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Chiral symmetry breaking in the presence of a confining interaction
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We study chiral symmetry breaking, making use of a generalized Nambu—Jona-L@ihjomodel that
includes a description of confinement. The Schwinger-Dyson and Bethe-Salpeter equations are solved for our
model of the self-energy of a quark. We show that our analysis is consistent with the Goldstone theorem. That
is, the pion has zero mass, if the current quark masses are zero. We use a confining interactigDinth) a
matrix structure that leads to simple equations for the self-energy and for a vertex function that serves to sum
a ladder of confining interactions. We consider spacelike valug$,@nd carry out our analysis in a Euclidean
momentum space. For timelikg, we use calculational procedures that we have developed in our earlier work
in order to exhibit properties of the confining vertex. For the spacelike valug$ obnsidered here, we see
that the effects due to the introduction of our model of confinement are didallvever, such effects are very
important for timelikeg?. Their consideration is essential, if we wish to study mesons, such as the rho and
omega, in our model[S0556-281@7)05003-9

PACS numbds): 24.85+p, 11.30.Rd, 12.39:x

[. INTRODUCTION pion as the Goldstone boson. Finally, Sec. VI contains a
summary and some conclusions.

In recent years, we have seen numerous applications of
the Nambu—Jona-Lasini(cD\IJL) model in the study of chiral II. THE NJL MODEL WITH A CONFINING INTERACTION
symmetry breaking and in the description of hadron proper-
ties[1]. Usually, confinement is neglected, so that the theory For our study we will use the S@)-flavor version of our
may be applied to study the pion and the “sigma meson.”model, where the Lagrangian is
(The sigma meson appears at the threshold of the quark-

antiquark continuum, while the rho and omega are in the N 0 Gs — 2
continuum of the modeél.In previous work, we have shown L=q(x)(i4=mg)q(x)+ 2 {la()a()]

how a confining interactioka linear potentiglintroduced in . )

our momentum-space calculations removes the unitarity cut +LA(X)i ys7A(X) 17+ Leons- (2.9)

associated with the quark and antiquark going on mass shell.

The resulting formalism then only has cuts when hadrons go We will use

on mass shell2]. In our previous work we assumed that the L L
constituent quark mass had a constant value that was ob-  Lcon=[d(X) y*q(x)VE(X—y)a(y)y,a(y)
tained from the gap equation, without confinement. In the

present work, we have included the confining interaction in —A00 Y540 VE(X=Y)a(Y) 7, ¥5a(Y)]-

the Schwinger-Dyson equation and we, therefore, find a self- (2.2
energy for the quark that varies wiktf, the square of the

guark momentum. (The advantages of using this form will be made clear as we

It is usually thought that confinement is not particularly proceed. Thus, the confining interaction is
important for the study of the low-energy hadron spectrum.

In this work we wish to put such suggestions on a more V(x—Y)=VE(x—y)[¥*(1) y,(2)
guantitative basis and to obtain guidance as to the implemen- g
tation of a more comprehensive treatment of low-lying me- —7*(1)ys(1)y.(2)ys(2)]. 2.3

sonic states, including the pseudoscalar octet andyth€he
organization of our work is as follows. In Sec. Il we describeWe usedVC(r)=«r exp(— ur) in our earlier work, with
the confining interaction that we use in this work. In Sec. Ill, x=0.050 GeV. The parameter is introduced to make the
we present equations for the quark self-energyFourier transform oW (r) less singular and, thus, facilitate
S(k)=B(k?)k+A(k?. In Sec. IV, we introduce a vertex our numerical calculations. We see that the potential is not
function that serves to sum a “ladder” of confining interac- absolutely confining. For example, #=0.20 Ge\f and
tions and present results of our calculations of that quantityu=0.050 GeV, the maximum value of the potential is 1.47
In Sec. V, we discuss the vertex function associated with th&eV. For u=0.030 GeV, the maximum value is 2.45 GeV.
entire interaction of the generalized NJL model. We showTherefore, if we are only interested in excitations of energy
that the Goldstone theorem is satisfied, with the zero-masgss than 1 GeV, the finite height of the potential will not be
important. Of course, as smaller values @ofare used, the
difference between our form and a linear potential becomes
*Electronic address: CASBC@CUNYVM.CUNY.EDU less important. The Fourier transform 6f(r) is
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8.2 QK = KBy o+ @ Kk

When we studied Lorentz-scalar confinement, we tedb

be positive in Eq(2.4). For the present work, we taketo be

negative, since a negative sign, that has its origin in the Dirac

matrix structure of the interaction, arises when switching — +
from scalar to vector confinement. For calculations in a Eu-

clidean momentum space, that we report upon in this work, it

is necessary to treat all the components of the momentum

transfer on the same footing. Therefore, we will use (o)

2
2 _ 8u (2.5 FIG. 1. (a) The figure shows the contributions to the quark self-
(ké+,u2)2 (ké+ w3 energy,>(k). Here the double line represents the quark propagator,
iS(k')=i[k—2(k')+ie] " and the wavy line is the confining in-
where k¢ is the momentum transfer in the Euclidean mo-teraction.[As a diagrammatic element, the wavy line introduces

VE(k—kK')=—4mk

mentum space. —iVE(k—k’) when evaluating the diagram. The solid circle de-
It is useful to write notes a factor ofG5.] (b) The equation for the quark propagator is
given in terms of the self-energ¥,(k), seen in(a). The single line
- 2 is the propagator of a massless quark in this figure.
Vx—y)=Ve(x-y) 2 0(1)0(2) (2.6
= ' In Fig. 1(b), we show the integral equation for the quark

. _ ' propagatorjS(k), given in terms of a massless propagator
with O; =" andO,=iy*ys. [See Eq(2.3.] (We willuse a  (single line and the self-energy, (k).
bar over a letter to denote a quantity that has Dirac matrix

indices) . _ _ IIl. THE QUARK SELF-ENERGY
For the interaction of Eq.2.3), the Lagrangian has chiral _ ) 5
symmetry, ifmg=0. Indeed, each of the terms in E@.3) We write the quark self-energy agk) =B(k“)k+A(k?).

respects chiral symmetry. Our motivation in combining theFrOVZn the equation gepic_ted in Fig.(b), we find that
terms, as in Eq2.3), is to achieve a particularly simple form B(k)=0 and thatA(k?) satisfies the equation
for the self-energy and vertex functions. For example, if we

41,1 Cll_ L'
write the self-energy aX (k2) = B(k?) k+ A(k?), we find that o [ 9K 8VE(k—K')+4anniGs o,
> . . A(k?) =i 1 VNI A(k").
B(k?)=0. Also, if we consider a scalar or pseudoscalar ver- (2m) k'“—A%(k’)
tex for the confining interaction,Fg(q%q-k,k?) or 3.9

Fp(9?,9-k,k%), we find that, when Eq.2.3 is used,

Fr(0%,9-kk?)=Fp(a%,q-k,k?) %7 and Fg(q?q-k,k?)

=F«(9°,q-k,k?-1. Herel denotes the unit matrix in the d*k’  m

space of Dirac matrices. That is, the simple structure of the mq=4ncnfGSiJ L k,zﬁq 3.2

vertex operators of the NJL model is maintained in the pres- (2m) Mg

ence of confinement, ¥(x—y) of Eq. (2.3 is used. If we

need to refer to that interaction, we may call ia A form.

That designation is in keeping with the current practice,

where one speaks of “scalar confinement” or “vector con- dk’ 1

finement.” 1=4n.n;Gg 2 k2= 3.3
We now write the quark propagator as 4

Note that, ifv©=0, A(k?) is a constant. In that case, we have

Thus, sincem8=0 at this point,m, may be factored out to
yield the equation

Solutions of Eq(3.1) have been obtained by using a Eu-

2.7 clidean momentum space. One may use either a covariant

cutoff, wherek2<A 2, or the Pauli-Villars regularization

procedure, among other possibilities. We have done both
with 3 (k) =B(k?)k+A(k?). This propagator is represented kinds of calculations; however, the Pauli-Villars method is to
by a double line in Fig. 1. In Fig.(&) we see the equation for be preferred, since it preserves the symmetries of the theory.
the quark self-energy, (k). There, the wavy line is the con- First, we note that, iilGs=7.91 GeV ? and k=0, and if
fining interaction. The solid circle in Fig.(8 denotes the we use a Euclidean momentum-space cutoff Agf=1.0
elementiGg, whereGg is defined in Eq(2.1). In the ab-  GeV, we findm,=241 MeV. Once we include a finite value
sence of the first term of Fig.(d), we would reproduce the for x, we no longer obtain a constant value of the self-
gap equation of the standard NJL model. In that case, onenergy. That isA(k?) depends upok?® as shown in Fig. 2.
has a constant value for the constituent masg)=m,, For the result shown in Fig. 2, we put=-—0.140/8
with my~250-350 MeV. GeV?=-0.0175 GeV. The factor of(1/8) in our choice for

, i
IS = S Tie’
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K serves to convert a value &f appropriate to scalar con- _ 2 4y
finement to a value appropriate to the interaction given in F'F,(q,k)=y57-i+_2 if >
Egs.(2.3 and(2.4). A factor of 2 is obtained since we have =1 (2m)
two terms in Eq.(2.3) and a factor of 4 arises from the , - , ;L _

Lorentz character of the interaction. xSk +al2)Fp(q,k")S(k" ~=a/2)0;(2).

VE(k—k")O;(1)

4.9
IV. THE VERTEX FUNCTION OF THE CONFINING
INTERACTION
We now consider a vertex function that sums a “ladder” _ ) , )
of confining interactions. The equation for the pseudoscala¥Ve define A (gq,k")=A[(K"+a/2)7] and
vertex is ther{2] A_(q,k")=A[(k’ —q/2)2)] and make use of the relation

YK +d/i2+ A (q.K) ] ys[K' —d/i2+A_(a,k) T}y, + ysy[K' +d/2+ A, (0,k") ] ys[K' —d/2+A_(a,k") T}y, vs
=8[(k'+0a/2)- (k' =a/2) = A, (q,k")A_(q,k")]ys. (4.2)

We also define d*k’ 8VC(k—k')Ns(q,k')F(a,K')

Fs(q,k)=1+i 2m? DK +922D((K —q2)?)
(4.6)

Np(q,k')=k'2—q%4—A,(q,k)A_(q.k"), (4.3
so that, if we put with
F_L(q,k)=757in(q,k), (4.4 Ng(a.k’)=k'?2—q?/4+ A, (q,k")A_(q,k"). (4.7

we see that the functioRp(q,k) satisfies the integral equa- (NO%E the difference sign for the last term of E¢4.3) and
tion 4.7).
In the past, forg>>0, we have solved the equation for
( d*’ 8VE(k—k')Np(q,k")Fp(q,k’) Fs(q,k) by completing thek/ integral in the complex
FP(qyk):1+| 4 ’ 2 ' 27 - i - iSi
f (2m)* D[(k'+q/2)?]D[(k' —q/2)?] plane[2]. There are two poles in the lower-half plane arising
4. from the quark propagators. For one pole, the quark is on its
positive mass shell. For the other pole, the antiquark is on its
In Eq. (45, we have wused the definition negative mass shellWe have also neglected any poles that
D(p?) =p?—A?(p?). would arise if we admit energy transfer#f(k—k’) and we
An entirely similar equation_may be written for the scalar continue to make that approximation for our calculations for
confining vertex, where we puits(q,k) =F(q,k)I. Thus, timelike q%(g%>0).] See Fig. 3.
For the functionF(q2,q-k,k?), let us consider the case
where the quark is on its mass positive shell, so that

03 p T T T T T T T T T
k%+q°/2=E,(k+q). The resulting function is a function of
only two variables. In the frame wherg=0, we define
. o2r , . a/2+k q/2+k g/2+k
g -g/2+k'
~ [ T q s = ves + vee
(‘/\
RS
Z 01 - B
-g/2+k -q/2+k -g/2+k
. . . . . FIG. 3. The integral equation for a vertex function of the con-
00 a0 o8 06 o4 o2z oo fining interaction. The solid triangular area denotes the vertex func-
2 2 tions. [We may write integral equations for eithétg(qg,k) or
k® (GeV?) Fp(g,k).] Here the wavy line is the confining interaction

VE(k—k’). The resulting equation is solved with either the quark
FIG. 2. Values ofA(k?) are shown fok?<0. The calculations on its positive mass shell or the antiquark on its negative mass shell.
are made in Euclidean momentum space using a regulator functiofSee the text. The double line denotes the propagator
C(k?)=2A% K2+ A%(k?) + A% k24 A%(k?)+2A2] 7L, with iS(k+q/2)=i[k+d/2—A.(q,k)]"! or iS(k—q/2)=i[k—g/2
A=0.78 GeV. Herex=—0.14/8 Ge\} andG,=8.30 GeV 2 —A_(q,k]
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FIG. 4. The functiorFS(q°,|I2|) is shown fork=—0.0175 GeV
and various values ofg’. Note that I's(q° |kon|)=0, when

k&= (9°/2)>—mj. Starting at the lowest curve and moving higher,

we haveq®=0.7 GeV,q%=0.6 GeV,q’=0.5 GeV,q°=0.4 GeV,
q°=0.3 GeV, q°=0.2 GeV, andq=0.0 GeV. (The values for
q°=0.1 GeV are quite close to those fg?=0.0 GeV) The results
are for a constant massy, =260 MeV. If m is replaced byA(k?)
only some small changes are observed fie=0. A cutoff on the
three-momenta has been ug#d|<Aj), with A;=0.702 GeV.(See
the text)

(9% k) =Fp(a?,q- kyk2)|k0+q0/2=Eq(k) . (49

Similarly, we consider the case where the antiquark is on it

negativemass shell. In that case, we define
F;+(qo!|k|):FP(qQO'krk2)|k°—q°/2=Eq(k)- 4.9

These functions satisfy coupled equations of the form

e (q°lkD] [1 d’k’ )
G e e
i 1 1
" q°—2E4(k")  q°+2E4(k)
1 1
[ q°—2E4(k") q°+2E4(K’)
[T (%K)
x| o s |- 4.1
_FP+(qoa|k |) ( Q
We see, however, from the last equation that
Tp(q%[kh=T5"(q%]K)). (4.1

1495
q/2+k q/2+k q/2+k a/2+k
-q/2+k -q/2+k -g/2+k -q/2+k

FIG. 5. The equation satisfied by the pseudoscalar-isovector ver-
tex of the total interactionfF+(q,k), is shown as a crosshatched
triangular area. The wavy line is the confining interaction,
VE(k—k'), and the solid circle represents a factoriGfs. The
driving term for this equations?. [See Egs(5.1) and(5.2).]

Discarding the superscripts, we have a single integral equa-
tion

d3k’ 4E4(k")
(2m)° (9%)*—[2E4(k")]?
XVE(k—k")Tp(q%K']).

rp<q°,|kl>=1—4f
(4.12

In Fig. 4 we present values 5%(q° |k|) for several values
of q°=0. It may be seen from the figure thBp(qP,|k|) for
largel|k| is about 0.6—0.7. Those values are related to a cutoff
placed on the three-momenta in the integral equation,
A3=0.702 GeV(|k'|<Aj). However, the integral equation

oes not need to be regulated, since the integrals converge as

k'|—. If one putsA; equal to several GeV, the various
I'n(q°|k|) go rapidly to 1 with increasintk| for all q° values
considered here. We recall that it is the zeroes of the confin-
ing vertex functions fok§,=(q°/2)>—m3 that remove the
gqg cut in various vacuum polarization diagrams. Such cuts
would appear forq2>4m§ in the absence of a model for
confinemen{2,3]. The zeroes of'p(q°|k|) are indicated in
Fig. 4 by small dots. For those curves without such dafs,
is too small °< 2m,) to lead to on-mass-shell quarks in the
absence of confinement.

V. THE VERTEX FUNCTION FOR THE TOTAL
INTERACTION AND THE GOLDSTONE BOSON
OF THE GENERALIZED NJL MODEL

In this section we discuss a vertex functiéiy(q,k), that
includes the effects dfoth the confining interaction and the
(zero-rangg NJL interaction. The integral equation for that
quantity is depicted in Fig. 5. That integral equation reads, in
the pion channel,

2
_ d%k’ _
FT(q,k)=7’5+JZl if WVc(k—k')oj(l)s(q/2+k’)FT(q,k')S(—q/2+k')oj(2)—ncnfiGsvs

d4k, ! = ! !
><J' oyt TS24 K Fr(aK)S(—~ /24K ) 7).

(5.

In_the last equation, we have already factored out the isospin matrix that appears in the drivingsterie then define
F+(q,k) = ysF+1(q,k) whereF+(q,k) is a scalar function. We have
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d*k’ [8Np(q,k)VE(k—k') —neniGsM(q,k")JF(q.k’)

FT(q,k)=1+if 2’

where we have putD,(q,k')=D((q/2+k’)? and
D_(qg,k")=D((q/2—k’)?). Note thatNp(q,k) was given
previously in Eq.(4.3) Here, we have also defined

2
M(q,k)=4(qz— K2+A,(q,k)A_(g,k)|. (5.3

We now consider the limit g—0. We have
D, (0k)=D_(0k)=D(k?), Np(0k)=D(k?), and
M (0k)=—4D(k?). Therefore,

d*k’ 8VC(k—k')+4n.n;Gg
(2m)* D(k'?)

Fr(Ok)=1+i Fr(0k").

(5.9

D.(q,k")D_(q,k") , (5.2

was done in our work wheg? was timelike. However, the
formalism used in Refl4] does not yield a zero-mass pion
unless the confining potential satisfies a constririte con-
straint used is a relativistic generalization of the relation
VE(r)=0, forr=0.]

The appropriate Lorentz transformation properties of the
confinement interaction is a matter of some uncertainty. Sca-
lar confinement has been popular, since it provides a good
representation of spin-orbit effects in heavy-quark systems.
However, a number of authors have suggested that better
results may be obtained with vector confinement. In particu-
lar, Munz [5] has noted that the Salpeter equation used for
the study of meson structure is unstable for scalar confine-
ment[6], while vector confinement works well. Studies of
Swanson and Isgyi7] and of Szczepanial8] also suggest
the importance of vector confinement. Further, Resag and
Munz have used vector confinement and have only kept the

If there is a bound state at zero energy, the homogeneod€'™M iNvolving ¥, [9]. In addition, Minz has used equal

version of Eq.(5.4) will have a solution. Thus, we consider

E Ok __J d*k’ 8VC(k—k’)+4nCnstF oK
T( 1)_| (277_)4 D(k/Z) T( ’ )

(5.9

However, the gap equation, was

[ dk’ 8VE(k—k')+4n,nGs
A(kZ)ZIJ (277_)4 D(k/2) A(k 2)-

Thus, we see tha(0k) is proportional toA(k?) and we
have a zero-mass state. The pion is the Goldstone boson,
expected.

It is sometimes useful to define the wave function

1
Yr(k¥)=n WZ(kZ)A(kZ), (5.7

wheren is a normalization factor.
We have

[k?—AZ(k?) Jybr(K?)

=i d4k_’ c ! 12
_'f 2 [BYE(k=K) +anenGslyn(k'®). (5.9

VI. DISCUSSION

amounts of scalar and vector confinement, again keeping
only the vy, term of the vector-confinement interactifsi.

In the work reported here, we have shown that Yhé\
form of the confining interaction yields simple equations for
the quark self-energy and for the pseudoscalar vertex func-
tion. Thus, we could carry out our analysis without solving
coupled, nonlinear equations f&(k?) andB(k?). We could
also deal with a single scalar functiéip(q,k), rather than
with four such functions that characterize the pseudoscalar
vertex in the general case. On the other hand, we do not
recommend the/-A form for the study of meson spectra.
We believe that vector confinement provides a more satisfac-
tory model and also allows us to write a Lagrangian with
chiral symmetry. We hope to complete a study of vector
confinement in the future. The equations that will be studied
ae more complicated than those considered in the present
study. Results of some preliminary calculations for the case
of vector confinement are reported in the Appendix.

In this work we have shown that one may write a La-
grangian that has chiral symmetry when we include a model
of confinement. However, our work has a number of limita-
tions and further work is required. For example, our analysis
has been made in a Euclidean momentum space. We would
like to have results for timelike values of the momentum as
well. One might attempt to continue the results for spacelike
momenta into the timelike region, but we do not believe that
the accuracy of such a procedure is known and we do not
adopt that approach. On the other hand, we have made a
large number of calculations in Minkowski space for time-
like values of the momentz,3]. We have used an approach
similar to that of Gross and Milana] in that we have only
considered the singularities of the quark propagators, when
completing integrals in the complde§ plane. That is a cor-

Work that has some relation to ours was carried out byrect procedure, if the confining potential has no singularities
Gross and Milan4]. These authors obtained coupled equa-in thek| plane. Therefore, we have neglected energy transfer
tions for meson wave functions, in the presence of a confinwhen using the confining interaction in Minkowski-space

ing interaction, by performing integrals in the compliegk

calculations. Thus, we see that our Euclidean-space calcula-

plane and picking up the poles of the quark propagators, asons reported here are not entirely consistent with our
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Minkowski-space calculations reported upon elsewhere

[2,3]. We hope to study this problem in the future. While the e ' ' ' '
Lorentz structure of the confining interaction may be consid-
ered an open question, we have shown that confining inter-
actions that preserve chiral symmetry may be used for vari- 4.} i
ous studies. Such potentials are to be preferred, since they 2
are consistent with the properties that a good effective inter- Q
action for low-energy QCD should have. Their use is essen-
tial, if we are to study the effects of confinement in the case i’ 01} 8
of the pseudoscalar octéBoldstone bosons
APPENDIX _
00 1. 1 ) 1 n 1
In this appendix, we wish to study the self-energy, 10 oe 26 2“ o2 o0
3. (k)=B(k?)k+A(k?), and the vertex functionF(q,k), k® (GeV*)
for pure vector confinement. In this case we find the coupled Y P S :
nonlinear equations | e
L ]
N d*’  4VCE(k—K')+4n.n;Gg A2 @
( )_l (277_)4 k12[1_B(k/)]2_A2(k/2) ( ) l I ‘ , ,
(A1) 927 08 06 04 202 0.0
and k% (GeV?)
o , o , FIG. 6. Solutions of the coupled equations fgtk?) andB(k?),
ZB(kZ)— i d’k’ 2(k-k")[1-B(k')]V=(k—k') generalized to include a current mamg=5.5 MeV, are shown.
B (2m*  K'[1-B(k")]°—A%k'?>) [See Eqgs(Al) and (A2).] Here we use vector confinement with

(A2) k=—0.14/4 GeV} and Gg=8.65 GeV 2. (For this calculation we
have used a Pauli-Villars regularization procedure. See caption of
The pseudoscalar vertex function is more complicated tharig. 2)
in the V-A model, since there are now four scalar functions
of three variables to be calculated. We may write, in the ) ) _ d*k’ 2(k-k")VC(k—k")ay(k'?)
general case, k“ay(k?)=—i 2m)? K 1-B(k D 2= AZ(K'?)"

(A7)

Fr(0,k)= ye[a1(k,q) + Kap(k,q) + das(k,q) + dkay(k,q)],
(A3)

with a,(k,q) =a,(k%k-q,q%), etc. However,F(q,k) is
simpler, if we consider the cagsp=0:

Now, let us ask if Eq(A5) has a homogeneous solution. We
write Eq. (A6), with the “driving term” removed, as

. [ d% [4VE(k—k')+4nniGglay(k'?)
al(k )_lj (277)4 k/2[1_B(k12)]2_A2(k12)

Fr(0K) = ys[a;(k?) +Kap(k?)], (A4) (A8)
wherea, (k%) =a,(0k), etc. Now consider Eqs(A7) and (A8). We see that comparison
The vertex function for the total interaction satisfies theto Eq. (A1) shows that, (k%) ~A(k?). Further, we may put
equation a,(k?) =0, since Eq(A7) is homogeneous Thus, in the chi-

ral limit, the vertex forq=0 is F {(0k) = y57 F1(k?), where
F+(k?) is proportional toA(k?). Since there is no driving

— d*k’ — : . ;
Fr(0k)= 75+if W VE(k—k")y*S(k")Fr(0k") term, F1(k?) is related to the pion wave function
k' iG d k?)= ! AK? A9
XS(k")y,—ncnsiGgys 2m)? Yr(k)=n K[ 1-B(K)T2—A(K) (k9),  (A9)
xTr[S(k’)F_T(O,k’)S(k’)ys]. (A5)  where 7 is a normalization constaniRecall Eq.(4.7).] We

remark that
We now make use of EqA4) and find that

k2 1-B k2 2_A2 k2 k2

4’ [AVE(K—K') + AhenGalay(k'?) )] (KD Hgr(k)

(2m)*  K'I1-B(k'*)]*=A%K'?) _'f
(A6)

a,(k)=1+i

2n )4 [4VE(k—K")+4nn;Gslyr(k'?)  (A10)

and in the case of vector confinement.
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In Fig. 6 we show values foA(k?) and B(k?) obtained ACKNOWLEDGMENTS
when solving Eqs(Al) and(A2). We have used=—0.14/4
GeV?, Gg=8.65 GeV 2 and have included a finite value of ~ This work was supported in part by a grant from the Na-
the current quark massng=5.5 MeV, in one caselNote tional Science Foundation and by the PSC-CUNY Faculty
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