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Studies in the statistical and thermal properties of hadronic matter
under some extreme conditions
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The thermal and statistical properties of hadronic matter under some extreme conditions are investigated
using an exactly solvable canonical ensemble model. A unified model describing both the fragmentation of
nuclei and the thermal properties of hadronic matter is developed. Simple expressions are obtained for quan-
tities such as the hadronic equation of state, specific heat, compressibility, entropy, and excitation energy as a
function of temperature and density. These expressions encompass the fermionic aspect of nucleons, such as
degeneracy pressure and Fermi energy at low temperatures and the ideal gas laws at high temperatures and low
density. Expressions are developed which connect these two extremes with behavior that resembles an ideal
Bose gas with its associated Bose condensation. In the thermodynamic limit, an infinite cluster exists below a
certain critical condition in a manner similar to the sudden appearance of the infinite cluster in percolation
theory. The importance of multiplicity fluctuations is discussed and some recent data from the EOS collabo-
ration on critical point behavior of nuclei can be accounted for using simple expressions obtained from the
model.[S0556-28187)05202-3

PACS numbds): 25.70.Pq, 21.65:f, 05.70.Ce, 05.70.Jk

I. INTRODUCTION determine the thermodynamic functions by taking various
partial derivatives, i.e., the internal energy and pressure are
One of the goals of nuclear physics is to characterize thgiven by U=kgT?[(3/dT)INZsly, P=KgT[(d/3V)INZa];.
thermal properties of nuclear matter, described by its equaAdditional partial derivatives lead to such important quanti-
tion of state. Investigating heavy-ion collisions offers oneties as the specific heat and isothermal compressibility,
experimental method of probing nuclei away from the typi-Cy=(dU/dT)y, likt=-—[V(dP/dV)]t, and thermody-
cal low temperature and density, and a number of experinamic potentials such as the entropy and Gibbs free energy
ments are underway studying the breakup of nuclei, contribean be related to these quantitie§=U/T+kglnZ,,
uting greatly to our understandirig—6]. Several theoretical G= —kgTInZ,+PV. Our interest of course is not in the par-
investigations of these properties have been instigated, thetition function itself, but rather in these derived functions,
mal [7-10], statistical[11-15, transpor{16—20, and per- and as such the partition function is merely a means to that
colative[21-26 models all offering insights into the prop- end.
erties of fragmenting nuclei. This section constructs a partition function for fragment-
In a previous set of papef7—-30 an exactly solvable ing nuclear matter. It does so by investigating the thermody-
canonical ensemble model was developed for studying theamic functions at both low- and high-temperatures and den-
multifragmentation of nuclei induced by high-energy colli- sities. At low temperature/high density, the nucleons
sions. Detailed properties of the cluster distributions such asoalesce into a single nucleus which can be modeled as a
inclusive yields and correlations were explored. In this pa-degenerate Fermi gas with Skyrme interactions. At high
per, we study the statistical and thermal properties of nucleiemperature/low density, the nucleons evaporate into a
using the same model, extending results presentd@ih Maxwell-Boltzmann gas of individual nucleons. With these
This model gives a unified description of multifragmentationresults firmly in mind, a statistical fragmentation model is
phenomena and the thermodynamic properties of hadroniotroduced whose parameters depend on the thermodynamics
matter, such as its equation of state and the nuclear conim a way consistent with the high- and low-temperature lim-
pressibility. Simple expressions for these quantities are obits, yet allowing more complicated fragmentation patterns at
tained which extrapolate or connect between a low-intermediate temperatures. The remaining freedom in the
temperature nearly degenerate Fermi gas to a highmodel is eliminated by assuming that the cluster yields fol-
temperature ideal Maxwell-Boltzmann gas of nucleonslow a power law. Interestingly these minimal assumptions
Importantly, the effects of the fragmentation degrees of freelead to a model surprisingly rich in physics as we shall see in
dom on the thermodynamics is manifestly included. Questhe next section.
tions related to very high temperatures and particle and an-
gg‘;girde production will be developed in a subsequent A. Low-temperature behavior and ideal Fermi gas laws
At zero temperature, the nucleus can be treated as a de-
Il. MODEL STUDIES generate Fermi gas, with Fermi momentpgm given by

Given the partition functiorZ,(V,T) for a system ofA g A—lwp3=h3 1)
nucleons at a given volum¥ and temperaturd we can SIg "FF P
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where gg=4 is the spin-isospin degeneracy factor and 1 2 w2 (kgT)\?
p=AlV is the density. At normal density,=A/V,=0.17 — | =gper|lt 5| —
-3 Lo . KT 3 12 Eg
nucleons fm °, nucleons are nonrelativistic and the Fermi LT
energy and momentum are relatedéqyzp§/2m. From the p? p\tte
above expression for the Fermi momentum, we see g¢pat —2a0p_0+(1+ o)(2+o)azp P_o) C)

«p?3 At low temperatures, the total kinetic energy for such
a Fermi gas is given bj32]
B. High-temperature, low-density ideal Maxwell-Boltzmann

gas laws

3
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e At high temperature and/or low density, but below meson
and particle-antiparticle production thresholds, the hadronic
However, the nucleons do interact. Interactions between thproperties are that of an ideal Maxwell-Boltzmann gas, with

nucleons can be taken into account by using a density-

dependent Skyrme interacti¢83,34). In this approach, the Upr=3AksT, (10
internal energy of a nucleus is given by
Cy ,
p p\tte Ka =2A, (13)
ULT:EK_A dp— —aj _) s (3) B/ Hr
Po Po
Pur=pkgT, (12

wherea, anda; are Skyrme parametet®r simplicity, tem-
perature independent determined by fixing

ay(p)=—U_1(T=0)/A the binding energy per particle at i — okaT (13)
zero temperature K1) i Pre
3 p p >1+U' S Vv
= — — + —_ = _
av(p) 56F(p) ag oo as P (4) (k_B) =A|n‘ 95/2mgs,|}, (14)
HT

to the empirical value foray at p=p, (about 8.0 MeV/
nucleon at zero temperatiirand having this as the maxi- Where the entrop is given by the Sackur-Tetrode law and
mum of ay. The density dependent repulsive term should\t=h/y2mmkgT. We expect that nuclei vaporize into indi-
appear with a higher power gf than the attractive part, so Vidual nucleons akgT>ay, the binding energy per particle.
that the nucleus does not collapse, and thus requite§.  The partition function consistent with these thermodynamic
Commonly used values far areoc=1 (three body interac- functions isZ,=x*/Al, wherex=V/\}
tion) and o= 2/3 (finite range term[35].

Having specified the internal energy, we can now deter- ¢, Hadronic matter at moderate temperatures and densities
mine any other thermodynamic function. The specific heat and ideal Bose gaslike structure

Cy=(0U/dT)y, and entropys=[TC,/T'dT’ are therefore . . . -
v=( W PB=JCy In the region between the ideal Fermi gas limit and the

s 72 (kT ideal Maxwell-Boltzmann gas limit, the effects of the frag-
:<_) :A—(—). (55  mentation of the initial nucleus must be taken into account
o \Ke/ iy 2 when considering thermodynamic issues. To account for
these effects, we employ a model developed initially to study
The partition function can now be determined from multifragmentation phenomena6]. This model has the cor-

Cv
kg

€F

Zp=exp{(ST-U)/kgT}, which gives rect high- and low-temperature limits, as determined in the
previous sections, but has features similar to that of a Bose
Zp=y", (6)  gas in the intermediate range.
To describe the fragmentation of a nucleus into all pos-
where sible modes of breakup, a weight is given to each possibility.
The weight chosen is
y—exp[iJrkB—T] (7) b 1 (xy<hyn
B kBT €p ’ _ X_k_ = Xy B ) k
W(n) kl;ll nd k= nd B )] 19

andeo=(4/7%)er . From this partition function it is easy to

determine the pressure and compressibility. wherex andy are functions of the thermodynamic variables

) ) (V,T), Bk is the cluster size dependence of the weight and
1+5l(kB_T) } n=(nq,n,, ...) is thefragmentation vector, witm, the
12 | e¢ number of fragments withk nucleons such that kn,=A.

1to Such a weight is expected if the system'’s partition function

_aopﬁ+(1+g)a3p ﬁ) , (8  can be expressed in terms of the partition functions of the
Po Po individual fragments. In that case, the factgt arises from

2
PLT:§P8F(P)
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the indistinguishability of the fragments of the same sizejn the infinite A limit, and infinite cluster exists below a

and thex, is the internal partition function for a cluster of certain value ok/y. These features of the model parallel the

sizek. phenomena of Bose condensation and the sudden appearance
The details of the internal partition function Of an infinite cluster above a critical probability in percola-

X =Xy*"1/B, can be understood as follows. The factortion theory. By takingB,~k’", 7>2, we can therefore ex-

x=V/\$ arises from phase space and translational factordlore the thermodynamic properties of a model which has
i.e.,V arises due to the volume available for each fragment’§hese features. Secondly, experimental data suggest that clus-

motion, and\3 accounts for the temperature’s effect on that'®" yields have a power law dependence of the flrrh and
. . - e would like to include this important feature into our
motion. This term was developed i8] from statistical con- model
S|Qerat|ons_, and we willshortly _show bl IS consIStent \vith this choice of weight the canonical partition function
with the hlgkrl—tgmperature.be'hawor d|scusseq in Sec. ”,BZA:EnW(n) is a polynomial inx,y, given by
The factory*~?! is due to binding energy and internal exci-
tations as discussed j28,30. For example, we assume that A
the bllr.1d|ng energy of a clustgr of sizeis given by the Za(X,y)= > ZWM(B)xmyA-m, (16)
simplified formEg=ay(k—1), yielding yeexp@y/ksT) as- m=1
suming a Boltzmann distribution. Similarly, excitation en-
ergy and entropy considerations for a cluster suggest with m=X;n; the multiplicity. Given the partition function,
<exp{(kgT/eg)[ To/(T+Ty) 1}, whereT is a cutoff temperature  all thermodynamic properties of the model can be obtained,
for such excitations introduced [87] and accounts for their as well as ensemble averages. For example, the mean num-
finite lifetimes. Combining the binding and excitation effects ber of clusters of siz& is
yields ay which we will shortly show is consistent with the
low temperature properties of nuclei already discussed in XY Za W(X,Y)
Sec. Il A. (= BT
. . . . :8k ZA(X!y)
It is also interesting to note that a factor similar to
exp(—kgT/eg) also appears in Feynman'’s approach to Xxhe
transition in liquid helium [38]. For a Fermi gas,
eo=(4lm?)ep, ex=pzl2m, 4mwpVI3h3=A/4, and A/V
=d~3 which implies kgT/eq~md®*kgT/2h%. The factor
exp(—mdkgT/2h?) is Feynman’s cost function for moving a A k-1
helium atom =m) from one location to another. Za(Xoy) = EZ Y Zn_(XY), (19
The internal partition function also contains a facgy At B
which gives a mass dependerict it, which we will take as
Bi=K". Its origin depends in part on an exact microscopicwhere Zy(x,y)=1. The whole procedure is easily imple-
calculation of the internal partition function of a cluster of mented by computer.
strongly interacting particles. This partition function has con-  The parameters,y determine the thermodynamic aspects
tributions due to vibrations, rotations, excitations, con-of the models. The above discussion of the internal partition
tinuum, and bound states, resonances, [@8], and is not  functions determined these parameters, but they are just as
completely understood. However, such a partition functioneasily determined by considering the overall partition func-
can reasonably be expected to take the f@prck™ "y tion at high and low multiplicity. When the multiplicity is
The prefactork™ " in this case would determingy. While  |arge(m)~A, andZ,~Z{"xA. Clearly this is the high tem-

simple noninteracting models like a Fermi-gas model of &erature limit, and is simply the ideal gag introduced in
nucleus may give a reasonably good behavior for the exposec. || B, given by

nential dependence of this partition functidie., y), the
prefactor might not be so accurately determined. For this
reason, we rely on the experimentally determined power-law X
behavior of the cluster yields to determineSince the clus-
ter yields in fragmentation should strongly depend on the
internal partition functions of the clusters, this is not unrea-and involves the volume of the systevi the thermal wave-
sonable, and in this model, §h )=k~ " thenB,=k". Similar ~ lengthA+, and the dimensionality of the systeinThe term
problems arise in the theory of phase transitions in othek™ in the weight arises from the thermal motion of each
fields. For example, in Fisher's droplet mod@&B] the dis- fragment. Since the overall motion is zero, this should be
tribution of cluster sizes is assumed to fallkas™ and 7 is  replaced byx™ ! to reflect the center of momentum con-
then related to another exponehby 7=2+ 1/5. The expo-  straint. When the multiplicity is small(m)~1, and
nentd is related to the dependence of the presf®i@n the Zszgl)xyA‘l. Assuming that thex parameter is removed
densityp around the critical point aB—Pc~|p—pq|°. by the conservation of momentum constraint described
We therefore will assume a forg@,=Kk” for By in a spirit  above, this showy to be given by Eq(7). A correction to
similar to Fisher’'s droplet model. We note the following im- the internal excitations however, needs to be made at high
portant features of this choice, which will be developed intemperatures to reflect their finite lifetimes. Koonin and Ran-
subsequent sections. First, fer-2, the model can describe drup [40] argue that a simple cutoff is effective, which re-
the sudden condensation of nucleons into a large cluster, aralts in

(17

The partition functions themselves can be obtained using a
recursive procedure defined by the constraipk(n,)=A,
which gives

(19

I
SARS
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FIG. 1. Pressuréa) and (in)compressibility(b) of the model at various temperatures.

ay kgT T, general derivation of these identities is included in Appendix

y=exX |(B_T+8_0T+To . (20 A.

Here ay is the binding energy per particleg is the level

spacing parametédrelated to the Fermi energandT, is the

cutoff temperature. So the tergf™™ in the weight arises

from the binding and internal excitations of each fragment. ~ The hadronic equation of state is of much interest since
The parameter3, determines the fragmentation nature the pressure and incompressibility reflect the behavior of

and depends on the internal partition function of a cluster ofmatter at fixed temperatures and varying volumes. A simple

sizek. As already discussed, since the mass yield distribuexpression can be obtained for this equation of state by using

tions are often well represented by a power Ipdt], we theP=KkgT(d/dV)InZ, and the partition function of Eq16)

choosep, simply to reproduce this important experimental as determined from the weight in EQ.5), giving

fact. If By=Kk", then in the grand canonical limit

(n~k~". Typically 7 is found between two and three, and pP= @p + ( 1— @) p/ (21)

we have chosenr=2.5 as representative for calculations AT AT

made in this paper.

A. The hadronic equation of state
and a van der Waals-like structure

where(m)=X,(n,) is the mean multiplicityP 1, Py are
the low- and high-temperature limits defined in Secs. Il A
and 1B and P/=P 1—3peo[(KgT/eo) 1 T/(T+To)] is

In this section we consider the various fundamental thersimply the cutoff corrected low-temperature pressure. The
modynamic functions of fragmenting nuclei, namely theabove equation shows the importance of the mean multiplic-
pressure, compressibility and Gibbs free engi@gc. Il A), ity in the behavior ofP. For lowx/y, (m)~1, and the pres-
the internal energy and specific hg&@ec. Il B), and the sure reduces to the Fermi gas and Skyrme preddure At
entropy(Sec. 1l O. Interesting features of the functions are high x/y, (m)~A and the ideal Maxwell-Boltzmann gas
explored, although a detailed examination of their origin ispressurePy; in P dominates. Thus the result of ER1)
postponed till the next section. A brief accounting of suchconnects the two extremes in a simple analytic way. Figure

IlIl. THERMODYNAMIC PROPERTIES
OF HADRONIC MATTER

properties has already been givi&di]. 1(a) plots the pressure for several temperatures for
Since the partition function can be expressed succinctly ag, = k2.
a function ofx andy, derivatives of IZ, with respect to The low-temperature component of the pressure is quite

these variables will appear and reappear in computations afiteresting. It is responsible for the pressure rising as the
thermodynamic functions. Fortunately for this model, deriva-volume increases over a range of volumes at low enough
tives with respect tox,y yield expectation values of the temperatures, a feature characteristic of a van der Waals gas
multiplicity, i.e., x(d/dx)InZy={m), y(a3/dy)InZy,=A—(m),  or a liquid-gas phase instabilit}8]. It arises due to the
[x(9/9%) 12InZy=[y(dl3y)|AnZy=Var(m) =(m?)—(m)2. A nuclear interactions. To see this phase instability more
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the phase instability appears first@t 0.50,, T=24 MeV,
the point where ¥, and its derivative are both zero.
Another method of seeing this instability is to consider
the Gibbs free energs=—kgTInZ,+PV. Figure 2 shows
that G vs P is multivalued below a critical temperature, a
clear indication of a phase instability.
In nuclear physics, one usually refers to the incompress-
ibility k= (9/p«t), which if eg~37 MeV gives afT=0

-10 |

-15 |

G/A (MeV)

k=964 1440 MeV. (23

For o=1, this modelk =240 MeV, consistent with the usu-
ally quoted value for the incompressibility.

0.1 0.2 0.3 0.4 0.5 0.6
P/kBT
B. Internal energy, specific heat, and the ideal Bose gas

FIG. 2. Gibbs free energy per particle of the model as a function The energy and specific heat are important quantities also,

of pressure at various temperatures. especially when the volume is fixed and the temperature is
changing. The internal energy decomposes into low- and

clearly, we can calculate the isothermal compressibility fromhigh-temperature components just as the pressure does,
the equation of state, since (&)=[p(JdP/dp)]y, a litle  namely
effort gives us

uzﬂu +(1—@)U’ (24)
1 (m (my\ 9Py Var(m) (Pyr—P()? A CHT A LT
:TPHT+ 1_T p ﬂp - A PHT '
(22

KT

Where U|,_-|—:ULT_AEO[(kBT/SO)]Z[T(T+ 2T0)]/[(T
At large values of x/y, (m)=A, Var(m)~0 and +T;)?] is simply the cutoff corrected low-temperature en-
(1/k1)—Pyr, the ideal gas limit. At lowx/y, (m)~1, ergy. Figure &) plots this behavior for a number of densi-
Var(m)~0 and (lk;)—P/; an ideal Fermi gas with ties, which reveals little except for the monotonic increasing
Skyrme interaction limit. In between, there is an effect due tanature of the energy.
the fluctuation in the mean number of clusters. The behavior The specific heat on the other hand is more revealing.
of the compressibility is shown in Fig(d). From the figure, Using C,,=(dU/dT)y, one arrives at

T T T Y7 2 T T T
250 |- V/Vy = 0.7 /4
_ — VN, =10 B
——— . VN =20 ,;'/
20fF T VN = 40 R g 1.5
(a) /)
7
K7
7
<150 | / -
] 7 éﬂ
Nt ‘o/ '
I iy J
> .:// .
100 | R/ -
R/
R/ [
7' 05 |}
S0 e/ .
Y/
RNy
".—'/
[ 9~ 1 1 1 n 0
0 50 100 150 200 0 50 100 150 200
T (MeV) T (MeV)

FIG. 3. Internal energya) and specific heath) per particle of the model at various densities.
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Cy d 2kgT( To |2 6 . . .
k_B_<m>§+(A_<m>) e |\ THTg
d a\/ kBT TO 212 -
Va5 T T e | T T, } ‘ T
4 | P _
and Fig. 3b) illustrates the behavior ofC, for d=3, ,-/'/ -7 -
B=k%2 The ideal gas limit is seen in the first term & T -
{m)(d/2). The low-temperature Fermi gas result is contained @ e -
in the second termA—{m))(2kgT/ep). The last term in- A
volving the multiplicity fluctuations gives rise to a peak in 2r 7 ’// .7 1
C\//kB whend>2. /’/ // V/Vo = 0.7
The variance induced peak is quite interesting. As we F5L7 - = WNo =10
shall see in Sec. IV A, it is analogous to condensation in an ;",':/ g i:i:_'xxz - i:g
ideal Bose-Einstein gas, a critical transition which has been iy
extensively studied. o ' ' '
0 50 100 150 200
T (MeV)

C. The entropy of nuclei

The entropy of fragmenting nuclei can be obtained from  FIG. 4. Entropy per particle of the model at various densities.
the relationS= (9/dT)kgTInZ, which gives
2
:| . A

(25 ﬁ,:}‘, 2kt~ "=g,_4(2), (28)
X k=1

SinceA=Z2,k(n,), we have
a, ke kk(ny)

—_ TO
keT = &g

T+Ty

S d
k—B—InZA+<m>§+(A—<m>)

When (m)~1, the entropy is that of a nearly degenerate
Fermi gas ofA nucleons confined to a cluster of sigeplus ity x’ =xly, xy as defined earlier and
a contribution from the motion of this cluster which is (2)==,-0k "Z¥. Notice thatg,_(z) =zdg,/dz and that
coupled to a heat bath in the canonical ensemble. The neargfr 7~1 A .

degenerate Fermi gas entropy is given by &j.where cut- '

off effects are excluded. Including it then gives

=A (ke 1 26
k_B - 8_0 _2(—0) ) (26)
wherev= —Inz, a result due to Londof42].

The cutoff correction is of the same order as the next higher The left-hand side of E(28) is always finite in the ther-

order correction. Wherﬁm)wA, S reduces to the Sackur- modynamic limit. If z>1, the right-hand side always di-

Tetrode law of Eq(14). In the intermediate regime, there is verges in the infinite limitA—o, and the equation cannot

a critical point where a latent heat must be overcome, causold. Atz=1,3,k*” "= ¢(7—1), the Riemann zeta function,

ing a change in volume. which is finite only if 7>2. If A/x'<{(7—1) then az<1
Figure 4 is a plot ofS/kgA vs kgT. In the plot, the con-  can be found that satisfies the last constraint equation includ-

tribution from the thermal motion of the largest cluster hasing all terms in the sum. Otherwise, the grand canonical ex-

been subtracted out so th&t-0 as(m)— 1. This is equiva-  pression breaks down, which defines a critical point
lent to requiring the total momentum of the system to be
zero, a correction consistently made throughout these calcu-

. A
lations. —={71). (30)

k
6y =2" T (A-n+ 3 Ln-k(-DG. (29

X
o

IV. CRITICAL POINT BEHAVIOR AND PARALLELS ] ] )
WITH OTHER MODELS The failure of the grand canonical ensemble is due to the

appearance of an infinite cluster, i.e., of sizA wherea is
The thermodynamic functions strongly suggest a criticalhonzero even as tends to infinity. More specifically, when
point, which we determine explicitly in this section. To start, p;y’ exceeds{(7—1), an infinite cluster exists, absorbing
let us work out some properties of the cluster distributions ir\enough mass so that the remaining mass is distributed grand
the grand canonical ensemble. Here the partition function i%anonically withz=1. If A/x’ is less that/(7—1), an infi-
given by Z=3,2'"Z,(x,y)=expS(x/y)27k’, where pite cluster does not exist.
Bx=k" andz=2z'y=e"'*e is the chemical potential. In this  As we have already seen, the multiplicity and its fluctua-
limit (ny) is simply tions play an important role in the thermodynamic functions.
So how does the critical point affect the multiplicity and its
27) Lluctuations? The multiplicit{m)==,(n,) is given simply
Yy

_xZ
<nk>—)—/k—r-
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o6 —mm—m 0.6 — T T T
(a) (b)
04 | 04 | -
2 3
:) ;]
K —..A =200 K —..A =200
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02 —._A=800 0.2 - —._A =600 7
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FIG. 5. The variance in the nuclear multiplicity of the model as a functior’6t, (a) and(m)/A (b).

x"g.(1) A. Ideal Bose-Einstein gas laws
g /< ! ) )
(m) A X=X Let us now compare these results with the ideal Bose gas
A7) xo.2 (3)  of A particles. The results can be found in Hu#&8g] for the
AT X' >X(. cased=3 dimensions, and generalizing to arbitrary dimen-

sions is fairly straightforward.

In the grand canonical ensemble, the ideal Bose gas of

The variance of the multiplicity Vart)=x(d/dx)(m) iS A particles moving in a volum¥ at a temperaturd has a

given by fugacity z= exp{u/kgT} determined by
x'g,(1) <y’ A 1 1 z
Var(m) A ¢ @ VA 92+ 75 (34)
A X,gf(z)_grfl(z) , ’
A 9,-,(2) Xe- The critical temperature for a particular density and tempera-

ture occurs wherz— 1, V—oo, which implies
Figures %a) and §b) plot Var(m)=(m?)—(m)2 vs x’ and
(m) respectively for both the canonical and grand canonical A 1
solutions. The discontinuity in the slope of Var) at the pc=y = nglz(l) (39
critical point is apparent from the figure. The behavior of ¢
Var(m) vs x shows a cusplike behavior. For finite systems,

Var(m) has a rounded peak. As we shall see in the nexgince above the critical point, the second term can be ne-

section, this behavior is related to the ideal Bose-Einstein ga@€cted in the infinite volume [imit. Recalling that
condensation. x=V/\7, this condition is identical to the fragmentation

Is this critical behavior consistent with the experimentalcase if we replace by x' and r by 1+d/2.

situation in nuclear collisions? At the critical poirt=x., The energy, specific heat, pressure, and incompressibility
where Vargn) has a cusp{m)=(m). with above and below the critical point are given by

mj, L(7) dVv

<A> = (r—1)" (33) U Eﬁgl-#dlz(z) T>T,

i i - keT | dV (36
The EOS collaboration experiment determined that for gold = —g01+ap(1l) T<Te,
multifragmentation, the charge multiplicitym).=26+1. 2\
Using the above expression add=79 for A, results in a
critical exponentr=2.262+0.013. Using a percolation theo- d(d+2) V d? gup(2)
retic analysis, they arrived at a somewhat different ——d%1+a22) - T>T;

Cy 4 A 4 gar-1(2)

7=2.14+0.06. The two results are sufficiently close to sug- — =

gest that the connection between the critical multiplicity and ~ Ks dd+2) Vv 0 T<T
critical exponentr [43] may not differ greatly from this 4 Fg“d’Z( ) e

simple model. (37)
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kgT
Tj’gnd/z(z) T>T,

P=1 11 (39)
B
Td'gler/z(l) T<Tg,
kgT 9(21/2(2) T>T
—= N gap-1(2) c (39)
T lo T<T..
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accompanies the transition and of course is the Hee$
which must be spent in moving a particle from the vapor
phase which has entropy to the condensed phase which has
no entropy. The latent heat of E¢1) is the result of the
change in volume along the constant pressure Maxwell line
at a fixedT. The volume change is

A 1

Vem—g ———. 42
¢ A ggu(1) 42

The entropy change can be obtained from the Clausius-

Both above and below the critical point these results agre€lapeyron equatiodP./dT=S./V, to give

with the fragmentation casg=1, r=1+d/2 if we apply
Egs.(31) and(32).

This agreement can be understood by noting that the k_B 2

weight given to the ideal Bose gas th dimensions in a
Mayer cluster expansiof82] is given by Eq.(15) with pa-
rameter vector

X 1

X=jrrar T (40)

At large x (i.e., above the critical poiiptthe second term is

S _ d+2 giiqp(l)

Ja(1) “3

which is consistent withh. = kTS, as expected. The fraction
of the number of particles in the Bose condenga&ro mo-

mentum modgis
&:l_( T )d/Z’

To (44)

negligible and the model reverts to the one considered heréor T<Te.

Below the critical point, the large cluster formed contributes

In nuclear fragmentation, this condensation is also

continue.

momentum space. Rather than the number of particles in the

The nature of the transition is first order as expected for #8r0 momentum mode signaling a phase transition, the num-
Bose-Einstein like condensation. The particles which havéer of particles in the largest cluster plays the same role.
accumulated into the zero momentum mode contribute no

pressure and have no volume or entropy in the thermody-
namic limit. The pressure due to the balance of particles is

constant for a given temperatuftee. independent of vol-
ume. A latent heat per particle of

(1)\ d+2
:(91+d/2 Ko, (41)
Jar(1) 2
] v I
08 | i
2
j (a)
Toa | —---A = 200 -
— — A =400
—-—A =600
-e---A = 800
. — A =0
NI
0 T e e e et
0 1 2 3
x/x,

B. Critical point behavior and percolation theory

Percolation modeld44] have been used to describe
nuclear fragmentation with percolation clusters correspond-
ing to nuclear clusters arising from the collision process. The
percolation cluster distribution is given in terms of the per-
colation probabilityp and percolation threshold probability
p. above which an infinite cluster exists. Specifically,

10 ——r—————7———
8l ’ .
A
N
. / \ \
eg TAERY ®)
Sath oW —-A=200 -
:![ s W — —A =400
-y N \ \\ —-—A =600
A Ch A = 800
2 -.J’.' \\\'. -1
.'I. ..‘\‘
F A
0 I.\.'\'- i — .
0 1 2 3

x/x,

FIG. 6. Size of the largest clustés) and its variancéb) of the model as a function of'/x. .
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1 Einstein condensation. The consequences of Bose-Einstein
(N = i [L(P=P)/pcl, (45  condensation on the properties of hadronic matter were stud-
ied. Simple expressions were obtained for the nuclear equa-
where f(x) is a scaling function. Percolation models havetion of state, heat capacity, compressibility, entropy, energy,
also suggested useful methods of analyzing nuclear fragmeAnd fragmentation yields which encompass these three re-
tation data such as Campi pld#5]. gimes. The importance of multiplicity fluctuations in statis-
The model in Sec. Il has some features that are similafical models of nuclear fragmentation and its effect on vari-
with the percolation model. First, only one parameterous thermodynamic properties is stressed. Some recent data
N :)(/y describes the distribution, the ana|ogp)fn perco- from the EOS collaboration on Cr|t|Ca| pOint beh-aVior of had-
lation theory. Second, below a critical poix{, the fraction ~ ronic matter is analyzed and simple expressions from the
of particles found in the largest cluster is finite, even if the®Xactly solvable model are obtained which can account for
number of particles tends to infinity, a situation familiar from SOme features of the data.
percolation theory where fqv>p. an infinite cluster exists,
while for p<p. it cannot exist. For the model of Sec. Il this ACKNOWLEDGMENTS

can be seen by analogy with the Bose condensate, where a _, . . . .
finite fraction of particles end up in the zero momentum This work was supported in part by the National Science

state. In this nuclear fragmentation model, a finite fraction oIF gﬁ[nmdea;“togf grrgr;t Ng.raﬁtSEzH[\;E?IZZ_Glgg -196622(10?8;% De-
the mass ends up in the largest cluster. Specificaly,if, is P 9y ' '

the size of the largest cluster in each event, then in the infi-
nite A limit APPENDIX A: MULTIPLICITY EXPECTATION VALUES

(m) Given a functionf(m) wherem is the multiplicity, it is
(Kmax) 1_X—r:1—m X'<x'¢ 4g  Often useful to compute(a/ax)(flm(x.y)]). If f(m) is a
A ¢ ¢ (46 polynomial, the following identities can be used to compute
0 X>xc. x(3f/x)

This threshold behavior dk,.,)/A as expected exactly par- d

allels Bose-Einstein condensation. Figure 6 shows the behav- x— ([m]ig =(m[m]ij —(m){[m]y),

ior of (kmay and its variance for a range of’ with

Bx=k>2 Due to scaling behaviofkma,)/A for variousA’s p

approach the single curve shown above. X5<mk>:<mk+l>—<m><mk>'
At the critical point,(n,)~k™ " wherer>2 can be chosen

when specifying the original weight. The critical exponent J

7 for percolation is 2.21. X oAM= (M 1= k(MM

!

V. CONCLUSION AND SUMMARY where [x],=x(x—1)---(x—n+1) and (m),=nth cumu-

In this paper, hadronic matter under some extreme condi&nt moment ogm. The flrskt is eaksny derived from the fact
tions was investigated using an exactly solvable modethat ([mli) =x“/[Za(x)](9“Za/x). The second _identity
which can describe both the fragmentation of nuclei and th&an, bek derived from ) the first by expandingm®)
thermal properties in a unified way. Three distinct types of= Zj-o{j [ Mlk), where{j} is the Stirling number of the
behavior characterize hadronic matter. At low temperaturessecond kind, combined with the additional identity
the fermionic aspects of the system are apparent throug{{m]k>=2f:0(—1)k’J[}‘]<mk>, where[}‘] is the unsigned
such quantities as Fermi degeneracy pressure and Fermi eBtirling number of the first kind, and the orthogonality rela-
ergy. At high temperature and low density, ideal gas laws aréions between the two Stirling numbers. The third can be
shown to characterize the system. Between these two limitslerived from the second using the binomial expansion of
a regime exists in which the behavior of the fragmenting(m—(m))k. These three identities are supplemented by three
matter resembles an ideal Bose gas with its associated Bosadditional identities withx(d/ dx) — —y(d/ dy).
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