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Scaling behavior in very small percolation lattices
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We examine the average cluster distribution as a function of lattice probability for a very dmall)(
lattice and determine the scaling function of three-dimensional percolation. The behavior of the second
moment, calculated from the average cluster distribution-e6 andL =63 lattices, is compared to power-law
behavior predicted by the scaling function. We also examine the finite-size scaling of the critical point and the
size of the largest cluster at the critical point. This analysis leads to estimates of the critical expandrhe
ratio of critical exponentg/v. [S0556-28187)02703-9

PACS numbgs): 25.70.Pq, 64.60.Ak, 24.60.Ky, 05.70.Jk

[. INTRODUCTION The control parameter for percolation is the lattice prob-
ability, p;. A single value ofp, was randomly chosen for
Much interest in critical phenomena in small systems haghe entire lattice. All probabilities were between 0 and 1.
been generated by recent work in nuclear phy$ics13.  Next, a bond probabilitypy,; was randomly chosen for each
The idea that nuclear multifragmentation, the breakup of nubond. If p,; was less thamp, then theith bond was active
clei due to high-energy collisions into several intermediatelon) and two sites were joined in a cluster. o
mass fragments, can be viewed as a critical phenomenon as At @ low value ofp, few bonds were formed resulting in
observed in fluid, magnetic, and other systems prompts sey@ny small clusters, yielding a dlstr|but|.on that is analogous
eral questions. Of particular importance is the question as tfP the gaseous phase of a fluid. At a high valugomany
whether or not the signals of phase transitions existing i onds were formed and there were a few large clusters. This

systems in the thermodynamic limit persist to systems with S Qnalogous to the Ilq_u_|d phase of a ﬂu'd,' In an infinite
few hundred constituents. If the signals do persist, the att!ce the phg_se transm_on occurs at a unique value of the
what methods can be employed to find them? What obserJattice probabilityp. and is defined as the value pf when
ables can be used as control parameters? the probability of formmg a spanning or percolating cluster
In an attempt to answer these questions this work examhanges from zero to unity. o
ines the behavior of cluster distributions of small percolation 1 n€ behavior of the average cluster distribution, the num-
lattices. Using data from a small lattice the scaling functionP€r Of Clusters of siz& per lattice site, was examined as a
of three-dimensional percolation is determined.  Using thdunction of p, for a lattice of sideL. =6; the total number of
scaling function, various power laws are predicted that deSit€S iS thers, = 216. The average cluster distribution was
scribe the behavior of the lattice near the critical point. Thes@€nerated by computing 100 000 realizations of the lattice
predictions are compared to the observed behavior of perc¢€tting p; vary uniformly between 0 and 1. The resulting
lation data from small and large lattices. The method ofcluster distributions were histogrammed into 100 bingijn
y-matching to determine critical exponents introduced in aYielding cluster distributions(p;) that wereaveragedover
previous paper on percolatiqd4] and used to determine @ range of 0.01, the width of one bin, jm. This averaging
exponent values of nuclear multifragmentation [id] is scheme serves to smear the cluster dlstr|but|o.n in a manner
used on a small percolation lattice. Next, the number ofhat may be analogous to how the fragment distributions of
clusters, i.e., the multiplicipM, is used as the control pa- nuclear mqlufragmentauon are smeared._ In nucl_ea_r_mu_lu-
rameter and a scaling function based on this version of thagmentation the event's charged particle multiplicity is
control parameter is found.  Using the scaling functionused as the control pare}me_ter instead of the temperature of
power laws are predicted and compared to the measured b€ systen{11,12,17, which is the usual control parameter
havior of percolation data.  Finally, finite-size scaling ef- for thermodynamic systems. While the multiplicity is lin-

fects are investigated as the size of the lattice is decreasec@rly related to the temperature of the sysfagy, there is a_
spread in temperatures at a given multiplicity. By averaging

over some range ip, it is possible to include a smearing
Il. DESCRIPTION OF PERCOLATION effect in the analysis of percolation data that is, to the lowest

This work continues the efforts of previous examinations®'der; remi_niscent of the smearing present in nuclear multi-
of small percolation lattices if.4] and investigates the scal- ragmentation.
ing behavior of bond building percolation on very small
simple cubic lattices in three dimensions with open boundary
conditions. In this study cluster distributions of percolation
lattices were generated in a standard fashion by forming
bonds between sites. Bonds were either adtrg or inac- In general the cluster distribution of any percolation lat-
tive (off) according to the following algorithm. tice is written aq15]

Ill. DETERMINING THE SCALING FUNCTION
OF THREE-DIMENSIONAL PERCOLATION
USING A SMALL (L=6) LATTICE
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TABLE I. Summary of results for percolation studies.
Quantity L= L=63[14] L=6 [14] L=6 (y match L=6 (p) L=6 (M) FS Scaling
p.(L) 0.2488 0.2541850.00005 0.338130.00007 0.330.02 0.316:-0.005 54
B 0.41 0.46:£0.02 0.41+£0.02
v 1.80 1.870.02 1.7280.007 1.20.2
o 0.45 0.56:0.04
v 0.88 0.93+0.03
T 2.18 2.20-0.05 2.16:0.02 2.208:-0.003
Blv 0.47 0.44+0.01
c./C_ 8.0 11+10 7.85 19.7
f(z.) 1.0 1.02 0.98
f(Zma) 1.6 1.77 1.82
Zmax -0.8 -0.76 -2.24
€, (far) —0.4032 —0.41+0.06
e, (near) —0.2020 —0.21+0.05
e_ (far) —0.2020 0.1%0.04
€_ (near) 0.3736 0.420.09
ng(p)=0os "f(2), ) which is not, in general, at the critical probability. This

whereng(p,) is the number of clusters of sizeper lattice
site at a lattice probability,, f(z) is the scaling function,

z=s% is the scaling variable,e=[p,—p(L)]/pc(L),

pc(L) is the critical probability for a lattice of side, and

misconception has been perpetuated in the multifragmenta-
tion literature[18—22.

To determine the form of the scaling function ratio
[15,16 ng(p;)/gos™ ™ was isolated and plotted versasfor
all values ofp, and for clusters where 1%s/s;<12%. The
resulting plot clearly shows the collapse of the data onto a

do is a normalization constant that depends only on the valugingle curve as required by Efl), see Fig. 1. The infinite

of 7 [16].

lattice three-dimensional percolation values of the critical ex-

The specific form of the scaling function is unknown ana-ponentsr ando are used im¢(p;)/dos~ " andz; these values

lytically. However, empirical examinations of large are in good agreement with those determined in previous
(sg>10°) lattices have shown some general feat(il€s16.

efforts with small percolation latticg4.4].

At the critical point g=z,=0) the cluster distribution is
described by a simple power law so tHér)=1. The scal-
ing function has a single maximum atz.,,; for three-
dimensional percolatiorf,(z,,,)=1.6 andz,,~—0.8[15].

The single maximum irf(z) has two important conse-
guences. The first yields a method for determining the criti-
cal exponentr. At the maximum of the scaling function the
scaling variable is constant, which leads to a power law re-
lating the position, as a function a&f, of the maximum in
production of s-sized clusters and the cluster size. This
power law was used to determine for three-dimensional
percolation in[14] and for the multifragmentation of gold
nuclei in[12]. Results for percolation are summarized in
Table I.

The second consequence of a single maximum of the scal-
ing function is that attempts to determine the critical point by
fitting the cluster distribution to a simple power law and
finding a minimum in the effective exponent will generally
fail. Writing the cluster distribution in terms of an effective
exponent yields

Ng(P))=qos "f(z)=As"ef, )

e

np)gy,s

FIG. 1. Data from arL =6 three-dimensional simple cubic lat-

whereA is a free-floating normalization factor. Solving Eg. tice are plotted to give the form of the scaling function intrinsic to

(2) for 7o and taking the derivative with respect2zshows

that the minimum inrg; occurs at the maximum irfi(z),

percolation in three dimensions. The solid line is a fit to the data.
p.(6)=0.31.



55 SCALING BEHAVIOR IN VERY SMALL PERCOLATION ... 1321

o > l.a
A C
L' =
&
103 ¢ =
[ 0.0.0
Y Y Y Y "
L L] o
~ s .
[ ] ] ..
L )
0% % . Yo
] a
. & (a) z
L ]
° . e
. . §.°
. .‘ g’
10 * =
2 * e
[ ]
[ ]
r [ ]
[ ]
[ ]
1 FEFEETE N ETSUENT EYSETIN EYATETAT ErTEPSI AT STETTES IR SRS ATRTAETS ANSTATIES BN Ar P
0 01 02 03 04 05 06 07 08 09 1 3
Trial p,(L) (b) z

FIG. 2. They? that results from fitting the cluster distribution at ~ FIG. 3. (8) Data from anL=6 three-dimensional simple cubic
a particular value of the,. x2 drops more than three orders of lattice plotted in the same manner as in Fig. 1, but with

magnitude to a minimum at the critical probability. This analysis Pc(6)~0.1=0.21. (b) The same plot wittp.(6)+0.1=0.41. Note
indicatesp,(6)=0.31. that in neither plot do the data exhibit the collapsing behavior as in

Fig. 1, nor do the data go through the pof{@tl).

For th li iable th | fpc(L deter- " _ . . L
or the scaling variable the value ofpq(L) was deter é:rmcal behavior in a small system in spite of its size and any

mined by fitting the average cluster distribution at each valu . . .
of p; to the simple power law that describes the cluster dis_effects due to the smearing introduced by histogramming the

tribution at the critical point. The only free-floating param- data inp; .

eter in these fits was the exponent Again, qq is an overall

normalization depending solely on the valuerdfl6]. The IV. DETERMINING POWER LAWS

resulting Xﬁ of the fits were examined. Figure 2 shows a FROM THE SCALING FUNCTION

drop inx? of over three orders of magnitude. Thisisaclear With the form of the scaling function determined, it is
indication of the location of the critical point and the value of possible to derive all other critical behavior for three-
pc(L). This value ofp.(L) and ther value of the resulting dimensional percolation. This includes the determination of
fit are within 10% of the values determined [ii4]; see  power laws, critical exponents and, in particular, the con-
Table I. stants of normalization.

While the plot ofng(p,)/qes™ " versusz is relatively in- The simplest example of this is the power law at the criti-
sensitive to the choice of and o, it is very sensitive to the cal point, which is a consistency check singgL) was cho-
choice ofp¢(L). If the value ofp.(L) is changed by 0.1 the sen such that the cluster distribution was well described by a
data no longer collapse onto a single curve, nor do they pagsower law, though whether or not the infinite lattice value of
through the critical poinf(z.)=1; see Figs. @& and 3b). 7 actually describes the behavior of the data is an open ques-

It has been suggested tHgr) ~ exd —c(z—zn)?], Where  tion. When the scaling function goes to unity at the critical
c is some constantl5]. However, thd. =6 data are asym- point we are left with
metric about the maximum so that the averaged cluster dis-
tribution data were fit to the sum of two Gaussians. The Ns[Pc(L)]=0os™ " (4)

best fit was found to be . .
Figure 4a) shows the agreement between this power law,

o (U2 g fop)? —(UD(2= 0y I1p)? using the infinite lattice values for andqo, and theL=6
f(z)=Cqe L+ Coe 225 (3 averaged cluster distribution data at the critical point. This

by minimizing Xf. See Table Il for parameter values. For TABLE II. Scaling function parameters.
this functional formf(z.)=1.02, f(zn0=1.77, andz,y

=—0.76. Table | shows the comparison between published C; 0.94412
values for large lattices and those determined in this work. s —0.94303
The agreement between the quantities determined here and o, 0.43714
the accepted values, within 10%, is evidence that the form of C, 1.0838
the scaling function determined here, using a small lattice o —0.36831
L=6, is the scaling function for all of three-dimensional o, 0.65575

percolation. Thus it is possible to observe infinite lattice
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FIG. 4. (a) The cluster distribution ap.(6)=0.31 for anL=6
three-dimensional simple cubic percolation lattice. Solid circles
are data points and the solid line is the power law predicted in Eq
(1) using the canonical three-dimensional percolation value.of
The line isnot a fit to the data. (b) Data from thel. =6 lattice for
the o power law plotted as solid circles. The solid line is the power
law predicted from Eq(6), not a fit to the data. Canonical values
of enaxand o are used.

FIG. 5. Measured second moment data fromLan63 simple
cubic lattice(open circlesand from anL =6 lattice (open squargs
as a function ofe. p¢(63)=0.254185,p.(6)=0.31. The solid
lines are they-power laws predicted by using the form of the scal-
ing function as determined in Fig. 1 from the=6 data and Eq.8).
Note the agreement between the larger lattice and the power law
predicted from the smaller lattice data.

result gives credence to the use of the infinite lattice value ofhe term in the brackets and the exponeris$ thus defined as

7 when determining the scaling function. a ratio that depends on the valuesoédndo. The ratio of
The o-power law is nearly as simple. /A, we have  C_ to C_ computed here is 7.85 as compared to 8.[LH.
Zmas=S” €mas= ST PmaxS) — Pc(L) 1/pc(L), (5 Figure 5 shows the agreement with the predicted power

wherep,.(9) is the value of the lattice probability at which law and the measured second moment percolation data from

there is a maximum in the production efsized clusters. lattices of sideL =6, 63;5,=216, 250 047. The agreement
Dividing through bys” give the following power law: between the predicted power law and the- 63 lattice is
— €mac=ZmaS © 6) particularly noteworthy. Thus, using a small lattice the be-
max ma’ .

) i havior of a large lattice is predicted. Infinite lattice critical
Figure 4b) shows the agreement between this power law an%ehavior has been observed in small systems

the L=6 average cluster distribution data &t,,. Again
the data is well described by a power law with exponentIalt
values equal to their infinite lattice values, which is in keep- ; g .
ing with the method of determination of the scaling function.Second moment is well descrlped by. t’;zepoyver Iaw.. A.S IS

A dramatic example of the predictive power of the Sca“ngexpected, too far from the critical point neither lattice is well

function is the derivation of the power law that describes thef€Scribed by the power law. Too near the critical point and
divergence of the second momeniy(p,)=c.|e|~?. The manifestations of finite size effects in the data for the small

It is also of import to note in Fig. 5 that for the=6
tice there exists some rangedmwhere the behavior of the

second moment is defined as lattices can be observed. Below, methods are developed to
S determine this effective power law range énbased on the
my(p) =2 ny(p)s? 7 v matching introduced if11].
s=1
where the sum runs over all clusters except the spanning
clusters,,. By substituting Eq(1) into Eq. (7), letting the V. y-MATCHING RESULTS FOR THE AVERAGE
sum be replaced by an integral, and changing the variable of CLUSTER DISTRIBUTION

integration froms to z we find In previous work the method for determining critical ex-

ponent values and the location of the critical point from the
cluster distribution was based on a method of matching ex-
ponent values on both sides of the critical pgiht,14]. The
idea was to find the regions where the power-law behavior
The constants of normalizatiog, for the gaseous region predicted by the scaling function holds. As is seenin Fig. 5
and C_ for the liquid region, are determined by evaluating there is some intermediate region where the second mo-

Qo [~ . _
Mae=| L[ @z id . @)
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ment data is described by a power law. Howeveg aalues ~

N

too close to the critical point the power-law behavior is =
modified by finite-size effects, while atvalues too far from =
the critical point the scaling assumptions implicit in power- PI‘I‘" 10°
law behavior are no longer valid. In earlier percolation >
studies [14] general guidelines based on the correlation =

length and size of the fluctuations were used. In a previous
nuclear multifragmentation analygil] it was impossible to
use such guidelines. To that end a method was developed.
that could search for regions best fit by power laws as well as
to determine the location of the critical point. The values of 10 L
the critical exponents and the normalizations involved in the
power laws were obtained from the best fit power laws in
those regions.

The method is as follows. Trial boundaries for power- B
law regions were chosen along with a value of the critical
point. This leads to five parameters that are chosen for each

102

j

set of power-law regions examined. In the work on perco- 107t DDDD

; ; i P H B o P R B .|
lation lattices detailed in this paper these are 06 4 03 0 02 oa 06
e(far)., e(near)., andp.(L). (Fan denotes the further & = (p-pLVp L)

point in either region from the critical point arideay indi-
cates the closest approach to the critical point;*‘denotes )
the boundaries for the power-law fit region on the gas side of "'C: 6. Results of they-matching method for the measured
the critical point and " refers to the power-law fit region second moment data for thE:ES. latiice. p°(6):.0'33' Solid i
on the liquid side of the critical point. In this work approxi- SdUares show the average fit regions on both sides of the critical
mately 45 000 different regions were examined. For eaclln)omt' The solid lines are the power laws determined from the fits.
region a power law was fit to the second moment data and
value of y,, C,, x2,, y_, C_, and x°>_ were deter-
mined.

Power-law fit regions and critical point locations were

fhe intrinsic control parameter, however, it is not a direct
observable. It was suggested that an event’'s charged par-
ticle multiplicity is a reasonable choice of observables to use

X , ¢ as the control parametg¢t7]. This choice is supported by
evaluated by demanding thaj they yieldy, andy_ values o jinear relation between the temperature and event

that match each other to within the error barszon those valu€garged particle multiplicity observed in nuclear multifrag-
returned by the fitting routine an@) that they;, of the fits  entation[13] and the consistent results obtained in the ex-
are in the bottom half of the distribution. The results fromraction of critical exponent values in the multifragmentation
the power-law fit regions that passed these two criteria wergg gold nuclei[11,17.
then histogrammed and average values for all quantities con- For percolation lattices it is possible to study the results of
cerned were determined. The results are summarized ighoosing different control parameters directly. For three-
Table |. _ o o dimensional bond building percolation on a simple cubic lat-
The value ofy determined in this manner is within 10% tice there is not a linear relation between the cluster multi-
of the value determined ifl4] and the infinite lattice value. plicity M and the lattice probabilitp,, see Fig. 7. The
The ratio ofC./C_ determined with this method is also in analysis of the previous section was repeated Wttas the
agreement with the infinite lattice value and the values pregontrol parameter, such that[M (L) —M]/M(L), where
dicted by the scaling function. The value pf(L) deter- 1 (L), the critical multiplicity, is the number of clusters at
mined here is also within a few percent of the value deteryhg critical point and is estimated from the average cluster
mined in a previous analysis of the=6 lattice[14] and the multiplicity at p.(L).
value determined above by looking for a pure power law in - The average cluster distribution was generated by histo-
the cluster distribution. gramming the 100 000 realizations of the lattice in bins ac-

Figure 6 shows the fit regions determined with thecorging to cluster multiplicity. The averaged cluster distri-
y-matching method. The fit regions determined in this manytion is now written as

ner are in good agreement with what is determined by a

visual inspection of Fig. 5. The boundaries of the fit regions ng{(M)=qos "f(2). (9)
are also the same, to within error bars, as those used in the
previous percolation effoftl4]; see Table I. The scaling function was determined as before by plotting

the rationg(M)/gos™ " against the scaling variable which

now depends oe(M). Figure 8 shows that the data for the

L=6 lattice still collapses onto a single curve as KE9).

requires. Examining the properties of the resulting form of
In the previous section the lattice probability was used ashe scaling function shows,f(z.)=0.98, f(zh0=1.82,

the control parameter. In a thermodynamic system the temand z,,,,=—2.24. The first two agree well with published

perature of the system is generally used as the control pasalues, see Table I, while the last shows more disagreement.

rameter. In nuclear multifragmentation temperature is als@his is not unexpected since the abscissa has changed from

VI. USING CLUSTER MULTIPLICITY
AS THE CONTROL PARAMETER
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FIG. 7. Cluster multiplicityM as a function of lattice probabil-

ity py -

Fig. 1 to Fig. 8. Even though the quantiys a ratio, due to

the subtraction in the numerator, constants of proportionalit
and other factors relating; andM do not cancel.
shows the relation betwee#(p,) and e(M) for an L=6
lattice. Lines are drawn to indicate the locationzpf,(p)
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0.1

and z,,,(M).

FIG. 8. Data from ar =6 three-dimensional simple cubic lat-
tice plotted to give the form of the scaling function intrinsic to
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Figure 9

It is clear that the maximum in the scaling
function has the same location in either mapping of The
data from thd_ =6 percolation lattice exhibit scaling behav-
ior regardless of the choice of, which indicates that it

(prpdL)Vip (L)
&
I

0.5

UL

3 25 2 15 -1 05 0 0.5 1
(M (L)-M)IM(L)

FIG. 9. e(p;) as a function ofe(M). The maximum of the
scaling functiore () is shown as the horizontal line. The maxi-
mum of the scaling functior,,(M) is shown as the vertical line.
The maximum of the scaling function is the same point in either
mapping ofe.

y

makes little difference whether lattice probability or cluster
multiplicity is used as the control parameter.

When the power law describing the divergence of
m,(M) is determined from Eq(9) the same agreement be-
tween the measured system size and the predicted power law
is observed. Figure 10 shows the comparison of data from
lattices of sideL =6, 63 and the power law predicted from
the fit to the data for ah =6 lattice shown in Fig. 8. While
the power law predicted by the scaling function of E®).
yields, by definition, the same value feras previously, the
ratio of C, /C_ is 19.7, different from the results of the
previous analysis and the accepted value. The difference in
this ratio is due to the difference in the abscissa when chang-
ing from e(p,) to e(M). The observed behavior of the sec-
ond moment for the lattices in Fig. 10 supports these results.
This indicates that the values of the constants of normaliza-
tion depend on the choice of control parameter, but the val-
ues of exponents do not. This is seen explicitly in the deri-
vation of Eq.(8) from either Eq.(1) or Eq.(9). The critical
exponenty is, by definition, a function of the exponents
and = and does not depend on the choice «ffp;) or
e(M).

It is also possible to map the fit regions(far).. and
e(near). , determined from the-matching procedure, from
p,; to M using Fig. 9. The fit regions, dependent ldn are
in good agreement with fit regions determined from a visual
inspection of Fig. 10. Again, this indicates that the use of
multiplicity as a control parameter does not interfere with the
determination of the values of critical exponents.

VII. FINITE-SIZE SCALING RESULTS

percolation in three dimensions using the cluster multiplicity as the In previous percolation workl14], data from the critical

control parameter.

The solid line is a fit to the data.

point was avoided because it was most severely affected by
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FIG. 11. (a) Finite size scaling effects on the critical point: the
FIG. 10. Measured second moment data plotted as open circl@gcation of the critical point depends of the lattice size via a power
for an L=63 simple cubic lattice and as open squares for anaw with the exponeni. (b) Finite-size scaling of the size of the
L=6 lattice as a function ok. M(63)=67 610, M;(6)=54.  |argest cluster: the size of the largest cluster at the critical point

The solid lines are the-power laws predicted from using the form depends on the lattice size via a power law with the exponent
of the scaling function as determined in Fig. 9 for the 6 dataand g/,

Eqg. (8). Note the agreement between the larger lattice and the

power law predicted from the smaller lattice data. line leads to an estimate 0f=0.93+0.03, which is within
o . ) 6% of the canonical value listed in Table I.
the finite size of the systems in question. Now, methods are The ratio of /v is determined by examining the finite-

employed to determine the value of the critical exponent sjze scaling of the size of largest cluster at the critical point
and the ratigd/ v based on the effects of the finite size of the [23] via

system.
In percolation lattices the location of the critical point Smax/ LI~ LP'", (11
changes as a function of system sj28,24. The percola-
tion phase transition occurs when the probabilyf find-  where s, is the size of the largest cluster andis the
ing a spanning cluster reaches unity. In a lattice of infiniteEuclidean dimension of the lattice. Figure(filshows this
extent this is a step function. In finite-size lattices the stepplot for percolation lattices withh. =3, 4, 5, 6, 22, and 63.
function is smoothed out over a range in lattice probability.This method leads t@/v=0.44+0.01, which is within 7%
As the lattice size decreases the critical point is spread ousf the canonical three-dimensional lattice value gifv =
and becomes a critical region and the value of the latticé.47.
probability at whichR reaches on@.(L) increases. Thus
the value ofp(L) increases as the lattice size decreases. VIIl. CONCLUSION
This phenomenon is known as the finite-size scaling of the
critical point and is described 23] The scaling function for three-dimensional percolation
has been determined from data for a lattice of dide6.
Pe(L) — pe(o)~L 2, (10 Using the scaling function, they-power law for three-
dimensional percolation was derived.  Theoretically, this
Thus the value of the critical exponentcan be determined power law should describe the divergence of the second mo-
from the finite-size scaling of the critical point via EG0) if ment in the critical region for any percolation lattice in three
the value ofp.(L) is known for lattices of varying sizes. dimensions, regardless of lattice geometry and independent
For the lattices with 216 and 250 047 sites the values obf system size, at least to a lower limitlof=3. This is born
p.(L) determined byy-matching result§14] were used. Es- out by the agreement between the predicted power law, de-
timates of p.(L) for the other latticeq27, 64, 125, and rived from the scaling function of three-dimensional perco-
10 648;L =3, 4, 5, and 22were made based on the location lation obtained for the.=6 lattice, and the behavior of the
of the maximum in the fluctuations of the largest cluster.second moment from the= 63 lattice. Thus, behavior of a
Cluster distributions from lattice realizations were binned inlarge lattice has been predicted based on the analysis of a
p,; so that an error oft half a bin width is associated with small lattice. The power law predicted using the scaling
this estimate op(L). function also describes the second moment data from the
Figure 11a) shows the results of plottingd p.(L) L =6 lattice over some critical range. This critical range is
—pc(°)] as a function of logl). The slope of the resulting the same range that was used in the prior analysis=06
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lattices[14]. Using they-matching methods employed dur- ing theory were observed. The values of critical exponents
ing the extraction of critical exponents from multifragmenta- determined from these power laws agreed well with infinite
tion data[11] the same critical regions were found. The lattice values.

agreement of the size and location of the critical regions and Table | summarizes the results from the work{ 4] for

the agreement of the values of the extracted exponent witthe | =63 lattice, theL =6 lattice, and the results from this
the infinite lattice value indicates that thg-matching  study for finite-size scaling and compares them with the in-
method is sound and can be used to determine the values fjite |attice results for three-dimensional percolation. The
bulk matter critical exponents from small systems. agreement of the quantities determined by examining small

It w_as_also s_hown Fhat it is possible to obs_,er_vc_a CriticalIattices is generally within 10% of the accepted values. This
behavior in the. =6 lattice when the cluster multlp!|C|ty Was indicates that critical behavior is indeed present in systems
used as the control parameter rather than the lattice probabiliih, 4s few as 27 constituents using the intrinsic control

itY' Th? r(.ellationship betweeh a}nd by is n.ot linear, but parameter |, for percolation or another measure of the dis-
did not significantly affect the scaling behavior of the cluster L .
tance from the critical point such as cluster, or charged par-

distribution. A scaling function was determined and the,. T ; ;
y-power law was determined.  This power law predictedt|cIe multiplicity. These techniques of cluster analysis can
the second moment behavior i‘or the= 63 lattice as well as oW be applied to the fragment distributions of nuclear

for theL=6.

multifragmentation.

Finally, the effects of the finite system size were exam-
ined for lattices with sizes that varied more than four orders This work was supported by the U.S. Department of En-
of magnitude. The power laws predicted by finite-size scal-ergy under Contract No. DE-FG02-88ER40408.
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