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Simulation of statistical ensembles suitable for the description of nuclear multifragmentation

Al. H. Raduta and Ad. R. Raduta
Institute of Atomic Physics, Bucharest, P.O. Box MG6, Romania

~Received 31 July 1996!

A general statistical ensemble is defined. The statistical weights for each configuration and consequently the
mean value of any global observable can be expressed analytically. Since the resulting formulas are not
numerically tractable, a statistical method of simulation is proposed. The method, a generalization of Koonin
and Randrup’s procedure, provides an exploration of configuration space according to the detailed balance
principle. This method is then applied to investigate the nuclear multifragmentation phenomenon. Charge and
mass distributions calculated for reactions40Ar145Sc at 35–115 MeV/nucleon and93Nb19Be at 11.4 and
30.3 MeV/nucleon are compared with the respective experimental data.@S0556-2813~97!04303-3#

PACS number~s!: 25.70.Pq, 24.10.Pa
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I. INTRODUCTION

Over the last decade the phenomenon of the nuclear
assembly of hot nuclear matter produced in high-ene
nuclear collisions has been intensely studied from both th
retical and experimental points of view. Several mod
based on different theoretical approaches have been
posed in order to describe the continuously increas
amount of data. Some of the most widely used fragmenta
approaches are statistical theories@1,4–6#, cold fragmenta-
tion theories@7#, transport theories@8,9#, percolation theories
@10,11#, and compound nucleus decay models. One sho
also mention the hybrid theories, which employ both d
namical and statistical hypotheses, and the intermitte
analysis based on factorial moments.

The method presented here is based on a statistica
proach. Our aim is to provide a general algorithm for sim
lating several statistical ensembles, some of which can
used to describe successfully nuclear multifragmentat
One defines a general statistical ensemble which is suit
for various cases, not only physical ones, which results
statistical weights and the formulas expressing the proba
ity of any configuration to appear. Since in most cases th
formulas cannot be analytically simplified or numerica
evaluated, they have to be statistically simulated. The p
posed simulation method is a generalization of Koonin a
Randrup’s procedure@1–3# and consists of generating a tr
jectory in configuration space which is in accordance w
detailed balance. This method is applied to the case of
nuclear multifragmentation of highly excited nuclei and t
results are compared with the corresponding experime
data.

The paper is organized as follows. Section II describes
general statistical ensemble. Section III offers a method
simulating any of the defined statistical ensembles. Sec
IV presents an application of this method to the case
nuclear multifragmentation. Section V discusses the num
cal results. Finally, the conclusions are drawn in Sec. VI

II. STATISTICAL ENSEMBLE

We consider the most general case, that of a statis
ensemble ofNC elements,NCPNCmin

-NCmax
, each of them

being described bym parameters. Thus, the set of paramet
550556-2813/97/55~3!/1344~9!/$10.00
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associated with a givenelement ican be written as

$Xi
1 ,Xi

2 , . . . ,Xi
m%. ~2.1!

Suppose now that the firstd parameters are discrete var
ables while the lastm2d parameters are continuous. To di
tinguish between the two types of parameters a more con
nient notation is introduced:

$X̃i
1 , . . . ,Xi

d ,Xi
d11 , . . . ,Xi

m%. ~2.2!

The set of parameters corresponding to thei th element is
denoted byXi :

Xi[$X̃i
1 , . . . ,X̃i

d ,Xi
d11 , . . . ,Xi

m%. ~2.3!

The set $Xi% with i51, . . . ,NC defines a configuration
which hereafter is denoted byC:

C:$Xi ,i51, . . . ,NC%. ~2.4!

Our basic assumption is that all configurations which
compatible with a given set of constraints are equally pr
able.

The elementary number of possible values for thekth
parameter belonging to thei th elementXi

k is denoted by
DNi

k . Then, the elementary number of statesDvC of con-
figurationC is

DvC5)
i51

NC

DNi
1
•••DNi

dDNi
d11

•••DNi
m

5)
i51

NC

DNi
d11

•••DNi
m . ~2.5!

Obviously, since the firstd variables are discrete, the relatio
DNi

15•••5DNi
d51 is valid. The notation can be furthe

simplified by replacing the product of the elementary num
of each parameter’s states byDNi :

DvC5)
i51

NC

DNi . ~2.6!

The total number of possible states can be expressed as
lows:
1344 © 1997 The American Physical Society
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55 1345SIMULATION OF STATISTICAL ENSEMBLES . . .
Ntot5 (
NC5NCmin

NCmax 1

NC!
)
i51

NC S (
Dd

E
Dc
dNi

d11
•••dNi

mD
5 (

NC5NCmin

NCmax 1

NC!
)
i51

NC S (
Dd

E
Dc
dNi D , ~2.7!

whereDc andDd denote the allowed domain for the discre
and continuous variables, respectively. Supposing that
each continuous variableXn there exists a functiona i

n such
thatdNi

n5a i
nXi

n , one has

dNi
d115a i

d11dXi
d11 , . . . ,dNi

m5a i
mdXi

m . ~2.8!

Consequently, we can write

dNi
d11

•••dNi
m5~a i

d11
•••a i

m!~dXi
d11

•••dXi
m![AidXi ,

~2.9!

and formula~2.7! becomes

Ntot5 (
NC5NCmin

NCmax 1

NC!
)
i51

NC S (
Dd

E
Dc

a i
d11dXi

d11 . . .a i
mdXi

mD
5 (

NC5NCmin

NCmax 1

NC!
)
i51

NC S (
Dd

E
Dc
AidXi D . ~2.10!

When we deal with global restrictions@let us denote them
by R~X1, . . . ,XNC)#, the total number of states can be wr
ten as

Ntot5 (
NC5NCmin

NCmax 1

NC!
)
i51

NC S (
Dd

E
Dc
AidXi DR~X1, . . . ,XNC)

5(
C

WC , ~2.11!

whereWC represents the statistical weight of a given co
figuration,

WC5
1

NC!
)
i51

NC

AiR~X1, . . . ,XNC), ~2.12!

and

(
C

~• !5 (
NC5NCmin

NCmax

)
i51

NC S (
Dd

E
Dc
dXi D ~• !. ~2.13!

The multiplicity of a given configuration is then given a

P~C!5
WC

(CWC
. ~2.14!

Before closing this section we would like to say a fe
words about the global restrictionsR~X1, . . . ,XNC). Gener-
ally, these restrictions are required by some conserva
laws. In what follows we enumerate three kinds of restr
tions which are usually imposed in physical systems. T
results in a classification for the system parameters.
or

-

n
-
is

~a! Global conservation laws of the type

(
i51

NC

Xi
a j5Cja for any configurationC, j51, . . . ,Na ,

~2.15!

whereXi
a j denotes both the discrete and continuous para

eters of the system that obey restrictions of the type~a! and
Na the total number of restrictions. We denote the fac
accounting for this kind of conservation law by

Ra~Xi
a j ,i51, . . . ,NC!5)

j51

Na

dS (
i51

NC

Xi
a j2CjaD .

~2.16!

~b! Global conservation laws of the type

(
i51

NC

F j~Xi
bkj!5Cjb for any configurationC,

j51, . . . ,Nb ,

kj51, . . . ,Nb
j , ~2.17!

whereNb represents the number of possible functionsF j ,
Nb
j is the number of variables corresponding to thej th re-

striction, andXi
bkj denotes both integer and continuous p

rameters of the system~2.2!. This kind of conservation law is
represented by the factor

Rb~Xi
bkj ,i51, . . . ,NC!5)

j51

Nb

dS (
i51

NC

F j~Xi
bkj !2CjbD .

~2.18!

~c! No global conservation laws. Obviously, the corr
sponding restrictions are

Rc~Xi
c j ,i51, . . . ,NC!51, ~2.19!

whereXi
c j ( j51, . . . ,Nc) corresponds to the parameters b

longing to thei th element that does not obey any conser
tion law.

Once this classification is adopted, one may say that
global restriction mentioned in Eq.~2.11! is a product of the
above-defined restrictions.

III. GENERAL SIMULATION ALGORITHM

Since the number of contributing configurations is ve
large in all but very small systems, formulas like those giv
by Eqs.~2.11! and ~2.14! cannot be numerically evaluated
Because of this fact, we shall simulate the statistical
semble and then gather the information we need. The me
we propose generates acorrect exploration of the configu-
ration space. This means that the exploration must gene
configuration C with its real probability of appearance
P(C), given by Eq.~2.14!. The method is based on the prin
ciple that any trajectory in configuration space iscorrect if
each movement from a pointCk to the next point on the
trajectory,Ck11, obeys the detailed balance principle.

Ordinarily, this principle states that when a system is
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1346 55AL. H. RADUTA AND AD. R. RADUTA
statistical equilibrium, the rate of transition from a give
configurationC to another oneC8 is equal to the rate of the
reverse motion. For the ensemble under consideration,
fact can be expressed in the form

P~C→C̃8!

P~C̃←C8!
5
WC8DC8NC8!

WCDCNC!
, ~3.1!

whereC̃ denotesNC! identical systems obtained by perm
tating the elements label whileDC stands for the elementar
interval of configurationC (DC5) i51

NC DXi).
The method of generating acorrect trajectory in the con-

figuration space, which we put forth, consists of two step
~1! Generate a trajectory which is able to scan all

configuration space.
~2! Correct this trajectory so that it obeys the detail

balance principle. This correction is achieved by adjust
the primary generation with a statistical factor which is
solution of the detailed balance equation. This factor infl
ences the probability of transition from a given configurati
Ck to the next configurationCk11. Thus, ifP(Ck→C̃k11) is
the probability of passing from the configurationCk to the
configurationCk11 according to the initial way of generatin
the trajectory, after correction, the probability of passi
from the configurationCk to the configurationCk11 will be
P(Ck→C̃k11)@a#, where@a# is the factor mentioned above
Let us now describe these two steps.

A. Generation of the primary trajectory

In principle any trajectory capable of scanningthe entire
configuration space can be used. However, it is particul
important to explore configuration space insmall moves,
namely, to pass from a given configurationCk only to those
configurationsCk11 which differ from Ck by a single ele-
ment. To be more specific, if configurationCk hasNC ele-
ments, configurationCk11 should have eitherNC11 or
NC21 elements.

At this stage, we would like to comment on the optim
way of passing from one configuration,

C:$Xi ,i51, . . . ,NC%, ~3.2!

to another. Certainly, these ways depend on the partic
global restrictionR(X1 , . . . ,XNC). There exist two kinds of
systems with specific suitable generating methods.
is

.
e

g

-
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l

ar

~i! Systems that obey at least one of the global conse
tion lawsmentioned in the previous section@which means~a!
or ~b!#. We consider the most general case, namely, t
involving parameters which satisfy all three kinds of restr
tions.

In this case the optimal way in which one can pass fr
configurationC into a next configuration is to ‘‘split’’ a ran-
domly chosen element into two elements~a ‘‘fission’’ move!
or to ‘‘combine’’ two randomly chosen elements into a fin
one ~a ‘‘fusion’’ move!. The significance of the term
‘‘split’’ or ‘‘combine’’ is explained in the following ex-
ample. The two kinds of movements will be generated w
equal probability.

1. ‘‘Fission’’ move

Consider the starting configurationC given by Eq.~2.14!.
We randomly choose a ‘‘fissioning’’ elementi from the
NC elements. The probability of this movement is

p15
1

NC
. ~3.3!

At the next step we randomly choose as ‘‘fission’’ produc
two elements denoted byi 8 and j 8. The parameters of thes
two elements are fixed as follows.

The parameters of the ‘‘fission’’ productsi 8 and j 8, which
are not of the type~a!, will be randomly chosen in their
maximum domains; the~a!-type parameters will be randoml
chosen such thatXi 8

ak
1Xj 8

ak
5Xi

ak . The probability for making
this move is

p25
Pk51

Na DXi 8
ak

Pk51
Na Xi

ak

Pk51
m2NaDXi 8

bckDXj 8
bck

Pk51
m2NaL~Di 8

bck
!L~Dj 8

bck
!
, ~3.4!

whereDi
bck represents the allowed domain of thekth param-

eter of the elementi andL(•) the length of the domain unde
brackets. Of course, the parameters chosen in this way
not satisfy the restrictions~a! and/or~b!. Thus, if one of the
restrictionsRa andRb is violated, one must reject the mov
and consider the starting configurationC as the next configu-
ration. The probability of choosing a good configurationC8
can then be written as
.

P8~C→C̃8!52
1

NC

Pk51
Na DXi 8

ak

Pk51
Na Xi

ak

Pk51
m2NaDXi 8

bckDXj 8
bck

Pk51
m2NaL~Di 8

bck
!L~Dj 8

bck
!
)
k51

m

H„Xi
k2 inf~Di

k!…H„sup~Di
k!2Xi

k
…H„Xi 8

k
2 inf~Di 8

k
!…

3H„sup~Di 8
k

!2Xi 8
k
…H„Xj 8

k
2 inf~Dj 8

k
!…H„sup~Dj 8

k
!2Xj 8

k
…RaRb , ~3.5!

where we have denoted byDi
k the allowed domain of thekth parameter of thei th element and byH the Heaveside function

The correction to the fission movement will be made by accepting this resulting configuration with the probability@a#. Thus,
the probability for the corrected movement can be written as

P~C→C̃8!5@a#P8~C→C̃8!. ~3.6!
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2. ‘‘Fusion’’ move

We now considerC8 as a starting configuration havingNC11 elements. We first choose the two ‘‘fusing’’ elementsi 8 and
j 8. This move has the probability

p185
1

NC~NC11!
. ~3.7!

The parameters of the ‘‘fusion’’ product will be fixed as follows. Obviously, the parameters of type~a! will have the values
Xi
ak5Xi 8

ak
1Xj 8

ak k51, . . . ,Na ; the remaining parameters will be randomly chosen in their domains. The probability fo
move is

p285
Pk51

m2NaDXi
bck

Pk51
m2NaL~Di

bck!
. ~3.8!

If the chosen parameters do not obey the restrictionsRa andRb , the move is aborted andC8 is used again. Thus, th
probability for obtaining this new, good configurationC8 is

P8~C̃←C8!52
1

NC~NC11!

Pk51
m2NaDXi

bck

Pk51
m2NaL~Di

bck!
)
k51

m

H„Xi
k2 inf~Di

k!…H„sup~Di
k!2Xi

k
…H„Xi 8

k
2 inf~Di 8

k
!…H„sup~Di 8

k
!2Xi 8

k
…

3H„Xj 8
k

2 inf~Dj 8
k

!…H„sup~Dj 8
k

!2Xj 8
k
…RaRb . ~3.9!
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The correction to the ‘‘fusion’’ movement will be made b
accepting the resulting configuration with the probabil
@1/a#. Then, the corrected probability can be written as

P~C̃←C8!5F 1a GP8~C̃←C8!. ~3.10!

~ii ! Systems obeying only restrictions of type (c)~in other
words, systems which do not obey any global conserva
law!. In this case, the optimal way~of generating ‘‘small
moves’’! in which one can pass from a configurationC to a
next configurationC8 is to add an element to the syste
~‘‘adding move’’! or to remove an element from the syste
~‘‘removing move’’!. These two kinds of movements a
generated with equal probabilities.

3. ‘‘Adding’’ move

Consider now the starting configurationC, with NC ele-
ments. At this point, we check first whetherNC11<NCmax

.
If this is satisfied, one performs the next step; otherwise,
considersC as the next configuration by adding an eleme
to the system and keeping the parameters of the former
temC the same. LetC8 be the resulting system. The param
eters of the (NC11)th element are randomly chosen in t
allowed domains. Since there are no global restrictions,
can say that the new configurationC8 was generated with the
probability

P8~C→C̃8!5p85
DXi 8
L~Di 8!

. ~3.11!

The correction for the ‘‘adding’’ movement is performed b
accepting this resulting configuration with the probabil
@a#. The probability of the corrected movement is

P~C→C̃8!5@a#P8~C→C̃8!. ~3.12!
n

e
t
s-

e

4. ‘‘Removing’’ move

Let C8 be the starting configuration, havingNC11 ele-
ments. At this point we check first ifNC>NCmin

. If this re-
lation holds, one passes to the next step; otherwise, we c
C8 as the next configuration by removing an element fro
the system and keeping the remaining ones as they are.
next configurationC is obtained by removing one of th
NC11 elements from theC8 configuration. Since there ar
no global restrictions, one may say that a new configurat
C8 has been generated with the probability

P8~C̃←C8!5
1

NC11
. ~3.13!

The ‘‘removing’’ movement correction will be made by ac
cepting the configurationC with the probability@1/a#. The
probability of the corrected movement is

P~C̃←C8!5F 1a GP8~C̃←C8!. ~3.14!

The factors@a# and @1/a# are defined as follows:

@a#5H a, a,1,

1, a>1, F 1aG5H 1

a
, a>1,

1, a,1.

~3.15!

It is worth noticing that@a#/@1/a#5a for anya.

B. Evaluation of the correction factor

~i! Using the formulas~2.12! and ~2.32!, the right-hand
side ~RHS! of the detailed balance equation becomes:

WC8DC8NC8!

WCDCNC!
5
Ai 8•Aj 8
Ai

DXi 8DXj 8
DXi

. ~3.16!



tio

-

y

he

ile

u
lo

t

n
e

ro
et
er
din

ce
he
a
se
r a

the
ll
me
uce
tis-
i-
cay
dy-
e
lo-
ns

y
set

on

er,
the
re-

cal
. III,
e

f

ble

pli-

tum

-

1348 55AL. H. RADUTA AND AD. R. RADUTA
On the other hand, the LHS of the detailed balance equa
is written as

P~C→C̃8!

P~C̃←C8!
5a~NC11!

L~Di
bc!

L~Di 8
bc

!L~Dj 8
bc

!

DXi 8DXj 8
DXi

.

~3.17!

From Eqs.~3.16! and ~3.17! one derives the following ex
pression fora:

a5
1

NC11

Ai 8•Aj 8
Ai

L~Di 8
bc

!L~Dj 8
bc

!

L~Di
bc!

. ~3.18!

~ii ! By means of Eqs.~2.12! and ~2.31!, the RHS of the
detailed balance equation is written as

WC8DC8NC8!

WCDCNC!
5Ai 8•DXi 8, ~3.19!

while the LHS acquires the form

P~C→C̃8!

P~C̃←C8!
5a~NC11!

DXi 8
L~Di 8!

. ~3.20!

From Eqs.~3.19! and~3.20! the following expression fora is
obtained:

a5
1

NC11
Ai 8L~Di 8!. ~3.21!

At this stage, we are able to generate a correct trajector
configuration space in both cases~i! and ~ii !. Having the
value ofa in any point of the trajectory, we can calculate t
factors@a# and@1/a# by means of Eq.~3.15! and then adjust
the movement. The resulting trajectory obeys the deta
balance principle and consequently each configurationC is
generated with a probability given by the formula~2.14!.

IV. APPLICATION TO THE NUCLEAR DISASSEMBLY

Let us first analyze the case of a hot nucleus breaking
into primary fragments. We shall name this event an ‘‘exp
sion.’’ The result of this ‘‘explosion’’ will be a collection of
nuclear fragments (An ,Zn), each of them having differen
excitation energies in the interval 0-B(An ,Zn). Obviously,
these nuclei can further decay exactly in the same man
and create a new generation of fragments. In turn this g
eration can also create another new generation and so
The decrease of the excitation energies of the fragments f
one generation to another is a well-known fact. Theor
cally, this process could continue until the excitation en
gies of fragments become smaller than the correspon
nucleon binding energy@B(An ,Zn)/An#. Thus, one may say
that the multifragmentation phenomenon consists of suc
sive ‘‘explosions.’’ Many authors treat the primary and t
next order explosions in distinct ways. For these second
decays the name ‘‘evaporation’’ is often used. Of cour
because of the small values of the excitation energies fo
n

in

d

p
-

er
n-
on.
m
i-
-
g

s-

ry
,
ll

descendent generations, the dominant phenomenon is
‘‘explosion’’ into a main large fragment and some sma
fragments. However, one should not forget that in so
cases the fragments of the first generation can also prod
intermediate-mass fragments. In principle a complete sta
tical description of an ‘‘explosion’’ event offers the ingred
ents for a complete statistical description of the entire de
process. Consequently, we shall focus our attention on stu
ing the ‘‘explosion’’ events. With this aim we shall apply th
formalism described in the previous sections to the ‘‘exp
sion’’ of a nuclear system with a fixed number of proto
and neutrons.

Let us denote byA the total number of nucleons and b
Z the total number of protons. The system depends on a
of parameters which defines a configurati
C1 :$An ,Zn ,pW n,en,rWn,n51, . . . ,NC1

%, where An , Zn , pW n,

en , and rWn represent the mass number, the atomic numb
the momentum, the excitation energy, and the position of
nth fragment, respectively. The number of fragments cor
sponding to the configurationC1 is denoted byNC1

. The
collection of all possible configurations defines a statisti
ensemble. To keep closely to the language used in Sec
we notice thatAn andZn stand for discrete variables whil
pW n, en , andrWn stand for continuous variables.

According to Eqs.~2.5!–~2.9!, the elementary number o
states for configurationC1 can be written as

dvC15 )
n51

NC1

dN~pW n!dN~en!dN~r nW !5 )
n51

NC1

dNi5 )
n51

NC1

AndXn ,

~4.1!

where

dN~pW n!dN~rWn!5
drWnpW n
h3

, dN~en!5rn~en!den ~4.2!

and

dXn5drWndpW nden , An5rn~en!
1

h3
, ~4.3!

with rn(en) denoting the nuclear level density of thenth
fragment.

We are working under the assumption that all possi
configurations are equally probable.

Let us enumerate the restrictions appearing in this ap
cation.

Restrictions of type (a): This kind of restriction is re-
flected in the conservation of mass, charge, and momen
of the system:

Ra5)
j51

Na S (
n51

NC1

Xn
a j2Cj

aD
5dS (

n51

NC1

An2AD dS (
n51

NC1

Zn2ZD dS (
n51

NC1

pW nD . ~4.4!

Restrictions of type (b): The conservation of the total en
ergy is the only restriction of type~b!:
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Rb5)
j51

Nb

F j
b~Xn

bk!5d~Etot2EC1
!5dS K2 (

n51

NC1 pn
2

2mn
DH~K !,

~4.5!

whereEC1
represents the total energy of the system,

EC1
5 (

n51

NC1 F pn
2

2mn
2B~An ,Zn!1en1

1

2 (
nÞn8

Vnn8G ,
~4.6!

andK the kinetic energy:

K5E2 (
n51

NC1 F2B~An ,Zn!1en1
1

2 (
nÞn8

Vnn8G . ~4.7!

In Eqs.~4.6! and~4.7!, B(An ,Zn) denotes the binding energ
of fragmentn andVnn8 the interaction energy between fra
mentn and the fragmentn8. In the present simulationVnn8
is taken to have both a Coulomb interaction part and a h
sphere nuclear repulsive potential which prevents the fr
ments from overlapping.
rd
g-

According to Eq.~2.11! one can express the total numb
of distinct possibleC1 configurations when the restriction
mentioned above are considered, using Eqs.~4.4! and ~4.5!,
as

Ntot5 (
NC1

51

A
1

NC1
!)n51

NC1 S (
An51

A

(
Zn5Zmin~An!

Zmax~An! E
0

enmax
denE dpW n

3E
V
drWn

rn~en!

h3 D dS (
n51

NC1

An2AD dS (
n51

NC1

Zn2ZD
3dS (

n51

NC1

pW nD dS K2 (
n51

NC1 pn
2

2mn
DH~K !. ~4.8!

If we integrate over the fragments momenta, one c
identify a new type of configuration C:$An ,
Zn ,en,rWn,n51, . . . ,NC%, whose statistical weightWC ~i.e.,
the total number of states in the configurationC) can be
easily evaluated:
FIG. 1. Charge distribution for central collision for the reaction40Ar145Sc at different bombarding energies (Eb). The open circles
represent the predictions of the present simulation while the stars represent the experimental data taken from Ref.@17#.
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WC5
1

NC!
)
n51

NC S V
rn~en!

h3
~mAn!

3/2D
3

2p

G„3/2~NC21!…

~2pK !3/2NC25/2

~mA!3/2

3dS (
n51

NC

An2AD dS (
n51

NC

Zn2ZD dS (
n51

NC

pnW DH~K !.

~4.9!
In the fission move we just have to choose a ‘‘fissionin

elementi and from this one to generate two ‘‘fission pro
ucts’’ i 8 and j 8. That means that we have to choose ra
domly a fissioning element (Ai ,Zi) and then to choose ran
domly the number of nucleons and the atomic number of
first product (Ai 8,Zi 8) in the domains 1-Ai21, 0-Zi . For the
second fission product (Aj 8,Zj 8), we haveAj 85A2Ai 8 and
Zj 85Z2Zi 8. If at least one of the chosen fragments is u
stable, the move is aborted and configurationC is used for
the next step. Otherwise, we generate the excitation ene
e i 8,e j 8 in the allowed domains~having the binding energy o
the fragment as an upper limit! and the positionsrW i 8 and
rW j 8 in the considered volumeV. At this point one can calcu
late the kinetic energyK. If K,0, the move is aborted an
C is counted again. Otherwise,C8 is a ‘‘good’’ configuration
and could be a next new configuration for the system.C8 is
used as a next configuration with the probability@a#.

In the fusion move we have to choose randomly t
‘‘fusing’’ elementsi 8 and j 8 and to generate a ‘‘fission prod
uct’’ i . Thus, we choose randomly two fusing eleme
(Ai 8,Zi 8) and (Aj 8,Zj 8) and form a product (Ai ,Zi). If the
product is unstable, the move is aborted andC8 is counted
again. Otherwise, the move is continued and the excita
energye i and the positionr iW are randomly generated in the
domains. As we proceeded before, one calculatesK, and if
K,0, the move is aborted and the old configuration is u
again. IfK>0, C is accepted as the next configuration w
probability @1/a#.

Thus, we have described the generation of the prim
trajectory. The correction to this trajectory will be achiev

FIG. 2. The average number of charged particles (Z51–12)
versus bombarding energyEb . The solid circles represent the pre
dictions of the present simulation; the open down and up trian
represent the corrected and uncorrected data, respectively~from
Ref. @17#!.
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by the adjustment with the correction factora @see Eq.
~3.21!#:

a5
~Ai21!~Zi11!

NC11
V

e i 8maxe j 8max
e imax

G„ 32 ~NC21!…

G~ 3
2NC!

3
r i 8~e i 8!r i 8~e i 8!

r i~e i !
SAi 8Aj 8

Ai
D 3/2S mK

2p\2D 3/2SK8

K D ~3NC/2!21

.

~4.10!

At this stage, the method of simulating an ‘‘explosion
event is well formulated. As we said before, for a comple
description of the multifragmentation process we should
count for all ‘‘explosions.’’Obviously, the same method
applicable to the ‘‘explosions’’ of any order. But a simula-
tion that considers all secondary decays requires an un
sonably long computing time. However, we have found
way to overcome these difficulties and applications are
progress.

In order to evaluate to what extent the contribution of t
primary decay to the mass and charge multiplicities and
erage number of charged particles describes the phys
phenomenon, we compare the model predictions with exp
mental data@13,17#.

V. RESULTS

To emphasize the virtues of the present model, we
scribe some theoretical predictions and compare them w
the corresponding data. Our applications refer to the re

s

FIG. 3. Charge distribution for the reaction93Nb19Be at the
bombarding energies 11.4 MeV/nucleon~a! and 30.3 MeV/nucleon
~b!. The stars represent experimental data, taken from@13#, while
the open circles stand for the predictions of the present simulat
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FIG. 4. ~a! Mass and~b! charge distributions for various total energies (E/A) obtained for a fireball havingA5100 andZ545.
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tions 40Ar1 45Sc with an incident energy varying from 3
MeV/nucleon to 115 MeV/nucleon@16#, and 93Nb1 9Be at
the incident energies 11.4 MeV/nucleon and 30.3 Me
nucleon@13#. Also, for a more complete conception of th
model we present some global characteristics like mass
charge distributions for a wide range of energies.

In order to obtain a realistic simulation, we have used r
binding energies of all the elements withA lying between 1
and 266. For level densities we have used the following f
mula @14#:

r~e!5
1

A48e
eA4ae, a5

A

a
, a58S 11

e

B~A,Z! D ,
~5.1!

where the factor@11e/B(A,Z)# was included so as to de
scribe the dependence of the factor entering the Fermi
formula on the excitation energye for the (A,Z) system with
the binding energyB(A,Z). It is worth stressing that the
nuclear matter freeze-out density is the only fitting parame
of simulation. For high excitation energies and light fra
ments this formula produces similar results as that use
Ref. @15#.

For the case of the40Ar1 45Sc reaction we compared th
predicted charge distributions with the corresponding exp
/

nd

l

r-

as

r
-
in

i-

mental data at eight bombarding energies 35, 45, 65, 75,
105, and 115 MeV/nucleon. These correspond to the cen
of-mass total energies~which include the binding energy! of
0.7091, 3.1828, 8.1105, 10.5648, 13.0129, 15.4545, 17.8
and 20.3194 MeV/nucleon, respectively@16#. The calcula-
tions are performed considering a fireball withA580 and
Z536 @16#. Since the experimental data lie betweenZ51
and 12, we normalized our results in these limits. Also,
have normalized the experimental data in order to expr
them in terms of multiplicities.

As one can see from Fig. 1, the agreement with the
perimental data is very good for all the energies conside
This fit was obtained considering the freeze-out density to
0.249r0 (r0 represents the normal nuclear density and
taken to be 0.17 fm23). Figure 2 shows the average numb
of charged particles withZ51–12 as a function of the bom
barding energy in comparison with the corrected and unc
rected experimental data@16,17#. For the central collision
93Nb1 9Be we have considered a fireball withA5102 and
Z545 @13#. The considered energies correspond to the e
tation energies 102 and 261 MeV, respectively. The co
parison of the predictions and experimental data for cha
distributions ~Fig. 3! shows good agreement. The fit wa
obtained with a freeze-out density of 0.263r0. From the
above analysis one may conclude that~a! the agreement for
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multiplicities suggests that the possible contribution com
from secondary decays might be negligible and~b! these
corrective events improve the agreement for the aver
number of charged particles~see Fig. 2!. Indeed, these adde
decays contribute to the increase in the number of fragme

Finally, we present some global characteristics like m
and charge distributions obtained with our code for a la
range of the total energy. Figures 4~a! and 4~b! show the
mass and charge distributions forA5100,Z545 for various
total energies,E/A. It is worth noting that general characte
istics of the nuclear disassembly charge and mass distr
tion, such as the U shape, the shoulderlike shape, and
exponentially falling shape, are well reproduced.

In conclusion we may assert that, in first order, the mo
describes very well charge distributions for a wide range
energies, which suggests small contributions due to
higher orders. As shown in Fig. 2 the predicted average n
bers of fragments lie below the corrected experimental d
This supports the model assumptions since the higher o
decays cause an increase in the number of fragments
consequently, the theoretical curve will approach the exp
mental one. Another virtue of this model is that, even in t
first order approach, it can describe charge distributions
decays of highly excited nuclei in energy ranges where m
authors@13,16,18–20# suggest different decay mechanism
For example, in the case of the40Ar1 45Sc reaction two de-
cay mechanisms are suggested@16#: For bombarding ener
gies below.60 MeV/nucleon the decay is supposed to
sequential, while for upper energies the disassembly is s
posed to be simultaneous.

VI. CONCLUSIONS

Summarizing, we have formulated a general statistical
semble for the case of a system composed ofN ‘‘elements’’
with NP@Nmin ,Nmax#, each element being described by a
of parameters. A set of constraints, usually met in phys
.
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systems, has been defined. The statistical weights and
probability for obtaining a certain configurationC have been
analytically expressed. In most cases the resulting formu
are not numerically tractable due to the large number of p
sible configurations. Thus, a statistical method for simulat
this ensemble is employed. The method is a generalizatio
the adapted Monte Carlo Metropolis algorithm@12# proposed
by Koonin and Randrup@3# and consists of generating
trajectory in configuration space obeying the detailed bala
principle. We discuss both the most general case in wh
the system can have any type of restriction and the cas
which the system is not subject to global restrictions. A su
able generation scheme is described for each of these c

This method is applied to the case of nuclear multifra
mentation which is realistically treated taking into accou
the total charge, mass, momentum, and energy conserva
laws. Also, real binding energies for all the elements w
A51–266 have been employed in the resulting compu
code. The numerical results are compared with experime
data and very good agreement is obtained over a large
main of energies. In fact, this result supports the theoret
assumption of our model. It is worth mentioning that t
energy domains for which calculations have been perform
are supposed by many authors to present two decay me
nisms: sequential decay~for bombarding energies below
.60 MeV/nucleon! and simultaneous multifragmentatio
~for bombarding energies higher than.60 MeV/nucleon!.
Various distribution shapes usually found in multifragmen
tion experimental data are also reproduced.

Before closing, we would like to mention that a metho
for accounting for the effects of higher order ‘‘explosions
has been developed and its application to the study
nuclear multifragmentation is in progress. Also more sen
tive tests for the model assumptions, like the relative rat
of multifragmentation, fission, and evaporation events,
being pursued. All these improvements will be addressed
a subsequent paper.
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