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Impact parameter determination in experimental analysis using a neural network
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A neural network is used to determine the impact parameté@a+ “°Ca reactions. The effect of the
detection efficiency as well as the model dependence of the training procedure has been studied carefully. An
overall improvement of the impact parameter determination of 25% is obtained using this technique. The
analysis of Amphord°Ca+ *°Ca data at 35 MeV per nucleon using a neural network shows two well-separated
classes of events among the selected “complete” evé86556-28187)05903-1

PACS numbdps): 25.70-z, 07.05.Mh, 24.10.Cn

I. INTRODUCTION referred to[11]. By definition a neural network is an en-
semble of highly connected cells. A cell is an entity which

Experimental heavy-ion data become more and more difhas one or several weighted;) inputsl; and an activation
ficult to analyze without the help of theoretical calculations.threshold¢, and gives an output according to a certain acti-
A key parameter of such calculations is the impact parametefation functionf. Such a cell is represented in the top of Fig.
which is Stl’Oﬂg'y correlated with the violence of the reaction.l_ The outputS of the cell is genera‘[ed according to
Unfortunately, the impact parameter remains difficult to ex-
tract experimentally despite intensive experimental works

Numerous attempts have been made to extract this quan- '
tity by analyzing the correlation between a single obsewabl3:or a multilayer network, the activation function of each

and the violence of the collision. For example, the charge . S
particle multiplicity [3], the perpendicular momentufd], ayer can be different. For the sake of simplicity, we have

the neutron numbdi], etc., have been extensively used. It

turns out that all these single observable methods, very effi- Neural Network
cient for peripheral reactions, failed for central collisions due

to the saturation of the considered observables in the energy I

range under consideration heffetween 20 and 100 MeV h o1 ce

per nucleon I=f(Zwij 1; +0 )

With the availability of 47 detectors, it would be of in- I w2
R i . L. nputs 12 ]

terest to use as much information as possible by combining

several different observables. Some works in this direction @3

have been undertaken by Llom al. [5] by studying the I

autocorrelation between different observables in order to Hidden

maximize the efficiency of the central collision selection. l'
ayer

Recently, another promising step in this direction has been
made using neural network6-8]. Indeed, using simulated
97Au+1%Au events, Davidet al. [7] have obtained an im-
provement by a factor of 4 in the determination of the impact
parameter compared to more conventional method in central
collisions. I

The purpose of this paper is to explore the neural network
capabilities to help analyze the Amphora 35 MeV per
nucleon *°Ca+ 4°Ca data[10]. This paper is organized as
follows. We first start with a short review on neural networks
and then focus on the training procedure. After an illustration
of the performance of the neural network in Sec. Il, we
present the analysis §fCa+ “°Ca data in Sec. Ill and finally
conclude in Sec. IV.

Connection

S

senge

nputs output

f(t)=Identity

II. NEURAL NETWORKS

f(t)=0.5(1+tanh(t
A. General description (t) ( anh(t))

Let us start with a succinct review of neural networks FIG. 1. Schematic view of a celupper drawing and of our
(NN’s). For details and general background, the reader isetwork(lower drawing.
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restricted ourselves to a three-layer feed-forward network.
The first layer, which corresponds to the input layer, is com-

® Data
posed of three cells, the median layer is called the hidden - EUGENE+GEMINI
layer and contains five cells, and finally the last one is a — QMD+GEMINI

single-cell output layer. Input cells receive data from the
outside(here the value of the physical observabplasd the
output cell gives the resulthere an estimate of the impact
parameter The activation functions used for each layer of
our network are displayed in the bottom of Fig. 1.

The use of neural networks is a two-step process: a learn-
ing stage followed by an application stage. During the learn-
ing phase, the different parameters of the netwdtlw] are
determined. This is done with the help of a sample for which
inputs and the expected output are perfectly kndaiearn-
ing sample.

The parameters are then adjusted in order to minimize,
according to the different weights and thresholds, the differ-
enceD between the calculated output gutand the known z
one ¢ for the whole training ensemble. The functi@n is
defined in our work as

FIG. 2. Z distributions obtained for the complete events in
40Cat+4%Ca at 35 MeV per nucleon. Experimental data are repre-
n sented by solid circles, thBuGENE calculation by the shaded histo-
D(w;,6)=0. “_ou 2 , gram, and the QMD calculations using a solid line. Calculations
(1 64) Zl (I¢ finl) ) have been filtered.

where n is the total number of elements of the training We then generate sets of learning samples composed of

sample. The details of the whole minimization procedure carf000 events uniformly distributed between 0 fm and 8 fm.
be found in Ref[7]. The three inputs of our neural networks are the charged par-

ticle multiplicity (CP), the perpendicular momentum
(Pperp, andE = (SPZ/2m)/(=PZ/2m). They correspond to
the most efficient combination of the available experimental

In our case, it is not pOSSible to make a Iearning Sample. A)bservab|es fof‘OCa_F AOCa at 35 MeV per nuc|eo[9].
theoretical model has then to be used to generate this sample.

In this work, tyvo different_ models ha\(e been used to gener- IIl. BEHAVIOR OF OUR NEURAL NETWORK
ate the learning sampldi) a dynamical transport model
QMD [12], coupled withcemini [13]. This hybrid model has To compare the performance of the neural netwdik)
already been very successful in reproducing many features ofith other commonly used methods, an observable is de-
the 4°Ca+ 4%Ca reaction at 35 MeV per nucle¢h0]. (i) An  fined:
event generator based on a statistical maslebENE [14].
This model combines a massive transfer entrance channel
with a statistical deexcitation and therefore does not contain
deep inelastic processes.

The choice of these two models was motivated by the factvhich gives an estimate of the dispersion over the overall
that they are very different in their philosophies and then willrange of impact parameteB’® stands for the impact param-
give a good estimate of the neural network capabilities. Wester value determined using one of the observables NN, CP,

B. Training procedure

N
1
deviatior= — >, |BRMP— B3],
i=1

also required the models to reproduce correctly Zhdistri- Pperps @NdE 5. For methods other than the neural network,
bution obtained in thé°Ca+ “°Ca experiment at 35 MeV per let us explain the way the impact parameter is extracted.
nucleon[10]. Using the training sample, the total distribution of a given

The Z distributions obtained for the two models are dis- observablgvar) is cut into ten equal-size bins for which the
played in Fig. 2. The solid circles correspond to the experi-average impact parameter is calculated. Then, using a fit of a
mental data, the shaded histogram togbeENE simulation,  polynomial expression of these points, an impact parameter
and the other histogram to the QMD results. It has to bevalueB"®" is associated with each value of the observable.
noted that as in the experiment, only complete events are We have reported the results of such a comparison for
taken into account in both calculations. That means that to b€at+ Ca reactions as a function of the incident energy in Fig.
selected an event has to have a multiplicity greater than 18.
and that 85% of the total charge has to be measured after For all energies, the neural network gives the lowest de-
passing through the filter. According to the geometry of ourviation. It is the most accurate of the methods used here. It
detector[15], this implies that we are already dealing with can be seen also that as the incident energy increases, the
central events. As can be seen in Fig. 2 fairly good agreeimpact parameter determination becomes better. This is true
ment with the experimental data is obtained in both casedor all the different methods. Nevertheless, the neural net-
This can give us some confidence in using these calculationsork always allows an improvement of around 25% com-
to generate a learning sample for our neural network. pared to the others.
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FIG. 3. Energy dependence of the deviatigee definition in FIG. 5. Effect of a filter in the neural network performances.

the tex} for Ca+Ca reactions obtained from QMBGEMINI.

filter. This clearly shows the necessity to use a network

In Fig. 4, the recognition capability of our neural network trained as closely to the experimental condition as possible.
is given for a theoretical cadeo filter was applief In this
figure, the neural network output value Qutis displayed as
a function of the corresponding QMD impact parameter
Bowmp for 40Ca+*°Ca at 70 MeV per nucleon. The correla-  The learning stage finished, it is possible to apply the
tion between these two quantities is very good above 1.5 frmeural network on real data. In Fig. 6, the neural network
For very central collisions, owt, saturates due to the satu- output obtained for both trained networks is displayed for
ration of input observables. It can also be noticed that theach selected experimental evef@omplete event The
dispersion around the mean value increases with decreasistpaded histogram corresponds to teGENEtrained net-
impact parameter. work whereas the other histogram corresponds to the QMD-

In most previous neural network works, model calcula-trained network.
tions have been used without taking into account any experi- The neural network outputs are always below 7 fm. This
mental filter. The effect of such a filter is far from negligible means that complete events deal mainly with central events
and has the tendency to increase the apparent fluctuatiorss expected. The QMD-trained network gives higher impact
The Amphora detector filter has been applied to study thigparameter value due to the fact that the QMD model contains
effect. The result is presented in Fig. 5. As expected, the
recognition by the neural network is poorer than without the

IV. APPLICATION ON REAL DATA

T 900 F
3 C
S L
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= 7L Ca+Ca 70AMeV f 700
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OUTy FIG. 6. Neural network output obtained for each selected ex-
perimental eventeUGENEtrained network outputs are represented
FIG. 4. Neural network output oyf; as a function of the QMD  using the shaded histogram whereas QMD-trained network outputs
impact parameteB oy for the *°Ca+*%Ca at 70 MeV per nucleon.  are displayed by a solid line.
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FIG. 7. Correlation between thJGENEtrained network output
and the QMD-trained network output. FIG. 8. Logarithmic  distribution  of Z,, Vs
SézEivz#zmaxZ?M(Zi)/EiyzﬁmaXZiM(Zi). Each contour represents
deep inelastic processes contrary to thesENE model. A constant yalue units of relat_i\d?Y/dInSéZmanhereY is Fhe yield.
depletion occurs for very central impact parameter valueslhe outside contour I_evel_ is _at level 10, and each inner contour
This is a result of two facts: We are working with real data"€Presents a progression in yield of 150.
which means that events are weighted accordingtt @b , .
whereb stands for the impact parameter. This makes centra‘cl‘maII values of I, and the other is located aF small values
events less abundant than peripheral ones. In addition, & INZmax and large values of B. Plots obtained for the
shown in Fig. 4, the neural network recognition failed in different cuts in ougy show quite distinct behawor.. For the
very central collisions and gives systematically an overestilower values of ougy, only the low Ir5, peak remains. On
mated impact parameter value. The combination of these twthe other hand, for higher o values, only the high I8,
facts explains the shape of the spectra at lowyQutThe  peak is present. This systematic nice behavior shows that
maxima of both distributions are located around 3 fm. neural networks can be very useful in data analysis by allow-

It is interesting now to look at the correlation between theing the grouping of events according to the correlation of
two network outputs for our experimental events. In Fig. 7several observablgbere CPP e, andE,).
the average@UGENEtrained network output ogtg is plot-
ted as a function of the QMD-trained network output V. CONCLUSION
Outoup - A quite good correlation exists between the two
outputs. A high outyp corresponds to a high oglig. This
result and the fact that the two distribution maxima are clos
are quite encouraging for the use of a neural network in
experimental analysis.

A precise individual impact parameter determination at
this energy by our network does not seem reasonable. Ne
ertheless, we are going to separate the data into three gro
according to ougy. The limits of these groups are
outyy=<3.2 fm, 3. X outyy=4.4 fm, and ouf>4.4 fm and
have been chosen to make three equally populated bins.

For these three different classes, the so-called “Camp
plot” has been generated. This plot allows an exploration o
the moments of the multiplicity distribution and has been
suggested as a useful means to identify a possible critical
behavior in the deexcitation patterns. In Fig. 8, such plots are This work was supported by the U.S. Department of En-
displayed for all events as well as for the three\gutlasses. ergy under Grant No. DE-FG05-86ER40256, the National

Two peaks occur in the experimental contour plot in panelScience Foundation, The Robert A. Welch Foundation and
(a) of Fig. 8. One is located at large values oZln, and the French Centre National de la Recherche Scientifique.

In this paper, a neural network has been used for the first
time to determine the impact parameter of real experimental
%vents t°Ca+4°Ca at 35 MeV per nuclednAn improve-
ahent of about 25% is obtained compared to commonly used
methods. Applied to real data, tH€Ca+ “°Ca reaction at 35
MeV per nucleon, the network provides a clear separation of
Yhe different peaks obtained in the experimental Campi plots.
UR? the same time, a careful study of the influence of the
model used for the training shows that in both cases the
neural network outputs are consistent together. This tends to
indicate that the neural network can be a valuable tool in data

nalysis.
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