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Simulation of statistical ensembles suitable for the description of nuclear multifragmentation
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A general statistical ensemble is defined. The statistical weights for each configuration and consequently the
mean value of any global observable can be expressed analytically. Since the resulting formulas are not
numerically tractable, a statistical method of simulation is proposed. The method, a generalization of Koonin
and Randrup’s procedure, provides an exploration of configuration space according to the detailed balance
principle. This method is then applied to investigate the nuclear multifragmentation phenomenon. Charge and
mass distributions calculated for reactioffér+4°Sc at 35-115 MeV/nucleon antNb+ °Be at 11.4 and
30.3 MeV/nucleon are compared with the respective experimental [&1556-28137)04303-3

PACS numbdrs): 25.70.Pq, 24.10.Pa

[. INTRODUCTION associated with a giveelement ican be written as

Over the last decade the phenomenon of the nuclear dis- {XHXE, .. X (2.9)
assembly of hot nuclear matter produced in high-energy

nuclear collisions has been intensely studied from both theo- Suppqse now that the firt parameters are discrete vart-
ables while the lasin—d parameters are continuous. To dis-

retical and experimental points of view. Several models’ =2 hb h ¢
based on different theoretical approaches have been prgnguish between the two types of parameters a more conve-

posed in order to describe the continuously increasing'€Nt Notation is introduced:

amount of data. Some of the most widely used fragmentation {')'(_1 xd xd+1 Xm 2.2
approaches are statistical theor[ds4—6], cold fragmenta- broormmiet e e '
tion theoried 7], transport theorief8,9], percolation theories The set of parameters corresponding to tte element is
(10,13, and compound nucleus decay models. One shoulganoted by,

also mention the hybrid theories, which employ both dy- '

namical and statistical hypotheses, and the intermittence )(iz{'f(il, . ,')V(id,xidﬂ, XM (2.3
analysis based on factorial moments.
The method presented here is based on a statistical affhe set{X;} with i=1,... Nc defines a configuration

proach. Our aim is to provide a general algorithm for simu-which hereafter is denoted Wy:

lating several statistical ensembles, some of which can be

used to describe successfully nuclear multifragmentation. C{A,i=1,... Nc}. (2.4
One defines a general statistical ensemble which is suitabl8 . L . . .
for various cases, not only physical ones, which results in ur ba§|c a;sumpt!on is that all conﬁgura’uons which are
statistical weights and the formulas expressing the probabilgompatlble with a given set of constraints are equally prob-
ity of any configuration to appear. Since in most cases thes@?S: .
formulas cannot be analytically simplified or numerically The elementar)_/ numbe_r of possible kV.a'“eS for kb
evaluated, they have to be statistically simulated. The proParameter belonging to thieh elementX; is denoted by
posed simulation method is a generalization of Koonin and*Ni - Then, the elementary number of statesc of con-

Randrup’s procedurfl—3] and consists of generating a tra- figurationC is

jectory in configuration space which is in accordance with Ng
detailed balance. This method is applied to the case of the Ave=TT ANL. .. ANYANO*L. .. ANM
nuclear multifragmentation of highly excited nuclei and the ve iljl : e !

results are compared with the corresponding experimental
data.

The paper is organized as follows. Section Il describes the
general statistical ensemble. Section Il offers a method for
simulating any of the defined statistical ensembles. Sectio®bviously, since the firsl variables are discrete, the relation
IV presents an application of this method to the case ofANilz . ..:ANidzl is valid. The notation can be further

nuclear multifragmentation. Section V discusses the numerisimplified by replacing the product of the elementary number
cal results. Finally, the conclusions are drawn in Sec. VI.  of each parameter’s states By\; :

Nc
=Hl ANIFLUANDM, (2.5
B

Il. STATISTICAL ENSEMBLE Ave=]1 AN;. (2.6)

We consider the most general case, that of a statistical

ensemble oN¢ elementsNceNc  -Nc . each of them  The total number of possible states can be expressed as fol-
being described byn parameters. Thus, the set of parameterdows:
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Nc . 1 Ne (a) Global conservation laws of the type
Niot= 2 N T E dNi(Hl"'dNim N
Ne=Ne_ Neli=i \ By Jo, c
m > X{!=C? for any configurationC, j=1,...N,,
Ncmax 1 NC i=1 2 l
= > SIS | am], (2.7 @13
Ne=Ne  Nc!i=1 | By Jo,

whereX? denotes both the discrete and continuous param-

whereD, andD, denote the allowed domain for the discrete €ters of the system that obey restrictions of the tigeand

and continuous variables, respectively. Supposing that foNa the total number of restrictions. We denote the factor

each continuous variablé, there exists a function such ~ &ccounting for this kind of conservation law by

thatdN'= X, one has Na /N

Ra(X¥i=1,... ,NC)=H1 5( > x?i—cja).
&

dNIF1=gd* X3t dNM=aMdX™. (2.8 =

(2.19
Consequently, we can write

(b) Global conservation laws of the type
dNIFL L dNM= (L aM) (dXTL L dXM) = Ad Y,
29 Xe
>, Fi(X™)=cP for any configuratiorC,

and formula(2.7) becomes i=1 '

Ncmax 1 NC j:]-!"-;Nb;
= i d+1qyd+1 mg xm .
NIOt chchmin NC||:1 (% chaI dXI e O dXI ) kal, L ,ij’ (2.1n
NC o 1 Ne where N, represents the number of possible functidi)s
= > — > AidX; . (2.10 N} is the number of variables corresponding to fhie re-
Ne=Ne  Nc!i=i |\ By Jo,

striction, andXibkj denotes both integer and continuous pa-
When we deal with global restrictiofiet us denote them rameters of the systef2.2). This kind of conservation law is

by R(Xy, . .. ,Xy.)], the total number of states can be writ- represented by the factor
ten as Np N
N y Ro(X9,i=1,... No)=]1 5(2 Fj(xf’kj)—c}’).
max 1 Ne j=1 i=1
No= 2 17 (2 Aid»q)wcl, ) (218
Ne=N¢ . Nc-i=1 | Dy Jp
(c) No global conservation laws. Obviously, the corre-
=E We, 2.11) sponding restrictions are
¢ Re(XSi=1,... No)=1, (2.19
where W¢ represents the statistical weight of a given con- _
figuration, whereX? (j=1,... N.) corresponds to the parameters be-
N longing to theith element that does not obey any conserva-
¢ tion law.
Wc:N_c!iHl ARy, .. ,XNC), (212 Once this classification is adopted, one may say that the
global restriction mentioned in EqR.1]) is a product of the
and above-defined restrictions.
NCpax  Ne

I1l. GENERAL SIMULATION ALGORITHM
2= 2 H(E dﬂq)(». (2.13 _ . L
C Neg=N¢ _i=1\ Dy JD Since the number of contributing configurations is very
large in all but very small systems, formulas like those given
The multiplicity of a given configuration is then given as by Egs.(2.11) and (2.14 cannot be numerically evaluated.
Because of this fact, we shall simulate the statistical en-
P(C)= We . (2.14 semble and then gather the information we need. The method
2cWe we propose generatesarrect exploration of the configu-
ration space. This means that the exploration must generate
Before closing this section we would like to say a few configuration C with its real probability of appearance,
words about the global restrictio®(X, . . ., Xy_). Gener-  p(C), given by Eq.(2.14). The method is based on the prin-
ally, these restrictions are required by some conservationiple that any trajectory in configuration spacecigrect if
laws. In what follows we enumerate three kinds of restric-each movement from a poir€, to the next point on the
tions which are usually imposed in physical systems. Thidrajectory,C,. 1, obeys the detailed balance principle.
results in a classification for the system parameters. Ordinarily, this principle states that when a system is in
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statistical equilibrium, the rate of transition from a given (i) Systems that obey at least one of the global conserva-
configurationC to another on&C’ is equal to the rate of the tion lawsmentioned in the previous sectibwhich meanga)
reverse motion. For the ensemble under consideration, thisr (b)]. We consider the most general case, namely, that

fact can be expressed in the form involving parameters which satisfy all three kinds of restric-
_ tions.
P(C—C") B W/ AC'Ne/! (3.1 In this case the optimal way in which one can pass from

configurationC into a next configuration is to “split” a ran-
domly chosen element into two elemefds ‘fission” move)

whereC denotesNc! identical systems obtained by permu- ©F to “combine” two randomly chosen elements into a final

tating the elements label whileC stands for the elementary E’”el,t(f‘ “fu“sion”b.m('),vg). Th;a.si%nifice:tr:cef ?If the terms
: S e NG v split” or “combine” is explained in the following ex-
interval of configuratiorC (AC=IT; - AX)). ample. The two kinds of movements will be generated with
equal probability.

P(E<—C’) ~ WCACNC!

The method of generating@rrecttrajectory in the con-
figuration space, which we put forth, consists of two steps.

(1) Generate a trajectory which is able to scan all the
configuration space.

(2) Correct this trajectory so that it obeys the detailed Consider the starting configurati@given by Eq.(2.14).
balance principle. This correction is achieved by adjustingVe randomly choose a “fissioning” elemenmt from the
the primary generation with a statistical factor which is aN; elements. The probability of this movement is
solution of the detailed balance equation. This factor influ-
ences the probability of transition from a given configuration
Cy to the next configuratiof,, ;. Thus, ifP(C,—C,. ) is P1=-——. (3.3
the probability of passing from the configurati@y to the Nc
configurationC,, 1 according to the initial way of generating

from the configuratiorCy to the configuratiorCy., will be  two elements denoted Ly andj’. The parameters of these
P(Cy— Cyy1)[ @], where[ «] is the factor mentioned above. two elements are fixed as follows.

1. “Fission” move

Let us now describe these two steps. The parameters of the “fission” produdtsand;j’, which
are not of the typga), will be randomly chosen in their
A. Generation of the primary trajectory maximum domains; thé)-type parameters will be randomly

In principle any trajectory capable of scannitig entire ~ chosen such tha)+ X?'k: X™. The probability for making
configuration space can be used. However, it is particularlyhis move is
important to explore configuration space $mall moves,
namely, to pass from a given configuratiGp only to those N2 AxaK M~ Nap ybekp ybek
configurationsC,, ; which differ from C, by a single ele- p,= k,jl I mle o 'k J'b o
ment. To be more specific, if configuratid@®), hasN¢ ele- M2, X2 T LD LD
ments, configuratiorC,,; should have eitheN;+1 or
Nc—1 elements.

At this stage, we would like to comment on the optimal

(3.9

| whereDP** represents the allowed domain of tkiéx param-

way of passing from one configuration eter of the elemeritandL(-) the length of the domain under
’ brackets. Of course, the parameters chosen in this way may
CAx,i=1,... N¢}, (3.2 not satisfy the restriction&) and/or(b). Thus, if one of the

restrictionsk, and R, is violated, one must reject the move
to another. Certainly, these ways depend on the particulagnd consider the starting configuratiGras the next configu-
global restrictionR(Xy, . .. Ay ). There exist two kinds of  ration. The probability of choosing a good configurati@h
systems with specific suitable generating methods. can then be written as

N, k m—N_, » bk, bk
p’(cH6'>=zin=1Axia’ My "X 0K, Tm[ H (X<~ inf(DX))H (sup D) — XKH (XY — inf(D))
Nc H::Ifl)(?k Hkm__lNaL(Dib,Ck)L(DJ-b,Ck)kzl i i i i i’ i’

X H(sup( D) — X{,)H (XS, = inf(Dl}))H (sup D, ) = XS )Ra Ry, (3.5

where we have denoted liyf the allowed domain of thieth parameter of théth element and by the Heaveside function.
The correction to the fission movement will be made by accepting this resulting configuration with the propabilityhus,
the probability for the corrected movement can be written as

P(C—C')=[a]P'(C—C"). (3.6)
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2. “Fusion” move

We now consideC’ as a starting configuration havilt+ 1 elements. We first choose the two “fusing” elemeritand
j’. This move has the probability

1

PRGN D @2

The parameters of the “fusion” product will be fixed as follows. Obviously, the parameters of(@pell have the values

Xf‘k= Xia,k+ Xf,k k=1, ... N,; the remaining parameters will be randomly chosen in their domains. The probability for this
move is
—N
p/ _ 1_[rkn:1 aAXibCk (3 8)
P LD |

If the chosen parameters do not obey the restrictiBgsand Ry, the move is aborted an@’ is used again. Thus, the
probability for obtaining this new, good configurati@i is

1 HE:lNaAXibCK m

"(CeC')= k_j k ky — xk k _j k Ky xk
P'(C—C’) 2Nc(Nc+1) Hf;lNaL(DFCK)lgl H(X{—inf(D)))H (sug Dy) — X)H (X[, —inf(D;, ) )H(sup D;,) — X))
X H(X, =inf(Dl})H(SUa D) = X{)RaRy. (3.9
I
The correction to the “fusion” movement will be made by 4. “Removing” move

accepting the resulting configuration with the probability

- , Let C’ be the starting configuration, havig-+1 ele-
[1/a]. Then, the corrected probability can be written as

ments. At this point we check first M= Nc, . - If this re-

_ lation holds, one passes to the next step; otherwise, we count
P'(C—C’). (3.10 C’ as the next configuration by removing an element from
the system and keeping the remaining ones as they are. The

. . - next configurationC is obtained by removing one of the
(i) Systems obeying only restrictions of type {o)other Nc+1 elements from th&€' configuration. Since there are

words, systems which do not obey any global COI"]SGI’V&tIOIﬁO global restrictions, one may say that a new configuration
law). In this case, the optimal wagof generating “small C’ has been generated with the probability
moves”) in which one can pass from a configuratiGnto a

next configurationC’ is to add an element to the system _
(*adding move™) or to remove an element from the system P'(C+—C")=
(“removing move”). These two kinds of movements are
generated with equal probabilities.

~ 1
P(C—C)=

a

Net 1’ (3.13

The “removing” movement correction will be made by ac-
A A cepting the configuratio®€ with the probability[ 1/«]. The

3. "Adding” move probability of the corrected movement is
Consider now the starting configurati@y with N¢ ele-

ments. At this point, we check first whethdg+ 1< Nc, ..

If this is satisfied, one performs the next step; otherwise, one
considersC as the next configuration by adding an element
to the system and keeping the parameters of the former sydhe factorg o] and[1/«a] are defined as follows:
tem C the same. Le€’ be the resulting system. The param-

P(C—C')=

1}P'(E<_C'). (3.14

o

eters of the N+ 1)th element are randomly chosen in the o  a<1 1 E —1
allowed domains. Since there are no global restrictions, one [a]= ’ 2ol T (3.15
can say that the new configurati@i was generated with the 1, a=1, |a 1 <l
probability ' '
AX It is worth noticing thaf a]/[ 1/a]= « for any a.
i!

P'(C—C)=p’

= . (3.11

L(Di) B. Evaluation of the correction factor
The correction for the “adding” movement is performed by (i) Using the formulag2.12 and (2.32, the right-hand
accepting this resulting configuration with the probability side (RHS) of the detailed balance equation becomes:

. The probability of the corrected movement is
La]. The p y We AC NG/t Ay A AX/AX,

P(C—C")=[a]P'(C—C"). (3.12 WCACNG! A AX

(3.1
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On the other hand, the LHS of the detailed balance equatiodescendent generations, the dominant phenomenon is the

is written as “explosion” into a main large fragment and some small
fragments. However, one should not forget that in some
P(C—C') L(DP°) AXAX, cases the fragments of the first generation can also produce
=a(Nc+1) intermediate-mass fragments. In principle a complete statis-

= bc bc ,

P(C—C’) L(Dy, )L(Di’) Ak tical description of an “explosion” event offers the ingredi-

(3.17 ents for a complete statistical description of the entire decay
process. Consequently, we shall focus our attention on study-

From Egs.(3.16 and (3.17 one derives the following ex- g the “explosion” events. With this aim we shall apply the

pression fora: formalism described in the previous sections to the “explo-
be be sion” of a nuclear system with a fixed number of protons

1 A A LDO)L(DY) and neutrons.
TN+l A4 L(DP%) (3.18 Let us denote byA the total number of nucleons and by

Z the total number of protons. The system depends on a set

(i) By means of Eqs(2.12 and (2.3, the RHS of the of paramgtersﬁ which  defines a configuﬁration
detailed balance equation is written as Ci:{An.Zn.Pi€nnn=1... Ne,}, where Ay, Z, Py,
€,, andr, represent the mass number, the atomic number,
We/ AC/Ne/! the momentum, the excitation energy, and the position of the
W=Ai/-A/’\ﬁ/, (3.19 nth fragment, respectively. The number of fragments corre-
¢ ¢ sponding to the configuratiof; is denoted byNc . The

collection of all possible configurations defines a statistical
ensemble. To keep closely to the language used in Sec. lll,
we notice thatA, and Z, stand for discrete variables while
= a(Ng+1) Ax, _ (3.20 Pn, €,, andr, stand for continuous variables.
L(D;/) According to Eqs(2.5—(2.9), the elementary number of
states for configuratio, can be written as

while the LHS acquires the form

P(C—C'")
P(C—C')

From Eqgs(3.19 and(3.20 the following expression fou is

obtained: e, ey ey

dvc,= 1 dN(BndN(endN(r) = [T dni=11 Anda;,
__ = 4 _ 4.0
o NC+ 1.A|/L(D|/). (32])

where

At this stage, we are able to generate a correct trajectory in dF p

configuration space in both casé$ and (ii). Having the AN(BIAN(F) = —=" 4N _ d 4.2

value ofa in any point of the trajectory, we can calculate the (Pn)AN(Fn) = —p3 (&) =pn(en)den (4.2

factors[ «] and[ 1/a] by means of Eq(3.15 and then adjust

the movement. The resulting trajectory obeys the detaile@nd

balance principle and consequently each configurafiois 1

enerated with a probability given by the formy14). S
9 P y given by 14 dX,=didpuden, Av=palenrs, (43

IV. APPLICATION TO THE NUCLEAR DISASSEMBLY . . .
with p,(e,) denoting the nuclear level density of tmth

Let us first analyze the case of a hot nucleus breaking ufragment.
into primary fragments. We shall name this event an “explo- We are working under the assumption that all possible
sion.” The result of this “explosion” will be a collection of configurations are equally probable.
nuclear fragmentsA,,Z,), each of them having different Let us enumerate the restrictions appearing in this appli-
excitation energies in the interval B(A,,Z,). Obviously, cation.
these nuclei can further decay exactly in the same manner Restrictions of type (a)This kind of restriction is re-
and create a new generation of fragments. In turn this gerflected in the conservation of mass, charge, and momentum
eration can also create another new generation and so oaf the system:
The decrease of the excitation energies of the fragments from
one generation to another is a well-known fact. Theoreti- Na
cally, this process could continue until the excitation ener- Razl_[
gies of fragments become smaller than the corresponding =1

C1
aj_ ~a
n§=:1 X3 - C; )

nucleon binding energyB(A,,Z,)/A,]. Thus, one may say Nc, Nc, Nc,
that the multifragmentation phenomenon consists of succes- =5 E A—Als E zZ —7 5( 2 B ) (4.4)
sive “explosions.” Many authors treat the primary and the =1 " =1 =1

next order explosions in distinct ways. For these secondary
decays the name ‘“evaporation” is often used. Of course, Restrictions of type (b)The conservation of the total en-
because of the small values of the excitation energies for akérgy is the only restriction of typé):



NC1

K- 2

Np

2
Ro= I FYOX = 8B Ec, = 6( il

12my

H(K),
(4.9

whereEC1 represents the total energy of the system,

Nc, p2 1
n
Ecl—ngl oy~ B(An.Zo) tent En%’ Vo |,
(4.6
andK the kinetic energy:
NCl 1

K=E—> | —B(A,,Z,) + e+ 5 > Vol @D

n=1 n#n’

In Egs.(4.6) and(4.7), B(A,,Z,,) denotes the binding energy
of fragmentn andV,,, the interaction energy between frag-
mentn and the fragment’. In the present simulatiol,, s

is taken to have both a Coulomb interaction part and a hard, ,en,Fn,n=1, e
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According to Eq.(2.11) one can express the total number
of distinct possibleC, configurations when the restrictions
mentioned above are considered, using E4sl) and(4.5),
as

A4 N Zmao{ An)
Mo D & H(z > e [ db,
Nc,=1 c1 An=1 Zn=Zmin(An)
( ) Ncl NCl
xf an@% > A-AlSl D zn—z)
O h n=1 n=1
NC1 NC1 p
5 2, fm) K=2 oo ~[H(K). 4.8

If we integrate over the fragments momenta, one can
identfy a new type of -configuration C:{A,,
Nc}, whose statistical weightVc (i.e.,

sphere nuclear repulsive potential which prevents the fragthe total number of states in the configurati@G) can be

ments from overlapping.

easily evaluated:

10°
T T T T T T r T T T T T T T T T T T T E: T T T T T T
; 1%
% 3o S 100
Al Y " *
107 o e} o
3 o] ¥ o) + N + R E
X \ o "2 %O ] Re
*RXY xR R, Xy I *y
XY 4 g\i ' R,
102 UK | % 1 1 o. i
O \8 P4 E *
“o
Ky ] Qo
10 SN %)
E 3 E3 0% E
2 i
O E/A=0.7091 MeV I EJA= 3.1828 MeV E/A=8.1105 MeV E/A= 10.5648 MeV
B 4| Es=35MeVinucteon | E,=45 MeV/nucleon E,=65 MeV/nucleon [ E,=75 MeV/nucleon
= 180 1 —t— —+—+—
3 3 3 :
o R i X F I I 0 3
o} o) *5 \
X, A\ %0
R * Q *\
" A % X
102 f =, 3 e} I oY E %o 1
R 9 \
@]
% * X, X5
i N 4 ik X9 | o
0% 'R X ] f
o ] % O X ]
E/A= 13.0129 MeV | E/A=15.4545 MeV / E/A= 17.8899 MeV X | E/A=20.3194 MeV 2°
E,=85 MeV/nucleon E,=95 MeV/nucleon o E,=105 MeV/nucleon E,=115 MeV/nucleon *
1 1 1 1 i 1 1 1 1 1 1 1 i 1 1 1 1 1 1 L 1 1 1
100 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 12

FIG. 1. Charge distribution for central collision for the reactitfr-+4°Sc at different bombarding energieE,. The open circles
represent the predictions of the present simulation while the stars represent the experimental data taken fidth Ref.
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25 — 17— 10° T T T T T T
. : (@)
v v A
20 F vVvV i 101 L XY\ 3
v > E O E
o0 o] 5 f q;za( P2 o ]
¥ vV oee?® 1 Bl Rl RAoRe
pd v E=R 00 / E
vVioor ° . 2 I o ]
10 |- A A 10%F | 3
° o NN E E'=102 MeV —~O—th.
[ A 1 L E,=11.4 MeV/nucleon —3¥— exp.
51 A . 1074 P 1 1 1 ] 1
T P P T 5 10 16 z 20 25 30
0 20 40 60 80 100 120 100
E, (MeV/nucleon) E T T v
¥ ®) ]
FIG. 2. The average number of charged particlés-(—12) 107 L o E
. . bt b 3 N §
versus bombarding enerds;, . The solid circles represent the pre- G X 6 5 6/;) U % % RAQ Q )OK Q ]
dictions of the present simulation; the open down and up triangles §.10'2 : -
represent the corrected and uncorrected data, respectifrein 5
Ref.[17]). £, o
1 Ne (e) © E'=261 Mev —O—th.
Pnl €n 4 [ E,=30.3 MeV/nucleon X exp.
WC:_H (Q 3 (mAn)EIZ) 10 AL Ry DAt R R BN N
Nc!a=1 h 4 6 8 10 12 14 16 18 20
20 (27TK)3/Z\IC_5/2 A
X 37
I'@/2ANc—1)) (MA) FIG. 3. Charge distribution for the reactiofiNb-+°Be at the
Ne N Nc bombarding energies 11.4 MeV/nucle@ and 30.3 MeV/nucleon
N E A —Als 2 Z —7|6s 2 5’ H(K). (b). The stars represent experimental data, taken frb8h while
=1 = = the open circles stand for the predictions of the present simulation.

. . (4'9). ,, by the adjustment with the correction facter [see Eq.
In the fission move we just have to choose a “fissioning (3.21];

elementi and from this one to generate two “fission prod-
ucts” i’ andj’. That means that we have to choose ran-

3 _
domly a fissioning element4;,Z;) and then to choose ran- _ _ (A-1)(Zi+1) ei’maxfj’maxF(Z (Nc—1))

domly the number of nucleons and the atomic number of the Nc+1 €imax I'($Ne)

first product @;,,Z;,) in the domains 1A;—1, 0-Z; . For the

second fission product,,Z;), we haveA;,=A—A;, and pir(€)pi (&) Ai’Aj’)B/Z( mK | 2K’ (N2
Zj=Z—Z;. If at least one of the chosen fragments is un- pi(€) A 2mh2 K )

stable, the move is aborted and configuratirs used for

the next step. Otherwise, we generate the excitation energies

€1, €. in the allowed domainghaving the binding energy of

the fragment as an upper limiand the positions;, and

Fj, in the considered volum@. At this point one can calcu-

late the kinetic energK. If K<O0, the move is aborted and

C is counted again. Otherms@z’ IS a_“good” conflguraugn applicable to the “explosions” of any ordeBut a simula-

and could be a next new _conflguratlon for the_ Syst@is  ion that considers all secondary decays requires an unrea-

used as a next configuration with the probability]. sonably long computing time. However, we have found a
In the fusion move we have to choose randomly o,y t5 overcome these difficulties and applications are in

“fusm.g” elementsi’ andj’ and to generate a “f_lSSlon prod- progress.

uct” i. Thus, we choose randomly two fusing elements |, qrger to evaluate to what extent the contribution of the

(Ai,Zi') and A;,,Z;,) and form a productA;,Z)). If the  pimary decay to the mass and charge multiplicities and av-

product is unstable, the move is aborted &@idis counted  grage number of charged particles describes the physical

again. Otherwise, the move is continued and the eXC'tat'OBhenomenon, we compare the model predictions with experi-

energye; and the position; are randomly generated in their mental datd13,17).

domains. As we proceeded before, one calculiteand if

(4.10

At this stage, the method of simulating an “explosion”
event is well formulated. As we said before, for a complete
description of the multifragmentation process we should ac-
count for all “explosions.” Obviously, the same method is

K <0, the move is aborted and the old configuration is used V. RESULTS
again. IfK=0, C is accepted as the next configuration with '
probability [ 1/« ]. To emphasize the virtues of the present model, we de-

Thus, we have described the generation of the primargcribe some theoretical predictions and compare them with
trajectory. The correction to this trajectory will be achievedthe corresponding data. Our applications refer to the reac-
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FIG. 4. (a) Mass andb) charge distributions for various total energi&d A) obtained for a fireball havind =100 andZ=45.

tions “%Ar+ “°Sc with an incident energy varying from 35 mental data at eight bombarding energies 35, 45, 65, 75, 95,
MeV/nucleon to 115 MeV/nucleofl6], and *Nb+°Be at 105, and 115 MeV/nucleon. These correspond to the center-
the incident energies 11.4 MeV/nucleon and 30.3 MeV/of-mass total energigsvhich include the binding energpf
nucleon[13]. Also, for a more complete conception of the 0.7091, 3.1828, 8.1105, 10.5648, 13.0129, 15.4545, 17.8899,
model we present some global characteristics like mass arghd 20.3194 MeV/nucleon, respectivdly6]. The calcula-
charge distributions for a wide range of energies. tions are performed considering a fireball wit=80 and
In order to obtain a realistic simulation, we have used reaZ =36 [16]. Since the experimental data lie betwees 1

binding energies of all the elements withlying between 1  and 12, we normalized our results in these limits. Also, we
and 266. For level densities we have used the following forhave normalized the experimental data in order to express

mula[14]: them in terms of multiplicities.
As one can see from Fig. 1, the agreement with the ex-
1 Aae A € perimental data is very good for all the energies considered.
ple)= \/4—8€e »oas a=8| 1+ B(A,2))" This fit was obtained considering the freeze-out density to be

(5.1) 0.24%, (po represents the normal nuclear density and is
taken to be 0.17 fm?). Figure 2 shows the average number
where the factof 1+ €/B(A,Z)] was included so as to de- of charged particles witd=1-12 as a function of the bom-
scribe the dependence of the factor entering the Fermi-gdsarding energy in comparison with the corrected and uncor-
formula on the excitation energyfor the (A,Z) system with  rected experimental dafd6,17]. For the central collision
the binding energyB(A,Z). It is worth stressing that the %*Nb+ °Be we have considered a fireball witk=102 and
nuclear matter freeze-out density is the only fitting parameteZ =45 [13]. The considered energies correspond to the exci-
of simulation. For high excitation energies and light frag-tation energies 102 and 261 MeV, respectively. The com-
ments this formula produces similar results as that used iparison of the predictions and experimental data for charge
Ref.[15]. distributions (Fig. 3) shows good agreement. The fit was
For the case of th&%Ar+ *5Sc reaction we compared the obtained with a freeze-out density of 0.283 From the
predicted charge distributions with the corresponding experiabove analysis one may conclude tk@tthe agreement for
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multiplicities suggests that the possible contribution comingsystems, has been defined. The statistical weights and the
from secondary decays might be negligible aiml these probability for obtaining a certain configurati@hhave been
corrective events improve the agreement for the averaganalytically expressed. In most cases the resulting formulas
number of charged particlésee Fig. 2 Indeed, these added are not numerically tractable due to the large number of pos-
decays contribute to the increase in the number of fragments§ible configurations. Thus, a statistical method for simulating
Finally, we present some global characteristics like mas#his ensemble is employed. The method is a generalization of
and charge distributions obtained with our code for a largdhe adapted Monte Carlo Metropolis algoritfifr2] proposed
range of the total energy. Figuresa¥and 4b) show the by Koonin and Randrug3] and consists of generating a
mass and charge distributions = 100,Z =45 for various  frajectory in configuration space obeying the detailed balance
total energiesE/A. It is worth noting that general character- Principle. We discuss both the most general case in which
istics of the nuclear disassembly charge and mass distribdD€ System can have any type of restriction and the case in
tion, such as the U shape, the shoulderlike shape, and tighich the system is not subject to global restrictions. A suit-
exponentially falling shape, are well reproduced. able generatlon ;schem_e is described for each of thesg cases.
In conclusion we may assert that, in first order, the model This method is applied to the case of nuclear multifrag-
describes Very We" Charge distributions for a W|de range omentatlon Wh|Ch IS I’ea|IStlca||y treated tak|ng into aCCOUI’l.t
energies, which suggests small contributions due to th&he total charge, mass, momentum, and energy conservation
higher orders. As shown in Fig. 2 the predicted average numi@ws. Also, real binding energies for all the elements with
bers of fragments lie below the corrected experimental dat}=1-266 have been employed in the resulting computer
This supports the model assumptions since the higher ord&ode. The numerical results are compared with experimental
decays cause an increase in the number of fragments an@ata and very good agreement is obtained over a large do-
consequently, the theoretical curve will approach the experiain of energies. In fact, this result supports the theoretical
mental one. Another virtue of this model is that, even in thisassumption of our model. It is worth mentioning that the
first order approach, it can describe charge distributions fognergy domains for which calculations have been performed
decays of highly excited nuclei in energy ranges where mang'® supposed by many authors to present two decay mecha-
authors[13,16,18—20 suggest different decay mechanisms.nisms: sequential decagfor bombarding energies below
For example, in the case of tH8Ar + °Sc reaction two de- =60 MeV/nucleon and simultaneous multifragmentation
cay mechanisms are suggesfa®]: For bombarding ener- (for bombarding energies higher thar60 MeV/nucleon.
gies below=60 MeV/nucleon the decay is supposed to be\(arlous d|§tr|but|on shapes usually found in multifragmenta-
sequential, while for upper energies the disassembly is suplon experimental data are also reproduced.

posed to be simultaneous. Before closing, we would like to mention that a method
for accounting for the effects of higher order “explosions”
V1. CONCLUSIONS has been developed and its application to the study of

nuclear multifragmentation is in progress. Also more sensi-

Summarizing, we have formulated a general statistical entive tests for the model assumptions, like the relative ratios

semble for the case of a system composell 6elements”  of multifragmentation, fission, and evaporation events, are

with N e[ Nnin,.Nmaxl, €ach element being described by a setbeing pursued. All these improvements will be addressed in
of parameters. A set of constraints, usually met in physicah subsequent paper.
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