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Phase transition in the chiral s-v model with dilatons
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We investigate the properties of different modifications to the linears model ~including a dilaton field
associated with broken scale invariance! at finite baryon densityr and nonzero temperatureT. The explicit
breaking of chiral symmetry and the way the vector meson mass is generated are significant for the appearance
of a phase of nearly vanishing nucleon mass besides the solution describing normal nuclear matter. The
elimination of the abnormal solution prohibits the onset of a chiral phase transition but allows one to lower the
compressibility to a reasonable range. The repulsive contributions from the vector mesons are responsible for
the wide range of stability of the normal phase in the (m, T) plane. The abnormal solution becomes not only
energetically preferable to the normal state at high temperature or density, but also mechanically stable due to
the inclusion of dilatons.@S0556-2813~97!06002-0#

PACS number~s!: 21.65.1f, 11.10.Ef, 11.30.Rd, 12.39.Fe
is
ai
m
in
try
nl
D
re
n
n
g
r
p
e
e
nt

of
-
o

tie
di
n
g
-
s
e

de
eo

a
y
re
as
ur

olu-
i-
er
g-

he

the

in
r-
ick

er-

ter
the
ich
ngs
the
leon

y

s
in-
I. INTRODUCTION

Although the underlying theory of strong interactions
believed to be known, there is presently little hope to g
insight into the rich structure of the nonperturbative regi
at high temperature and nonzero baryon density by solv
explicitly the QCD Lagrangian. Presently, theoreticians
to overcome this unsatisfactory situation by pursuing mai
two methods: First, there is the possibility to solve QC
numerically on a discretized space-time lattice. Reliable
sults are currently available only for finite temperature a
zero baryon density. Efforts to include dynamical fermio
on the lattice are still in their infancy and demand a hu
amount of computing time. The second possibility is to fo
mulate an effective theory based on symmetries which ho
fully reflects the basic features of QCD in a solvable mann
We will focus on the second approach since the consid
ation of symmetries and scaling may bring deep insight i
a complex problem at low computational effort@1#. Gell-
Mann and Levy@2# succeeded early with the second kind
ansatz, using the linears-model, in order to describe had
ronic properties like pion-nucleon scattering and mes
masses.

For the description of nuclear matter saturation proper
it is necessary to introduce vector mesons so that the bin
energy results from the cancellation of large repulsive a
attractive contributions, in analogy to the phenomenolo
cally successfuls-v model@3#. Early attempts in that direc
tion were done by Boguta who generated the vector me
mass dynamically by coupling scalar fields with vector m
sons in the Lagrangian@4#. Unphysical bifurcations could be
avoided within their approach, but one was unable to
scribe the chiral phase transition since the effective nucl
mass tended to infinity forr→`. The solutionmN*50 was
confined tor5T50. Glendenning investigated the model
high temperatures@5# and found no regime at finite densit
and nonzero temperatures where chiral symmetry is resto
because of the mechanical instability of the abnormal ph
Mishustin showed that one can simultaneously avoid bif
550556-2813/97/55~3!/1499~10!/$10.00
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cations and describe a chiral phase transition atT50, if one
introduces an additional fieldx, the dilaton, which simulates
the broken scale invariance of QCD@6#. By coupling dila-
tons to vector mesons, one is able to obtain abnormal s
tionss.0 without making the vector field massless. Orig
nally, the dilaton field was introduced by Schechter in ord
to mimic the trace anomaly of QCD in an effective Lagran
ian at tree level@7#.

In this spirit, many authors applied chiral models to t
description of nuclear matter properties@8–11#. In @12# one
was even able to fit and describe finite nuclei as well as
widely used nonlinear version of the Walecka model@13#.
This model fails to describe the chiral phase transition,
contrast to@6#, which exhibits a phase transition from a no
mal state to an abnormal one in the sense of Lee and W
@14#.

The aim of the present paper is to investigate the prop
ties of these modified versions of the linears model, which
claim to give a satisfactory description of nuclear mat
ground state properties, at finite temperature within
mean-field ansatz. In Sec. II we present the model wh
incorporates broken scale and chiral symmetry. Our findi
about its phase structure, the chiral phase transition in
(m,T) plane, and the temperature dependence of the nuc
effective mass are presented in Sec. III.

II. THEORY

The linears model introduced by Gell-Mann and Lev
@2# is extended to include an isoscalar vector mesonv and a
scalar, isoscalar dilaton fieldx with positive parity. The sca-
lar field s is the chiral partner of the pion and provide
intermediate range attraction. The Lagrangian, which
cludes the particular ansatz of@6,15,10,12# reads

L5Lkin1LDirac2Vvec2V02VCSB,

Lkin5
1

2
]ms]ms1

1

2
]mp]mp1

1

2
]mx]mx2

1

4
FmnF

mn,

~1!
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LDirac5N̄@ igm]m2gvgmvm2gs~s1 ig5p•t!#N,

Vvec52
1

2
vmvmmv

2 F r S s

s0
D 21~12r !S x

x0
D 2G ,

V052
1

2
k0S x

x0
D 2~s21p2!1

l

4
~s21p2!21k1S x

x0
D 4

1
1

4
x4ln

x4

x0
4 2

1

2
dx4ln

s21p2

s0
2 ,

VCSB52S x

x0
D 2mp

2 f ps.

The field strength tensor readsFmn5]mvn2]nvm . The
original s model is supplemented by nucleons which ob
the Dirac equation and by vector mesons whose mass is
erated dynamically by thes and x fields. We introduce a
parameterr which allows the vector meson mass to be ge
erated bys andx fields, respectively. The chirally invarian
potential is rescaled by an appropriate power of the dila
field x in order to be scale invariant. The effect of the log
rithmic term;x4lnx is twofold: First, it breaks scale invari
ance and leads to the proportionalityum

m;x4 as can be seen
from

um
m54L2x

]L
]x

22]mx
]L

]~]mx!
5x4, ~2!

which is a consequence of the definition of scale transfor
tions @16#. Second, the logarithm leads to a nonvanish
vacuum expectation value for the dilaton field resulting
spontaneous chiral symmetry breaking. This connec
comes from the term proportional tox2s2: With the break-
down of scale invariance the resulting mass coefficient
comes negative for positivek0 and therefore the Nambu
Goldstone mode is entered. The comparison of the tr
anomaly of QCD with that of the effective theory allows f
the identification of thex field with the gluon condensate:

um
m5 K bQCD

2g
Gmn
a Ga

mnL [~12d!x4. ~3!

The term;dx4lns contributes to the trace anomaly and
motivated by the form of the QCDb function at one loop
level; for details see@12#. The last termVCSB breaks the
chiral symmetry explicitly and makes the pion massive. I
scaled appropriately to give a dimension equal to that of
quark mass term;mqq̄q of the QCD Lagrangian.

To investigate the phase structure of nuclear matte
finite temperature we adopt the mean-field approximat
@13#. In this approximation scheme, the fluctuations arou
constant vacuum expectation values of the field operators
neglected:
y
n-

-

n
-

a-
g

n

-

ce

s
e

at
n
d
re

s~x!5^s&1ds→^s&, ~4!

x~x!5^x&1dx→^x&,

vm~x!5^v&d0m1dvm→^v0&.

The fermions are treated as quantum-mechanical one-par
operators. The derivative terms can be neglected and
the timelike component of the vector mesonv[^v0& sur-
vives as we assume homogeneous and isotropic infi
nuclear matter. Additionally, parity conservation deman
^p&50.

It is therefore straightforward to write down the therm
dynamical potential of the grand canonical ensembleV per
volumeV at a given temperatureT and chemical potentia
m:

V

V
5Vvec1V01VCSB2Vvac

2
gT

~2p!3
E d3k@ ln~12nk!1 ln~12n̄k!#. ~5!

The free energyf is given by

f ~r,T;s,x,v!5mr1
V

V
. ~6!

The vacuum energyVvac ~the potential atr50 andT50)
has been subtracted.g is the fermionic spin-isospin degen
eracy factor~4 for the nuclear medium!, nk andn̄k denote the
Fermi-Dirac distribution functions for fermions and antife
mions, respectively:

nk~T,m* !5
1

exp@~E* ~k!2m* !/T#11
,

n̄k~T,m* !5
1

exp@~E* ~k!1m* !/T#11
, ~7!

where the single particle energy isE* (k)5Ak21mN*
2 with

mN*5gss. The effective chemical potential read
m*5m2gvv. The meson fields are determined by extre
izing (V/V)(m,T):

]~V/V!

]v
52vmv

2 F r S s

s0
D 21~r21!S x

x0
D 2G1gvr50,

~8!

]~V/V!

]x
52v2

mv
2 ~12r !

x0
2 x2k0

x

x0
2s21S 4k1x0

4 111 ln
x4

x0
4

22d ln
s2

s0
2Dx322mp

2 f p

xs

x0
2 50, ~9!
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TABLE I. Different parameter sets which describe nuclear matter saturation.

Set l x0 ~MeV! gv mN* /mN x/x0 K ~MeV! r 33d mp ~MeV!

I 300 189.3 8.2 0.66 0.71 1464 0 0 138
II 220 188.7 8.2 0.67 0.71 1403 0.5 0 138
III 40 331.7 6.8 0.78 0.94 669 1 0 138
IV 0.84 392.9 5.9 0.84 0.99 387 1 4 0
V 0 372.5 7.6 0.80 0.98 356 0.5 4 0
g r

e
ter
ri-

t a
]~V/V!

]s
52v2

mv
2 r

s0
2 s2k0S x

x0
D 2s1ls32d

x4

s

2mp
2 f pS x

x0
D 21gsrs50, ~10!

where the scalar density is given by

rs5gE d3k

~2p!3
mN*

E*
~nk1n̄k!. ~11!

The vector fieldv can be solved explicitly in terms ofs and
x, yielding
v5
v

mv
2 @r ~s/s0!

21~r21!~x/x0!
2#
. ~12!

Note, that inv0 direction the pressure is minimal, since th
temporal and spatial components of the vector field en
with opposite sign and only the latter are dynamical va
ables.

In addition, one has to determine the baryon density a
given chemical potential via the equation

r5gE d3k

~2p!3
~nk2n̄k!. ~13!

The energy density and the pressure are given by
FIG. 1. Binding energy versus
s/s0 with ~left! and without
~right! explicit symmetry breaking
~ESB! for saturation densityr0

~above! and 4r0 ~below! calcu-
lated with set I.
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FIG. 2. Liquid-gas phase tran
sition in the chiral s-v model
~calculated with set V!.
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e5Vvec1V01VCSB2Vvac1
g

~2p!3
E d3k~E* ~k!2m* !

→
r50

eSB5gsSBT
4, ~14!

p52
V
V →

r50
pSB5

1
3 gsSBT

4.

Here, the index SB denotes the corresponding quantities
the Stefan-Boltzmann limit withsSB57p2/120. The limit
T→0 can be taken straightforwardly, using

lim
T→0

Tln~12nk!5E* ~k!2m* . ~15!

Applying the Hugenholtz–van Hove theorem@17#, the Fermi
surface is given by

E* ~kF!5AkF21~gss!25m* . ~16!

The scalar density and the baryon density can be determi
analytically, yielding

FIG. 3. A contour plot of the free energy in the (x,s) plane.
The abnormal and normal minimum are visible.
in

ed

rs5
gmN*

4p2 FkFEF*2mN*
2lnS kF1EF*

mN*
D G , ~17!

r5gE
0

kF d3k

~2p!3
5

gkF
3

6p2 .

If the dynamical vector meson mass is considered as b
generated byx alone and ifd is set to zero, it is possible to
solve Eq.~10! analytically:

x5x0S ls31gsrs
k0s1mp

2 f p
D 1/2. ~18!

Thus the numerical procedure is simplified to finding the ro
of a nonlinear equation of one independent variable, nam
s. This allows for a visualization of the phase structure
zero temperature.

In order to describe hadrons and nuclear matter within
model, the appropriate model parameters must be cho
The pion mass is fixed at the valuemp5138 MeV which
determines the parameterk0 from the following relation:

FIG. 4. Phase transition points for different values of theN-v
coupling constant in the (m,T) plane.
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FIG. 5. Pressure versus th
scalar fields. The abnormal solu-
tion does not exist far from the
phase transition line. The barrie
between normal and abnorma
phase becomes well pronounce
near the phase transition region.
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22d

x0
4

f p
2 2mp

2 . ~19!

This equation can be obtained from Eq.~10! by setting
r5T50 and usings05 f p . In addition, one has to ensur
that also in the vacuum](V/V)/]x50. This leads to the
determination ofk1:

k15
f p
2

4 S 2mp
21k02

x0
4

f p
2 D . ~20!

The Goldberger-Treiman relation can be used at the
level to fix the coupling of the nucleons to thes field,
gs5mN / f p .

The vector meson mass is set tomv5783 MeV andl is
a free parameter which determines thes mass. The remain
ing two parameters (gv andx0) are fitted to the ground stat
nuclear matter binding energyEB5e/r2mN5216 MeV
with zero pressure at equilibrium densityr050.15 fm23.
Several parameter sets have been tested. They are list
Table I. The first three rows correspond to the version of@6#
with d50, which we will call hereafter the minimal mode
There, the vector mesons are coupled only to the dilato
Concerning the compressibilityK, which should be around
200–400 MeV @18#, we find that a small quartic self
interaction of thes corresponding to smalll is to be pre-
ferred in this model. If the logarithmic potential is include
proportional tod @12#, it is possible to setl50 and therefore
to lower the compressibility to reasonable values. Note, h
e

in

s.

-

ever, that the effective nucleon mass atr0, which should be
'0.7mN , tends to increase with decreasingl.

III. RESULTS

In order to study the properties and the impact of t
different modifications to the minimal chiral model on th
observables, we focus first on the phase structure atT50
before discussing our findings at finite temperature.

The influence of the explicit chiral symmetry breakin
term on the phase structure of nuclear matter is checked
computing the binding energy of nuclear matter versus
s field for normal nuclear densityr5r0 ~Fig. 1 above! and
r54r0 ~Fig. 1 below! in the minimal version of the chira
model with d50. The first and the second column corr
spond to the model with and without explicit symmet
breaking, respectively. According to@6#, the phase curve in
Fig. 1~a! exhibits the appearance of three distinct minim
The first one is atmN*.0.620.7mN ~the exact value depend
on the parametrization! which we denote as the ‘‘normal’
minimum. Besides a metastable minimum at rough
mN*.0.2mN , which does not play a significant role~it never
becomes the energetically lowest state!, there is a third mini-
mum corresponding to nearly vanishing effective nucle
mass (0.02mN). This is the ‘‘abnormal’’ minimum which
becomes the energetically preferable state for large dens
@Fig. 1~b!#. There, a phase transition takes place into a ch
phase where the nucleon effective mass as order parame
nearly vanishing. Figure 1~c! shows that the exclusion o
explicit symmetry breaking effects in the Lagrangian do
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FIG. 6. Effective nucleon mass versus tem
perature~above! and density~below!.
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change the phase structure even atr0 significantly. Although
the properties of the matter at the normal minimum are
affected, the exclusion of the explicit symmetry breaki
term eliminates the abnormal solution entirely and theref
a chiral phase transition does not occur.

There is another constraint for the existence of an abn
mal phase: A purev-s coupling without a dilaton admixture
(r51) eliminates the abnormal solution. This can be seen
follows: Forr51, an additional term enters the numerator
Eq. ~18! yielding

x5x0S ls31gsrs2gv
2r2mv

2s0
2/s3

k0s1mp
2 f p

D 1/2, ~21!

so thatx diverges fors→0. In fact, irrespectively of which
parametrization one uses,x becomes imaginary as soon
s&0.4mN . No solution is possible for smallers values,
where an abnormal minimum would occur. We tried to low
the compressibility in the minimal version of the chir
model presented in@6# and found a lower bound ofl5150
necessary to ensure that the abnormal state is not the
getically lowest one at normal nuclear matter density. If
t

e

r-

as
f

r

er-
n

FIG. 7. High temperature limit of the energy density and pr
sure for zero density~set I!.



n

55 1505PHASE TRANSITION IN THE CHIRALs-v MODEL . . .
FIG. 8. Pressure as a functio
of density~left! and chemical po-
tential ~right!, calculated with set
I.
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abnormal minimum exists, at ground state density, thes4

term has to contribute strongly and the compressibility c
not be lowered to observed values. A way out is to per
dÞ0 @12#, which mimics the contribution of quark pairs t
the QCDb function at one loop level: Then, it is possible
break the symmetry spontaneously even without a qua
self-interaction, i.e., withl50. The compressibility is thus
lowered to reasonable values, without abnormal or ch
phase restoration occurring at high energy densities.

Let us now turn to finite temperatures. Here, the analy
gets more involved: three coupled equations have to
solved simultaneously. At low temperatures, the model
hibits a liquid-gas phase transition as can be seen from F
~using parameter set V!. The main difference between th
minimal and the extended model sets in at high temperat
and densities because of the existence of the abnormal
tion in the minimal model. Figure 3 shows a contour plot
the free energy atT5170 MeV and at ground state densi
r0 using set I. The abnormal minimum~at nearly vanishing
nucleon effective mass! and a normal phase~at
mN*.0.7mN) are clearly visible. At normal nuclear density,
chiral phase transition occurs atT5168 MeV. The phase
transition is of first order, since the change in the free ene
is discontinuous.

The calculation of the phase boundary in the (m,T) plane
yields surprising results if the minimal model is used~Fig. 4,
set I!. Along the boundary shown in the figure the differen
between the pressure of the abnormal and normal solut
vanishes, i.e., the transition to the chiral phase takes pl
The transition atT50 was already noted in@6#.

However, the extension to finite temperatures does
lead to a closed phase boundary, regardless which param
zation one uses~see, e.g., triangles withl5300, black
circles withl5220). The abnormal solution is stable at hig
temperaturesor at high baryon densities, but not for bot
This can be seen from Fig. 5, where at four particular po
in the (m,T) plane of Fig. 4 the pressure as a function of t
s field is drawn. The abnormal maximum of the pressure
flat @Figs. 5~a,b!# or it disappears completely@Fig. 5~c!# far
away from the phase transition line. It becomes a well p
nounced maximum with a high barrier to the normal state
the vicinity of the phase transition region@Fig. 5~d!#.

The result that one has an open phase boundary within
-
it

ic

l

is
e
-
. 2

es
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f

y

ns
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ot
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s

s

-
n

he

plotted (m, T) regime is unusual and counterintuitive.1 In
contrast, in@20# a closed phase boundary was obtained
investigating the linears model including neither repulsive
contributions fromv-meson exchange nor dilatons. To sim
late this calculation within our model we keep all paramet
constant and change only thev coupling togv56 ~black
dots! and gv50 with varying gluon condensate~white
trangles! andgv50 with the gluon condensate frozen at i
vacuum value~white circles!. The presence of the dilato
field does not lead to the fan out of the phase transit
curve. Nevertheless, it has the considerable effect to shift
transition points to roughly twice the values as compared
the ‘‘nonfrozen’’ case. Switching fromgv50 to gv56 and
to gv58.2, the phase boundary spreads out to higher de
ties and temperatures. Therefore, the reason for the unu
form of the phase boundary is the repulsive contribution d
to thev-meson exchange.

At that point we should emphasize that our results
obtained in the framework of the mean-field approximatio
The inclusion of quantum fluctuations in the meson fie
could change our findings qualitatively. This will be inves
gated elsewere@21#. Inclusion of resonances might lead
the closure of the boundary as was observed in@22# and @5#
that taking these additional degrees of freedom into acco
the critical densities and temperatures decrease. Another
sibility to get a closed phase boundary might be the inclus
of a quartic self-interaction for the vector meson, (vmvm)2,
yieldingv;r1/3: the amount of repulsion at high densities
lowered. A detailed analysis will be found in@28#.

The extended chiral model withdÞ0 does not show a
chiral phase transition at all. The nucleon effective mass
creases at high density and temperature,2 as can be seen in
Fig. 6. A similar behavior of the effective nucleon mass c
be found for the normal phase of the minimal model. T
difference to the extended model comes from the fact tha
according to the phase diagram of Fig. 4—a transition fr
high to low effective masses or vice versa can be found.

1However, the increase of the critical chemical potential at sm
temperatures can be shown analytically in a low temperature ex
sion @19#.
2This general behavior in the chirals-v model is in contrast to

that suggested by the Nambu–Jona-Lasinio model@23,24# which
cannot reproduce the binding energy of nuclear matter properly
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FIG. 9. Temperature, density, and entropy p
baryon as a function of the bombarding ener
Elab ~set I!.
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In contrast to finite baryon density, almost no temperat
dependence of the effective nucleon mass in the nor
phase is found atr50 until the phase transition takes plac
In addition, the abnormal phase atr50 differs qualitatively
from the one at finite density. There, the two fieldss and
x vanish exactly, irrespective of the explicit symmet
breaking term, whereas at finite baryon density thex field in
the abnormal phase remains finite, as can be seen in F
~there,x.84 MeV!. Whens50, the scalar density vanishe
and from Eq.~18! it follows that thex field becomes zero
Because the baryonic density vanishes, no singularity oc
if x50.

It is also interesting to compare the high temperat
phase transition of the Walecka model at zero density stu
in @27# with that of the minimal chiral model~Fig. 7!. One
observes that at high temperatures the energy density an
pressure asymptotically approach the limit of a nonintera
e
al
.

. 3

rs

e
ed

the
t-

ing fermion gas. As in@27#, we find that the energy densit
decreases with high temperatures whereas the pres
reaches its asymptotic limit from below.

Similar results concerning the properties of the linears
model at finite temperature were obtained in@5#, which in
our terminology would be the minimal model with a pu
s-v coupling and no dilatons. However, there is an imp
tant difference, which results from the inclusion of the dil
ton field x: Whereas in@5#, the abnormal phase is alway
mechanically unstable~the pressure decreased with compre
sion!, leading to the result that no region in the (r, T) plane
existed where chiral symmetry was restored, we find h
that the abnormal or chiral restored phase is always mech
cally stable~Fig. 8!. The difference to Glendenning’s wor
originates from thev-x rather thanv-s coupling. In con-
trast to @25#, where it is argued that the influence of th
dilaton is negligible at finite density because of its high ma
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we find the variation of the condensatex to be essential for
a mechanically stable abnormal phase. Similar results poi
ing to the importance of the dilaton field in nuclear matte
are also obtained in@26#, where the Walecka model includ-
ing dilatons was studied.

The final question to be addressed is whether the intere
ing (T,r) regions can be reached in relativistic heavy io
collisions. For a rough estimate, we solve the Rankin
Hugoniot-Taub adiabate~RHTA!, which can be used as a
first approximation for the description of nearly central co

FIG. 10. Expansion of a compressed state along different ise
tropes starting from the normal phase~a! and from the abnormal
phase~b!, respectively.
/

t-
r

st-

-

lisions of fast heavy nuclei@29,30#. The thermodynamic
quantities calculated for the compression stage of the c
sion are shown in Fig. 9. The gap in the solution of t
abnormal branch comes from the disappearance of the ab
mal maximum in the corresponding region~see, i.e., Fig. 5!.

The evolution of the system in the subsequent expans
is calculated by the isentropes starting from a point on
Taub adiabate@Fig. 10~a!#. A minimum at S/A<2 in the
trajectory allows for the mechanical instability, which is su
gested to cause multifragmentation. The expansion of
system from an abnormal initial state through a mixed ph
into the normal state is shown in Fig. 10~b!. Even though we
cannot reach the abnormal phase with the shockfront mo
it might be possible, i.e., with the fireball model wit
r52gCMr0, wheregCM is the Lorentz-contraction factor in
the center-of-mass system.

IV. SUMMARY AND OUTLOOK

The properties of the linears model presented in
@6,10,15,12# are studied at finite temperatureT and nonzero
baryon densityr. At nuclear matter saturation densityr0, the
minimal model of@6# exhibits two phases~the abnormal one
at nearly vanishing nucleon mass and the normal phas
m*.0.7mN), which allows for a phase transition at hig
temperaturesor high densities. The presence of vector m
sons leads to an open phase boundary, and the inclusio
dilatons makes the abnormal phase also mechanically sta
However, in the model abnormal solutions atr0 exist only at
unphysically high values of the compressibility (K*1400
MeV!. Therefore, the abnormal phase should be elimina
by either including anv-s coupling or by replacing the
quartic self-interaction with a logarithmic term (dÞ0). In
this case, no chiral phase transition can be found since
nucleon effective mass as order parameter increases at
densities and temperatures. It remains a challenge to
struct a reasonable chiral model for nuclear matter wh
allows for the study of phase transitions. First calculatio
done in an extension of the model to SU(3) are encourag
@28#.
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