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Chiral symmetry breaking in the presence of a confining interaction

L. S. Celenza, Xiang-Dong Li, and C. M. Shakin*
Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York, Brooklyn, New York

~Received 27 September 1996!

We study chiral symmetry breaking, making use of a generalized Nambu–Jona-Lasinio~NJL! model that
includes a description of confinement. The Schwinger-Dyson and Bethe-Salpeter equations are solved for our
model of the self-energy of a quark. We show that our analysis is consistent with the Goldstone theorem. That
is, the pion has zero mass, if the current quark masses are zero. We use a confining interaction with a~Dirac!
matrix structure that leads to simple equations for the self-energy and for a vertex function that serves to sum
a ladder of confining interactions. We consider spacelike values ofq2, and carry out our analysis in a Euclidean
momentum space. For timelikeq2, we use calculational procedures that we have developed in our earlier work
in order to exhibit properties of the confining vertex. For the spacelike values ofq2 considered here, we see
that the effects due to the introduction of our model of confinement are small.~However, such effects are very
important for timelikeq2. Their consideration is essential, if we wish to study mesons, such as the rho and
omega, in our model.! @S0556-2813~97!05003-6#

PACS number~s!: 24.85.1p, 11.30.Rd, 12.39.2x
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I. INTRODUCTION

In recent years, we have seen numerous application
the Nambu–Jona-Lasinio~NJL! model in the study of chira
symmetry breaking and in the description of hadron prop
ties @1#. Usually, confinement is neglected, so that the the
may be applied to study the pion and the ‘‘sigma meso
~The sigma meson appears at the threshold of the qu
antiquark continuum, while the rho and omega are in
continuum of the model.! In previous work, we have show
how a confining interaction~a linear potential! introduced in
our momentum-space calculations removes the unitarity
associated with the quark and antiquark going on mass s
The resulting formalism then only has cuts when hadrons
on mass shell@2#. In our previous work we assumed that th
constituent quark mass had a constant value that was
tained from the gap equation, without confinement. In
present work, we have included the confining interaction
the Schwinger-Dyson equation and we, therefore, find a s
energy for the quark that varies withk2, the square of the
quark momentum.

It is usually thought that confinement is not particula
important for the study of the low-energy hadron spectru
In this work we wish to put such suggestions on a m
quantitative basis and to obtain guidance as to the implem
tation of a more comprehensive treatment of low-lying m
sonic states, including the pseudoscalar octet and theh8. The
organization of our work is as follows. In Sec. II we descri
the confining interaction that we use in this work. In Sec.
we present equations for the quark self-ener
((k)5B(k2)k”1A(k2). In Sec. IV, we introduce a verte
function that serves to sum a ‘‘ladder’’ of confining intera
tions and present results of our calculations of that quan
In Sec. V, we discuss the vertex function associated with
entire interaction of the generalized NJL model. We sh
that the Goldstone theorem is satisfied, with the zero-m
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pion as the Goldstone boson. Finally, Sec. VI contains
summary and some conclusions.

II. THE NJL MODEL WITH A CONFINING INTERACTION

For our study we will use the SU~2!-flavor version of our
model, where the Lagrangian is

L5q̄~x!~ i ]”2mq
0!q~x!1

GS

2
$@ q̄~x!q~x!#2

1@ q̄~x!ig5t̄q~x!#2%1Lconf. ~2.1!

We will use

Lconf5@ q̄~x!gmq~x!VC~x2y!q̄~y!gmq~y!

2q̄~x!gmg5q~x!VC~x2y!q̄~y!gmg5q~y!#.

~2.2!

~The advantages of using this form will be made clear as
proceed.! Thus, the confining interaction is

V̄~x2y!5VC~x2y!@gm~1!gm~2!

2gm~1!g5~1!gm~2!g5~2!#. ~2.3!

We usedVC(r )5kr exp(2mr ) in our earlier work, with
m50.050 GeV. The parameterm is introduced to make the
Fourier transform ofVC(r ) less singular and, thus, facilitat
our numerical calculations. We see that the potential is
absolutely confining. For example, ifk50.20 GeV2 and
m50.050 GeV, the maximum value of the potential is 1.
GeV. Form50.030 GeV, the maximum value is 2.45 GeV
Therefore, if we are only interested in excitations of ener
less than 1 GeV, the finite height of the potential will not
important. Of course, as smaller values ofm are used, the
difference between our form and a linear potential becom
less important. The Fourier transform ofVC(r ) is
1492 © 1997 The American Physical Society
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VC~k2k8!524pkH 2

@~k2k8!21m2#2

2
8m2

@~k2k8!21m2#3 J . ~2.4!

When we studied Lorentz-scalar confinement, we tookk to
be positive in Eq.~2.4!. For the present work, we takek to be
negative, since a negative sign, that has its origin in the D
matrix structure of the interaction, arises when switch
from scalar to vector confinement. For calculations in a E
clidean momentum space, that we report upon in this wor
is necessary to treat all the components of the momen
transfer on the same footing. Therefore, we will use

VE
C~k2k8!524pkH 2

~kE
21m2!2

2
8m2

~kE
21m2!3 J , ~2.5!

wherek E
m is the momentum transfer in the Euclidean m

mentum space.
It is useful to write

V̄~x2y!5VC~x2y!(
i51

2

Oi~1!Oi~2! ~2.6!

with O15gm andO25 igmg5. @See Eq.~2.3!.# ~We will use a
bar over a letter to denote a quantity that has Dirac ma
indices.!

For the interaction of Eq.~2.3!, the Lagrangian has chira
symmetry, ifmq

050. Indeed, each of the terms in Eq.~2.3!
respects chiral symmetry. Our motivation in combining t
terms, as in Eq.~2.3!, is to achieve a particularly simple form
for the self-energy and vertex functions. For example, if
write the self-energy asS(k2)5B(k2)k”1A(k2), we find that
B(k2)50. Also, if we consider a scalar or pseudoscalar v
tex for the confining interaction,F̄S(q

2,q•k,k2) or
F̄P(q

2,q•k,k2), we find that, when Eq.~2.3! is used,
F̄P(q

2,q•k,k2)5FP(q
2,q•k,k2)g5t

i and F̄S(q
2,q•k,k2)

5FS(q
2,q•k,k2)•I. Here I denotes the unit matrix in the

space of Dirac matrices. That is, the simple structure of
vertex operators of the NJL model is maintained in the pr
ence of confinement, ifV̄(x2y) of Eq. ~2.3! is used. If we
need to refer to that interaction, we may call it aV2A form.
That designation is in keeping with the current practi
where one speaks of ‘‘scalar confinement’’ or ‘‘vector co
finement.’’

We now write the quark propagator as

iS~k!5
i

k”2S~k!1 i e
, ~2.7!

with S(k)5B(k2)k”1A(k2). This propagator is represente
by a double line in Fig. 1. In Fig. 1~a! we see the equation fo
the quark self-energy,S(k). There, the wavy line is the con
fining interaction. The solid circle in Fig. 1~a! denotes the
elementiGS , whereGS is defined in Eq.~2.1!. In the ab-
sence of the first term of Fig. 1~a!, we would reproduce the
gap equation of the standard NJL model. In that case,
has a constant value for the constituent mass,S(k)5mq ,
with mq;250–350 MeV.
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In Fig. 1~b!, we show the integral equation for the qua
propagator,iS(k), given in terms of a massless propaga
~single line! and the self-energy,S(k).

III. THE QUARK SELF-ENERGY

We write the quark self-energy asS(k)5B(k2)k”1A(k2).
From the equation depicted in Fig. 1~b!, we find that
B(k2)50 and thatA(k2) satisfies the equation

A~k2!5 i E d4k8

~2p!4
8VC~k2k8!14ncnfGS

k822A2~k82!
A~k82!.

~3.1!

Note that, ifVC50,A(k2) is a constant. In that case, we ha

mq54ncnfGSi E d4k8

~2p!4
mq

k822mq
2 . ~3.2!

Thus, sincemq
050 at this point,mq may be factored out to

yield the equation

154ncnfGSi E d4k8

~2p!4
1

k822mq
2 . ~3.3!

Solutions of Eq.~3.1! have been obtained by using a E
clidean momentum space. One may use either a cova
cutoff, wherek E

2,L E
2, or the Pauli-Villars regularization

procedure, among other possibilities. We have done b
kinds of calculations; however, the Pauli-Villars method is
be preferred, since it preserves the symmetries of the the

First, we note that, ifGS57.91 GeV22 andk50, and if
we use a Euclidean momentum-space cutoff ofLE51.0
GeV, we findmq5241 MeV. Once we include a finite valu
for k, we no longer obtain a constant value of the se
energy. That is,A(k2) depends uponk2 as shown in Fig. 2.
For the result shown in Fig. 2, we putk520.140/8
GeV2520.0175 GeV2. The factor of~1/8! in our choice for

FIG. 1. ~a! The figure shows the contributions to the quark se
energy,S(k). Here the double line represents the quark propaga
iS(k8)5 i [k”2S(k8)1 i e]21 and the wavy line is the confining in
teraction. @As a diagrammatic element, the wavy line introduc
2iVC(k2k8) when evaluating the diagram. The solid circle d
notes a factor ofiGS .# ~b! The equation for the quark propagator
given in terms of the self-energy,S(k), seen in~a!. The single line
is the propagator of a massless quark in this figure.
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k serves to convert a value ofk appropriate to scalar con
finement to a value appropriate to the interaction given
Eqs.~2.3! and~2.4!. A factor of 2 is obtained since we hav
two terms in Eq.~2.3! and a factor of 4 arises from th
Lorentz character of the interaction.

IV. THE VERTEX FUNCTION OF THE CONFINING
INTERACTION

We now consider a vertex function that sums a ‘‘ladde
of confining interactions. The equation for the pseudosc
vertex is then@2#
r

o

n

’
ar

F̄P
i ~q,k!5g5t i1(

j51

2

i E d4k8

~2p!4
VC~k2k8!Oj~1!

3S~k81q/2!F̄P
i ~q,k8!S~k82q/2!Oj~2!.

~4.1!

We define A1(q,k8)5A[(k81q/2)2] and
A2(q,k8)5A[(k82q/2)2)] and make use of the relation
gm$@k” 81q” /21A1~q,k8!#g5@k” 82q” /21A2~q,k8!#%gm1g5g
m$@k” 81q” /21A1~q,k8!#g5@k” 82q” /21A2~q,k8!#%gmg5

58@~k81q/2!•~k82q/2!2A1~q,k8!A2~q,k8!#g5 . ~4.2!
r

g
its
its
t

or

at

-
c-

k
ell.
r

We also define

NP~q,k8!5k822q2/42A1~q,k8!A2~q,k8!, ~4.3!

so that, if we put

F̄P
i ~q,k!5g5t

iFP~q,k!, ~4.4!

we see that the functionFP(q,k) satisfies the integral equa-
tion

FP~q,k!511 i E d4k8

~2p!4
8VC~k2k8!NP~q,k8!FP~q,k8!

D@~k81q/2!2#D@~k82q/2!2#
.

~4.5!

In Eq. ~4.5!, we have used the definition
D(p2)5p22A2(p2).

An entirely similar equation may be written for the scala
confining vertex, where we putF̄S(q,k)5FS(q,k)I. Thus,

FIG. 2. Values ofA(k2) are shown fork2<0. The calculations
are made in Euclidean momentum space using a regulator functi
C(k2)52L4@k21A2(k2)1L2#21@k21A2(k2)12L2#21, with
L50.78 GeV. Herek520.14/8 GeV2 andGs58.30 GeV22.
FS~q,k!5I1 i E d4k8

~2p!4
8VC~k2k8!NS~q,k8!FS~q,k8!

D~~k81q/2!2!D~~k82q/2!2!
,

~4.6!

with

NS~q,k8!5k822q2/41A1~q,k8!A2~q,k8!. ~4.7!

Note the difference sign for the last term of Eqs.~4.3! and
~4.7!.

In the past, forq2.0, we have solved the equation fo
FS(q,k) by completing thek08 integral in the complexk08
plane@2#. There are two poles in the lower-half plane arisin
from the quark propagators. For one pole, the quark is on
positive mass shell. For the other pole, the antiquark is on
negative mass shell.@We have also neglected any poles tha
would arise if we admit energy transfer inVC(k2k8) and we
continue to make that approximation for our calculations f
timelike q2(q2.0).# See Fig. 3.

For the functionFP(q
2,q•k,k2), let us consider the case

where the quark is on its mass positive shell, so th
k01q0/25Eq~k1q!. The resulting function is a function of
only two variables. In the frame whereq50, we define

n,

FIG. 3. The integral equation for a vertex function of the con
fining interaction. The solid triangular area denotes the vertex fun
tions. @We may write integral equations for eitherFS(q,k) or
FP(q,k).# Here the wavy line is the confining interaction
VC(k2k8). The resulting equation is solved with either the quar
on its positive mass shell or the antiquark on its negative mass sh
~See the text.! The double line denotes the propagato
iS(k1q/2)5 i [k”1q” /22A1(q,k)]

21 or iS(k2q/2)5 i [k”2q” /2
2A2(q,k)]

21.
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GP
12~q0,uku!5FP~q2,q•k,k2!uk01q0/25Eq~k! . ~4.8!

Similarly, we consider the case where the antiquark is on
negativemass shell. In that case, we define

GP
21~q0,uku!5FP~q2,q•k,k2!uk02q0/25Eq~k! . ~4.9!

These functions satisfy coupled equations of the form

FGP
12~q0,uku!

GP
21~q0,uku!G5F11G24E d3k8

~2p!3
VC~k2k8!

3F 1

q022Eq~k8!
2

1

q012Eq~k8!

1

q022Eq~k8!
2

1

q012Eq~k8!

G
3FGP

12~q0,uk8u!
GP

21~q0,uk8u!G . ~4.10!

We see, however, from the last equation that

GP
12~q0,uku!5GP

21~q0,uku!. ~4.11!

FIG. 4. The functionGS(q
0,ukY u) is shown fork520.0175 GeV2

and various values ofq0. Note that GS(q
0,uk0nu)50, when

k 0n
2 5(q0/2)22mq

2. Starting at the lowest curve and moving highe
we haveq050.7 GeV,q050.6 GeV,q050.5 GeV,q050.4 GeV,
q050.3 GeV, q050.2 GeV, andq050.0 GeV. ~The values for
q050.1 GeV are quite close to those forq050.0 GeV.! The results
are for a constant mass,mq5260 MeV. Ifmq is replaced byA(k

2)
only some small changes are observed nearuku50. A cutoff on the
three-momenta has been used~uk8u,L3!, with L350.702 GeV.~See
the text.!
ts

Discarding the superscripts, we have a single integral eq
tion

GP~q0,uku!5124E d3k8

~2p!3
4Eq~k8!

~q0!22@2Eq~k8!#2

3VC~k2k8!GP~q0,uk8u!. ~4.12!

In Fig. 4 we present values ofGP~q0,uku! for several values
of q0>0. It may be seen from the figure thatGP~q0,uku! for
largeuku is about 0.6–0.7. Those values are related to a cu
placed on the three-momenta in the integral equati
L350.702 GeV~uk8u<L3!. However, the integral equation
does not need to be regulated, since the integrals converg
uk8u→`. If one putsL3 equal to several GeV, the variou
GP~q0,uku! go rapidly to 1 with increasinguku for all q0 values
considered here. We recall that it is the zeroes of the con
ing vertex functions fork 0n

2 5(q0/2)22mq
2 that remove the

qq̄ cut in various vacuum polarization diagrams. Such cu
would appear forq2.4mq

2 in the absence of a model fo
confinement@2,3#. The zeroes ofGP~q0,uku! are indicated in
Fig. 4 by small dots. For those curves without such dots,q0

is too small (q0,2mq) to lead to on-mass-shell quarks in th
absence of confinement.

V. THE VERTEX FUNCTION FOR THE TOTAL
INTERACTION AND THE GOLDSTONE BOSON

OF THE GENERALIZED NJL MODEL

In this section we discuss a vertex function,F̄T(q,k), that
includes the effects ofboth the confining interaction and the
~zero-range! NJL interaction. The integral equation for tha
quantity is depicted in Fig. 5. That integral equation reads,
the pion channel,

FIG. 5. The equation satisfied by the pseudoscalar-isovector
tex of the total interaction,FT(q,k), is shown as a crosshatche
triangular area. The wavy line is the confining interactio
VC(k2k8), and the solid circle represents a factor ofiGS . The
driving term for this equationg5t

i . @See Eqs.~5.1! and ~5.2!.#
F̄T~q,k!5g51(
j51

2

i E d4k8

~2p!4
VC~k2k8!Oj~1!S~q/21k8!F̄T~q,k8!S~2q/21k8!Oj~2!2ncnf iGSg5

3E d4k8

~2p!4
Tr@S~q/21k8!F̄T~q,k8!S~2q/21k8!g5#. ~5.1!

In the last equation, we have already factored out the isospin matrix that appears in the driving term,g5t
i . We then define

F̄T(q,k)5g5FT(q,k) whereFT(q,k) is a scalar function. We have
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FT~q,k!511 i E d4k8

~2p!4
@8NP~q,k8!VC~k2k8!2ncnfGSM ~q,k8!#FT~q,k8!

D1~q,k8!D2~q,k8!
, ~5.2!
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where we have put D1(q,k8)[D„(q/21k8)2… and
D2(q,k8)[D„(q/22k8)2…. Note thatNP(q,k) was given
previously in Eq.~4.3! Here, we have also defined

M ~q,k!54S q24 2k21A1~q,k!A2~q,k! D . ~5.3!

We now consider the limit q→0. We have
D1(0,k)5D2(0,k)5D(k2), NP(0,k)5D(k2), and
M (0,k)524D(k2). Therefore,

FT~0,k!511 i E d4k8

~2p!4
8VC~k2k8!14ncnfGS

D~k82!
FT~0,k8!.

~5.4!

If there is a bound state at zero energy, the homogene
version of Eq.~5.4! will have a solution. Thus, we conside

FT~0,k!5 i E d4k8

~2p!4
8VC~k2k8!14ncnfGS

D~k82!
FT~0,k8!.

~5.5!

However, the gap equation, was

A~k2!5 i E d4k8

~2p!4
8VC~k2k8!14ncnfGS

D~k82!
A~k82!.

~5.6!

Thus, we see thatFT(0,k) is proportional toA(k
2) and we

have a zero-mass state. The pion is the Goldstone boso
expected.

It is sometimes useful to define the wave function

cT~k
2!5n

1

k22A2~k2!
A~k2!, ~5.7!

wheren is a normalization factor.
We have

@k22A2~k2!#cT~k
2!

5 i E d4k8

~2p!4
@8VC~k2k8!14ncnfGS#cT~k8

2!. ~5.8!

VI. DISCUSSION

Work that has some relation to ours was carried out
Gross and Milana@4#. These authors obtained coupled equ
tions for meson wave functions, in the presence of a con
ing interaction, by performing integrals in the complexk08
plane and picking up the poles of the quark propagators
us

as

y
-
-

as

was done in our work whenq2 was timelike. However, the
formalism used in Ref.@4# does not yield a zero-mass pio
unless the confining potential satisfies a constraint.@The con-
straint used is a relativistic generalization of the relati
VC(r )50, for r50.#

The appropriate Lorentz transformation properties of
confinement interaction is a matter of some uncertainty. S
lar confinement has been popular, since it provides a g
representation of spin-orbit effects in heavy-quark syste
However, a number of authors have suggested that be
results may be obtained with vector confinement. In parti
lar, Münz @5# has noted that the Salpeter equation used
the study of meson structure is unstable for scalar confi
ment @6#, while vector confinement works well. Studies
Swanson and Isgur@7# and of Szczepaniak@8# also suggest
the importance of vector confinement. Further, Resag
Münz have used vector confinement and have only kept
term involving g0 @9#. In addition, Münz has used equa
amounts of scalar and vector confinement, again keep
only theg0 term of the vector-confinement interaction@5#.

In the work reported here, we have shown that theV-A
form of the confining interaction yields simple equations f
the quark self-energy and for the pseudoscalar vertex fu
tion. Thus, we could carry out our analysis without solvi
coupled, nonlinear equations forA(k2) andB(k2). We could
also deal with a single scalar functionFP(q,k), rather than
with four such functions that characterize the pseudosc
vertex in the general case. On the other hand, we do
recommend theV-A form for the study of meson spectra
We believe that vector confinement provides a more satis
tory model and also allows us to write a Lagrangian w
chiral symmetry. We hope to complete a study of vec
confinement in the future. The equations that will be stud
are more complicated than those considered in the pre
study. Results of some preliminary calculations for the c
of vector confinement are reported in the Appendix.

In this work we have shown that one may write a L
grangian that has chiral symmetry when we include a mo
of confinement. However, our work has a number of limi
tions and further work is required. For example, our analy
has been made in a Euclidean momentum space. We w
like to have results for timelike values of the momentum
well. One might attempt to continue the results for spacel
momenta into the timelike region, but we do not believe th
the accuracy of such a procedure is known and we do
adopt that approach. On the other hand, we have mad
large number of calculations in Minkowski space for tim
like values of the momenta@2,3#. We have used an approac
similar to that of Gross and Milana@4# in that we have only
considered the singularities of the quark propagators, w
completing integrals in the complexk08 plane. That is a cor-
rect procedure, if the confining potential has no singularit
in thek08 plane. Therefore, we have neglected energy tran
when using the confining interaction in Minkowski-spa
calculations. Thus, we see that our Euclidean-space calc
tions reported here are not entirely consistent with o
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Minkowski-space calculations reported upon elsewh
@2,3#. We hope to study this problem in the future. While t
Lorentz structure of the confining interaction may be cons
ered an open question, we have shown that confining in
actions that preserve chiral symmetry may be used for v
ous studies. Such potentials are to be preferred, since
are consistent with the properties that a good effective in
action for low-energy QCD should have. Their use is ess
tial, if we are to study the effects of confinement in the ca
of the pseudoscalar octet~Goldstone bosons!.

APPENDIX

In this appendix, we wish to study the self-energ
S(k)5B(k2)k”1A(k2), and the vertex function,F̄T(q,k),
for pure vector confinement. In this case we find the coup
nonlinear equations

A~k2!5 i E d4k8

~2p!4
4VC~k2k8!14ncnfGS

k82@12B~k8!#22A2~k82!
A~k82!

~A1!

and

k2B~k2!52 i E d4k8

~2p!4
2~k•k8!@12B~k82!#VC~k2k8!

k82@12B~k8!#22A2~k82!
.

~A2!

The pseudoscalar vertex function is more complicated t
in theV-A model, since there are now four scalar functio
of three variables to be calculated. We may write, in
general case,

F̄T~q,k!5g5@a1~k,q!1k”a2~k,q!1q”a3~k,q!1q”k”a4~k,q!#,

~A3!

with a1(k,q)5a1(k
2,k•q,q2), etc. However,F̄T(q,k) is

simpler, if we consider the caseq50:

F̄T~0,k!5g5@a1~k
2!1k”a2~k

2!#, ~A4!

wherea1(k
2)5a1(0,k), etc.

The vertex function for the total interaction satisfies t
equation

F̄T~0,k!5g51 i E d4k8

~2p!4
VC~k2k8!gmS~k8!F̄T~0,k8!

3S~k8!gm2ncnf iGSg5E d4k8

~2p!4

3Tr@S~k8!F̄T~0,k8!S~k8!g5#. ~A5!

We now make use of Eq.~A4! and find that

a1~k
2!511 i E d4k8

~2p!4
@4VC~k2k8!14ṅcnfGS#a1~k8

2!

k82@12B~k82!#22A2~k82!
~A6!

and
e

-
r-
i-
ey
r-
n-
e

,

d

n
s
e

k2a2~k
2!52 i E d4k8

~2p!4
2~k•k8!VC~k2k8!a2~k8

2!

k82@12B~k82!#22A2~k82!
.

~A7!

Now, let us ask if Eq.~A5! has a homogeneous solution. W
write Eq. ~A6!, with the ‘‘driving term’’ removed, as

a1~k
2!5 i E d4k8

~2p!4
@4VC~k2k8!14ncnfGS#a1~k8

2!

k82@12B~k82!#22A2~k82!
.

~A8!

Now consider Eqs.~A7! and ~A8!. We see that compariso
to Eq. ~A1! shows thata1(k

2);A(k2). Further, we may put
a2(k

2)50, since Eq.~A7! is homogeneous. Thus, in the ch
ral limit, the vertex forq50 is F̄ T

i (0,k)5g5t
iFT(k

2), where
FT(k

2) is proportional toA(k2). Since there is no driving
term,FT(k

2) is related to the pion wave function

cT~k
2!5h

1

k2@12B~k2!#22A~k2!
A~k2!, ~A9!

whereh is a normalization constant.@Recall Eq.~4.7!.# We
remark that

$k2@12B~k2!#22A2~k2!%cT~k
2!

5 i E d4k8

~2p!4
@4VC~k2k8!14ncnfGS#cT~k8

2! ~A10!

in the case of vector confinement.

FIG. 6. Solutions of the coupled equations forA(k2) andB(k2),
generalized to include a current mass,mq

055.5 MeV, are shown.
@See Eqs.~A1! and ~A2!.# Here we use vector confinement wit
k520.14/4 GeV2 andGS58.65 GeV22. ~For this calculation we
have used a Pauli-Villars regularization procedure. See captio
Fig. 2.!
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In Fig. 6 we show values forA(k2) andB(k2) obtained
when solving Eqs.~A1! and~A2!. We have usedk520.14/4
GeV2, GS58.65 GeV22 and have included a finite value o
the current quark mass,mq

055.5 MeV, in one case.@Note
thatB(k2) is dimensionless.#
S
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