the inertia decreases.

~iv! Again similarly to@4#, both transport coefficients de
crease with deformation on average.

~v! The coordinate dependence shows fluctuations aro
the average trend, which are more pronounced at sm
temperatures. They appear to be even larger than thos
ported in@4#, but they are similar to the results of@29#. As
for the friction coefficient, the dependence on deformation
particularly strong around the spherical shape. It reache
kind of local maximum there or, perhaps, at a slightly obl
shape. These features can be exhibited more clearly for
rametrization in terms ofe, for which reason we have mad
this choice here.

Many of these features point to the importance of sh
effects, in particular the peak for friction around the spheri
configuration, which is clearly visible forT'1–2 MeV but
which disappears atT'4–5 MeV. We like to elaborate on
this statement by trying to split the friction coefficient u
into a smooth and a fluctuating part. For this study we ta
the zero frequency limit.

Let us suppose for a moment that the matrix eleme
uF jku2 considered as a function of the single-particle energ
have some smooth average componentF 2(e,e8) and the os-
cillating component can be neglected. In this case one m
rewrite Eq.~4.8! in the form

g~0!'2\pF2~m,m!E dV
]n~V!

]V
g2~\V!. ~5.8!

The%k(V) in Eq. ~4.8! are peaked functions with their max
mum at\V5ek so that the sum of%k over k may be inter-
preted as the densityg(\V) of single-particle states. As
usual the latter can be split into smooth and oscillating co
ponents g(e)5g̃(e)1dg(e) with g̃(e)5^g(e)& and
^dg(e)&50 where the brackets stand for an averaging o
the single-particle spectrum. Inserting this decomposit
into Eq. ~5.8! and noting that an integration performed wi
the bell-like function]n(V)/]V can be understood like th
average introduced above, we will get

g~0!'\p@ ḡ2~m!1^dg2~e!&e5m#F 2~m,m!. ~5.9!

Assuming the oscillating component of the density to be
riodic in the energy with some period\V0 and amplitude
dg0, viz., dg(e)5dg0sin2pe/\V0, it is easy to convince
oneself that̂ dg2(e)&5(1/2)dg0

2. The quantitydg0 is deter-
mined by the magnitude of the shell correction. It is
smooth function of particle number~see@31#! but still de-
pends on deformation. It is maximal at that deformati
where the shell structure is more pronounced. For
Woods-Saxon potential this happens to be so at the sphe
shape. So it is due to the shell structure that the frict
coefficient gains additional contributions around the sphe
For the case of the Woods-Saxon potential this specific
ture seems to be responsible for the dip one sees in Fig
li-
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both for friction as well as for the inertia aroundr 12'0.5,
even at the somewhat larger temperatures of 3 MeV. It m
be said, however, that such a behavior is not seen in comp
tations performed with the model of@4#. There the change of
the friction coefficient withr 12, for instance, resembles more
the smooth one given by the wall formula.

C. Collective relaxation times

It has become customary to parametrize friction in term
of the ratiob5g/M , although most interest has concentrate
on friction alone; often the inertia was simply taken to be th
reduced mass of the fissioning system. As we have se
above, for a microscopic theory both quantities will vary no
only with the collective variable, but with temperature a
well. It may be expected, of course, that for the ratio th
dependence on shape is much weaker than that of the in
vidual quantities. This follows simply from the observation
that any common, purely geometrical factor will drop out. In
Fig. 13 we present the results forb obtained from those for
inertia and friction discussed before. Indeed, this quantity
essentially constant over the whole deformation region, fo
all computations butT51 MeV, a case for which the fluc-
tuations seen in our results are too large because of our
glecting pairing. However, there is a marked dependence
excitation:b increases strongly withT. This is in clear dis-
tinction to the result one gets from applying the wall formula
for friction and that of irrotational flow for the inertia. Inter-
estingly enough, these macroscopic estimates lead to so
Q dependence, which in a sense is even larger than su
gested by the trend of our results. It can be said that the lat
are very close to those obtained in the computations with
two-center shell model potential@4#.

Physically, the inverse ofb can be interpreted as the re-
laxation time (tkin5M /g) to the Maxwell distribution for
collective motion. In full glory this feature can only be un-
derstood looking at the dynamics in collective phase spa
~see, e.g.,@16#!. However, one may grasp its content, recall
ing the local equation for average motion of the dampe
oscillator:Mq̈(t)1gq̇(t)1Cq(t)50. From this equation it
also becomes apparent that yet another relaxation time c
be defined, namely,tcoll5g/uCu. For overdamped motion the
latter is the only relevant one. Actually, such a situation i
given for temperatures above 1–2 MeV.

FIG. 13. The the inverse relaxation timeb5g(v1)/M (v1) as a
function of deformation and temperature~indicated in the figure!.
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Let us infer this feature comparing the macroscopic rel
ation times with the microscopict found in Sec. IV C. There
we got values in the ranget5(0.320.1)\/MeV for tem-
peratures between 2 and 5 MeV, discarding the case
T51 MeV for the moment. Taking for theb of Fig. 13
typical values like 2 and 8 MeV/\ for T52 and 5 MeV,
respectively, we recognizetkin to be comparable or only
slightly larger thant. This means that in this range of tem
peratures the friction force is so strong that it leads to
instant damping or disappearance of the kinetic energy. T
is not in contradiction to the basic assumption behind
quasistatic picture. To justify the latter all one needs to h
is the motion inQ to be slow compared to that for the in
trinsic degrees of freedom. For this question it is thetcoll
which becomes relevant. Its value can be estimated with
help of Figs. 6 and 10. Let us concentrate on deformati
for which the local stiffness does not get zero. Since
T>2 MeV shell effects are not important anymore, we m
estimateC as the one of the liquid drop energy. The rig
part of Fig. 6. tells us theuCLDMu to be of the order of 150
MeV for r 12 larger than about 0.6. In this range the value
g is about 800\, as seen from Fig. 10~for T52 MeV; it is
even larger for larger temperatures!. For tcoll this implies
values of the order of 5\/MeV, which are larger thant by
more than one order of magnitude.

VI. SUMMARY AND CONCLUSIONS

In this paper we have applied the single-particle mode
@3# to describe large scale motion at finite excitations. To t
end this model had to be modified to include effects of c
lisional damping and it had to be adapted to the formulat
of collective motion in the spirit of the locally harmoni
approximation~for a review see@16#!. Numerical computa-
tions have been performed for the transport coefficients
average motion along a fission path. The latter was identi
by the valley in the potential landscape obtained for the
uid drop model. It was argued that for the range of tempe
tures considered in the present study this path may be
pected to represent fairly well the actual situation, first of
because of the evidence one has from static considera
that Cassini ovaloids describe well the shapes of the fiss
ing nucleus. Second, for the large damping one expects t
given, the system will be creeping down the collective p
tential and thus will stay close to the line of steepest desc

For the transport coefficients values were found which
in accordance with previous studies, in particular with t
ones of @4#. This is especially so for their dependence
temperature and, to a lesser extent, for their variation w
the nuclear shape. For instance, it turns out that typical
fects of single-particle motion become more apparent h
than they did in@4#, as there are fluctuations of both frictio
and inertia with the collective variable. To a large amou
they disappear when building ratios like for theb5g/M or
the h5g/(2AM uCu), two quantities which are commonl
used to parametrize collective dynamics.

A new development has been achieved with respec
comparisons with macroscopic models, like that of irro
tional flow for the inertia and that of wall friction. As on
knows, both are calculated for sharp density distributio
which may differ considerably from those which correspo
-
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to the nucleons’ densities in the shell model. A transform
tion was suggested which allows one to connect both den
distributions and thus enables one to connect the trans
coefficients accordingly. This transformation was found
applying a Strutinsky smoothing procedure to evaluate
average static value of the relevant one-body opera
F̂( x̂i ,p̂i ,Q0). It is this operator which by a self-consistenc
argument is related to the deformation of the mean field.

Finally, we briefly like to turn to comparisons with ex
perimental findings. First of all, we may mention that t
values forb shown above concur with the range sugges
by fission experiments@32#. Two other relevant parameter
are theÃ5AuCu/M and theh mentioned above, which, fo
instance, appear in Kramers’ famous formula for the de
rate of a one-dimensional fission model:RK5(A11hs
2hs)(Ãm /2p)exp(2B/T). Here, B measures the barrie
height,Ãm determines the vibrational frequency in the p
tential minimum, andhs is to be evaluated at the saddle. Th
latter two quantities are shown in Figs. 14 and 15, resp
tively, for both points. They have been calculated by aver
ing theQ-dependent transport coefficients in the neighb
hood of the minimum and the barrier, where both are th
of theT-dependent potential energy. These results agree
well with those already shown in@4#. It is remarkable that

FIG. 14. The vibrational frequencyÃ5AuCu/M as a function of
temperature, calculated at the potential minimum~marked by
circles! and at the saddle point~marked by triangles!.

FIG. 15. The dimensionless parameterh5g/(2AuCuM ) as a
function of temperature, calculated at the potential minimu
~marked by circles! and at the saddle point~marked by triangles!.
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Ã does not change much withT, neither at the minimum no
at the barrier. Conversely, like theb shown before, theh too
definitely increases with temperature. This behavior is in
least qualitative agreement with the one found in@33# and
the numbers forh lie in the range of values deduced on
recently in @34# from experimental evidence. It is true, o
course, that for more quantitative analyses one would hav
consider both the effects of pairing as well as of angu
momentum, not to mention the fact that there is some fr
dom @16# in adjusting the two parameters which define c
lisional damping. However, there is probably little dou
about the temperature dependence of our coefficients,
aboveT51.5–2 MeV. This marked change withT is in clear
distinction to the macroscopic models mentioned. In the li
of this feature agreements between experimental findings
theoretical descriptions appear somewhat questionabl
they are only based on these macroscopic models@7,8#. Like-
wise the somewhat peculiar behavior ofb with r 12 suggested
in @9# is not confirmed by our results~see also@4#!. It is
perhaps fair to say that some of the difficulties one still e
counters at present when comparing theory with experim
are due to the high complexity of the problem itself as w
that of the analysis of the data. To emphasize this statem
we would just like to take up a point raised in@10#, namely,
that common statistical codes evaluate the fission decay
not by the transition state result, to which Kramers’ formu
reduces to forhs→0, but by that of the ‘‘statistical model’’
whereÃm is replaced byT. The difference between thes
two variants can easily be inferred from Fig. 14.
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APPENDIX: INTRINSIC RESPONSE FUNCTION

The computation of the intrinsic response function
somewhat involved. As a result of the frequency depende
of both the Fermi distributionn(v) and widthG(v), the
integral in Eq.~4.2! cannot be calculated analytically. Th
numerical integration is rather time consuming since%k(v)
are sharply peaked functions which width varies by two
der of magnitude depending on the values ofek . Fortunately
the integration in Eq.~4.2! can be carried out by means o
residues theorem closing the integration limit in the low
half plane. For this one needs to find the poles and resid
of all the terms in the integrand of Eq.~4.2!.
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Let us first look for the poles ofGk(v1 i e). Substituting
Eqs.~4.3! and ~4.4! into Eq. ~4.6! and introducing the nota
tion D[Ac21p2T2, m65m6 iD, Eq. ~4.6! can be brought
to the form

Gk~v1 i e!5~\v2m1!~\v2m2!

3H ~\v2ek!~\v2m1!~\v2m2!

1
\v2m11 iD

2G0D/c
4

1 i
~\v2m1!~\v2m2!2c2

2G0 /c
2 J 21

. ~A1!

It is not difficult to note that the last terms in the second a
third lines cancel each other and both the numerator
denominator can be divided by\v2m1. In this way
Gk(v1 i e) becomes

Gk~v1 i e!5
\v2m2

~\v2\vk
1!~\v2\vk

2!
, ~A2!

where\vk
6 are solutions of the equation

S \v2ek1 i
c2

2G0
D ~\v2m2!1

c4

2G0D
50, ~A3!

namely,

\vk
65

1

2 Fek1m22 i
c2

2G0
G

6
1

2 F S ek2m22 i
c2

2G0
D 22 2c4

G0D
G1/2. ~A4!

Both poles ofGk(v1 i e) lie in the lower half plane. The
residues ofGk(v1 i e) are simple functions of\vk

6 and
m2 as it is seen from Eq.~A2!. From the definition~4.6! it is
easy to see that poles and residues ofGk(v2 i e) are complex
conjugated to that ofGk(v1 i e). The pole representation fo
%k(v) is easily obtained from Eq.~A2!. Besides the poles o
Gk6(v6 i e) and%k(v) one should account also for the pole
of Fermi functionn(v) in the plane of complexv ~so-called
Matzubara frequencies!:

\vn5m6 ipT~2n11!, n50,1,2,. . . . ~A5!

In principle, the sum extends over infinitely many terms, b
in practice the summation in Eq.~4.2! is cut at such frequen
ciesvn which contribute less than determined by the desi
accuracy.
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