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Impact parameter determination in experimental analysis using a neural network
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A neural network is used to determine the impact parameter in40Ca140Ca reactions. The effect of the
detection efficiency as well as the model dependence of the training procedure has been studied carefully. An
overall improvement of the impact parameter determination of 25% is obtained using this technique. The
analysis of Amphora40Ca140Ca data at 35 MeV per nucleon using a neural network shows two well-separated
classes of events among the selected ‘‘complete’’ events.@S0556-2813~97!05903-7#

PACS number~s!: 25.702z, 07.05.Mh, 24.10.Cn
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I. INTRODUCTION

Experimental heavy-ion data become more and more
ficult to analyze without the help of theoretical calculation
A key parameter of such calculations is the impact param
which is strongly correlated with the violence of the reactio
Unfortunately, the impact parameter remains difficult to e
tract experimentally despite intensive experimental wo
@1–5#.

Numerous attempts have been made to extract this q
tity by analyzing the correlation between a single observa
and the violence of the collision. For example, the charg
particle multiplicity @3#, the perpendicular momentum@1#,
the neutron number@4#, etc., have been extensively used.
turns out that all these single observable methods, very
cient for peripheral reactions, failed for central collisions d
to the saturation of the considered observables in the en
range under consideration here~between 20 and 100 MeV
per nucleon!.

With the availability of 4p detectors, it would be of in-
terest to use as much information as possible by combin
several different observables. Some works in this direct
have been undertaken by Llopeet al. @5# by studying the
autocorrelation between different observables in order
maximize the efficiency of the central collision selectio
Recently, another promising step in this direction has b
made using neural networks@6–8#. Indeed, using simulated
197Au1197Au events, Davidet al. @7# have obtained an im
provement by a factor of 4 in the determination of the imp
parameter compared to more conventional method in cen
collisions.

The purpose of this paper is to explore the neural netw
capabilities to help analyze the Amphora 35 MeV p
nucleon 40Ca1 40Ca data@10#. This paper is organized a
follows. We first start with a short review on neural networ
and then focus on the training procedure. After an illustrat
of the performance of the neural network in Sec. II, w
present the analysis of40Ca1 40Ca data in Sec. III and finally
conclude in Sec. IV.

II. NEURAL NETWORKS

A. General description

Let us start with a succinct review of neural networ
~NN’s!. For details and general background, the reade
550556-2813/97/55~3!/1371~5!/$10.00
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referred to@11#. By definition a neural network is an en
semble of highly connected cells. A cell is an entity whi
has one or several weighted (v i) inputs I i and an activation
thresholdu, and gives an output according to a certain ac
vation functionf . Such a cell is represented in the top of F
1. The outputS of the cell is generated according to

S5 f S (
i

v i I i1u D .
For a multilayer network, the activation function of eac
layer can be different. For the sake of simplicity, we ha

FIG. 1. Schematic view of a cell~upper drawing! and of our
network ~lower drawing!.
1371 © 1997 The American Physical Society
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1372 55F. HADDAD et al.
restricted ourselves to a three-layer feed-forward netwo
The first layer, which corresponds to the input layer, is co
posed of three cells, the median layer is called the hid
layer and contains five cells, and finally the last one is
single-cell output layer. Input cells receive data from t
outside~here the value of the physical observables! and the
output cell gives the result~here an estimate of the impa
parameter!. The activation functions used for each layer
our network are displayed in the bottom of Fig. 1.

The use of neural networks is a two-step process: a le
ing stage followed by an application stage. During the lea
ing phase, the different parameters of the network (u,v) are
determined. This is done with the help of a sample for wh
inputs and the expected output are perfectly known~a learn-
ing sample!.

The parameters are then adjusted in order to minim
according to the different weights and thresholds, the diff
enceD between the calculated output outNN and the known
one j for the whole training ensemble. The functionD is
defined in our work as

D~v i ,u i !50.5S (
m51

n

~ uzm2outNN
m u!2D ,

where n is the total number of elements of the trainin
sample. The details of the whole minimization procedure
be found in Ref.@7#.

B. Training procedure

In our case, it is not possible to make a learning sample
theoretical model has then to be used to generate this sam
In this work, two different models have been used to gen
ate the learning sample:~i! a dynamical transport mode
QMD @12#, coupled withGEMINI @13#. This hybrid model has
already been very successful in reproducing many feature
the 40Ca1 40Ca reaction at 35 MeV per nucleon@10#. ~ii ! An
event generator based on a statistical modelEUGENE @14#.
This model combines a massive transfer entrance cha
with a statistical deexcitation and therefore does not con
deep inelastic processes.

The choice of these two models was motivated by the
that they are very different in their philosophies and then w
give a good estimate of the neural network capabilities.
also required the models to reproduce correctly theZ distri-
bution obtained in the40Ca140Ca experiment at 35 MeV pe
nucleon@10#.

The Z distributions obtained for the two models are d
played in Fig. 2. The solid circles correspond to the exp
mental data, the shaded histogram to theEUGENEsimulation,
and the other histogram to the QMD results. It has to
noted that as in the experiment, only complete events
taken into account in both calculations. That means that to
selected an event has to have a multiplicity greater than
and that 85% of the total charge has to be measured
passing through the filter. According to the geometry of o
detector@15#, this implies that we are already dealing wi
central events. As can be seen in Fig. 2 fairly good agr
ment with the experimental data is obtained in both cas
This can give us some confidence in using these calculat
to generate a learning sample for our neural network.
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We then generate sets of learning samples compose
1000 events uniformly distributed between 0 fm and 8 f
The three inputs of our neural networks are the charged
ticle multiplicity ~CP!, the perpendicular momentum
(Pperp), andErat5((Pt

2/2m)/((Pz
2/2m). They correspond to

the most efficient combination of the available experimen
observables for40Ca1 40Ca at 35 MeV per nucleon@9#.

III. BEHAVIOR OF OUR NEURAL NETWORK

To compare the performance of the neural network~NN!
with other commonly used methods, an observable is
fined:

deviation5
1

N(
i51

N

uBi
QMD2Bi

varu,

which gives an estimate of the dispersion over the ove
range of impact parameter.Bvar stands for the impact param
eter value determined using one of the observables NN,
Pperp, andErat. For methods other than the neural netwo
let us explain the way the impact parameter is extract
Using the training sample, the total distribution of a giv
observable~var! is cut into ten equal-size bins for which th
average impact parameter is calculated. Then, using a fit
polynomial expression of these points, an impact param
valueBvar is associated with each value of the observable

We have reported the results of such a comparison
Ca1Ca reactions as a function of the incident energy in F
3.

For all energies, the neural network gives the lowest
viation. It is the most accurate of the methods used here
can be seen also that as the incident energy increases
impact parameter determination becomes better. This is
for all the different methods. Nevertheless, the neural n
work always allows an improvement of around 25% co
pared to the others.

FIG. 2. Z distributions obtained for the complete events
40Ca140Ca at 35 MeV per nucleon. Experimental data are rep
sented by solid circles, theEUGENEcalculation by the shaded histo
gram, and the QMD calculations using a solid line. Calculatio
have been filtered.
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In Fig. 4, the recognition capability of our neural netwo
is given for a theoretical case~no filter was applied!. In this
figure, the neural network output value outNN is displayed as
a function of the corresponding QMD impact parame
BQMD for 40Ca140Ca at 70 MeV per nucleon. The correla
tion between these two quantities is very good above 1.5
For very central collisions, outNN saturates due to the satu
ration of input observables. It can also be noticed that
dispersion around the mean value increases with decrea
impact parameter.

In most previous neural network works, model calcu
tions have been used without taking into account any exp
mental filter. The effect of such a filter is far from negligib
and has the tendency to increase the apparent fluctuat
The Amphora detector filter has been applied to study
effect. The result is presented in Fig. 5. As expected,
recognition by the neural network is poorer than without

FIG. 3. Energy dependence of the deviation~see definition in
the text! for Ca1Ca reactions obtained from QMD1GEMINI.

FIG. 4. Neural network output outNN as a function of the QMD
impact parameterBQMD for the

40Ca140Ca at 70 MeV per nucleon
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filter. This clearly shows the necessity to use a netw
trained as closely to the experimental condition as possi

IV. APPLICATION ON REAL DATA

The learning stage finished, it is possible to apply t
neural network on real data. In Fig. 6, the neural netwo
output obtained for both trained networks is displayed
each selected experimental event~complete event!. The
shaded histogram corresponds to theEUGENE-trained net-
work whereas the other histogram corresponds to the QM
trained network.

The neural network outputs are always below 7 fm. T
means that complete events deal mainly with central eve
as expected. The QMD-trained network gives higher imp
parameter value due to the fact that the QMD model conta

FIG. 6. Neural network output obtained for each selected
perimental event.EUGENE-trained network outputs are represent
using the shaded histogram whereas QMD-trained network out
are displayed by a solid line.

FIG. 5. Effect of a filter in the neural network performances.
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1374 55F. HADDAD et al.
deep inelastic processes contrary to theEUGENE model. A
depletion occurs for very central impact parameter valu
This is a result of two facts: We are working with real da
which means that events are weighted according to 2pbdb
whereb stands for the impact parameter. This makes cen
events less abundant than peripheral ones. In addition
shown in Fig. 4, the neural network recognition failed
very central collisions and gives systematically an overe
mated impact parameter value. The combination of these
facts explains the shape of the spectra at low outNN . The
maxima of both distributions are located around 3 fm.

It is interesting now to look at the correlation between t
two network outputs for our experimental events. In Fig
the averagedEUGENE-trained network output outEUG is plot-
ted as a function of the QMD-trained network outp
outQMD . A quite good correlation exists between the tw
outputs. A high outQMD corresponds to a high outEUG. This
result and the fact that the two distribution maxima are cl
are quite encouraging for the use of a neural network in
experimental analysis.

A precise individual impact parameter determination
this energy by our network does not seem reasonable. N
ertheless, we are going to separate the data into three gr
according to outNN . The limits of these groups ar
outNN<3.2 fm, 3.2,outNN<4.4 fm, and outNN.4.4 fm and
have been chosen to make three equally populated bins

For these three different classes, the so-called ‘‘Cam
plot’’ has been generated. This plot allows an exploration
the moments of the multiplicity distribution and has be
suggested as a useful means to identify a possible cri
behavior in the deexcitation patterns. In Fig. 8, such plots
displayed for all events as well as for the three outNN classes.

Two peaks occur in the experimental contour plot in pa
~a! of Fig. 8. One is located at large values of lnZmax and

FIG. 7. Correlation between theEUGENE-trained network output
and the QMD-trained network output.
s.

al
as

i-
o

e
n

t
v-
ps

pi
f

al
re

l

small values of lnS28 and the other is located at small valu
of lnZmax and large values of lnS28 . Plots obtained for the
different cuts in outNN show quite distinct behavior. For th
lower values of outNN , only the low lnS28 peak remains. On
the other hand, for higher outNN values, only the high lnS28
peak is present. This systematic nice behavior shows
neural networks can be very useful in data analysis by allo
ing the grouping of events according to the correlation
several observables~here CP,Pperp, andErat).

V. CONCLUSION

In this paper, a neural network has been used for the
time to determine the impact parameter of real experime
events (40Ca140Ca at 35 MeV per nucleon!. An improve-
ment of about 25% is obtained compared to commonly u
methods. Applied to real data, the40Ca1 40Ca reaction at 35
MeV per nucleon, the network provides a clear separation
the different peaks obtained in the experimental Campi pl
At the same time, a careful study of the influence of t
model used for the training shows that in both cases
neural network outputs are consistent together. This tend
indicate that the neural network can be a valuable tool in d
analysis.
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FIG. 8. Logarithmic distribution of Zmax vs
S285( i ,ZÞZmax

Zi
2M (Zi)/( i ,ZÞZmax

ZiM (Zi). Each contour represent
constant value units of relatived2Y/dlnS28ZmaxwhereY is the yield.
The outside contour level is at level 10, and each inner cont
represents a progression in yield of 150.
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