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We investigate the properties of different modifications to the lineanodel (including a dilaton field
associated with broken scale invarianeg finite baryon density and nonzero temperatufle The explicit
breaking of chiral symmetry and the way the vector meson mass is generated are significant for the appearance
of a phase of nearly vanishing nucleon mass besides the solution describing normal nuclear matter. The
elimination of the abnormal solution prohibits the onset of a chiral phase transition but allows one to lower the
compressibility to a reasonable range. The repulsive contributions from the vector mesons are responsible for
the wide range of stability of the normal phase in the T) plane. The abnormal solution becomes not only
energetically preferable to the normal state at high temperature or density, but also mechanically stable due to
the inclusion of dilatons.S0556-281®7)06002-0

PACS numbgs): 21.65+f, 11.10.Ef, 11.30.Rd, 12.39.Fe

[. INTRODUCTION cations and describe a chiral phase transitiom-a0, if one
introduces an additional fielg, the dilaton, which simulates
Although the underlying theory of strong interactions isthe broken scale invariance of QdB]. By coupling dila-
believed to be known, there is presently little hope to gaintons to vector mesons, one is able to obtain abnormal solu-
insight into the rich structure of the nonperturbative regimetions o=0 without making the vector field massless. Origi-
at high temperature and nonzero baryon density by solvingally, the dilaton field was introduced by Schechter in order
explicitly the QCD Lagrangian. Presently, theoreticians tryto mimic the trace anomaly of QCD in an effective Lagrang-
to overcome this unsatisfactory situation by pursuing mainlyian at tree leve[7].
two methods: First, there is the possibility to solve QCD In this spirit, many authors applied chiral models to the
numerically on a discretized space-time lattice. Reliable redescription of nuclear matter propertigs-11]. In [12] one
sults are currently available only for finite temperature andwvas even able to fit and describe finite nuclei as well as the
zero baryon density. Efforts to include dynamical fermionswidely used nonlinear version of the Walecka mofE3S].
on the lattice are still in their infancy and demand a hugeThis model fails to describe the chiral phase transition, in
amount of computing time. The second possibility is to for-contrast tg 6], which exhibits a phase transition from a nor-
mulate an effective theory based on symmetries which hopemal state to an abnormal one in the sense of Lee and Wick
fully reflects the basic features of QCD in a solvable manner{14].
We will focus on the second approach since the consider- The aim of the present paper is to investigate the proper-
ation of symmetries and scaling may bring deep insight intdies of these modified versions of the lineamodel, which
a complex problem at low computational effdi]. Gell- claim to give a satisfactory description of nuclear matter
Mann and Levy[2] succeeded early with the second kind of ground state properties, at finite temperature within the
ansatz, using the linear-model, in order to describe had- mean-field ansatz. In Sec. Il we present the model which
ronic properties like pion-nucleon scattering and mesorincorporates broken scale and chiral symmetry. Our findings
masses. about its phase structure, the chiral phase transition in the
For the description of nuclear matter saturation propertiegu, T) plane, and the temperature dependence of the nucleon
it is necessary to introduce vector mesons so that the bindingffective mass are presented in Sec. IIl.
energy results from the cancellation of large repulsive and
attractive contributions, in analogy to the phenomenologi- Il. THEORY
cally successfub-w model[3]. Early attempts in that direc-
tion were done by Boguta who generated the vector meso
mass dynamically by coupling scalar fields with vector me-

sons in the Lagrangigr]. Unphysical bifurcations could be ; ) ) ! :
avoided within their approach, but one was unable to de%ﬁ{efrlr?wlg d(i;tles :Qﬁgzhg?tlrae;?igrr]]erT%fethLeagrlgggiaar;d \',Jvﬁ\éﬁlﬁi
scribe the chiral _ph_a_se transition since th(_a effeictlve nucleoeIudes the particular ansatz §,15,10,12 reads
mass tended to infinity fop—oo. The solutionm{ =0 was

confined top=T=0. Glendenning investigated the model at L= Lyint Lpirac— Vvec— Yo— Vesa:

high temperaturef5] and found no regime at finite density

and nonzero temperatures where chiral symmetry is restored, . _1 Lo 1 uo L Lo L v
because of the mechanical instability of the abnormal phase. “kin=3 %u0 "0+ 5 0umd"at 50, x0"x = 7 F P,
Mishustin showed that one can simultaneously avoid bifur- (1)

The linearo model introduced by Gell-Mann and Levy
fb] is extended to include an isoscalar vector mesamnd a
scalar, isoscalar dilaton field with positive parity. The sca-
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The field strength tensor reads,,=d,0,—d,»,. The
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o(X)=(a)+ so— (o), (4)

x(X)=(x)+ ox—(x),
w,(X)=(w) 8o, + S, —(wo).

The fermions are treated as quantum-mechanical one-particle
operators. The derivative terms can be neglected and only
the timelike component of the vector meser=(wy) sur-
vives as we assume homogeneous and isotropic infinite
nuclear matter. Additionally, parity conservation demands
(m)=0.

It is therefore straightforward to write down the thermo-
dynamical potential of the grand canonical ensentblger
volumeV at a given temperaturé and chemical potential

W

original o model is supplemented by nucleons which obey

the Dirac equation and by vector mesons whose mass is ge
erated dynamically by the and yx fields. We introduce a

parameter which allows the vector meson mass to be gen-

erated byo andy fields, respectively. The chirally invariant

n- VA WVect Vot Vese™ Wac

T -
—(Zy—w)gf EBKIn(1—nY+In(1-n9]. ()

potential is rescaled by an appropriate power of the dilaton

field x in order to be scale invariant. The effect of the loga-
rithmic term~ x*Iny is twofold: First, it breaks scale invari-
ance and leads to the proportional'ﬂihx4 as can be seen
from

T

=4L— Zaﬂ)(a(a—ﬂ)():)( ,

oL )
Xoe 2

The free energy is given by

flp.Tiox,0)=up+t ;- (6)

The vacuum energy,,. (the potential aipp=0 andT=0)
has been subtracteg. is the fermionic spin-isospin degen-
eracy factor(4 for the nuclear mediumn, andn, denote the

which is a consequence of the definition of scale transformaEermi-Dirac distribution functions for fermions and antifer-
tions [16]. Second, the logarithm leads to a nonvanishingmions, respectively:

vacuum expectation value for the dilaton field resulting in

spontaneous chiral symmetry breaking. This connection

comes from the term proportional j¢o%: With the break-

down of scale invariance the resulting mass coefficient be-

comes negative for positivk, and therefore the Nambu-
Goldstone mode is entered. The comparison of the trac
anomaly of QCD with that of the effective theory allows for
the identification of they field with the gluon condensate:

)

The term~ 8x*Ino contributes to the trace anomaly and is

o= Bacp
2 Zg

G2 G“”> =(1-9)x* 3)

1
exd (E* (K)— w*)/T]+1°

n(T,u*)=

1
exd (E* (k) + u*)/T]+1’

e

(T, u*)= Y

where the single particle energy B (k) = Vk*+ mg? with
my=d,0. The effective chemical potential reads

u*=u—g,w. The meson fields are determined by extrem-
izing (Q/V)(u,T):

motivated by the form of the QCIB function at one loop (V) = — om? r(i 2+(r—1)( ? +g 0

level; for details sed12]. The last termV.gg breaks the dw ® oy wP

chiral symmetry explicitly and makes the pion massive. It is (8

scaled appropriately to give a dimension equal to that of the

qguark mass term-mg,qq of the QCD Lagrangian. 204 _ 4
To investigate the phase structure of nuclear matter at HQUV) =—w2w)(_kolza'2+ k—}l+l+|nx—4

finite temperature we adopt the mean-field approximation ax Xo Xo Xo Xo

[13]. In this approximation scheme, the fluctuations around
constant vacuum expectation values of the field operators are
neglected:

2

g
—26In—2) -2mzt X5 —o, )
Jo Xo
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TABLE I. Different parameter sets which describe nuclear matter saturation.

Set A xo (MeV) Jo my/my x!xo K (MeV) r 336 m, (MeV)
| 300 189.3 8.2 0.66 0.71 1464 0 0 138
Il 220 188.7 8.2 0.67 0.71 1403 0.5 0 138
1] 40 331.7 6.8 0.78 0.94 669 1 0 138
\ 0.84 392.9 5.9 0.84 0.99 387 1 4 0
\% 0 372.5 7.6 0.80 0.98 356 0.5 4 0
I(QIV) m2r ( x\? x* 9.p
— 2_@ 3 —
=—w oc—Kkol —| o+No°—6— w= . (12
do a5 \Xo o M1 (/o) *+(r = 1)(x/ xo)’]
2
—m2f X -0 10 Note, that inw, direction the pressure is minimal, since the
mw T +g(rps_ ’ ( ) . .
X0 temporal and spatial components of the vector field enter
with opposite sign and only the latter are dynamical vari-
where the scalar density is given by ables. , _
In addition, one has to determine the baryon density at a
- given chemical potential via the equation
mN —
ne+ny). 11
(Nt ) (11 i

pPs=Y (ZT)sE_*

The vector fieldw can be solved explicitly in terms ef and
X, Yielding

WITHESB P~Fo

P=7’f W(nk—n_k)- (13

The energy density and the pressure are given by

NO ESB
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©

FIG. 1. Binding energy versus
olay with (left) and without
(right) explicit symmetry breaking
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If the dynamical vector meson mass is considered as being
i enerated by alone and ifé is set to zero, it is possible to
olve Eq.(10) analytically:

ki
Qr0 1 (2m)® 67’
P=—v —Pss=3 yospT*.

Here, the index SB denotes the corresponding quantities
the Stefan-Boltzmann limit withrsg=772/120. The limit

T—0 can be taken straightforwardly, using Nol+g,ps | Y2
X7 koot mifw) ' (18

limTIn(1—n)=E*(k)—u*.
T—0

(19

Thus the numerical procedure is simplified to finding the root
of a nonlinear equation of one independent variable, namely
o. This allows for a visualization of the phase structure at
zero temperature.

In order to describe hadrons and nuclear matter within the
model, the appropriate model parameters must be chosen.

Applying the Hugenholtz—van Hove theor¢ai], the Fermi
surface is given by

E* (ke) = VKE+(9,0)%= p*. (16)

The scalar density and the baryon density can be determingf’® Pion mass is fixed at the value,=138 MeV which
determines the parametkys from the following relation:

analytically, yielding
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FIG. 3. A contour plot of the free energy in the,) plane.

The abnormal and normal minimum are visible.
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Xe ever, that the effective nucleon masspgt which should be
—y £2 0 2 ; . -
ko=Af2— 5f—2— o (19  ~0.7my, tends to increase with decreasing
m
This equation can be obtained from E@0) by setting . RESULTS

p=T=0 and usingoy=f . In addition, one has to ensure
that also in the vacuum@(Q2/V)/dx=0. This leads to the
determination ok;:

In order to study the properties and the impact of the
different modifications to the minimal chiral model on the
observables, we focus first on the phase structuré=ad
4 before discussing our findings at finite temperature.
om2 +k _@) (20) The influence of the explicit chiral symmetry breaking

0o~ |- )
m fo term on the phase structure of nuclear matter is checked by
computing the binding energy of nuclear matter versus the
The Goldberger-Treiman relation can be used at the tree field for normal nuclear density=p, (Fig. 1 abové and
level to fix the coupling of the nucleons to the field, p=4po (Fig. 1 below in the minimal version of the chiral
ge=my/f . model with 6=0. The first and the second column corre-

The vector meson mass is setrip, =783 MeV and\ is  spond to the model with and without explicit symmetry
a free parameter which determines thenass. The remain- breaking, respectively. According {6], the phase curve in
ing two parametersy, andy,) are fitted to the ground state Fig. 1(@) exhibits the appearance of three distinct minima:
nuclear matter binding energgg=e/p—my=—16 MeV  The first one is amy=0.6—0.7my (the exact value depends
with zero pressure at equilibrium densipg=0.15 fm~3.  on the parametrizationrwhich we denote as the “normal”
Several parameter sets have been tested. They are listedririnimum. Besides a metastable minimum at roughly
Table 1. The first three rows correspond to the versiof6df mg=0.2my, which does not play a significant roli& never
with §=0, which we will call hereafter the minimal model. becomes the energetically lowest sjathere is a third mini-
There, the vector mesons are coupled only to the dilatonsnum corresponding to nearly vanishing effective nucleon
Concerning the compressibilit§, which should be around mass (0.0ehy). This is the “abnormal” minimum which
200-400 MeV[18], we find that a small quartic self- becomes the energetically preferable state for large densities
interaction of theo corresponding to smal is to be pre- [Fig. 1(b)]. There, a phase transition takes place into a chiral
ferred in this model. If the logarithmic potential is included phase where the nucleon effective mass as order parameter is
proportional tos [12], it is possible to sex =0 and therefore nearly vanishing. Figure () shows that the exclusion of
to lower the compressibility to reasonable values. Note, howexplicit symmetry breaking effects in the Lagrangian does

2

klzzﬂ-
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change the phase structure evepasignificantly. Although
the properties of the matter at the normal minimum are not

affected, the exclusion of the explicit symmetry breaking
term eliminates the abnormal solution entirely and therefore 1.4 p=0
a chiral phase transition does not occur. T elesp
There is another constraint for the existence of an abnor- 2N P/pss
mal phase: A pure-o coupling without a dilaton admixture
(r=1) eliminates the abnormal solution. This can be seen as o I
follows: Forr =1, an additional term enters the numerator of 2 """"""""
Eq. (18) yielding \o:0.8
m
w)
o Lo PO L
X=Xo Koo+ mZf ! o
so thaty diverges foro—0. In fact, irrespectively of which 02
parametrization one useg, becomes imaginary as soon as :
0=<0.4my. No solution is possible for smaller values, 0.0 L
where an abnormal minimum would occur. We tried to lower 50 100 150 200 250 300 350 400 450 500

the compressibility in the minimal version of the chiral T [MeV]

model presented if6] and found a lower bound of=150
necessary to ensure that the abnormal state is not the ener-FIG. 7. High temperature limit of the energy density and pres-
getically lowest one at normal nuclear matter density. If ansure for zero densityset .
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abnormal minimum exists, at ground state density, dfe plotted (x, T) regime is unusual and counterintuitiven
term has to contribute strongly and the compressibility cancontrast, in[20] a closed phase boundary was obtained by
not be lowered to observed values. A way out is to permiinvestigating the linearr model including neither repulsive
5#0 [12], which mimics the contribution of quark pairs to contributions fromw-meson exchange nor dilatons. To simu-
the QCDS function at one loop level: Then, it is possible to late this calculation within our model we keep all parameters
break the symmetry spontaneously even without a quarti€onStant and change only the coupling tog,,=6 (black

self-interaction, i.e., withh=0. The compressibility is thus doty and g,=0 with varying gluon condensatéwhite

. . _trangles andg,=0 with the gluon condensate frozen at its
lowered to reasonable values, without abnormal or chira . . .

. . . . vacuum value(white circleg. The presence of the dilaton
phase restoration occurring at high energy densities.

Let turn to finite t ‘ H th | field does not lead to the fan out of the phase transition
et us now turn 1o Tinite temperatures. Here, the analysig, e Nevertheless, it has the considerable effect to shift the

gets more involved: three coupled equations have 10 bgangition points to roughly twice the values as compared to
spl\_/ed s_mgltaneously. At Iow _temperatures, the model ©Xthe “nonfrozen” case. Switching frorg, =0 to g, =6 and
h|b|_ts a liquid-gas phase transmqn as can be seen from Fig. g g,=8.2, the phase boundary spreads out to higher densi-
(using parameter set)VThe main difference between the ties and temperatures. Therefore, the reason for the unusual
minimal and the extended model sets in at high temperaturggrm of the phase boundary is the repulsive contribution due
and densities because of the existence of the abnormal solts the w-meson exchange.
tion in the minimal model. Figure 3 shows a contour plot of At that point we should emphasize that our results are
the free energy aT=170 MeV and at ground state density obtained in the framework of the mean-field approximation.
po using set I. The abnormal minimugat nearly vanishing The inclusion of quantum fluctuations in the meson fields
nucleon effective mags and a normal phase(at could change our findings qualitatively. This will be investi-
my=0.7my) are clearly visible. At normal nuclear density, a gated elsewerg21]. Inclusion of resonances might lead to
chiral phase transition occurs @=168 MeV. The phase the closure of the boundary as was observef2#] and[5]
transition is of first order, since the change in the free energjhat taking these additional degrees of freedom into account,
is discontinuous. the critical densities and temperatures decrease. Another pos-
The calculation of the phase boundary in the ) plane sibility to get a closed phase boundary might be the inclusion

yields surprising results if the minimal model is ugé&dy. 4, of a quartic sséf-lnteractlon for the vector mesom, )",
set )). Along the boundary shown in the figure the differencey'eld'n?j “’;g t:.}hg amolun_t of _rlclapbulsflon 3t ggh densities is
between the pressure of the abnormal and normal solutingWere ' etailed analysis will be found ).

vanishes, i.e., the transition to the chiral phase takes place 'The extended phlral model with+0 does not show a
- - . chiral phase transition at all. The nucleon effective mass in-
The transition aff =0 was already noted if6].

reases at high density and temperafuas, can be seen in

However, the extension to finite temperatur_es does nOI(i;_ig. 6. A similar behavior of the effective nucleon mass can
lead to a closed phase boundary, regardless which parametffy” s ,nq for the normal phase of the minimal model. The
zation one usedsee, e.g., triangles withh =300, black jifterence to the extended model comes from the fact that—
circles withA =220). The abnormal solution is stable at high according to the phase diagram of Fig. 4—a transition from

temperaturer at high baryon densities, but not for both. high to low effective masses or vice versa can be found.
This can be seen from Fig. 5, where at four particular points

in the («,T) plane of Fig. 4 the pressure as a function of the
o field is drawn. The abnormal maximum of the pressure is However, the increase of the critical chemical potential at small
flat [Figs. 5a,b)] or it disappears completelfFig. 5(c)] far  temperatures can be shown analytically in a low temperature expan-
away from the phase transition line. It becomes a well prosion[19].
nounced maximum with a high barrier to the normal state in 2This general behavior in the chiral-o model is in contrast to
the vicinity of the phase transition regigRig. 5(d)]. that suggested by the Nambu—Jona-Lasinio m§@8|24 which

The result that one has an open phase boundary within theannot reproduce the binding energy of nuclear matter properly.
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FIG. 9. Temperature, density, and entropy per
baryon as a function of the bombarding energy
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In contrast to finite baryon density, almost no temperatureéng fermion gas. As if27], we find that the energy density
dependence of the effective nucleon mass in the normalecreases with high temperatures whereas the pressure
phase is found gh=0 until the phase transition takes place. reaches its asymptotic limit from below.

In addition, the abnormal phase @t 0 differs qualitatively Similar results concerning the properties of the linear
from the one at finite density. There, the two fieldsand model at finite temperature were obtained[&, which in

x Vvanish exactly, irrespective of the explicit symmetry our terminology would be the minimal model with a pure
breaking term, whereas at finite baryon density yfield in o~ coupling and no dilatons. However, there is an impor-
the abnormal phase remains finite, as can be seen in Fig.tant difference, which results from the inclusion of the dila-
(there,y=84 MeV). Wheno =0, the scalar density vanishes ton field y: Whereas in[5], the abnormal phase is always
and from Eq.(18) it follows that they field becomes zero. mechanically unstabléhe pressure decreased with compres-
Because the baryonic density vanishes, no singularity occuigion), leading to the result that no region in the, (T) plane

if x=0. existed where chiral symmetry was restored, we find here

It is also interesting to compare the high temperaturghat the abnormal or chiral restored phase is always mechani-
phase transition of the Walecka model at zero density studiedally stable(Fig. 8). The difference to Glendenning’s work
in [27] with that of the minimal chiral modelFig. 7). One  originates from thew-y rather thanw-o coupling. In con-
observes that at high temperatures the energy density and ttrast to [25], where it is argued that the influence of the
pressure asymptotically approach the limit of a noninteractdilaton is negligible at finite density because of its high mass,
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600

lisions of fast heavy nuclef29,30. The thermodynamic
quantities calculated for the compression stage of the colli-
sion are shown in Fig. 9. The gap in the solution of the
abnormal branch comes from the disappearance of the abnor-
mal maximum in the corresponding regitsee, i.e., Fig. b
The evolution of the system in the subsequent expansion
is calculated by the isentropes starting from a point on the
Taub adiabatdFig. 10a)]. A minimum atS/A<2 in the
trajectory allows for the mechanical instability, which is sug-
gested to cause multifragmentation. The expansion of the
system from an abnormal initial state through a mixed phase
100 ~ _ SR/I';E-S\diabate into the normal state is shown in Fig. (b). Even though we
T e S/AS30, cannot reach the abnormal phase with the shockfront model,
I P —— S/A=4.0, it might be possible, i.e., with the fireball model with
00 05 10 15 20 25 30 35 a0 a5 so0 p=2vcmpPo, Whereygy is the Lorentz-contraction factor in
plpo the center-of-mass system.

500

400

e/p-my [MeV]
g

[
3
\
\

IV. SUMMARY AND OUTLOOK

The properties of the lineawr model presented in
[6,10,15,12 are studied at finite temperatufeand nonzero
baryon density. At nuclear matter saturation densjy, the
minimal model of{6] exhibits two phase&he abnormal one
at nearly vanishing nucleon mass and the normal phase at
m, =0.7my), which allows for a phase transition at high
temperaturesr high densities. The presence of vector me-

‘ sons leads to an open phase boundary, and the inclusion of

500 ( S/A=11.7 dilatons makes the abnormal phase also mechanically stable.
—— normal However, in the model abnormal solutionspgtexist only at

"""" mixed phase unphysically high values of the compressibiliti £ 1400

. = 2bnormal MeV). Therefore, the abnormal phase should be eliminated

00 03 10 13 olpo 20 23 30 33 by either including anw-o coupling or by replacing the
quartic self-interaction with a logarithmic terms€0). In
this case, no chiral phase transition can be found since the
FIG. 10. Expansion of a compressed state along different isennycleon effective mass as order parameter increases at high
tropes starting from the normal pha&® and from the abnormal  gensities and temperatures. It remains a challenge to con-

phase(b), respectively. struct a reasonable chiral model for nuclear matter which

we find the variation of the condensagteto be essential for aIIows_ for the stu_dy of phase transitions. First caIcuIatio_ns
a mechanically stable abnormal phase. Similar results poin done in an extension of the model to SU(3) are encouraging
ing to the importance of the dilaton field in nuclear matter 28].
are also obtained ifi26], where the Walecka model includ-

ing dilatons was studied.

The final question to be addressed is whether the interest- The authors are grateful to J. Eisenberg, C. Greiner, I.
ing (T,p) regions can be reached in relativistic heavy ionMishustin, and K. Sailer for numerous fruitful discussions.
collisions. For a rough estimate, we solve the RankineThis work was supported by Gesellschaft fichwerionen-
Hugoniot-Taub adiabat€RHTA), which can be used as a forschung(GSl), Deutsche Forschungsgemeinsch&fEG),
first approximation for the description of nearly central col-and Bundesministerium fuBildung und Forschun(BMBF).
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