
,

PHYSICAL REVIEW C MARCH 1997VOLUME 55, NUMBER 3
Scaling behavior in very small percolation lattices

J. B. Elliott, M. L. Gilkes, J. A. Hauger, A. S. Hirsch, E. Hjort, N. T. Porile, R. P. Scharenberg, B. K. Srivastava
M. L. Tincknell, and P. G. Warren

Departments of Physics and Chemistry, Purdue University, West Lafayette, Indiana 47907
~Received 19 June 1996!

We examine the average cluster distribution as a function of lattice probability for a very small (L56)
lattice and determine the scaling function of three-dimensional percolation. The behavior of the second
moment, calculated from the average cluster distribution ofL56 andL563 lattices, is compared to power-law
behavior predicted by the scaling function. We also examine the finite-size scaling of the critical point and the
size of the largest cluster at the critical point. This analysis leads to estimates of the critical exponentn and the
ratio of critical exponentsb/n. @S0556-2813~97!02703-9#

PACS number~s!: 25.70.Pq, 64.60.Ak, 24.60.Ky, 05.70.Jk
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I. INTRODUCTION

Much interest in critical phenomena in small systems
been generated by recent work in nuclear physics@1–13#.
The idea that nuclear multifragmentation, the breakup of
clei due to high-energy collisions into several intermedi
mass fragments, can be viewed as a critical phenomeno
observed in fluid, magnetic, and other systems prompts
eral questions. Of particular importance is the question a
whether or not the signals of phase transitions existing
systems in the thermodynamic limit persist to systems wit
few hundred constituents. If the signals do persist, th
what methods can be employed to find them? What obs
ables can be used as control parameters?

In an attempt to answer these questions this work ex
ines the behavior of cluster distributions of small percolat
lattices. Using data from a small lattice the scaling funct
of three-dimensional percolation is determined. Using
scaling function, various power laws are predicted that
scribe the behavior of the lattice near the critical point. Th
predictions are compared to the observed behavior of pe
lation data from small and large lattices. The method
g-matching to determine critical exponents introduced in
previous paper on percolation@14# and used to determin
exponent values of nuclear multifragmentation in@11# is
used on a small percolation lattice. Next, the number
clusters, i.e., the multiplicityM , is used as the control pa
rameter and a scaling function based on this version of
control parameter is found. Using the scaling functi
power laws are predicted and compared to the measured
havior of percolation data. Finally, finite-size scaling e
fects are investigated as the size of the lattice is decreas

II. DESCRIPTION OF PERCOLATION

This work continues the efforts of previous examinatio
of small percolation lattices in@14# and investigates the sca
ing behavior of bond building percolation on very sm
simple cubic lattices in three dimensions with open bound
conditions. In this study cluster distributions of percolati
lattices were generated in a standard fashion by form
bonds between sites. Bonds were either active~on! or inac-
tive ~off! according to the following algorithm.
550556-2813/97/55~3!/1319~8!/$10.00
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The control parameter for percolation is the lattice pro
ability, pl . A single value ofpl was randomly chosen fo
the entire lattice. All probabilities were between 0 and
Next, a bond probabilitypbi was randomly chosen for eac
bond. If pbi was less thanpl then thei th bond was active
~on! and two sites were joined in a cluster.

At a low value ofpl few bonds were formed resulting i
many small clusters, yielding a distribution that is analogo
to the gaseous phase of a fluid. At a high value ofpl many
bonds were formed and there were a few large clusters. T
is analogous to the liquid phase of a fluid. In an infin
lattice the phase transition occurs at a unique value of
lattice probabilitypc and is defined as the value ofpl when
the probability of forming a spanning or percolating clus
changes from zero to unity.

The behavior of the average cluster distribution, the nu
ber of clusters of sizes per lattice site, was examined as
function ofpl for a lattice of sideL56; the total number of
sites is thens0 5 216. The average cluster distribution wa
generated by computing 100 000 realizations of the lat
letting pl vary uniformly between 0 and 1. The resultin
cluster distributions were histogrammed into 100 bins inpl
yielding cluster distributionsns(pl) that wereaveragedover
a range of 0.01, the width of one bin, inpl . This averaging
scheme serves to smear the cluster distribution in a ma
that may be analogous to how the fragment distributions
nuclear multifragmentation are smeared. In nuclear mu
fragmentation the event’s charged particle multiplicity
used as the control parameter instead of the temperatur
the system@11,12,17#, which is the usual control paramete
for thermodynamic systems. While the multiplicity is lin
early related to the temperature of the system@13#, there is a
spread in temperatures at a given multiplicity. By averag
over some range inpl it is possible to include a smearin
effect in the analysis of percolation data that is, to the low
order, reminiscent of the smearing present in nuclear mu
fragmentation.

III. DETERMINING THE SCALING FUNCTION
OF THREE-DIMENSIONAL PERCOLATION

USING A SMALL „L56… LATTICE

In general the cluster distribution of any percolation la
tice is written as@15#
1319 © 1997 The American Physical Society



1320 55J. B. ELLIOTT et al.
TABLE I. Summary of results for percolation studies.

Quantity L5` L563 @14# L56 @14# L56 (g match! L56 (pl) L56 (M ) FS Scaling

pc(L) 0.2488 0.25418560.00005 0.3381360.00007 0.3360.02 0.31060.005 54
b 0.41 0.4660.02 0.4160.02
g 1.80 1.8760.02 1.72860.007 1.760.2
s 0.45 0.5060.04
n 0.88 0.9360.03
t 2.18 2.2060.05 2.1660.02 2.20860.003
b/n 0.47 0.4460.01
C1 /C2 8.0 11610 7.85 19.7
f (zc) 1.0 1.02 0.98
f (zmax) 1.6 1.77 1.82
zmax 20.8 20.76 22.24
e1 (far) 20.4032 20.4160.06
e1 (near) 20.2020 20.2160.05
e2 (far) 20.2020 0.1760.04
e2 (near) 0.3736 0.4260.09
lu

a
e

-
rit
e
re

is
l

in

c
by
d
ly
e

q.

is
nta-

io

o a

ex-

ous

t-
to
ta.
ns~pl !5q0s
2t f ~z!, ~1!

wherens(pl) is the number of clusters of sizes per lattice
site at a lattice probabilitypl , f (z) is the scaling function,
z5sse is the scaling variable,e5@pl2pc(L)#/pc(L),
pc(L) is the critical probability for a lattice of sideL, and
q0 is a normalization constant that depends only on the va
of t @16#.

The specific form of the scaling function is unknown an
lytically. However, empirical examinations of larg
(s0.106) lattices have shown some general features@15,16#.
At the critical point (z5zc50) the cluster distribution is
described by a simple power law so thatf (z)51. The scal-
ing function has a single maximum atz5zmax; for three-
dimensional percolation,f (zmax)51.6 andzmax;20.8 @15#.

The single maximum inf (z) has two important conse
quences. The first yields a method for determining the c
cal exponents. At the maximum of the scaling function th
scaling variable is constant, which leads to a power law
lating the position, as a function ofe, of the maximum in
production of s-sized clusters and the cluster size. Th
power law was used to determines for three-dimensiona
percolation in@14# and for the multifragmentation of gold
nuclei in @12#. Results for percolation are summarized
Table I.

The second consequence of a single maximum of the s
ing function is that attempts to determine the critical point
fitting the cluster distribution to a simple power law an
finding a minimum in the effective exponent will general
fail. Writing the cluster distribution in terms of an effectiv
exponent yields

ns~pl !5q0s
2t f ~z!5As2teff, ~2!

whereA is a free-floating normalization factor. Solving E
~2! for teff and taking the derivative with respect toz shows
that the minimum inteff occurs at the maximum inf (z),
e

-

i-

-

al-

which is not, in general, at the critical probability. Th
misconception has been perpetuated in the multifragme
tion literature@18–22#.

To determine the form of the scaling function rat
@15,16# ns(pl)/q0s

2t was isolated and plotted versusz for
all values ofpl and for clusters where 1%,s/s0,12%. The
resulting plot clearly shows the collapse of the data ont
single curve as required by Eq.~1!, see Fig. 1. The infinite
lattice three-dimensional percolation values of the critical
ponentst ands are used inns(pl)/q0s

2t andz; these values
are in good agreement with those determined in previ
efforts with small percolation lattices@14#.

FIG. 1. Data from anL56 three-dimensional simple cubic la
tice are plotted to give the form of the scaling function intrinsic
percolation in three dimensions. The solid line is a fit to the da
pc(6)50.31.
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55 1321SCALING BEHAVIOR IN VERY SMALL PERCOLATION . . .
For the scaling variablez the value ofpc(L) was deter-
mined by fitting the average cluster distribution at each va
of pl to the simple power law that describes the cluster d
tribution at the critical point. The only free-floating param
eter in these fits was the exponentt. Again,q0 is an overall
normalization depending solely on the value oft @16#. The
resultingxn

2 of the fits were examined. Figure 2 shows
drop inxn

2 of over three orders of magnitude. This is a cle
indication of the location of the critical point and the value
pc(L). This value ofpc(L) and thet value of the resulting
fit are within 10% of the values determined in@14#; see
Table I.

While the plot ofns(pl)/q0s
2t versusz is relatively in-

sensitive to the choice oft ands, it is very sensitive to the
choice ofpc(L). If the value ofpc(L) is changed by 0.1 the
data no longer collapse onto a single curve, nor do they p
through the critical pointf (zc)51; see Figs. 3~a! and 3~b!.

It has been suggested thatf (z);exp@2c(z2zmax)
2#, where

c is some constant@15#. However, theL56 data are asym-
metric about the maximum so that the averaged cluster
tribution data were fit to the sum of two Gaussians. T
best fit was found to be

f ~z!5C1e
2~1/2!~z2m1 /s1!21C2e

2~1/2!~z2s2 /m2!2 ~3!

by minimizingxn
2 . See Table II for parameter values. Fo

this functional form f (zc)51.02, f (zmax)51.77, andzmax
520.76. Table I shows the comparison between publish
values for large lattices and those determined in this wo
The agreement between the quantities determined here
the accepted values, within 10%, is evidence that the form
the scaling function determined here, using a small latt
L56, is the scaling function for all of three-dimension
percolation. Thus it is possible to observe infinite latti

FIG. 2. Thexn
2 that results from fitting the cluster distribution a

a particular value of thepl . xn
2 drops more than three orders o

magnitude to a minimum at the critical probability. This analys
indicatespc(6)50.31.
e
-

r

ss

s-
e

d
k.
nd
of
e

critical behavior in a small system in spite of its size and a
effects due to the smearing introduced by histogramming
data inpl .

IV. DETERMINING POWER LAWS
FROM THE SCALING FUNCTION

With the form of the scaling function determined, it
possible to derive all other critical behavior for thre
dimensional percolation. This includes the determination
power laws, critical exponents and, in particular, the co
stants of normalization.

The simplest example of this is the power law at the cr
cal point, which is a consistency check sincepc(L) was cho-
sen such that the cluster distribution was well described b
power law, though whether or not the infinite lattice value
t actually describes the behavior of the data is an open q
tion. When the scaling function goes to unity at the critic
point we are left with

ns@pc~L !#5q0s
2t. ~4!

Figure 4~a! shows the agreement between this power la
using the infinite lattice values fort andq0, and theL56
averaged cluster distribution data at the critical point. T

FIG. 3. ~a! Data from anL56 three-dimensional simple cubi
lattice plotted in the same manner as in Fig. 1, but w
pc(6)20.150.21. ~b! The same plot withpc(6)10.150.41. Note
that in neither plot do the data exhibit the collapsing behavior a
Fig. 1, nor do the data go through the point~0,1!.

TABLE II. Scaling function parameters.

C1 0.94412
m1 20.94303
s1 0.43714
C2 1.0838
m2 20.36831
s2 0.65575
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result gives credence to the use of the infinite lattice value
t when determining the scaling function.

Thes-power law is nearly as simple. Atzmax we have

zmax5ssemax5ss@pmax~s!2pc~L !#/pc~L !, ~5!

wherepmax(s) is the value of the lattice probability at whic
there is a maximum in the production ofs-sized clusters.
Dividing through byss give the following power law:

2emax5zmaxs
2s. ~6!

Figure 4~b! shows the agreement between this power law
the L56 average cluster distribution data atzmax. Again
the data is well described by a power law with expon
values equal to their infinite lattice values, which is in kee
ing with the method of determination of the scaling functio

A dramatic example of the predictive power of the scali
function is the derivation of the power law that describes
divergence of the second moment,m2(pl)5c6ueu2g. The
second moment is defined as

m2~pl !5(
s51

s`

ns~pl !s
2, ~7!

where the sum runs over all clusters except the span
clusters` . By substituting Eq.~1! into Eq. ~7!, letting the
sum be replaced by an integral, and changing the variabl
integration froms to z we find

M2~e!5Uq0s E
2`

`

uzu32t2s/s f ~z!dzUueut23/s. ~8!

The constants of normalization,C1 for the gaseous region
andC2 for the liquid region, are determined by evaluatin

FIG. 4. ~a! The cluster distribution atpc(6)50.31 for anL56
three-dimensional simple cubic percolation lattice. Solid circ
are data points and the solid line is the power law predicted in
~1! using the canonical three-dimensional percolation value ot.
The line isnot a fit to the data. ~b! Data from theL56 lattice for
thes power law plotted as solid circles. The solid line is the pow
law predicted from Eq.~6!, not a fit to the data. Canonical value
of emax ands are used.
f

d

t
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.

e
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the term in the brackets and the exponentg is thus defined as
a ratio that depends on the values oft ands. The ratio of
C1 to C2 computed here is 7.85 as compared to 8.0 in@15#.

Figure 5 shows the agreement with the predicted pow
law and the measured second moment percolation data f
lattices of sideL56, 63;s05216, 250 047. The agreemen
between the predicted power law and theL563 lattice is
particularly noteworthy. Thus, using a small lattice the b
havior of a large lattice is predicted. Infinite lattice critic
behavior has been observed in small systems.

It is also of import to note in Fig. 5 that for theL56
lattice there exists some range ine where the behavior of the
second moment is well described by theg power law. As is
expected, too far from the critical point neither lattice is we
described by the power law. Too near the critical point a
manifestations of finite size effects in the data for the sm
lattices can be observed. Below, methods are develope
determine this effective power law range ine based on the
g matching introduced in@11#.

V. g-MATCHING RESULTS FOR THE AVERAGE
CLUSTER DISTRIBUTION

In previous work the method for determining critical ex
ponent values and the location of the critical point from t
cluster distribution was based on a method of matching
ponent values on both sides of the critical point@11,14#. The
idea was to find the regions where the power-law behav
predicted by the scaling function holds. As is seen in Fig
there is some intermediatee region where the second mo

s
q.

r

FIG. 5. Measured second moment data from anL563 simple
cubic lattice~open circles! and from anL56 lattice~open squares!
as a function ofe. pc(63)50.254185,pc(6)50.31. The solid
lines are theg-power laws predicted by using the form of the sca
ing function as determined in Fig. 1 from theL56 data and Eq.~8!.
Note the agreement between the larger lattice and the power
predicted from the smaller lattice data.
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55 1323SCALING BEHAVIOR IN VERY SMALL PERCOLATION . . .
ment data is described by a power law. However, ate values
too close to the critical point the power-law behavior
modified by finite-size effects, while ate values too far from
the critical point the scaling assumptions implicit in powe
law behavior are no longer valid. In earlier percolati
studies @14# general guidelines based on the correlat
length and size of the fluctuations were used. In a previ
nuclear multifragmentation analysis@11# it was impossible to
use such guidelines. To that end a method was develo
that could search for regions best fit by power laws as wel
to determine the location of the critical point. The values
the critical exponents and the normalizations involved in
power laws were obtained from the best fit power laws
those regions.

The method is as follows. Trial boundaries for powe
law regions were chosen along with a value of the criti
point. This leads to five parameters that are chosen for e
set of power-law regions examined. In the work on per
lation lattices detailed in this paper these a
e(far)6 , e(near)6 , and pc(L). ~Far! denotes the furthe
point in either region from the critical point and~near! indi-
cates the closest approach to the critical point; ‘‘1’’ denotes
the boundaries for the power-law fit region on the gas side
the critical point and ‘‘2 ’’ refers to the power-law fit region
on the liquid side of the critical point. In this work approx
mately 45 000 different regions were examined. For e
region a power law was fit to the second moment data an
value of g1 , C1 , xn1

2 , g2 , C2 , and xn2
2 were deter-

mined.
Power-law fit regions and critical point locations we

evaluated by demanding that~i! they yieldg1 andg2 values
that match each other to within the error bars on those va
returned by the fitting routine and~ii ! that thexn

2 of the fits
are in the bottom half of the distribution. The results fro
the power-law fit regions that passed these two criteria w
then histogrammed and average values for all quantities
cerned were determined. The results are summarize
Table I.

The value ofg determined in this manner is within 10%
of the value determined in@14# and the infinite lattice value
The ratio ofC1 /C2 determined with this method is also i
agreement with the infinite lattice value and the values p
dicted by the scaling function. The value ofpc(L) deter-
mined here is also within a few percent of the value de
mined in a previous analysis of theL56 lattice@14# and the
value determined above by looking for a pure power law
the cluster distribution.

Figure 6 shows the fit regions determined with t
g-matching method. The fit regions determined in this m
ner are in good agreement with what is determined b
visual inspection of Fig. 5. The boundaries of the fit regio
are also the same, to within error bars, as those used in
previous percolation effort@14#; see Table I.

VI. USING CLUSTER MULTIPLICITY
AS THE CONTROL PARAMETER

In the previous section the lattice probability was used
the control parameter. In a thermodynamic system the t
perature of the system is generally used as the control
rameter. In nuclear multifragmentation temperature is a
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the intrinsic control parameter, however, it is not a dire
observable. It was suggested that an event’s charged
ticle multiplicity is a reasonable choice of observables to u
as the control parameter@17#. This choice is supported by
the linear relation between the temperature and ev
charged particle multiplicity observed in nuclear multifrag
mentation@13# and the consistent results obtained in the e
traction of critical exponent values in the multifragmentatio
of gold nuclei@11,12#.

For percolation lattices it is possible to study the results
choosing different control parameters directly. For thre
dimensional bond building percolation on a simple cubic la
tice there is not a linear relation between the cluster mu
plicity M and the lattice probabilitypl , see Fig. 7. The
analysis of the previous section was repeated withM as the
control parameter, such thate5@Mc(L)2M #/Mc(L), where
Mc(L), thecritical multiplicity, is the number of clusters a
the critical point and is estimated from the average clus
multiplicity at pc(L).

The average cluster distribution was generated by his
gramming the 100 000 realizations of the lattice in bins a
cording to cluster multiplicity. The averaged cluster distr
bution is now written as

ns~M !5q0s
2t f ~z!. ~9!

The scaling function was determined as before by plotti
the rations(M )/q0s

2t against the scaling variablez, which
now depends one(M ). Figure 8 shows that the data for th
L56 lattice still collapses onto a single curve as Eq.~9!
requires. Examining the properties of the resulting form
the scaling function shows,f (zc)50.98, f (zmax)51.82,
and zmax522.24. The first two agree well with published
values, see Table I, while the last shows more disagreem
This is not unexpected since the abscissa has changed

FIG. 6. Results of theg-matching method for the measure
second moment data for theL56 lattice. pc(6)50.33. Solid
squares show the average fit regions on both sides of the crit
point. The solid lines are the power laws determined from the fi
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1324 55J. B. ELLIOTT et al.
Fig. 1 to Fig. 8. Even though the quantitye is a ratio, due to
the subtraction in the numerator, constants of proportiona
and other factors relatingpl andM do not cancel. Figure 9
shows the relation betweene(pl) and e(M ) for an L56
lattice. Lines are drawn to indicate the location ofzmax(pl)
and zmax(M). It is clear that the maximum in the scalin
function has the same location in either mapping ofe. The
data from theL56 percolation lattice exhibit scaling behav
ior regardless of the choice ofe, which indicates that it

FIG. 7. Cluster multiplicityM as a function of lattice probabil-
ity pl .

FIG. 8. Data from anL56 three-dimensional simple cubic lat
tice plotted to give the form of the scaling function intrinsic t
percolation in three dimensions using the cluster multiplicity as
control parameter. The solid line is a fit to the data.
ty

makes little difference whether lattice probability or clust
multiplicity is used as the control parameter.

When the power law describing the divergence
m2(M ) is determined from Eq.~9! the same agreement be
tween the measured system size and the predicted power
is observed. Figure 10 shows the comparison of data fr
lattices of sideL56, 63 and the power law predicted from
the fit to the data for anL56 lattice shown in Fig. 8. While
the power law predicted by the scaling function of Eq.~9!
yields, by definition, the same value forg as previously, the
ratio of C1 /C2 is 19.7, different from the results of the
previous analysis and the accepted value. The differenc
this ratio is due to the difference in the abscissa when cha
ing from e(pl) to e(M ). The observed behavior of the sec
ond moment for the lattices in Fig. 10 supports these resu
This indicates that the values of the constants of normali
tion depend on the choice of control parameter, but the v
ues of exponents do not. This is seen explicitly in the de
vation of Eq.~8! from either Eq.~1! or Eq.~9!. The critical
exponentg is, by definition, a function of the exponentss
and t and does not depend on the choice ofe(pl) or
e(M ).

It is also possible to map the fit regions,e(far)6 and
e(near)6 , determined from theg-matching procedure, from
pl to M using Fig. 9. The fit regions, dependent onM , are
in good agreement with fit regions determined from a visu
inspection of Fig. 10. Again, this indicates that the use
multiplicity as a control parameter does not interfere with t
determination of the values of critical exponents.

VII. FINITE-SIZE SCALING RESULTS

In previous percolation work@14#, data from the critical
point was avoided because it was most severely affected
e

FIG. 9. e(pl) as a function ofe(M ). The maximum of the
scaling functionemax(pl) is shown as the horizontal line. The max
mum of the scaling functionemax(M) is shown as the vertical line.
The maximum of the scaling function is the same point in eith
mapping ofe.
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55 1325SCALING BEHAVIOR IN VERY SMALL PERCOLATION . . .
the finite size of the systems in question. Now, methods
employed to determine the value of the critical exponenn
and the ratiob/n based on the effects of the finite size of th
system.

In percolation lattices the location of the critical poin
changes as a function of system size@23,24#. The percola-
tion phase transition occurs when the probabilityR of find-
ing a spanning cluster reaches unity. In a lattice of infin
extent this is a step function. In finite-size lattices the st
function is smoothed out over a range in lattice probabili
As the lattice size decreases the critical point is spread
and becomes a critical region and the value of the latt
probability at whichR reaches onepc(L) increases. Thus
the value ofpc(L) increases as the lattice size decreas
This phenomenon is known as the finite-size scaling of
critical point and is described by@23#

pc~L !2pc~`!;L21/n. ~10!

Thus the value of the critical exponentn can be determined
from the finite-size scaling of the critical point via Eq.~10! if
the value ofpc(L) is known for lattices of varying sizes.

For the lattices with 216 and 250 047 sites the values
pc(L) determined byg-matching results@14# were used. Es-
timates of pc(L) for the other lattices~27, 64, 125, and
10 648;L53, 4, 5, and 22! were made based on the locatio
of the maximum in the fluctuations of the largest cluste
Cluster distributions from lattice realizations were binned
pl so that an error of6 half a bin width is associated with
this estimate ofpc(L).

Figure 11~a! shows the results of plotting@pc(L)
2pc(`)] as a function of log(L). The slope of the resulting

FIG. 10. Measured second moment data plotted as open cir
for an L563 simple cubic lattice and as open squares for
L56 lattice as a function ofe. Mc(63)567 610, Mc(6)554.
The solid lines are theg-power laws predicted from using the form
of the scaling function as determined in Fig. 9 for theL56 data and
Eq. ~8!. Note the agreement between the larger lattice and
power law predicted from the smaller lattice data.
re

e
p
.
ut
e

s.
e

f

.

line leads to an estimate ofn50.9360.03, which is within
6% of the canonical value listed in Table I.

The ratio ofb/n is determined by examining the finite
size scaling of the size of largest cluster at the critical po
@23# via

smax/L
d;Lb/n, ~11!

where smax is the size of the largest cluster andd is the
Euclidean dimension of the lattice. Figure 11~b! shows this
plot for percolation lattices withL53, 4, 5, 6, 22, and 63
This method leads tob/n50.4460.01, which is within 7%
of the canonical three-dimensional lattice value ofb/n 5
0.47.

VIII. CONCLUSION

The scaling function for three-dimensional percolati
has been determined from data for a lattice of sideL56.
Using the scaling function, theg-power law for three-
dimensional percolation was derived. Theoretically, t
power law should describe the divergence of the second
ment in the critical region for any percolation lattice in thr
dimensions, regardless of lattice geometry and indepen
of system size, at least to a lower limit ofL53. This is born
out by the agreement between the predicted power law,
rived from the scaling function of three-dimensional perc
lation obtained for theL56 lattice, and the behavior of th
second moment from theL563 lattice. Thus, behavior of a
large lattice has been predicted based on the analysis
small lattice. The power law predicted using the scali
function also describes the second moment data from
L56 lattice over some critical range. This critical range
the same range that was used in the prior analysis ofL56

les
n

e

FIG. 11. ~a! Finite size scaling effects on the critical point: th
location of the critical point depends of the lattice size via a pow
law with the exponentn. ~b! Finite-size scaling of the size of th
largest cluster: the size of the largest cluster at the critical p
depends on the lattice size via a power law with the expon
b/n.
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lattices@14#. Using theg-matching methods employed du
ing the extraction of critical exponents from multifragmen
tion data @11# the same critical regions were found. Th
agreement of the size and location of the critical regions
the agreement of the values of the extracted exponent
the infinite lattice value indicates that theg-matching
method is sound and can be used to determine the value
bulk matter critical exponents from small systems.

It was also shown that it is possible to observe criti
behavior in theL56 lattice when the cluster multiplicity wa
used as the control parameter rather than the lattice prob
ity. The relationship betweenM and pl is not linear, but
did not significantly affect the scaling behavior of the clus
distribution. A scaling function was determined and t
g-power law was determined. This power law predict
the second moment behavior for theL563 lattice as well as
for theL56.

Finally, the effects of the finite system size were exa
ined for lattices with sizes that varied more than four ord
of magnitude. The power laws predicted by finite-size sc
-

d
th

of

l

il-

r

-
s
l-

ing theory were observed. The values of critical expone
determined from these power laws agreed well with infin
lattice values.

Table I summarizes the results from the work of@14# for
the L563 lattice, theL56 lattice, and the results from thi
study for finite-size scaling and compares them with the
finite lattice results for three-dimensional percolation. T
agreement of the quantities determined by examining sm
lattices is generally within 10% of the accepted values. T
indicates that critical behavior is indeed present in syste
with as few as 27 constituents using the intrinsic cont
parameter (pl for percolation! or another measure of the dis
tance from the critical point such as cluster, or charged p
ticle multiplicity. These techniques of cluster analysis c
now be applied to the fragment distributions of nucle
multifragmentation.
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