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Previous computations of the potential landscape with the shapes parametrized in terms of Cassini ovaloids
are extended to collective dynamics at finite excitations. Taking fission as the most demanding example of
large scale collective motion, transport coefficients are evaluated along a fission path. We concentrate on those
for average motion, namely, stiffne€s friction y, and inertiaM. Their expressions are formulated within a
locally harmonic approximation and with the help of linear response theory. Different approximations are
examined and comparisons are made with both previous studies, which involved different descriptions of
single-particle dynamics, and macroscopic models. Special attention is paid to an appropriate definition of the
deformation of the nuclear density and its relation to that of the single-particle potential. For temperatures
above 3 MeV the inertia agrees with that of irrotational flow to less than a factor of 2, but shows larger
deviations below, in particular in its dependence on the shape. Also, friction exhibits large fluctuations along
the fission path for small excitations. They get smoothed out above 3—4 MeV whattains values in the
range of the wall formula. FOF=2 MeV the inverse relaxation timg= y/M turns out to be rather insensitive
to the shape and increases with[ S0556-281®7)01304-9

PACS numbgs): 21.60.Ev, 21.60.Cs, 24.10.Pa, 24+i5

[. INTRODUCTION formed shell model. However, the latter is simple and flex-
ible enough to allow one to consider residual interactions, in
One of the oldest but still most challenging problems ofone way or another. As we shall see, it may be possible to
nuclear physics is an adequate description of collective mogain insight into their importance by studying dynamical as-
tion at finite excitations. As the prime example one maypects. Likewise, we may be able to get information on the
guote nuclear fission which has attracted the attention of botbomplexity of the configurations which are to be considered.
experimentalists as well as theoreticians since its discovery. Such a task becomes more feasible in the case where col-
To date it is still an open question which type of configura-lective motion is sufficiently slow. Then one may exploit the
tions the system undergoes on its way from the potentiafjuasistatic picture which reduces the complexity of the full
minimum over the saddle region down to scission. Whereagroblem drastically. Under such circumstances one may ac-
in the early days those of the compound model were clearlyually linearize the problem and treat collective motion lo-
favored in theoretical pictures, after the discovery of the sheltally within a harmonic approximation. In this way one may
model that of independent particle motion came into fashiortake advantage of the benefits of linear response theory.
more and more. This development was enhanced after com- One of the major problems in theories of this type is to
puters became fast enough such that Hartree-Fock type corfind a decent guess for the relevant macroscopic variables, a
putations could be done in every laboratory. problem which is familiar almost from all transport theories.
However, there can be little doubt that this picture fails toFor nuclear fission there exists some kind of guiding prin-
describe collective motion at finite excitations where one isciple through the liquid drop model. The latter is known to
compelled almost by experimental evidence that the dynanrepresent the static energy for temperatures above 1-2 MeV.
ics shows irreversible behavior, not only by the very natureSince at these temperatures one expects motion to be
of the decay process itself, but by the appearance of fricstrongly damped, it will most likely follow somehow the line
tional forces. It is more than questionable that this featureof steepest decent. Possible shapes which a fissioning
can adequately be met by introducing simpleminded colli-nucleus may assume on its way to scission have been looked
sion terms. Decent descriptions of fission in terms of thefor in [1] by minimizing the liquid drop energy. This mini-
one-body density operator most likely require one to conimization has been done for some realistic energy density
sider correlations beyond the independent particle picturefunctional under the constraint of fixing a parameter which
together with non-Markovian effects. This is a difficult prob- measures the distance between the evolving fragments. Inci-
lem in itself, not to mention the computational task of solv-dentally, it is the same parameter which we are going to
ing this equation of motion for the one-body density. exploit later on in our approach. It so turns out that the
For these reasons it may still be interesting and worthshapes found in this way can be approximated fairly well by
while to start from a more phenomenological point of view, the Cassini ovaloids introduced to nuclear physicddh
introducing the shape parameters as collective variables. It isater in[3] a single-particle model has been constructed for
true that in this way again the picture of independent parsuch a parametrization of shapes, which was based on the
ticles will serve as a starting point, in the form of the de-Woods-Saxon potential.
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In this paper we are going to use this model for compu- 15 preerr AT .
tations of transport coefficients, after some suitable modifi- E £=0.0(1). 0.4(2), 0.7(8), 0.9(4), 1.0(5)
cations which are necessary to incorporate the effects men- ; 1
tioned above. One of our goals will be to study average ; 3
motion along the fission path for different temperatures, as it
is reflected in the associated transport coefficients of inertia,
friction, and local stiffness. In this sense the aim of our
present work is similar to the one pf], where a two-center
shell model was used. The latter feature renders the previous
model simpler on the computational level. On the other hand,
the parametrization of the shape by means of Cassini ova- q ]
loids opens the possibility of treating more realistic shapes, 18,5 -1.5 -0.5 0.5 1.5 25
which are perhaps better suited to describe the later stages of 2/Ro
a fission process. Furthermore, it is fair to say that the

Woods-Saxon potential may be supposed to resemble more FIG. 1. The parametrization of the shape of the nuclear surface

the “true mean f|elc_|. . _in terms of Cassini ovaloids. The values of the deformation param-
For Cassini ovaloids commonly a few parameters suffice,,, . [see Eq/(2.1)] are indicated in the figure

to treat in simple terms a whole variety of realistic shapes
including very compact ones as well as strongly deformed

ones with a well-developed neck or even those correspond?t €~0.5 a neck appears andet 1.0 the nucleus separates
ing to separated fragments. In this sense this parametrizatidito two fragments. A few examples of the familg.1) are
may be considered superior to expansions in terms of spherghown in Fig. 1. _ _

cal harmonicgsee[5]). In the ideal case one would then be It is possible to describe a more general class of axially
able to compute transport tensors for all the parameters, tiymmetric shapes by exploiting an expansion about the sur-
collective degrees of freedom, one claims to be relevantface given by Eq(2.1). We may introduce two new coordi-
This is a tremendous task and so far has been carried throudf@t€SR and x such thatR=const=R, corresponds to the
only for a two-dimensional model6], without utilizing Cassini ovalg2.1). The coordinate specifies the position of
though the full microscopic potential of linear response@ Point on the line given by Eq2.1); see[3] for details.
theory. In this paper we want to restrict ourselves to theWVith these two variables at our disposal we may parametrize
one-dimensional case. The main reason for that is found, Gt New shape. The latter is meant to express the deviation
course, in the simplification one gains by this restriction.from the ovaloid given by Eq(2.1) by means of an expan-
However, it may be said that at present most of the applicasion into a series of Legendre polynomials,

tions of macroscopic equations of motion to fission at finite

excitation adhere to a similar confinement; see, ¢7g-10.

Evidently one then needs to rely on the “right” guess of the R(x)=R,
fission path. As said before and for arguments given there we

presume it to be represented well enough by the line along

the valley of the static energy. Possible improvements havi
to be left for future studies.

e
o
T

p(z.£)/Ro
o

1+, anPn(X)). (2.3

‘?‘he full set of collective variables or parameters then in-
cludes the coefficienta,, in addition to thee from before.
Sometimes it is convenient to introduce a measure for the

Il. DEFORMED SHELL MODEL overall elongation of the nucleus instead ef One may
o chose, for instance, the distanBg, between the left and
A. Shape parametrization right center of masses. To have a dimensionless quantity one

We follow the suggestion put forward {i8], but would ~ may divideR;, by the diameter R, of the spherdof iden-
like to repeat the most important elements for convenienceical volume to get
The Cassini ovaloids are obtained by rotating the curve

p(z,6)=Ro[a*+ 4eZIR2—22IR2—€]¥2  (2.1) R [flzmzenldv 2.4
127 2R, RofdV '

around thez axis, withz andp being cylindrical coordinates.
The constant is defined by volume conservation, implying with z. . being thez coordinate of the center of mass of the
that the family of shapes Eq2.1), depends only on one the whole complex. The integration is carried out over the
deformation parametes. As is easily recognized from Eq. volume within the sharp surface specified by E2.3). As-
(2.1) the value of e=0 corresponds to a sphere. For ymptotically, ther, turns into half of the distance between
0<€<0.4 the form resembles very much that of a spheroidcenters of mass of the fission fragments. Incidentally, this
with the ratio of the axes given by variable is defined uniquely for any parametrization of the
shape and has been used in the past by many authors. This
feature facilitates comparisons to theories which are based on
shorter axes 1—2¢/3 2.2 shell models with different shape variables. The relation be-
longer axes 1+¢€/3 ' tweenr 1, and e is demonstrated in Fig. 2.
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FIG. 2. The relation between;, and e (solid ling); the deriva- FIG. 3. The energies, of single-particle statefor a fixed z
tive dry,/de is shown by a dashed line. component of angular momentum and paritf=3/2") as func-
_ _ o tions of e. The line with stars marks the position of the chemical
B. Single-particle Hamiltonian potential computed forT=1 MeV. The circle marks the
The single-particle Hamiltoniaﬁipm will be constructed Ezglﬁg?rossmg which &t=0.3 is closest to the chemical potential;

as in[3]. It has terms for the kinetic energy, the radial

potential V, the spin-orbit coupling/,, and the Coulomb  cutoff in the single-particle energy was set equal to 20 MeV.
potentiaIVC0u|: We have checked that a variation of the cutoff energy within
the interval 5-20 MeV does not change much the values of

Ripm=T+V+V o+ Veou- (2.5  the transport coefficients. This may be understood from the
fact that these transport coefficients reflect the truly low fre-

The radial partV is represented by a finite depth Woods- quency behavior of the system.

Saxon potential

V(p,z)=V0{1+exp[I(p,z)/a]}’l, 2.6 C. Deformation energy
The deformation energlf 4. at zero temperature is calcu-
wherel(p,z) is the shortest distance from the poipt£) to  |ated according to the shell correction metfjd@,13 as the

the sharp surface aralis the diffuseness parameter which is sum of the liquid drop energi:0M and the shell correction

assumed to be constant along the surface. The spin-orbit pge™P+ sP™P (including the one for the pairing enerngy
tential may be written in a way which makes apparent that it

is proportional to the gradient of the potential given in Eq.
(2.6, Eger=Eder + 2 (SEP"+5PP"). 2.8
Vso*[s,pIVV. 27 The liquid drop energy is computed as the contributions from

- - the CoulombE and surfaceEg energies according to
Here p and s stand for the nucleon’s momentum and the[lz 13 coul s ¢ ¢

spin. The Coulomb potential is calculated for a charge dis-
tributed uniformly inside the sharp surfat23) or (2.1). ELOM_g 4 E _(EQ 4 EO 29
The single-particle energies and wave functions are deter- det = Ecout Es™ (Ecaurt Es), 29
mined by diagonalizing the matrix of the Hamiltonié&.5)
calculated with the wave functions of a deformed axially
DM

symmetric oscillator potential; sd&1]. An example of the e calculation ofE.. and EPM at zero temperature for
deformation dependence of the single-particle energies i 26Th as a function doeli the padrgmete&'and P
ag.

shown in Fig. 3. As the result of diagonalization one obtains The t ture d d f Coulomb and surf
not only energies and wave functions of bound states, but € lemperature dependence of L.oulomb and surface en-
rgy is accounted for by using the forms

also those of discrete states of positive energy, which for th&
Woods-Saxon potential lies in the continuum. The density of
these states depends on the number of oscillator shells in-
cluded in the basis. In the computations within the shell cor- )
rection method the number of oscillator shells is optimized Es(T)=Eg(T=0)(1-4T), (2.10

by the requirement that the states with positive energies pro- ) 5

vide a smooth extrapolation of the density of bound statedith =0.000 763 MeV “ and 3= 0.005 53 MeV “ [14].

into the continuum. Accounting for such states with positive T© compute the shell correction at finite temperature we use
energy improves considerably the “plateau” of the shell cor-the phenomenological ansatz proposedSh

rection as a function of the averaging interval. In the present

paper we do so not only when calculating deformation ener- n _ n T
gies but also in the computation of transport coefficients. The SE(T)+ SP(T) =[5E(0) + oP(0)] inhr’ (.19

where E2 , and E are the corresponding energies of the
spherical shape. As an example, Fig. 4 exhibits the results of

Ecoul T)=Ecou( T=0)(1—aT?),
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FIG. 4. The liquid drop(top) and total(bot-
tom) deformation energies d?*Th atT=0 as a
function of e and a;.

with 7=27T/hwy and iwo=41A"3, A being the mass . DYNAMICS IN A LOCAL HARMONIC
number of the fissioning nucleus. APPROXIMATION

For temperatures larger than 1 Mé&s considered in the
present paperthe shell effects are strongly suppressed. Al- In the following we will assume to be given a many-body
ready atT=1 MeV the minimum of the total deformation Hamiltonian A (X; ,p;,Q(t)) which depends parametrically
energy almost coincides with the bottom of the liquid dropon the collective variabl® which specifies the shape of the
valley. As said before the latter can be approximated rathefiuclear surface. Although for the computations to be pre-
well just by the Cassini ovaloids. Thus we restricted our sekented below it will mostly be identical 1q.,, in this section
of deformation parameters to the one parametenly, with e sitill prefer to use the general notatininstead, last but
all the o, put equal to zero. However, insteadeofve prefer  not least to indicate the general validity of the discussion to
to user, defined by Eq(2.4). Ther,, dependence of the come. This Hamiltonian is assumed to represent the system’s
total deformation energy and that of the liquid drop aretotal energy. On the level of the shell model this means add-
shown in Fig. 5. ing somec-number terms to the sum over those single-
particle Hamiltonians introduced in EQR.5) (see[15]). As
will be discussed in the next section, later on we want to
account for collisional damping, which from a principal
point of view requires adding a two-body interaction

VE)(x;,p;). For the moment it is not very important to know
details about the way it will be handled, besides the fact that
we claim this interaction to be independent@f

As a consequence of the latter feature, the generator for
collective motion, namely,

o

Deform. energy (MeV)
o

\ aﬂ(;(ilbi!Q)/&QEﬁ(;(i!ﬁin)l
L MY

0.3 0.5 0.7 0.9 1.1
Ri2/2Ro is of pure one-body nature. This operator defines the main

source of the coupling between the collective degree of free-
FIG. 5. The totalsolid) and liquid(dashedidrop components of dom Q(t) and the nucleonic ones. Indeed, within the local
the deformation energy along the liquid drop fission valley for harmonic approximatiofLHA) the effective Hamiltonian
224Th, can be written as
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H(Q)=H(Qq) +(Q—Qy)F pears in the density,s. The functiony”(t—s) on the right
- o stands for the so-called dissipative part. In Fourier space the
1 A2l H 37 full response separates into real and imaginary parts like
+3(Q=Q0)% 752(Q0) BD (@)= y'(0)+ix (), the y'(w) sometimes being called

Qo:To the reactive part.

In the second order term the “nucleonic” part appears only.. As one may guess from the very construction, the deriva-

as an average of the corresponding operator. Consistent n of Eq.(3.3 relies on quasjstatic properties of th? nucle-
with the harmonic approximation, this average is to be built nic degree§ of freedom. Fo_r mgtance, such prqpertles appear
with that density operatop{ Qo) which in the quasistatic in the coupling constark which is to be determined from
picture is to be calculated with the Hamiltonian @,

2
namely,ﬂ(Qo). It is here where thermal concepts come into —k 1= ({9—2
play. In this “unperturbed” density operatdfor the nucle- IQ
ong one needs to specify the amount of heat the nucleonic

(or intrinsic) degrees of freedom have at the given configu-Moreover, the nucleonic degrees of freedom are assumed to
ration parametrized by),. The simplest possibility is of- behave ergodic in the sense of having the adiabatic suscep-
fered by the canonical distributibn P Qo) tibility x%=— 8(F)/5Q|s be identical to the isolated one,
sexf —H(Q)/T], to which our computations will be re- the static responsg(0):

stricted. Clearly this picture has to rely on the assumption of

a quick relaxation of the relevant internal degrees of free- x(0)=x* (3.6

dom; we will come back to this question later on.

Details about this LHA can be found in many references;As has been demonstrated [ib8] this condition is not ful-
see, e.¢.[16-18: There it is also described how this local filled in the deformed shell model, which implies that special
dynamics can be handled within a suitable application ofneasures are to be taken to which we will come to below.
linear response theory. For this reason, we will only recall It should be noted that the derivation of E§.3) involves

+x(@=0)=C(0)+x(0). (3.5
S

the most important theoretical issues. a self-consistency relation between the deformagoaof the
mean field and the one of the density. The latter may be

A. Collective response function measured by the expectation vaki€),. For linearized dy-
namics this self-consistency condition reduces to the equa-

The local motion in theQ variable can be described in
terms of the so-called collective response functiog(w).
It can be derived by introducing éhypothetical external

force Ffe(t) and by evaluating how the deviation ¢&),,

f_rom some properly chosen static value reacts to this eXtem%\lleII known from the case of undamped vibraticigs15).
field in linear order:

Realize, that the quantityF), is to be calculated with the
8F),= — Xeol(w)fext( @) (3.2  actual dynamical nuclear states accounting for their appro-
priate occupations.
As shown in[17] and[16] the x,i(w) can be brought to the Before concluding this subsection we like to write down a

tion

k(F)=Q(t)—Qo, 3.7

form more convenient form for the stiffne€40) appearing in Eq.
(3.5). It is defined as the second derivative of the internal
x(w) energyE(Q,S) with respect to deformation at fixed entropy
Xcoll(w):m' 3.3 S. Since it is not easy to calculate such a derivative, it is

better to reexpress it by the one of the free endrgy fixed
Here a response functiop(w) for “intrinsic” motion ap-  temperaturg¢see Eqs(A.18) and(A.19) of [17]]:
pears: They(w) measures how, at some given sh&peand

for some temperaturg,, the nucleonic degrees of freedom C(0)=(a—2fz) N ﬂ) #f(Q,T) 3.9
react to the couplind=8Q(w). Its time-dependent version Q7 1dQ/g dQdT
reads

In [17] it was found that for temperatures larger than 1.5-2.0
MeV the change ofT with the collective coordinate) is

- i . .
X(t=8)=0(t=5) +1r{padQo, TO[F(1),F(s) ]} small such that the second term on the right-hand side of Eq.
) _ (3.8 can be neglected. Below we would like to use the shell
=2i0(t—s)x"(t—s). (3.4  correction method when calculating static energies. In this

method usually the intrinsic energy is involved, rather than
In this expression the time development of the field operatorghe free energy. Thus one needs to relate the derivatives of
is defined by the same Hamiltoni&h(x; ,p; ,Qo) Which ap-  the free and the intrinsic energy both taken at a fixed tem-
perature. This can be done by differentiating the relation
E=f+ TS with respect to deformation and obeying that the
!For a discussion of the general problems of using the concept aéntropy can be expressed%s — (0f1dT)q . As aresult one
temperature for an isolated system §&8). gets
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total (left) and liquid drop(right) static energies. The dotted, short-
dashed, long-dashed, and dot-dashed lines correspond to tempe

4000 ¢

2000 i

-2000f

TRANSPORT COEFFICIENTS FOR SHAPE DEGREES IN ...

—40q&

i
Lo CiLom
|
b
L
: ]
B [
i 1%
‘\\t_‘
W
i \'\ii'}., .
' \\"‘:-:-%-_’;‘—:J_--\
3705707 09 03 05 07 09
Ri2/2Ro Ri2/2Ro

turesT=1, 2, 3, and 4 MeV.

C(O)~<

2

aQ’

J
+T

T

aT

9°f 9%E

1000

1750

500

1250

@l el e

As before, the expression on the right is justified for large
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efficients” have been marked by a supersckpto indicate

that they are associated with the quanéty).

Now the strategy of how to handle the general case is
clear: Whenever there is a pronounced peak in the strength
distribution ¢, (@) we may approximate it by a Lorentzian.
Since the latter is defined by three quantities, like the width,
the position of the maximum, and its height, one may deduce
the three transport coefficients which appear in the oscillator
response, for instance, as given by E8.11). In principle,
such a procedure may be applied to any one of the peaks of
the original strength distribution, which allows one to deduce
these transport coefficients for all the possible collective
modes, the low frequency ones as well as the high frequency
ones. As a matter of fact, such a scheme is commonly
adopted for the description of collective vibrations, as dis-
cussed ir{5,15]. The difference from the present application
[§"seen in the fact that we want to apply this procedure to
describe global dynamics in a local harmonic fashion. The
latter aspect puts an additional constraint. As mentioned ear-
lier, our application of linear response theory goes along
with the assumption that collective motion is slow, such that
the nucleonic degrees of freedom follow closely a thermal
requilibrium. We may recall that in some formulas given
above, this equilibrium has been parametrized by the quasi-

This approximation is used in the computations presentegtatic density operatqr,{Q,T). Estimates of the time scale

below. In Fig. 6 the stiffnes&3.9) of the energy2.8—(2.11)
is shown as function of the deformation parametgr. It is
seen that its liquid drop part becomes negativerfge 0.5

on which such a relaxation can be expected to occur will be
given below. But already on this level of information, it is
clear that the whole concept would probably not work if high

and the total stiffness exhibits rather strong fluctuations dué€quency collective modes were be important. For this rea-
to shell structure.

In general the frequency dependenceygfy(w) exhibits

B. Transport coefficients

son we are bound to concentrate on low frequency ones, if
the construction of the transport coefficients is to be consis-
tent with the basic assumptions for the applicability of the
quasistatic picture.

In practice the “fit” of the strength distributions of the

a complex structure. lts dissipative paif,(») represents oscillator model to the “correct” one involves the full re-
the strength distribution over all possible modes of the wholegponse functions, not only their dissipative parts. In short

nucleus which can be excited by an external force like thesuch
one introduced above, namelyf 4 (t). Rewriting Eq.(3.2)

as

it follows that the inverse of the collective response function
can be interpreted as an integral kernel for the effective equa- =0,

tion of motion for the time-dependent quanti#yF),. Evi-

(Xcoll(w))_15<|&>w: —fed @),

(3.10

an adjustment may be characterized

[xcon(@)]*8(F),=[xosd@)] *&(F),. A more correct
form can be written as a variational procedure

by

1 2
~M(w1) 0’ —iy(w1)0+C(w;)

(3.12

®max

do

k2Xcoll( w)—

dently, this time-dependent form of the equation of motionwith the variation to be performed with respect to the coef-
must be expected to contain non-Markovian effects. Howicients C(w;), y(w4), and M(w,). In this way both real
ever, there may be situations for which it becomes possiblend imaginary parts of.o(w) are fitted simultaneously.

to reduce this complicated structure to differential form. TheFortunately, for the practical applications to be discussed be-
clue to this simplification can be found by recalling the casdlow it turns out that the coefficient€(w,), v(w,), and

of the damped oscillator for which E¢3.10 takes the form

Xos(@) 8(F),=(—MFw?—yFiw+CF)&(F),

=—fod o)

(3.11

M(w;) are rather insensitive to the upper integration limit
wmax- The value of the latter was fixed to b ,,,,=5 MeV.

The reader will have noticed the appearance of the factor
k? in Eq. (3.12, as well as the fact that we have left out the
superscriptF in the transport coefficients. This change is
easily understood by referring to the self-consistency condi-

Here the following effective “forces” appear: an inertial tion (3.7). The latter can be interpreted as a transformation
one, a friction force, and the conservative one which is refrom theF mode to theQ mode. It implies a corresponding
lated to the derivative of the effective collective potential,transformation both for the response functions as well as for
calculated in linearized form. The associated “transport cothe transport coefficientdor details sed16]). In this sense
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thek?x.oi(®) and the transport coefficiens= M, y,C stand 1 P(Xeol(w) *
for the collective response and the coefficients of Qe M”WT
mode, respectively, with © = k?7. ©=0
It may turn out that collective motion is so slow, as com- (x(0)+C(0))? ¥%(0)
pared to the dynamics of the nucleons, that the transport =w<|\4(0)+ ) ) (3.18

coefficients can be deduced by expanding the response func-

tions aroundw=0. At first such a procedure has been ap-ag compared to the zero frequency limit defined above, there
plied to the intrinsic respondef. [19]). In this way one may 56 two modifications: Whereas all three coefficients obtain a
get an approximate solution of the secular equation for the,cior of proportionality, only the inertia gets an additional

position of the poles of the collective respon&3). One
may write

1

g Tx(o)=

+w
Jw

1
L)

This form invites us to define coefficients for friction(0)
and inertiaM (0) by

contribution. In most practical applications this proportional-
ity factor is not very important, as usually the static response
is much larger than the static stiffnesg:0)>|C(0)|. It is
only for small excitations and for deformed oscillator shell
models, in particular, that the size (£(0)| becomes com-
parable to that ok(0). However, the additional term in Eq.
(3.18 ensures that the modified inertia does not drop indefi-
nitely anymore with increasing damping. Later on we will
demonstrate with the help of numerical results that Egs.
(3.17 and (3.18 approximate the self-consistent friction

.&X(w)\ ax"(w) v(w;) and inertiaM (w4) very well at temperature$=2
y(0)=—i—~ N (3.149  MeV. To distinguish from the zero frequency limi8.14
0=0 =0 and (3.15 we will associate the approximatiaf3.17) and

(3.18 to “the zero frequency limit for the collective re-

and sponse function.”
Finally, we should like to mention that relations similar to
M(0) = 1 Px(w) 1 X' (w) (3.15 the ones given in Eq$3.16—(3.18 were obtained earlier in
2 dwt | 2 dw? w_o’ ) [20], namely, for the model case that the collective response

which in the past have been called the coefficients in th

“zero frequency” limit. The effective stiffnes€(0) is seen

to be identical to the local stiffness of the quasistatic energ
[keep in mind Eq(3.5)], as one would expect to hold true for
slow motion, indeed. Incidentally, the expression for the in-

function just consists of ondapproximately Lorentzign
é)eak. Solving the equations fa€(0), v(0), and M(0)

given in [20] with respect toC, y, and M one gets Egs.
);3.1@—(3.18).

C. Transformation to sharp densities

ertia can be shown to be a generalization of the one of the |, the previous section we found microscopic expressions

cranking model to the case of damped mofji@é]. Unfortu-
nately, for strong damping this1(0) becomes very small,

of transport coefficients for large scale motion. For many
reasons it is desirable to compare them with those of “mac-

and sometimes even negative. For practical applicati.ons thil%scopic models’[21], such as the liquid drop model for the
does not always lead to problems, as usually damping mayertia and the wall formula for dissipation—not to mention
be so strong that inertia must drop out of the macroscopiggitfness, which we have seen to become identical to the one
equations of motion. Nevertheless, this behavior of the inerys the static energy anyway, as soon as collective motion
tia M(0) is very unpleasant, but fortunately one can do betyecomes sufficiently slow. IfL8] many points of the prin-
ter. _ _ cipal nature have been clarified about how the macroscopic
Rather than concentrate just on the denominator of Eqjmit can be obtained in microscopic theories, concentrating
(3.3, it is better to take into account the full information |5rgely on vibrations around stable configurations. Here we
contained in this expression. As we may recall this was dongye to ook at another, more practical, albeit very important
implicitly when constructing the transport coefficients jgqe.
M(w,), (@), andC(w,) by approximating Eq(3.10 by By its very nature, these macroscopic models assume the
Eq. (3.11. An equation like Eq(3.11) may be obtained by pyclear density to be constant inside some surface at which
expandingl xcoi(w)]™* in Eq. (3.10 to second order imw.  the density drops from the nuclear matter value down to zero
In this way one gets within the zero range. Commonly this surface is param-
etrized with the same set of shape variables which in our

cm 1 _X(0)+C(0)C 0 31 description define the deformation of the mean field, for
N kZXCO”(w) 70_ x(0) (0, @18 \hichin the present discussion we have chosen the one col-
“” lective coordinateQ. Contrary to the macroscopic picture,
1 2 the microscopic calculation leads to a density distribution
y~ iz I(Xcoll(w) :[X(O)jc(o)] ¥(0) with a soft surface, which in addition depends essentially on
k Jw "0 x“(0) ' the occupation of states. Take the simple case of a spherical
(3.17 potential: If a shell with fixed angular momentuimis not

filled completely, the corresponding density distribution will

and not be spherically symmetric. On the other hand, it is clear
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that the transport coefficientBwill depend sensibly on the 1.5

distribution of matter. Thus one needs to employ some spe- ]
cific transformation to relate them from one case to the other. & Harm.ocs. N=112 %
This is best done looking at the mean valoe moment of o ez

the operatonlA: , as a representative for the average density. 5 1o I -2 :

In the case of our microscopic picture, we have seen the X P
self-consistency condition(3.7) to imply the relation "|>~ [ 7 ]
TF=k2T between the transport coefficients of theand Q “« 05 | S
modes. All we need to do is to search for a similar condition AT
which translates th& motion into that of the sharp density N I T
distribution, with the latter being expressed through the cor- L e ]
responding shape parameter. Such a relation can be found by 00,8 = 5 ‘ 3.0
applying the hypothesis, which we will substantiate below, W,/

that the averagéF)par, Calculated with a density distribu-
tion having a sharp surface, can be approximated well by

applying an appropriate Strutinsky smoothing to the shell FIG. 7. A demonstration of the problem of consistency between
model density. The latter is defined as the deformation of potential and density, exemplified at the de-

formed oscillator; for details, see text.

<F>sharp*2 Fjjﬁj , (3.19 Suppose we are given a spheroid whose deforma&ios
. fixed by the ratio between the semiaxes in ttdirection and

~ . the one perpendicular to iQ=2z5/yy=w, /w,. The sharp
where then; are smoothed occupation numbgtg,13. How surfaceS is then given by

they may be used not only to calculate static expectation

values as in Eq(3.19, but of corresponding response func- X2+y? 22

tions as well has been studied[i22] and[18]. The desired —+ =1 (3.22
relation betweeF ) s,,andQ may now be obtained simply Yo 20

gyn: giﬂg?g t0 Eq(3.19 the derivative with respect (Q. The deformation of the sharp density may be classified by

the average of the quadrupole operaf@s(r)=2z2—x?
= = — —y? calculated as

(9<|E>sharp~i ~ r1j_nk 2 ﬂﬁ
70 ”aQ; F“”J_% a1 +§,—" 50 70 o 2A .,
<Q2>sharp:f Qz(r)PO(r)dr:?(zo_yo)- (3.23
E_X‘yi (32©

which may be used to deducE . ()2 Tgharp' Here, Here, po(r) measures the density of homogeneous nuclear

Tonarprepresents the transport coefficients for the sharp der}} atter representing nucleons distributed uniformly within

sity distribution, but calculated for the associat@dmode. tg:js Eurfﬁzellilnnelz\llaltg gt]:rgu:sdzt%ZL?o?ooTﬁg%ésfoeﬁgtion
Combining this relation with the previous one, we get y

parameteQ=w, /w,.
Conversely, the surfac€.22 may be interpreted as an
— 2 ~ 2
Tsharg=(X7) TzharpM(Xy) T (1) equipotential surface of the corresponding deformed oscilla-
= (kx") T w,). (3.21) tor potential For such a potential one may compute single-

particle wave functiongzi(F) and from them the moment of

As the only one further approximation we have assumed thdfie microscopic density as
both density distributions lead to the same averaged value of

the field operatoF. In Eq. (3.21) there appear on the very <Q2>den5=j Qa1 njle;(n)|2dr. (3.24

left and on the right the transport coefficients for tQe ]

mode, once for the sharp surface of the macroscopic models ) )

and once for the collective coordinate specifying the mearPbviously this momen{Q,)qens depends on the occupation

field. We may add here that the quantjgy has a physical numbermj . In Fig. 7we show curves qorrespondlng to three

meaning similar to that of a static susceptibility, hence thechoices ofn;: Dotted line: the occupation numbers are fixed

choice of this symbol. The only difference from the isother-at the spherical shape, where the lowest energy states are

mal susceptibility is found in using the smoothed occupatiorfilled, and kept constant, independent@f(“diabatic” situ-

numbersfn“j(ej) instead ofn;(e; ; T). ation). Dashed curve: .at each crossing of states the particles
Let us turn now to “prove” the hypothesis made. This and holes are red|str|but(_ed in _such. a way that always the

can be done explicitly for the simple case of the deformedowest states are occupie(fadiabatic” situation). Solid

oscillator potential. For the more general case we want to

appeal to physical intuition, to the extent of accepting the A

idea that by its very construction Strutinsky smoothing com- 2For this case the quadrupole operafrwould be related to our

monly does lead to the macroscopic picture. field operatort taken at spherical shape Byo—1=— 3Mw3Q,.
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curve: here, the smoothed occupation numbers of the shalleren(x) is the Fermi function determining the occupation

correction method are used. We see that for the diabatic o@f single-particle levels. The(w) represents the distribu-

cupation numbers the quadrupole momghe4) differs sub-  tion of single-particle strength over more complicated states.

stantially from that of the sharp density distribution It may be parametrized by

(Q2)sharp (line with starg, approximately by a factor of 2.

Recall that this sharp density distribution reflects the defor- ')

mation of the potential. ex(@)= [ho—e—2 (0) ]2+ T (w)/2)?
On the contrary, the density computed with the adiabatic

occupation numbers follows the deformation of the potentiain terms of the real and imaginary parts of the self-energy

on averagelt can be said that this feature is one of the basict (w,T)=3'(w,T)—il'(w,T)/2 which are assumed to have

elements of the Copenhagen picture of collective maiigjn  the following forms:

(see also[15]). Indeed, such a redistribution of particles

leads to a consistency between the shapes of the potential 1 (ho—w)?+w°T?

4.3

and the density. For static situations, this leads to the well- F(w’T)zr_O 1+ [(ho—p)?+7°T2)/Ic? 4.4
known relation between the occupation humbers in the vari-

ous directions and the corresponding frequencies of the pand

tential. In the treatment of5] this relation is fulfilled for

specific deformations. In Fig. 7, the latter correspond to the S/ (0.T)= - (ho—p)Nc*+ 7 T? @5

points where the dashed line crosses that with the stars. For
this dashed line it is hardly possible to define precisely the
derivative of(Q,)4ensWith respect to the deformation param- Both are connected to each other by a Kramers-Kronig rela-
eter. On the other hand, the condition just mentioned can bon. The . in Egs.(4.4) and(4.5) is the chemical potential
fulfilled everywhere using the Strutinsky smoothed occupaand the cutoff parameter accounts for the fact that the
tion numbers. In this way the derivative is well defined. Fur-imaginary part of the self-energy does not increase indefi-
thermore, the quadrupole moment of the density computeditely when the excitations get away from the Fermi energy.
with the smoothed occupation numbers practically coincidesn the present calculation we choodg=33 MeV and
with that of the sharp surface distribution. c=20 MeV. Theg, appearing in Eq(4.2) is the one-body
Green function

2Ty 1+[(hw— u)?+ 7°T?]/c*

IV. MICROSCOPIC INPUT 1

Gloxie)= — — ,

In this section we are going to specify further details of ho=e=2"(0,T) il (0, T)/2
our treatment of nucleonic dynamics. !t has aIre_a(_jy beeqhich is related to the spectral density by
mentioned that the mere shell model is not sufficient. At
finite excitations the effects of collisions cannot be_ ne- o(@)=i[Glw+ie)—Glw—ie)]. 4.7
glected; one even expects them to become the more impor-
tant the higher the nucleonic temperature will be. To treaDetails about the evaluation of the integral in E4.2) are
collisions on the basis of an explicit form of a two-body given in the Appendix.
interactionV{2(x; ,p;) is hardly possible. Therefore we fol-  For future purpose we want to use this foth2) of the
low another path and parametrize the effect it would have ofiesponse function and write down a more detailed expression
the single-particle energies. Details of this method can béor the friction coefficient in the zero frequency limit:
found in the publications mentioned before, in particular in

J

(4.6

(4.8
A. Intrinsic response function

The Fourier transform of the intrinsic response function:ltqt'cs) Egt??ii(see[w]) by substituting Eqst4.1) and (4.2

given in Eq.(3.4) can be expressed as the sum over single-
particle states, o
B. Problem of ergodicity
X(w)zz Xjk(w)||:jk|21 (4.1) o In Sec. lll A_it was menti(_)n_ed that the condition of ergod-
ik icity, Eq. (3.6), is hard to fulfill in the deformed shell model.
This statement refers to the study presenteld 8}, where it
was shown that even collisional damping does not help, at
with least in the version as used to date. One important reason was
seen to lie in the fact that our renormalized single-patrticle
energies have the same degeneracies as those of the pure
o . shell model. But these degeneracies are by far larger and
Xik(@)=— lemn(m[ek(ﬂ)gj(ﬂ“Lw“f) happen much more often than one would expect for configu-
rations of the compound nucleus. If one believes the latter to
+0;(Q)G(Q—w—ie)]. (4.2  be important — which should be the case for a fissioning
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FIG. 8. The heat pole contribution to the relaxation and response functions, calculdted. atleV.

system which has to overcome a large barrier — one needse done. In expressions such as El) one simply has to
to take special measures to cure the problem just mentioneeestrict the summations in a proper way. Here we like to

One way to make the deficiencies apparent is to look aadopt a similar procedure, in the sense of neglecting the in-
the heat pole which shows up either in the correlation funcfluence of a finite differenceg™— 2% At the temperatures
tion ¢"(w) or in the relaxation functionb”(w). Both are  considered it will be very small, indeed. On the other hand,
related to the dissipative response as we go one step further and neglect also contributions from
neighboring states whose energy is finite but smaller than the
collisional width of the particles, which as we just saw also
reflects the width of the heat pole.

The consequences of such a manipulation are shown in
Fig. 8 for the intrinsic respondgeft part, the corresponding
relaxation functiond”(w) (upper right pait and the collec-
(see[18] or [16] for more details as well as for references totive strength distributionyq,(w) (lower right parf. All of
the original literaturg Both functions have a peak at them have been computed fdr=1 MeV. The solid lines
=0, whose widthI'; was seen to be twice the single- correspond to calculations where all matrix elements are
particle width(4.4) calculated at the chemical potential, i.e., taken into account. For the dashed curves matrix elements
I't=2I'(w=u,T). On very general grounds, the height of Fj, between states of energy differencKe,—e))|
this peak can be seen to be proportional to the difference o&I'(«,T) have been discarded. Their contribution to the re-
isothermal and isolated susceptibilitieg, — x(0). Numeri-  laxation function is exhibited in the upper right part by the
cal calculations if 18] showed this height to be large. Re- dotted line. This plot demonstrates nicely that the heat pole
writing this difference as ¥"— x2) +[x®*— x(0)] and re- can be associated to a Lorentzian of widflk around
calling that in the nuclear case the difference between th@=0, and thus corresponds to a pole on the imaginary axes
isothermal and adiabatic susceptibilityy ' 2%, is small  [18,186!.

[17,18, the origin is identified to come from a large viola- It is interesting to note that for the present calculation
tion of ergodicity: 2% x(0). 99% of this Lorentzian is made out only by two

This discussion indicates what we can do to cure thippseudocrossingsf single-particle states which takes place
problem: Cut the contributions of the heat pole to all func-close to the Fermi energy. By pseudocrossing we mean a
tions mentioned previously down to the magnitude it wouldsituation where as a function & two levels come close but
have in case the system were ergodic. This means to reduoever cross; one such event is encircled in Fig. 3. The large
the height of this peak atw=0 by the factor contribution to friction in the zero frequency limit of Eq.
(X" x2Y/[ x2%— x(0)]. In [18] a system was studied were (3.14 [or Eq.(3.17] which results from this heat pole can
x'— x® vanishes identically, such that the reduction of thebe estimated looking at the upper right part of Fig. 8: The
heat pole amounted to neglecting contributions from allslope of the solid line is much larger than the one of the
states having the same energy. Such a correction can easidgshed line. On the other hand, contributionsy{@) from

1 fiw
X"(w)= %tan!‘(ﬁ) J'(w),

P (w)=x"(w)lw (4.9
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real crossingf levels are very small. This is due to the fact values like (0.5,0.3,0.5/MeV for T=1,2,5 MeV. [This

that the matrix elements;,| vanish exactly at the crossing may, for instance, be done by approximating the envelope of

points and are very small in the vicinity of such(eal %(t) by an exponential such thatmay be defined through

crossing. the “width” at half maximum] Later on in Sec. IV C we are
The influence of the heat pole the intrinsic systemnon  going to compare them with typical time scales of collective

the collective strength distribution can be inferred from themotion, but we may say already here that this microscopic

lower right part of Fig. 8. The solid line shows a small peaktime 7 is at least one order of magnitude smaller than the one

at very small frequencies, say,0~0.2—0.3 MeV. Com- which measures motion in the collective variakle

pared to the much larger strength found in the peak at about Finally, we should like to mention that the results found

1.5-2 MeV one is inclined to just “forget” the small peak from the present computation are in accordance with those

when one wants to define the transport coefficients. Indeed, reported in[25].

somehow looks very natural to associate the larger peak to

the genuine low frequency mode. This may be understood as v, NUMERICAL RESULTS FOR COLLECTIVE

another argument for leaving out the contribution of the heat TRANSPORT COEEFEICIENTS
pole to the transport coefficients, besides the one involving ) . o .

ported below were done along this line; i.e., contributions totzr?nsport coefficientd” computed along the fission path of
the response function from the states with the energy differ-- Th. As was already mentioned, for temperatures above 1
ence|(e,—€;)|<I'(x,T) were not taken into account. MeV the fission path is parametrized in terms of Cassini
ovaloids by only one deformation parameter Since we
prefer to use the parametey, instead ofe, we have to relate
C. Influence of collisional damping on nucleonic relaxation the transport coefficients accordingly. This can be done by
The whole formulation of our theory is based on the as-€xploiting the following relation, obeying that the,'s are
sumption that the nucleonic degrees of freedom stay close fixed:
a thermal equilibrium. The latter is not fixed, however; rather
it continuously gets disturbed by collective motion itself, for- i (dle
: H H H r — ‘ee
getting for the moment a possible evaporation of light par- 1212 de
ticles or gammas. It should thus be of interest to have some
estimate of an appropriate relaxation time. The best candivhich simply follows from general properties of coordinate
date for this is offered by the “generator” of collective mo- transformations. The derivativér ;,/de is obtained by dif-
tion, namely, theF (X, ,p;, Qo). Which defines the coupling ferentiating Eq.(2.4); the result is shown by dashed line in
of the collective variable to the nucleons. It is predominatelyFig. 2. Recall that the deformation dependence of the trans-
this quantity which “decides” which kind of modes of the port coefficients is defined essentially by the choice of the
intrinsic degrees of freedom get excited. We may recall froncollective variables. For examplé, .  decreases with,
the discussion in Sec. Il the close relation of thigo the  but 7_, increases as a function ef Both in the figures as
nucleonic response function appearing in our theory: Thavell as in the text below we will omit the indicesr 15,
x(w) parametrizes that average “excitations{F),, which ~ Keeping in mind that the transport coefficients are defined
comes about through a change of the collective variabldVith respect tay, (even if sometimes they will be shown as
5Q. If we are just interested in estimating the timeafter ~ function of €).

which the 8(F), has decayed to its static value, we may

: (5.0

study the time-dependent functigift) given in Eq.(3.4). In A. Accuracy of the zero frequency limit
a literal sense it represents ti#F), if excited by a sharp for the collective response function
pulse like 5Q(t) < 5(t). Notice that fort>0 the x(t) is pro- The friction coefficient y(w;) and mass parameter

portional to the derivative of the Fourier-transformed relax-M (w,) defined according to E43.12 are shown in Fig. 10
ation function, namelyy(t)«d®d”(t)/dt [see Egs(3.4) and by solid lines as function of the deformation parametgr
(4.9)]. Thus the information contained j(t) is equaivalent for temperatures between 1 and 3 MeV. They are compared
to that of d”(t) up to an additive constant. The latter mea-with calculations for which the approximatiof8.17) and
sures the long time limit o”(t); it is related to the strength (3.18) is used for friction and inertia, respectively. The latter
of the heat pole. At the moment we are interested only in theesults are marked by dashed curves. As can be seen, this
behavior for finite times. approximation is quite accurate foe=2 MeV. This implies

In Fig. 9 results of two different computations pft) are  that for such temperatures one may avoid the time-
shown. One case just refers to the deformed shell model; fazonsuming computation of the frequency dependence of the
the other one, collisional damping is taken into account. It iscollective response function. One may compute friction and
clearly seen that only by way of such collisions may weinertia directly from Eqs(3.17) and(3.18. As for the large
speak of genuine relaxation. It is also observed that the lattdtuctuations seen af=1 MeV we expect them to become
does not depend much on the shape. However, the relaxatianuch smaller as soon as pairing correlations are taken into
time 7 decreases considerably with increasing temperatureaccount, which shall be the subject of future studies.
The latter effect is expected of course from the very form by For comparison we also show in Fig. {lfly the lines with
which the temperature appears in the single-particle widthstarg wall friction v, and the inertia of irrotational flow.
(4.4). From the solid lines of Fig. 9 one may deduce for According to[26] wall friction 7,; is proportional to the
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FIG. 9. The time-dependent function for the nucleonic response, calculated within the pure shelldasldet curveand for collisional
damping(solid line).

squared normal velocity3(s) of the surface, integrated over with the potentiak(r) for the velocity field expressed by the

the nuclear surface. Followinf26] this may be deduced potential of some “surface charge” distribution
from the loss of(collective energy which is given by

g-3 99 2(5)dS= yutl 2o1) (5.2 12 b e O >
= 2PvE P UA(S)dS= yut Iot), : =2z =i .

wherep andv ¢ are the nucleons’ density and Fermi velocity.
For axially symmetric shapes the surface velocitys) can
be expressed in terms of the profile functjefz, €) from Eq.

The substitution of Eq(5.5) into the Neumann equation

(2.1) as AE=0, (NVE)g=un(s) (5.6
UL(2)=Un(2)T A1), Un(2)= 1 ﬁ_p leads to some integral equation for the density of the “sur-
" " Cn A(z) drgp’ face charge”v(s) which was solved iteratively starting with
A(2)=V1+(dp(z,€)] 92)°. (5.3 19(s) = —Upn(S) (5.7

The mass parameter of an incompressible irrotational fluid,s 5 ,eroth approximation te(s): for details sed27]. We

has been computed as suggestefRif. It can be written s )5y checked that for the particular case of the shape family
(2.1) the Werner-Wheeler methd@8] turns out to be a very
accurate approximation to the mass paramédef). Both

Mir=m f# &(s)un(s)ds, (54 results coincide within the thickness of the lines in the figure.
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FIG. 10. The friction coefficient and the mass parameter at finite frequeatig lineg and for the approximatio3.17) and (3.18
(dashed lines

B. Temperature and deformation dependence

(i) To some extent they,; and M;, can be said to be
of friction and inertia

reached at the higher temperatures. The very fact that this
In Figs. 11 and 12 the friction coefficient and the massStatement is more true for the inertia but less so for friction
parameter are presented as a function of the deformation p§&n € understood as follows. As showr{18], y,s may be
rametere for five different temperaturég=1-5 MeV. They considered the macroscopic limit of our model only if such
have been calculated from the oscillator(8t12), but trans- sybtle‘ues as collls!onal dampmg are left out. Conversely, the
formed to sharp densities according to E8.21). The pa- high temperature limit of the inertia is related to the value of
rametere is chosen for reasons to be given below. In bothth€ €nergy weighted sum, and the latter is known to be as-
figures results of the commonly adopted macroscopic mod3°ciated toM;, . This is true at least when one treats vibra-
els, namely,y,s andM,, are shown by the lines with stars. tions within simple modelgsee[5,15] for the situations of
Several observations can be made. T=0 and[30] at T+0).
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2 o 1000
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Qe R O B S
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FIG. 11. The deformation dependence of friction; the dotted, FIG. 12. The deformation dependence of the mass parameter for
short-dashed, long-dashed, dot-dashed, and solid lines correspotemperature§ =1-5 MeV. Different temperatures are marked by
to temperature3 =1, 2, 3, 4, and 5 MeV. the same lines as in Fig. 11.
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(ii) As has been demonstrated[i], in the general case 12
the evaluation of the sum rule value becomes somewhat deli-
cate for collisional damping. The nice feature of reaching the
M;, automatically can be considered a proof of the useful-
ness of the transformatia3.21).

(iii) As in the calculations of4], on average friction is
seen to increase with whereas the inertia decreases.

(iv) Again similarly to[4], both transport coefficients de-
crease with deformation on average.

(v) The coordinate dependence shows fluctuations around
the average trend, which are more pronounced at smaller
temperatures. They appear to be even larger than those re- -2
ported in[4], but they are similar to the results [#9]. As
for the friction coefficient, the dependence on deformation is
particularly strong around the spherical shape. It reaches a FIG. 13. The the inverse relaxation tinge= y(w;)/M(w;) as a
kind of local maximum there or, perhaps, at a slightly oblatefunction of deformation and temperatuiiedicated in the figure
shape. These features can be exhibited more clearly for pa-
rametrization in terms o€, for which reason we have made poth for friction as well as for the inertia aroumg,~0.5,
this choice here. even at the somewhat larger temperatures of 3 MeV. It may

Many of these features point to the importance of shellpe said, however, that such a behavior is not seen in compu-
effects, in particular the peak for friction around the sphericakations performed with the model p4]. There the change of

configuration, which is clearly visible fof~1-2 MeV but  the friction coefficient wittr 1, for instance, resembles more
which disappears af~4-5 MeV. We like to elaborate on the smooth one given by the wall formula.

this statement by trying to split the friction coefficient up
into a smooth and a fluctuating part. For this study we take
the zero frequency limit.

Let us suppose for a moment that the matrix elements It has become customary to parametrize friction in terms
|ij|2 considered as a function of the single-particle energiesf the ratiog= y/M, although most interest has concentrated
have some smooth average compongfte,e’) and the os-  on friction alone; often the inertia was simply taken to be the
cillating component can be neglected. In this case one mageduced mass of the fissioning system. As we have seen
rewrite Eqg.(4.8) in the form above, for a microscopic theory both quantities will vary not

() only with the collective variable, but with temperature as
N > n 2 well. It may be expected, of course, that for the ratio the
YOy~ —fhmF (’u”u)f A= 9. 53 dependence on shape is much weaker than that of the indi-
vidual quantities. This follows simply from the observation
The g (Q) in Eq. (4.9 are peaked functions with their maxi- that any common, purely geometrical factor will drop out. In
mum at% ) = ¢, so that the sum o, overk may be inter- Fig. 13 we present the results f@robtained from those for
preted as the densitg(#()) of single-particle states. As inertia and friction discussed before. Indeed, this quantity is
usual the latter can be split into smooth and oscillating comessentially constant over the whole deformation region, for
ponents g(e)=g(e)+dg(e) with g(e)=(g(e)) and all computations buT=1 MeV, a case for which the fluc-
(8g(e))=0 where the brackets stand for an averaging ovetuations seen in our results are too large because of our ne-
the single-particle spectrum. Inserting this decompositiorglecting pairing. However, there is a marked dependence on
into Eq. (5.8 and noting that an integration performed with excitation: 8 increases strongly witfi. This is in clear dis-
the bell-like functiongn(Q)/9Q can be understood like the tinction to the result one gets from applying the wall formula
average introduced above, we will get for friction and that of irrotational flow for the inertia. Inter-
estingly enough, these macroscopic estimates lead to some
Y(0)=~h [ g%(w) +(59%(e))e ) FA(p,p). (5.9  Q dependence, which in a sense is even larger than sug-
gested by the trend of our results. It can be said that the latter
Assuming the oscillating component of the density to be peare very close to those obtained in the computations with a
riodic in the energy with some periokiQ), and amplitude two-center shell model potentigd].
59o, Viz., 8g(e)= 8gosin2meli(),, it is easy to convince Physically, the inverse o8 can be interpreted as the re-
oneself that 5g°(e)) = (1/2)6g3. The quantitysg, is deter- laxation time (r;,=M/7) to the Maxwell distribution for
mined by the magnitude of the shell correction. It is acollective motion. In full glory this feature can only be un-
smooth function of particle numbesee[31]) but still de- ~ derstood looking at the dynamics in collgctlve phase space
pends on deformation. It is maximal at that deformation(S€e, €.9.{16]). However, one may grasp its content, recall-
where the shell structure is more pronounced. For thd1d the local equation for average motion of the damped
Woods-Saxon potential this happens to be so at the sphericascillator: Mq(t) + yq(t) + Cq(t)=0. From this equation it
shape. So it is due to the shell structure that the frictioralso becomes apparent that yet another relaxation time can
coefficient gains additional contributions around the spherebe defined, namelys.,;= y/|C|. For overdamped motion the
For the case of the Woods-Saxon potential this specific fedatter is the only relevant one. Actually, such a situation is
ture seems to be responsible for the dip one sees in Fig. Igiven for temperatures above 1-2 MeV.

(o)

-
(=}

/M (MeV/h)
v/M (10%'sec™)

.
[0}

C. Collective relaxation times
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Let us infer this feature comparing the macroscopic relax- 3 —
ation times with the microscopiefound in Sec. IV C. There = 1a To
we got values in the range=(0.3—0.1)%2/MeV for tem- ; 224Th 0
peratures between 2 and 5 MeV, discarding the case of § 2t 3w
T=1 MeV for the moment. Taking for thgg of Fig. 13 ~ ©
typical values like 2 and 8 MeW for T=2 and 5 MeV, g 1,
respectively, we recognize;, to be comparable or only '_’2\ 1 <
slightly larger thanr. This means that in this range of tem- ~ I <
peratures the friction force is so strong that it leads to an © ~
instant damping or disappearance of the kinetic energy. This ~~ g . s s - . 0o ©
is not in contradiction to the basic assumption behind the 0 1 2 3 4 5 6
quasistatic picture. To justify the latter all one needs to have T (MeV)
is the motion inQ to be slow compared to that for the in-
trinsic degrees of freedom. For this question it is thg FIG. 14. The vibrational frequenay = \|C|/M as a function of

which becomes relevant. Its value can be estimated with th&mperature, calculated at the potential minimgmarked by
help of Figs. 6 and 10. Let us concentrate on deformationsircles and at the saddle poitimarked by triangles
for which the local stiffness does not get zero. Since for

T=2 MeV shell effects are not important anymore, we MaAYt5 the nucleons’ densities in the shell model. A transforma-

estlmate_C as the one of the liquid drop energy. The right tion was suggested which allows one to connect both density
part of Fig. 6. tells us th¢Cyou| to be O.f the order of 150 isyributions and thus enables one to connect the transport
M?V for r 1, larger than about 06 In this range the v_al_ue Ofcoefficients accordingly. This transformation was found by

v is about 808, as seen from Fig. 1dor T=2 MeV;itis  5nqving a Strutinsky smoothing procedure to evaluate the
even larger for larger temperaturesor 7o this implies  gyerage static value of the relevant one-body operator

values of the order of &/MeV, which are larger tham by -~ ~ = —— . .
more than one order of magnitude. F(X;,p; ,QQ). It is this operator wh|ch by a self-conS|§tency
argument is related to the deformation of the mean field.
Finally, we briefly like to turn to comparisons with ex-
perimental findings. First of all, we may mention that the
In this paper we have applied the single-particle model ofvalues forg shown above concur with the range suggested
[3] to describe large scale motion at finite excitations. To thiy fission experimentg32]. Two other relevant parameters
end this model had to be modified to include effects of col-are thew = {|C|/M and they mentioned above, which, for
lisional damping and it had to be adapted to the formulatiorinstance, appear in Kramers’ famous formula for the decay
of collective motion in the spirit of the locally harmonic rate of a one-dimensional fission moddkc=(\1+ 7
approximation(for a review sed16]). Numerical computa- — 7.)(wn/2m)exp(—B/T). Here, B measures the barrier
tions have been performed for the transport coefficients oheight, @, determines the vibrational frequency in the po-
average motion along a fission path. The latter was identifietential minimum, andy, is to be evaluated at the saddle. The
by the valley in the potential landscape obtained for the ligdatter two quantities are shown in Figs. 14 and 15, respec-
uid drop model. It was argued that for the range of temperatively, for both points. They have been calculated by averag-
tures considered in the present study this path may be exng the Q-dependent transport coefficients in the neighbor-
pected to represent fairly well the actual situation, first of all,hood of the minimum and the barrier, where both are those
because of the evidence one has from static consideratioms the T-dependent potential energy. These results agree very
that Cassini ovaloids describe well the shapes of the fissiorwell with those already shown ip]. It is remarkable that
ing nucleus. Second, for the large damping one expects to be
given, the system will be creeping down the collective po-
tential and thus will stay close to the line of steepest descent. 4
For the transport coefficients values were found which are
in accordance with previous studies, in particular with the
ones of[4]. This is especially so for their dependence on
temperature and, to a lesser extent, for their variation with
the nuclear shape. For instance, it turns out that typical ef-
fects of single-particle motion become more apparent here
than they did if4], as there are fluctuations of both friction
and inertia with the collective variable. To a large amount
they disappear when building ratios like for tge=y/M or
the »=v/(2yM|C]), two quantities which are commonly OO 3 3 3 7 3 5
used to parametrize collective dynamics.
A new development has been achieved with respect to T (MeV)
comparisons with macroscopic models, like that of irrota-
tional flow for the inertia and that of wall friction. As one FIG. 15. The dimensionless parametgr y/(2|C[M) as a
knows, both are calculated for sharp density distributionsunction of temperature, calculated at the potential minimum
which may differ considerably from those which correspond(marked by circlesand at the saddle poiimarked by triangles

VI. SUMMARY AND CONCLUSIONS
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w does not change much withy neither at the minimum nor Let us first look for the poles of(w+i€). Substituting
at the barrier. Conversely, like ti&shown before, theytoo  Egs.(4.3) and(4.4) into Eq. (4.6) and introducing the nota-
definitely increases with temperature. This behavior is in ation A=/c?+ 72T2, u"=pu=*iA, Eq.(4.6) can be brought

least qualitative agreement with the one found38] and to the form
the numbers fory lie in the range of values deduced only

recently in[34] from experimental evidence. It is true, of Glotie=(ho—u")(ho—p")

course, that for more quantitative analyses one would have to

consider both the effects of pairing as well as of angular Xi(ho—e)(ho—u") (ho—u")
momentum, not to mention the fact that there is some free-

dom[16] in adjusting the two parameters which define col- ho—pt+iA

lisional damping. However, there is probably little doubt =

about the temperature dependence of our coefficients, say, 2loAlc

aboveT=1.5-2 MeV. This marked change withis in clear (ho—put)(ho—u )—c?) 1
distinction to the macroscopic models mentioned. In the light [ ST 7c2

of this feature agreements between experimental findings and 0

theoretical descriptions appear somewhat questionable f is not difficult to note that the last terms in the second and
they are only based on these macroscopic mddef. Like-  thjrg jines cancel each other and both the numerator and

wise the somewhat peculiar behavior@®tvith r 1, suggested  yanominator can be divided bjiw—pu". In this way
in [9] is not confirmed by our resultsee alsg4)). It is Gw+i€) becomes

perhaps fair to say that some of the difficulties one still en-

counters at present when comparing theory with experiment ) ho—u~

are due to the high complexity of the problem itself as well Glwtie)= Go—hol)ho—foy)’ (A2)
that of the analysis of the data. To emphasize this statement, K K

we would just like to take up a point raised [ib0], namely,  \heres w; are solutions of the equation

that common statistical codes evaluate the fission decay rate

. (A1)

not by the transition state result, to which Kramers’ formula o c? B 4
reduces to forps— 0, but by that of the “statistical model” ho—ecti 2T, (ho—p")+ 2T A =0, (A3
wherew, is replaced byT. The difference between these
two variants can easily be inferred from Fig. 14. namely,
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APPENDIX: INTRINSIC RESPONSE FUNCTION easy to see that poles and residuegft»—i€) are complex

. L . ._conjugated to that ofj,(w +i€). The pole representation for
The computation of the intrinsic response function is () is easily obtained from EqA2). Besides the poles of
somewhat involved. As a result of the frequency dependenc§§ .

« (w=*i€) andg(w) one should account also for the poles

of both the Fermi distributiom(w) and widthI'(w), the of Eermi functionn in the plane of complex (so-called
integral in Eq.(4.2) cannot be calculated analytically. The | Tuncti (w.) : P piew
Matzubara frequencigs

numerical integration is rather time consuming sigGéw)
are sharply peaked functions which width varies by two or- ho,=p*inT(2n+1), n=0,12,.... (A5)

der of magnitude depending on the valuegof Fortunately

the integration in Eq(4.2) can be carried out by means of In principle, the sum extends over infinitely many terms, but
residues theorem closing the integration limit in the lowerin practice the summation in E4.2) is cut at such frequen-
half plane. For this one needs to find the poles and residuasesw,, which contribute less than determined by the desired
of all the terms in the integrand of E¢.2). accuracy.
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