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Studies in the statistical and thermal properties of hadronic matter
under some extreme conditions

K. C. Chase, A. Z. Mekjian, and P. Bhattacharyya
Department of Physics, Rutgers University, Piscataway, New Jersey 08854

~Received 24 September 1996!

The thermal and statistical properties of hadronic matter under some extreme conditions are investigated
using an exactly solvable canonical ensemble model. A unified model describing both the fragmentation of
nuclei and the thermal properties of hadronic matter is developed. Simple expressions are obtained for quan-
tities such as the hadronic equation of state, specific heat, compressibility, entropy, and excitation energy as a
function of temperature and density. These expressions encompass the fermionic aspect of nucleons, such as
degeneracy pressure and Fermi energy at low temperatures and the ideal gas laws at high temperatures and low
density. Expressions are developed which connect these two extremes with behavior that resembles an ideal
Bose gas with its associated Bose condensation. In the thermodynamic limit, an infinite cluster exists below a
certain critical condition in a manner similar to the sudden appearance of the infinite cluster in percolation
theory. The importance of multiplicity fluctuations is discussed and some recent data from the EOS collabo-
ration on critical point behavior of nuclei can be accounted for using simple expressions obtained from the
model.@S0556-2813~97!05202-3#

PACS number~s!: 25.70.Pq, 21.65.1f, 05.70.Ce, 05.70.Jk
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I. INTRODUCTION

One of the goals of nuclear physics is to characterize
thermal properties of nuclear matter, described by its eq
tion of state. Investigating heavy-ion collisions offers o
experimental method of probing nuclei away from the ty
cal low temperature and density, and a number of exp
ments are underway studying the breakup of nuclei, cont
uting greatly to our understanding@1–6#. Several theoretica
investigations of these properties have been instigated, t
mal @7–10#, statistical@11–15#, transport@16–20#, and per-
colative @21–26# models all offering insights into the prop
erties of fragmenting nuclei.

In a previous set of papers@27–30# an exactly solvable
canonical ensemble model was developed for studying
multifragmentation of nuclei induced by high-energy col
sions. Detailed properties of the cluster distributions such
inclusive yields and correlations were explored. In this p
per, we study the statistical and thermal properties of nu
using the same model, extending results presented in@31#.
This model gives a unified description of multifragmentati
phenomena and the thermodynamic properties of hadr
matter, such as its equation of state and the nuclear c
pressibility. Simple expressions for these quantities are
tained which extrapolate or connect between a lo
temperature nearly degenerate Fermi gas to a h
temperature ideal Maxwell-Boltzmann gas of nucleo
Importantly, the effects of the fragmentation degrees of fr
dom on the thermodynamics is manifestly included. Qu
tions related to very high temperatures and particle and
tiparticle production will be developed in a subseque
paper.

II. MODEL STUDIES

Given the partition functionZA(V,T) for a system ofA
nucleons at a given volumeV and temperatureT we can
550556-2813/97/55~3!/1410~10!/$10.00
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determine the thermodynamic functions by taking vario
partial derivatives, i.e., the internal energy and pressure
given by U5kBT

2@(]/]T)lnZA#V , P5kBT@(]/]V)lnZA#T .
Additional partial derivatives lead to such important quan
ties as the specific heat and isothermal compressibi
CV5(]U/]T)V , 1/kT52@V(]P/]V)#T , and thermody-
namic potentials such as the entropy and Gibbs free en
can be related to these quantities,S5U/T1kBlnZA ,
G52kBTlnZA1PV. Our interest of course is not in the pa
tition function itself, but rather in these derived function
and as such the partition function is merely a means to
end.

This section constructs a partition function for fragme
ing nuclear matter. It does so by investigating the thermo
namic functions at both low- and high-temperatures and d
sities. At low temperature/high density, the nucleo
coalesce into a single nucleus which can be modeled a
degenerate Fermi gas with Skyrme interactions. At h
temperature/low density, the nucleons evaporate into
Maxwell-Boltzmann gas of individual nucleons. With the
results firmly in mind, a statistical fragmentation model
introduced whose parameters depend on the thermodyna
in a way consistent with the high- and low-temperature li
its, yet allowing more complicated fragmentation patterns
intermediate temperatures. The remaining freedom in
model is eliminated by assuming that the cluster yields f
low a power law. Interestingly these minimal assumptio
lead to a model surprisingly rich in physics as we shall see
the next section.

A. Low-temperature behavior and ideal Fermi gas laws

At zero temperature, the nucleus can be treated as a
generate Fermi gas, with Fermi momentumpF given by

gSI
4

3
ppF

35h3r, ~1!
1410 © 1997 The American Physical Society
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55 1411STUDIES IN THE STATISTICAL AND THERMAL . . .
where gSI54 is the spin-isospin degeneracy factor a
r5A/V is the density. At normal densityr05A/V050.17
nucleons fm23, nucleons are nonrelativistic and the Fer
energy and momentum are related by«F5pF

2/2m. From the
above expression for the Fermi momentum, we see tha«F
}r2/3. At low temperatures, the total kinetic energy for su
a Fermi gas is given by@32#

EK5
3

5
A«FF11

5p2

12 S kBT«F
D 2G . ~2!

However, the nucleons do interact. Interactions between
nucleons can be taken into account by using a dens
dependent Skyrme interaction@33,34#. In this approach, the
internal energy of a nucleus is given by

ULT5EK2AFa0 r

r0
2a3S r

r0
D 11sG , ~3!

wherea0 anda3 are Skyrme parameters~for simplicity, tem-
perature independent! determined by fixing
aV(r)52ULT(T50)/A the binding energy per particle a
zero temperature

aV~r!52
3

5
eF~r!1a0S r

r0
D2a3S r

r0
D 11s

~4!

to the empirical value foraV at r5r0 ~about 8.0 MeV/
nucleon at zero temperature! and having this as the max
mum of aV . The density dependent repulsive term sho
appear with a higher power ofr than the attractive part, s
that the nucleus does not collapse, and thus requiress.0.
Commonly used values fors ares51 ~three body interac-
tion! ands52/3 ~finite range term! @35#.

Having specified the internal energy, we can now de
mine any other thermodynamic function. The specific h
CV5(]U/]T)V , and entropyS5*TCV /T8dT8 are therefore

SCV

kB
D
LT

5S SkBD LT5A
p2

2 S kBT«F
D . ~5!

The partition function can now be determined fro
ZA5exp$(ST2U)/kBT%, which gives

ZA5yA, ~6!

where

y5expH aV
kBT

1
kBT

«0
J , ~7!

and«05(4/p2)«F . From this partition function it is easy to
determine the pressure and compressibility.

PLT5
2

5
r«F~r!F11

5p2

12 S kBT«F
D 2G

2a0r
r

r0
1~11s!a3rS r

r0
D 11s

, ~8!
i

he
y-

d

r-
t

S 1kT
D
LT

5
2

3
r«FF11

p2

12 S kBT«F
D 2G

22a0
r2

r0
1~11s!~21s!a3rS r

r0
D 11s

. ~9!

B. High-temperature, low-density ideal Maxwell-Boltzmann
gas laws

At high temperature and/or low density, but below mes
and particle-antiparticle production thresholds, the hadro
properties are that of an ideal Maxwell-Boltzmann gas, w

UHT5 3
2AkBT, ~10!

SCV

kB
D
HT

5 3
2A, ~11!

PHT5rkBT, ~12!

S 1kT
D
HT

5rkBT, ~13!

S SkBD HT5AlnH e5/2 V

AlT
3 gS,I J , ~14!

where the entropyS is given by the Sackur-Tetrode law an
lT5h/A2pmkBT. We expect that nuclei vaporize into ind
vidual nucleons atkBT@aV , the binding energy per particle
The partition function consistent with these thermodynam
functions isZA5xA/A!, wherex5V/lT

3

C. Hadronic matter at moderate temperatures and densities
and ideal Bose gaslike structure

In the region between the ideal Fermi gas limit and t
ideal Maxwell-Boltzmann gas limit, the effects of the fra
mentation of the initial nucleus must be taken into acco
when considering thermodynamic issues. To account
these effects, we employ a model developed initially to stu
multifragmentation phenomena@36#. This model has the cor
rect high- and low-temperature limits, as determined in
previous sections, but has features similar to that of a B
gas in the intermediate range.

To describe the fragmentation of a nucleus into all p
sible modes of breakup, a weight is given to each possibi
The weight chosen is

W~n!5)
k>1

xk
nk

nk!
5)

k>1

1

nk!
S xyk21

bk
D nk, ~15!

wherex andy are functions of the thermodynamic variabl
(V,T), bk is the cluster size dependence of the weight a
n5(n1 ,n2 , . . . ) is the fragmentation vector, withnk the
number of fragments withk nucleons such that(kknk5A.
Such a weight is expected if the system’s partition funct
can be expressed in terms of the partition functions of
individual fragments. In that case, the factornk! arises from
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the indistinguishability of the fragments of the same si
and thexk is the internal partition function for a cluster o
sizek.

The details of the internal partition functio
xk5xyk21/bk can be understood as follows. The fact
x5V/lT

3 arises from phase space and translational fact
i.e.,V arises due to the volume available for each fragme
motion, andlT

3 accounts for the temperature’s effect on th
motion. This term was developed in@28# from statistical con-
siderations, and we will shortly show that it is consiste
with the high-temperature behavior discussed in Sec. I
The factoryk21 is due to binding energy and internal exc
tations as discussed in@28,30#. For example, we assume th
the binding energy of a cluster of sizek is given by the
simplified formEB5aV(k21), yielding y}exp(aV /kBT) as-
suming a Boltzmann distribution. Similarly, excitation e
ergy and entropy considerations for a cluster suggesy
}exp$(kBT/«0)@T0 /(T1T0)#%, whereT0 is a cutoff temperature
for such excitations introduced in@37# and accounts for thei
finite lifetimes. Combining the binding and excitation effec
yields ay which we will shortly show is consistent with th
low temperature properties of nuclei already discussed
Sec. II A.

It is also interesting to note that a factor similar
exp(2kBT/«0) also appears in Feynman’s approach to thel
transition in liquid helium @38#. For a Fermi gas,
«05(4/p2)«F , «F5pF

2/2m, 4ppF
3V/3h35A/4, and A/V

5d23 which implies kBT/«0'md3kBT/2h
2. The factor

exp(2md3kBT/2h
2) is Feynman’s cost function for moving

helium atom (m5mHe) from one location to another.
The internal partition function also contains a factorbk

which gives a mass dependencek to it, which we will take as
bk5kt. Its origin depends in part on an exact microsco
calculation of the internal partition function of a cluster
strongly interacting particles. This partition function has co
tributions due to vibrations, rotations, excitations, co
tinuum, and bound states, resonances, etc.@28#, and is not
completely understood. However, such a partition funct
can reasonably be expected to take the formZint}k

2tyk21.
The prefactork2t in this case would determinebk . While
simple noninteracting models like a Fermi-gas model o
nucleus may give a reasonably good behavior for the ex
nential dependence of this partition function~i.e., y), the
prefactor might not be so accurately determined. For
reason, we rely on the experimentally determined power-
behavior of the cluster yields to determinet. Since the clus-
ter yields in fragmentation should strongly depend on
internal partition functions of the clusters, this is not unre
sonable, and in this model, if^nk&}k

2t thenbk5kt. Similar
problems arise in the theory of phase transitions in ot
fields. For example, in Fisher’s droplet model@39# the dis-
tribution of cluster sizes is assumed to fall ask2t and t is
then related to another exponentd by t5211/d. The expo-
nentd is related to the dependence of the pressureP on the
densityr around the critical point asP2PC;ur2rcud.

We therefore will assume a formbk5kt for bk in a spirit
similar to Fisher’s droplet model. We note the following im
portant features of this choice, which will be developed
subsequent sections. First, fort.2, the model can describ
the sudden condensation of nucleons into a large cluster,
,
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in the infinite A limit, and infinite cluster exists below a
certain value ofx/y. These features of the model parallel th
phenomena of Bose condensation and the sudden appea
of an infinite cluster above a critical probability in percol
tion theory. By takingbk;kt, t.2, we can therefore ex
plore the thermodynamic properties of a model which h
these features. Secondly, experimental data suggest that
ter yields have a power law dependence of the formk2t and
we would like to include this important feature into ou
model.

With this choice of weight the canonical partition functio
ZA5(nW(n) is a polynomial inx,y, given by

ZA~x,y!5 (
m51

A

ZA
~m!~bW !xmyA2m, ~16!

with m5( jnj the multiplicity. Given the partition function
all thermodynamic properties of the model can be obtain
as well as ensemble averages. For example, the mean
ber of clusters of sizek is

^nk&5
xyk21

bk

ZA2k~x,y!

ZA~x,y!
. ~17!

The partition functions themselves can be obtained usin
recursive procedure defined by the constraint(kk^nk&5A,
which gives

ZA~x,y!5
1

A(
k51

A

k
xyk21

bk
ZA2k~x,y!, ~18!

where Z0(x,y)51. The whole procedure is easily imple
mented by computer.

The parametersx,y determine the thermodynamic aspec
of the models. The above discussion of the internal partit
functions determined these parameters, but they are jus
easily determined by considering the overall partition fun
tion at high and low multiplicity. When the multiplicity is
large^m&'A, andZA'ZA

(A)xA. Clearly this is the high tem-
perature limit, andx is simply the ideal gasx introduced in
Sec. II B, given by

x5
V

lT
d ~19!

and involves the volume of the systemV, the thermal wave-
lengthlT , and the dimensionality of the systemd. The term
xm in the weight arises from the thermal motion of ea
fragment. Since the overall motion is zero, this should
replaced byxm21 to reflect the center of momentum con
straint. When the multiplicity is small^m&'1, and
ZA'ZA

(1)xyA21. Assuming that thex parameter is removed
by the conservation of momentum constraint describ
above, this showsy to be given by Eq.~7!. A correction to
the internal excitations however, needs to be made at h
temperatures to reflect their finite lifetimes. Koonin and Ra
drup @40# argue that a simple cutoff is effective, which re
sults in
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FIG. 1. Pressure~a! and ~in!compressibility~b! of the model at various temperatures.
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y5expH aV
kBT

1
kBT

«0

T0
T1T0

J . ~20!

Here aV is the binding energy per particle,«0 is the level
spacing parameter~related to the Fermi energy! andT0 is the
cutoff temperature. So the termyA2m in the weight arises
from the binding and internal excitations of each fragmen

The parameterbk determines the fragmentation natu
and depends on the internal partition function of a cluste
size k. As already discussed, since the mass yield distri
tions are often well represented by a power law@41#, we
choosebk simply to reproduce this important experimen
fact. If bk5kt, then in the grand canonical limi
^nk&;k2t. Typically t is found between two and three, an
we have chosent52.5 as representative for calculation
made in this paper.

III. THERMODYNAMIC PROPERTIES
OF HADRONIC MATTER

In this section we consider the various fundamental th
modynamic functions of fragmenting nuclei, namely t
pressure, compressibility and Gibbs free energy~Sec. III A!,
the internal energy and specific heat~Sec. III B!, and the
entropy~Sec. III C!. Interesting features of the functions a
explored, although a detailed examination of their origin
postponed till the next section. A brief accounting of su
properties has already been given@31#.

Since the partition function can be expressed succinctl
a function of x and y, derivatives of lnZA with respect to
these variables will appear and reappear in computation
thermodynamic functions. Fortunately for this model, deriv
tives with respect tox,y yield expectation values of th
multiplicity, i.e., x(]/]x)lnZA5^m&, y(]/]y)lnZA5A2^m&,
@x(]/]x)#2lnZA5@y(]/]y)#2lnZA5Var(m)5^m2&2^m&2. A
f
-

l

r-

s

s

of
-

general derivation of these identities is included in Appen
A.

A. The hadronic equation of state
and a van der Waals-like structure

The hadronic equation of state is of much interest sin
the pressure and incompressibility reflect the behavior
matter at fixed temperatures and varying volumes. A sim
expression can be obtained for this equation of state by u
theP5kBT(]/]V)lnZA and the partition function of Eq.~16!
as determined from the weight in Eq.~15!, giving

P5
^m&
A

PHT1S 12
^m&
A DPLT8 , ~21!

where^m&5(k^nk& is the mean multiplicity,PLT , PHT are
the low- and high-temperature limits defined in Secs. II
and II B and PLT8 5PLT2 2

3r«0@(kBT/«0)#
2@T/(T1T0)# is

simply the cutoff corrected low-temperature pressure. T
above equation shows the importance of the mean multip
ity in the behavior ofP. For low x/y, ^m&'1, and the pres-
sure reduces to the Fermi gas and Skyrme pressurePLT . At
high x/y, ^m&'A and the ideal Maxwell-Boltzmann ga
pressurePHT in P dominates. Thus the result of Eq.~21!
connects the two extremes in a simple analytic way. Fig
1~a! plots the pressure for several temperatures
bk5k5/2.

The low-temperature component of the pressure is q
interesting. It is responsible for the pressure rising as
volume increases over a range of volumes at low eno
temperatures, a feature characteristic of a van der Waals
or a liquid-gas phase instability@8#. It arises due to the
nuclear interactions. To see this phase instability m
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clearly, we can calculate the isothermal compressibility fr
the equation of state, since (1/kT)5@r(]P/]r)#T , a little
effort gives us

1

kT
5

^m&
A

PHT1S 12
^m&
A D r

]PLT8

]r
2
Var~m!

A

~PHT2PLT8 !2

PHT
.

~22!

At large values of x/y, ^m&'A, Var(m)'0 and
(1/kT)→PHT , the ideal gas limit. At lowx/y, ^m&'1,
Var(m)'0 and (1/kT)→PLT8 an ideal Fermi gas with
Skyrme interaction limit. In between, there is an effect due
the fluctuation in the mean number of clusters. The beha
of the compressibility is shown in Fig. 1~b!. From the figure,

FIG. 2. Gibbs free energy per particle of the model as a func
of pressure at various temperatures.
o
or

the phase instability appears first atr50.5r0, T524 MeV,
the point where 1/kT and its derivative are both zero.

Another method of seeing this instability is to consid
the Gibbs free energyG52kBTlnZA1PV. Figure 2 shows
that G vs P is multivalued below a critical temperature,
clear indication of a phase instability.

In nuclear physics, one usually refers to the incompre
ibility k5(9/rkT), which if «F'37 MeV gives atT50

k5961144s MeV. ~23!

For s51, this modelk5240 MeV, consistent with the usu
ally quoted value for the incompressibility.

B. Internal energy, specific heat, and the ideal Bose gas

The energy and specific heat are important quantities a
especially when the volume is fixed and the temperatur
changing. The internal energy decomposes into low- a
high-temperature components just as the pressure d
namely

U5
^m&
A

UHT1S 12
^m&
A DULT8 , ~24!

where ULT8 5ULT2A«0@(kBT/«0)#
2@T(T12T0)#/@(T

1T0)
2# is simply the cutoff corrected low-temperature e

ergy. Figure 3~a! plots this behavior for a number of dens
ties, which reveals little except for the monotonic increas
nature of the energy.

The specific heat on the other hand is more reveali
UsingCV5(]U/]T)V , one arrives at

n

FIG. 3. Internal energy~a! and specific heat~b! per particle of the model at various densities.
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CV

kB
5^m&

d

2
1~A2^m&!

2kBT

«0
S T0
T1T0

D 3
1Var~m!Fd21

aV
kBT

2
kBT

«0
S T0
T1T0

D 2G2,
and Fig. 3~b! illustrates the behavior ofCV for d53,
bk5k5/2. The ideal gas limit is seen in the first ter
^m&(d/2). The low-temperature Fermi gas result is contain
in the second term (A2^m&)(2kBT/«0). The last term in-
volving the multiplicity fluctuations gives rise to a peak
CV /kB whend.2.

The variance induced peak is quite interesting. As
shall see in Sec. IV A, it is analogous to condensation in
ideal Bose-Einstein gas, a critical transition which has b
extensively studied.

C. The entropy of nuclei

The entropy of fragmenting nuclei can be obtained fro
the relationS5(]/]T)kBTlnZA which gives

S

kB
5 lnZA1^m&

d

2
1~A2^m&!F2aV

kBT
1
kBT

«0
S T0
T1T0

D 2G .
~25!

When ^m&'1, the entropy is that of a nearly degenera
Fermi gas ofA nucleons confined to a cluster of sizeA, plus
a contribution from the motion of this cluster which
coupled to a heat bath in the canonical ensemble. The ne
degenerate Fermi gas entropy is given by Eq.~5! where cut-
off effects are excluded. Including it then gives

S

kB
5A

p2

2 S kBT«0
D S 12

T

2~T1T0!
D . ~26!

The cutoff correction is of the same order as the next hig
order correction. When̂m&'A, S reduces to the Sackur
Tetrode law of Eq.~14!. In the intermediate regime, there
a critical point where a latent heat must be overcome, ca
ing a change in volume.

Figure 4 is a plot ofS/kBA vs kBT. In the plot, the con-
tribution from the thermal motion of the largest cluster h
been subtracted out so thatS→0 as^m&→1. This is equiva-
lent to requiring the total momentum of the system to
zero, a correction consistently made throughout these ca
lations.

IV. CRITICAL POINT BEHAVIOR AND PARALLELS
WITH OTHER MODELS

The thermodynamic functions strongly suggest a criti
point, which we determine explicitly in this section. To sta
let us work out some properties of the cluster distributions
the grand canonical ensemble. Here the partition functio
given by Z5(Az8

AZA(x,y)5exp(k(x/y)z
k/kt, where

bk5kt andz5z8y5em/kBT is the chemical potential. In this
limit ^nk& is simply

^nk&5
x

y

zk

kt . ~27!
d

e
n
n

rly

er

s-

s

e
u-

l
,
n
is

SinceA5(kk^nk&, we have

A

x8
5 (

k51

A

zkk12t5gt21~z!, ~28!

with x85x/y, x,y as defined earlier and
gn(z)5(k.0k

2nzk. Notice thatgn21(z)5z]gn /]z and that
for z'1,

gn~z!5nn21G~12n!1 (
k>0

z~n2k!~21!k
nk

k!
, ~29!

wheren52 lnz, a result due to London@42#.
The left-hand side of Eq.~28! is always finite in the ther-

modynamic limit. If z.1, the right-hand side always di
verges in the infinite limitA→`, and the equation canno
hold. At z51,(kk

12t5z(t21), the Riemann zeta function
which is finite only if t.2. If A/x8<z(t21) then az<1
can be found that satisfies the last constraint equation inc
ing all terms in the sum. Otherwise, the grand canonical
pression breaks down, which defines a critical point

A

xc8
5z~t21!. ~30!

The failure of the grand canonical ensemble is due to
appearance of an infinite cluster, i.e., of sizeaA wherea is
nonzero even asA tends to infinity. More specifically, when
A/x8 exceedsz(t21), an infinite cluster exists, absorbin
enough mass so that the remaining mass is distributed g
canonically withz51. If A/x8 is less thatz(t21), an infi-
nite cluster does not exist.

As we have already seen, the multiplicity and its fluctu
tions play an important role in the thermodynamic function
So how does the critical point affect the multiplicity and i
fluctuations? The multiplicitŷm&5(k^nk& is given simply
by

FIG. 4. Entropy per particle of the model at various densitie
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FIG. 5. The variance in the nuclear multiplicity of the model as a function ofx8/xc8 ~a! and ^m&/A ~b!.
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^m&
A

5H x8gt~1!

A
x8,xc8

x8gt~z!

A
x8.xc8.

~31!

The variance of the multiplicity Var(m)5x(]/]x)^m& is
given by

Var~m!

A
5H x8gt~1!

A
x8,xc8

x8gt~z!

A
2
gt21~z!

gt22~z!
x8.xc8.

~32!

Figures 5~a! and 5~b! plot Var(m)5^m2&2^m&2 vs x8 and
^m& respectively for both the canonical and grand canon
solutions. The discontinuity in the slope of Var(m) at the
critical point is apparent from the figure. The behavior
Var(m) vs x shows a cusplike behavior. For finite system
Var(m) has a rounded peak. As we shall see in the n
section, this behavior is related to the ideal Bose-Einstein
condensation.

Is this critical behavior consistent with the experimen
situation in nuclear collisions? At the critical pointx5xc ,
where Var(m) has a cusp,̂m&5^m&c with

^m&c
A

5
z~t!

z~t21!
. ~33!

The EOS collaboration experiment determined that for g
multifragmentation, the charge multiplicitŷm&c52661.
Using the above expression andZ579 for A, results in a
critical exponentt52.26260.013. Using a percolation theo
retic analysis, they arrived at a somewhat differe
t52.1460.06. The two results are sufficiently close to su
gest that the connection between the critical multiplicity a
critical exponentt @43# may not differ greatly from this
simple model.
al

f
,
xt
as

l

d

t
-
d

A. Ideal Bose-Einstein gas laws

Let us now compare these results with the ideal Bose
of A particles. The results can be found in Huang@32# for the
cased53 dimensions, and generalizing to arbitrary dime
sions is fairly straightforward.

In the grand canonical ensemble, the ideal Bose ga
A particles moving in a volumeV at a temperatureT has a
fugacity z5exp$m/kBT% determined by

A

V
5

1

lT
d gd/2~z!1

1

V

z

12z
. ~34!

The critical temperature for a particular density and tempe
ture occurs whenz→1, V→`, which implies

rc5
A

V
5

1

lc
d gd/2~1! ~35!

since above the critical point, the second term can be
glected in the infinite volume limit. Recalling tha
x5V/lT

d , this condition is identical to the fragmentatio
case if we replacex by x8 andt by 11d/2.

The energy, specific heat, pressure, and incompressib
above and below the critical point are given by

U

kBT
5H d

2

V

ld g11d/2~z! T.Tc

d

2

V

ld g11d/2~1! T,Tc ,

~36!

CV

kB
5H d~d12!

4

V

ld g11d/2~z!2
d2

4

gd/2~z!

gd/221~z!
T.Tc

d~d12!

4

V

ld g11d/2~1! T,Tc ,

~37!
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P5H kBT

ld g11d/2~z! T.Tc

kBT

ld g11d/2~1! T,Tc ,

~38!

1

kT
5H kBTld

gd/2
2 ~z!

gd/221~z!
T.Tc

0 T,Tc .

~39!

Both above and below the critical point these results ag
with the fragmentation casey51, t511d/2 if we apply
Eqs.~31! and ~32!.

This agreement can be understood by noting that
weight given to the ideal Bose gas ind dimensions in a
Mayer cluster expansion@32# is given by Eq.~15! with pa-
rameter vector

xk5
x

k11d/21
1

k
~40!

At large x ~i.e., above the critical point! the second term i
negligible and the model reverts to the one considered h
Below the critical point, the large cluster formed contribu
little to the thermodynamic functions, allowing agreemen
continue.

The nature of the transition is first order as expected f
Bose-Einstein like condensation. The particles which h
accumulated into the zero momentum mode contribute
pressure and have no volume or entropy in the therm
namic limit. The pressure due to the balance of particle
constant for a given temperature~i.e. independent of vol
ume!. A latent heat per particle of

L5S g11d/2~1!

gd/2~1! D d12

2
kBT, ~41!
e

e

re.
s

a
e
o
y-
is

accompanies the transition and of course is the heatTDS
which must be spent in moving a particle from the vap
phase which has entropy to the condensed phase which
no entropy. The latent heat of Eq.~41! is the result of the
change in volume along the constant pressure Maxwell
at a fixedT. The volume change is

Vc5
A

lT
d

1

gd/2~1!
. ~42!

The entropy change can be obtained from the Claus
Clapeyron equationdPc /dT5Sc /Vc to give

Sc
kB

5
d12

2
A
g11d/2~1!

gd/2~1!
, ~43!

which is consistent withL5kBTSc as expected. The fraction
of the number of particles in the Bose condensate~zero mo-
mentum mode! is

Nc

N
512S TTCD

d/2

, ~44!

for T<Tc .
In nuclear fragmentation, this condensation is a

present, but the clusterization occurs in real space instea
momentum space. Rather than the number of particles in
zero momentum mode signaling a phase transition, the n
ber of particles in the largest cluster plays the same role

B. Critical point behavior and percolation theory

Percolation models@44# have been used to describ
nuclear fragmentation with percolation clusters correspo
ing to nuclear clusters arising from the collision process. T
percolation cluster distribution is given in terms of the pe
colation probabilityp and percolation threshold probabilit
pc above which an infinite cluster exists. Specifically,
FIG. 6. Size of the largest cluster~a! and its variance~b! of the model as a function ofx8/xc8 .
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^nk&5
1

kt f @~p2pc!/pc#, ~45!

where f (x) is a scaling function. Percolation models ha
also suggested useful methods of analyzing nuclear fragm
tation data such as Campi plots@45#.

The model in Sec. II has some features that are sim
with the percolation model. First, only one parame
x85x/y describes the distribution, the analog ofp in perco-
lation theory. Second, below a critical pointxc8 , the fraction
of particles found in the largest cluster is finite, even if t
number of particles tends to infinity, a situation familiar fro
percolation theory where forp.pc an infinite cluster exists
while for p,pc it cannot exist. For the model of Sec. II th
can be seen by analogy with the Bose condensate, whe
finite fraction of particles end up in the zero momentu
state. In this nuclear fragmentation model, a finite fraction
the mass ends up in the largest cluster. Specifically ifkmax is
the size of the largest cluster in each event, then in the
nite A limit

^kmax&
A

5H 12
x8

x8c
512

^m&

^m&c
x8,x8c

0 x.xc .

~46!

This threshold behavior of̂kmax&/A as expected exactly par
allels Bose-Einstein condensation. Figure 6 shows the be
ior of ^kmax& and its variance for a range ofx8 with
bk5k5/2. Due to scaling behavior̂kmax&/A for variousA’s
approach the single curve shown above.

At the critical point,̂ nk&;k2t wheret.2 can be chosen
when specifying the original weight. The critical expone
t for percolation is 2.21.

V. CONCLUSION AND SUMMARY

In this paper, hadronic matter under some extreme co
tions was investigated using an exactly solvable mo
which can describe both the fragmentation of nuclei and
thermal properties in a unified way. Three distinct types
behavior characterize hadronic matter. At low temperatu
the fermionic aspects of the system are apparent thro
such quantities as Fermi degeneracy pressure and Ferm
ergy. At high temperature and low density, ideal gas laws
shown to characterize the system. Between these two lim
a regime exists in which the behavior of the fragment
matter resembles an ideal Bose gas with its associated B
n-

r
r

a

f

fi-

v-

t

i-
l
e
f
s,
gh
en-
re
ts,

se-

Einstein condensation. The consequences of Bose-Eins
condensation on the properties of hadronic matter were s
ied. Simple expressions were obtained for the nuclear eq
tion of state, heat capacity, compressibility, entropy, ener
and fragmentation yields which encompass these three
gimes. The importance of multiplicity fluctuations in stati
tical models of nuclear fragmentation and its effect on va
ous thermodynamic properties is stressed. Some recent
from the EOS collaboration on critical point behavior of ha
ronic matter is analyzed and simple expressions from
exactly solvable model are obtained which can account
some features of the data.
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APPENDIX A: MULTIPLICITY EXPECTATION VALUES

Given a functionf (m) wherem is the multiplicity, it is
often useful to computex(]/]x)^ f @m(x,y)#&. If f (m) is a
polynomial, the following identities can be used to compu
x(] f /]x)

x
]

]x
^@m#k&5^m@m#k&2^m&^@m#k&,

x
]

]x
^mk&5^mk11&2^m&^mk&,

x
]

]x
^m&k5^m&k112k^m&2^m&k21 .

where @x#n5x(x21)•••(x2n11) and ^m&n5nth cumu-
lant moment ofm. The first is easily derived from the fac
that ^@m#k&5xk/@ZA(x)#(]

kZA /]x
k!. The second identity

can be derived from the first by expandinĝmk&
5( j50

k $ j
k%^@m#k&, where $ j

k% is the Stirling number of the
second kind, combined with the additional identi
^@m#k&5( j50

k (21)k2 j@ j
k#^mk&, where @ j

k# is the unsigned
Stirling number of the first kind, and the orthogonality rel
tions between the two Stirling numbers. The third can
derived from the second using the binomial expansion
(m2^m&)k. These three identities are supplemented by th
additional identities withx(]/]x)→2y(]/]y).
v.
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