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Two-body part of effective transition operators and higher-multipole transitions
in the 1f,,-shell nuclei
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E4,E6, andM5 transitions in the 1;,,-shell nuclei, for which anomalous effective charges are required to
reproduce experiment, are discussed by using the effective transition operators which are calculated within the
framework of the first-order perturbation theory. The correlated operators thus obtained consist of one-body
and two-body transition operators, the former of which is considered to be the origin of effective charges, while
the latter cannot be incorporated into the idea of effective charges. The two-body contributions are very
important in those higher-multipole transitions, to the extent that the concept of effective charge breaks down,
and they are found indispensable in achieving reasonable agreement with experiment.
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[. INTRODUCTION arises for the higher-multipole transitions as to why the ef-
fective charges are so large, are positive in the first half of
Electromagnetic transitions whose multipolarity is higherthe shell, and become negative in the second half of the shell.
than ordinaryE2 or M1 are often referred to as higher- It is widely known that valence particles carry an effec-
multipole transitions. Those transitions are not as ubiquitou§ve charge larger than their bare charge for electric transi-
in the nuclear chart aE2 andM1 transitions, since there tions, i.e.,ée is positive. The positive additive charge can be
should be a certain spin gap between initial and final stategroduced by the core-polarization mechanism under the as-
There is a small amount of experimental data for the higher§umpt'0” of the attractlve_ nuclear mtt_aractlon. Ir_1 this respect
multipole transitions in the fl-shell nuclei[1-3], which  the observed large negative for the higher-multipole tran-
has been obtained from decays of isomeric states. Theoreg-'tIon has be_e” a (_:hallenge for nucle_ar theorists to interpret.
cal interpretations of those data were carried out, but wer ertsch[5] tried to interpret the negativée for the E6 tran-

e . 53 . . _ . _ . . _
found quite unsuccessful and have been abandoned for 5ét|or_1 In“Fe by. mtrogjucmg Fhe two-body spin-orbit interac
tion into the mixing interactions, but he concluded that the

Iongfume. In the presr(?.ntt_patpedr,ﬂ\:ve W'LI. re|v|s_|t thes.et%henzm'effect of core excitation via such interactions should be too
ena from a more sophisticated theoretical viewpoint based 00 - 1o account for the observation.

effective transition operators. A sophisticated model with a3+ f 33f., configura-

. ?eessz%maret al'5[21; analyzed a number ?4 ransitions o was tried by Gloeckner and Lawsof6] for the
in *‘Sc, Mn, and®>*Fe by assuming thé},, model with  Eg transition in 5Fe, but it turned out that they also
phenomenological effective charges. If the effective chargegeeded to assume the large negative additive charge of
are defined as,= 1+ de for proton ande,= de for neutron,  se=—0.4. Later, more systematic calculations with
they found that one has to assume a considerably large agld ,+ £ 9-Y(p,,,py0 f50) ! configurations have been carried
ditive effective charge ofe=1.1 for **Sc in order to repro- out [7], and the model was applied to interpret the higher-
duce the enhancement of the experimental transitiomultipole transitions. A slight difference came out, but no
strength, whereas a large negative effective chargéesf  significant improvement has been obtained. It was concluded
—0.5 should be assumed f&iMn and>**¥e to explain the that the improvement of the wave functions within thew0
observed strong suppression of the transition strengths. Bothodel space did not help understand at all the large negative
E6 andM5 transitions observed itfFe by Blacket al.[2]  effective charges ifi"Mn and>>°¥e and the large positive
are also strongly retarded and a large negative polarizatiocharge in*4Sc.
chargese~—0.5 is required for th&6 case, as long as the In the nuclear shell model, in order to make a calculation
same approach as f&4 is adopted. The standard theoretical viable, one must introduce a model space that consists of a
model requires by implication that effective charges be asufficiently small number of valence orbitals which we de-
less mass dependent and less state dependent as possihlste v hereafter. An orbit that is higher in energy than a
because the origin of effective charges is considered to bealence orbit may be referred to as an empty orbj)t, @nd
coupling to collective particle-hole excitations, or collective an orbit being lower than a valence orbit may be referred to
vibration, which should not cause serious mass and state das a filled orbit(f), which is usually assumed to be com-
pendence. Actually for th&?2 transitions,5e=0.9 is as- pletely filled by nucleons to make an inert core. The general
sumed for thef %,, model analysis to fit the whole experi- formalism has been developed so far by many authors
mental data throughout the shgH]. Thus, the question [8—11], which defines the effective Hamiltonian by which
every physical gquantity can be calculated within the model
space only. Effective transition operators to be used in the
*Electronic address: a33424@m-unix.cc.u-tokyo.ac.jp model space are calculated by taking into account-alle,
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f—v, andv—e type excitations. Within the framework of TABLE |. Effective interactions(f2,,|V|fZ,,); and single-
the first-order perturbation theory, we get both one- and twoparticle energy in MeV.

body transition operator3,12]. The core polarization nor-
mally includes thef — e excitations only and is shown to be J A3 BS *’sc ¥Co
renormalized into the one-body operators, supporting th%

concept of effective charges. On the other hand, the twoy —E'Z;g 72.421‘512 72';;; j':;i
body operators obtained from tlie-v and thev —e exci- —0.924 0765 _1588 _1082
tations cannot be incorporated into the effective charges _1'139 _1'391 —1.683 _0'250
since the one-body and two-body contributions differ in the ' ' ' :
dependence on the number of valence particles. The two- -0.161 +0.287 —0.357 +0.102
body contributions, if appreciably large, might influence the® —1.038 —1.057 —1.663 —0.377
transition matrix elements. It is thus worthwhile making a® +0.316 +0.521 +0.063 +0.557
systematic calculation in order to understand the general terf- —2.268 —2.514 —2.556 —2.329
dency of the higher-multipole transitions by constructing the€ —8.660 —9.433

effective transition operators.

In Sec. Il, we describe the assumptions made on the wave The correlated transition operaté with the tensorial

functions and reformulate the effective transition operatorgank\ is defined by the first-order perturbation in the mixing
suitable for singlg-shell many-particle configurations in interactionV:

isospin formalism. Results are discussed in Sec. Ill, and con-

cluding remarks are presented in Sec. IV. TN 4§00 Q Q 108} 1)

E—Ho " ¥ E—H,

Il. THEORY . - . .
We adopt the Rayleigh-Schiimger perturbation expansion,

The f 5, configuration is assumed for the sake of simplic-so that the energy denominator is given only by the single-
ity. The two-body effective interactions suitable in this particle energies of the relevant states. It is sh¢®2] that
model space are employed from those obtained with théhe f—e excitations produce one-body matrix elements, the
least-squares-fitting calculations by Mutb3]. We use the f—uv excitations generate both one- and two-body parts, and
set A3 which is the best-fit parameter set for Ca and Sahe v—e excitations yield two-body parts. The perturbed
isotopes and the s&5 for the N=27 and 28 isotones. The matrix elements are therefore recombined as the sum
A3 interaction is used in order to get the wave functions ofof the one-body and the two-body matrix elements;
*Sc, whileB5 is used for those oFMn and®>*¥Fe. These 5t 5% boagt O i body: Wherex denotes the tensorial rank in
interaction matrix elements for the},, configurations are isospin space. Lettinma;T;J;) and|ne;T;J;) be the many-
summarized in Table | together with the empirical matrix particle wave functions of the final and initial states, respec-
elementq 14], which are also employed to check the depen-tively, we have the specific expression for the matrix ele-
dence of the transition matrix elements on the wave funcments for the correlated operators. The one-body parts of the
tions. effective-operator matrix elements are given by

o 1 o o
3 e body™ <nafoJf||u<“”(1,1)lllnaiTiJi>[% (—?Eh){(hlllf(“”lllp)(hplvlu)Kﬁ(u|V|ph)m(pllf("“lllh)}
p

2

_—){(h|||f(m||J)(hJ|V|JJ)Kx+(JJ|V|Jh),<x il My} ()

Here, €,, €,, and ¢ represent the single-particle energies for the particle, hole,j arfd,, orbits, which are calculated by

using the extrapolation formuld45]. The term fp|V|jj)., denotes the-h interaction matrix element which is defined as

(hpIVIh'p/)y= >, (=) T e =9 2T/ + 1) (20" + D)W( 13, T'T)W(ph'hp’; 3" I){(ph’[V|hp' )1y
T!J!

— (=) TR = (ph'|V|p'h) 1y ), (3)
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where @b|V|cd)+/,, is the matrix element between the nonantisymmetrized two-particle states. The two-body parts of the
effective-operator matrix elements are given by

Sty body™ > (nafoJf|||U(K}‘)(alT131,a2T232)|||naiTiJi>[zh: _—> (2o T134[[FM[jh; T2d,)

a1Tydy,apTodp

X(jhIV[2a)1,0, (24| VIih)7,5, (i T3l V2, To0,)} + Ep

_ 1 (M5 -
P (221 T134|[f" M T23,)
p— €

X(ip|VI2az)t,,+ (2 V[ip)1 3 (ipi T1dall f N[22 T232)} 4

The matrix element of the one-body unit-tensor operator between the basis fujotioh® and|naTJ) is given explicitly
as the sum of products of fractional parentage coefficients and Racah coefficients as follows:

(naTIuMG,DlInaTdh=n 2, (naTH|n—1a'T'I,j}n-1a'T'd,j[}naTd)

aIT/\]/
X (=) V2 T+e [OT+1)(2T+ WA TAT T x)
X (—)Y 13205 1)(23+ DW(jIjI:37N). ()

The matrix element of the two-body unit-tensor operator is given explicitly as the sum of products of double-fractional
parentage coefficients and Racah coefficients by

(NaT UM (20, T, 34,20, T,d,) |||naTJ>—1n(n 1) > (naTHd|n—2a"T"3" 2a,T1d;)
=
X(N—2a"T"3" 2a,T | InaTJ)
X (=) (2T+ 1) (2T + HW(T,TT,T; )
X (=) =3I (205 1) (20 F DIW(I,33,3: 7)), ©6)

The total correlated transition matrix element is therefore obtained by summing the zeroth-order matrix element that is
calculated with the free-nucleon operators and the perturbed matrix elements. The transition strength is given as usual by

2
&r, (N TIf = MIne Ti3) +(TiM10 T M)(na T [[f*"M[Inai T3 . (7)

BN=Gr D23 1)

As the mixing interaction for the perturbational calcula- wavelength approximation for the bare electromagnetic op-
tions, we use the following interactiond) M3Y interaction  erators, nonvanishing perturbed matrix elements appear only
(seven ranges with? Yukawa-type tensor componenfd6].  up to Mo excitations for theEX transitions and\—1)fiw
(2) Schiffer-True interaction, denoted by ST, the version oféxcitations for theM\ transitions.
which includes two-range central, spin-orbit, and tensor-
component§17]. (3) A &function interaction[ 15]: The ra-
dial shape is defined by(r)/r? with the triplet-to-singlet
ratioV/V¢s=1.5 andV,=—40 MeV. (4) The Serber-Yukawa Calculated transition strengths are summarized in Table Il
interaction[18] multiplied by 1.3, denoted by S¥1.3: The  and are compared with the experimental offes3]. Contri-
radial shape is defined by exp{ur)/(ur). The strength pa- butions from the unperturbed, one-body and two-body opera-
rameters areV,=—67.6 MeV with the radial range tors to each transition matrix element are presented diagram-
1/u;=1.38 fm andV,=—61.1 MeV with 1ju,=1.17 fm.(5)  matically in Fig. 1.

An ordinary(Wignen interaction: The radial shape is defined ~ #‘Sc: The contributions from the one-body operators are
by exp(—ur)/(ur). The strength parameters are twice or three times as large as the unperturbed matrix ele-
Vi=Vg=—-50 MeV with 1ju=1.414 fm. The harmonic- ment that is calculated with use of the bare charggs;1
oscnlator radial wave functions are assumed to have the oder the proton ande,,=0 for the neutron. Thus, the core po-
cillator constantv=0.96xA "3 fm~2, whereA denotes the larization S|gn|f|cantly enhances the matrix element and im-
mass number of a nucleus. Since we assume the longroves the anomalous situation, but the sum of these contri-

[lI. RESULTS AND DISCUSSIONS
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TABLE Il. Comparison of calculated and experimerith-3] transition strengthst5,, denotes the calculation within tHe),, configu-
rations and with the free-nucleon operators. M3Y, $Tunction, SYx1.3 and ordinary denote the calculations within the same configu-
rations but with the effective transition operators obtained from the first-order perturbation calculations.

4sc 52Mn S2Fe S3Fe S3Fe S3Fe
6t—2" 2t—6" 12" —-8* 19/2 —11/27 19/2 =712~ 19/27—9/2°
E4 E4 E4 E4 E6 M5
x10° €2 fm® x10? €2 fm® X107 e? fm® x10? €2 fm® x10° 2 fm?*? x10° u? fm?®
Experiment 1.9 3.3 <3.6x107° 6.5 2.8 4.2
£, 0.054 30 11 28 21 44
M3Y 1.1 10 26 16 0.42 9.2
ST 1.4 7.3 25 11 0.12 2.6
o function 1.9 21 44 24 6.6 0.12
SYX1.3 1.5 17 37 21 3.6 141072
Ordinary 0.96 3.61072 8.6 1.6 5.2 4.7

butions is still small and is not sufficient to explain the elements. The two-body contributions, on the other hand, are
experiment. The contributions from the two-body operatorsadded destructively, but the cancellation of the matrix ele-

are roughly of the same size as the one-body contributionments is not remarkable and still insufficient to explain the

and are added with the same phase to the other two, giving\aanishingly small matrix element which is suggested by ex-

considerably larg&E4 matrix element. When thé-function periment.

interaction is employed, the one-body contribution becomes 53pe: For the 19/2—11/2° E4 transition, the one-body

significantly larger than the others and the total matrix ele¢ontributions are added in phase to the unperturbed matrix
ment hits the experimental value. Figure 1 displays a diagjement, giving enhance4 matrix elements. The two-body
grammatic representation of each contribution for the matriX.qtributions are significantly larger than the one-body con-

elements. oo ;
. tributions. They are added destructively and the one-body
52 .
Mn: This nucleus Eas three 'proton holes and. ON€ NeUzoniributions are completely wiped out. The two-body con-
tron hole, so far as th&%,, model is assumed, and is called

the cross-conjugate nucleus #Sc which has one proton tributions further reduce the unperturbed contribution. When

particle and three neutron particles. The wave functions oLhe ordinary force is employed, the tofa# matrix element

the relevant levels with the same spin should be the same, §COmEs very close EO the expe_r_lmental value. .
far as the same effective interactions are assumed throughout 70" the 19/2—7/2" E6 transition, the one-body contri-
the shell. Therefore, the comparison witfsc and®Mn is butions, though not so large, are added in phase to the un-
particularly interesting from a theoretical point of view: to Perturbed matrix element, when tigefunction and the SY
see how cross-conjugate symmetry is broken. A slight differforces are used as the mixing interaction, whereas they are
ence in the effective interactions between these two nuclepdded out of phase, when the M3Y, the ST, and the ordinary
which causes deviation from the cross-conjugate symmetryhteractions are adopted. It is noted that the former group of
may be acceptable. However, the effective chargeSef interactions do not have odd components, while the latter
+1.1 for **Sc and that ofse=—0.5 for ®®Mn, which are  group have strongly attractive odd components. This indi-
required to fit the experiment, are far too different from eachcates thaE6 matrix elements depend delicately on the mix-
other, to such an extent that the fine-tuning for the effectivdng interaction and that the idea for positide due to the
interactions does not help at all. AVin, the one-body con- attractive mixing interaction might be too naive. The two-
tributions, being smaller than the unperturbed contributionpody contributions are, on the other hand, much larger than
are added in phase and thus enhance&Ethenatrix elements, the one-body contributions, and contribute considerably to
aggravating the disagreement with experiment. On the otharancellation of the unperturbed contribution, giving nice
hand, the two-body contributions are added out of phaseagreement with experiment. It should be noticed that the ex-
reducing theE4 matrix elements. When thé function and  perimental matrix element is defined byMg,,=
the SY interactions are used, the two-body contributions are: VB(E6)eypt
as large as the one-body contributions, whereas the former For the 19/2—9/2~ M5 transition, the one-body contri-
contributions become considerably larger when the M3Y, thdutions reduce the unperturbed matrix element appreciably,
ST, and the ordinary interactions are employed. The onebut there still remains a large discrepancy between theory
body contributions are completely wiped out in the latterand experiment. The two-body contributions are very large
cases, and furthermore when the ordinary force is used, thend further reduce the matrix elements. In the cases with the
unperturbed contribution is reduced dramatically by the two-6 function and the SY forces, the cancellation is almost
body contribution being added destructively. This cancellacomplete and the tota!l5 matrix elements diminish. When
tion mechanism explains the reason why Ew matrix ele- the ordinary force is used, the sum of the one-body and two-
ment in®?Mn is so small. body contributions becomes larger than the unperturbed one,
®2Fe: The contributions from the one-body operators,and the theoreticaM5 matrix element, changing its sign,
which are not small, are added constructively to the unperbecomes very close to the experimental value.
turbed matrix element, producing the enhan&t matrix In order to check the dependence on the wave functions,
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FIG. 1. Decomposition of the transition-matrix elements into the unperturbed, one-body, and two-body contributions, which are denoted
by the double solid, the dashed, and the solid lines, respectively. M3Y, ST, D, SY and W represent the calculations with the effective
operators generated from the M3Y, S function, SYx 1.3, and the ordinarWignen interactions, respectivelA3 andB5 denoted in the
upper-right position in the figure indicate the effective interactions withinfthe configurations. The unperturbed contribution is taken to
be positive in each figure. An experimental matrix element is definebll by =+ B(\) and is indicated by the horizontal arrow.
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we make calculations replacing the3 interaction by the than the one-body matrix elements in the second half of the
425¢ interaction fof“Sc and replacing thB5 by the®*Co for  shell. The two-body contributions play a vital role and are
52Mn and®?5Fe. For theE4 transition in**Sc, the calculated indispensable for an understanding of the enhancement of
matrix elements become smaller typically by 10%. For thethe E4 matrix element if*Sc and the strong suppression of
transitions in the latter half of the shell, the calculated matrixthe E4, E6, andM5 matrix elements in the latter half of the
elements remain almost the same or become slightly smalleshell. The changes in the wave functions, coming from the
by less than 10%. When the great cancellation in the matrixlifference in the two-body effective interactions used in the
elements has already been achieved, the change is signifi7,, model, do not cause any significant change in the tran-
cantly larger, but the matrix elements newly obtained stillsition matrix elements. We therefore conclude that reason-
remain very small. Therefore, the discussions based on thable agreement with experiment is obtained, only by prop-
A3 andB5 interactions hold for the calculations with the erly taking into account the two-body contributions.

425¢ and®*Co interactions. Consequently the concept of effective charge, employed in
previous analyses, has limitations in discussing these phe-
IV. SUMMARY AND CONCLUSIONS nomena.

The effective transition operators are calculated within the
framework of the f|rst-oro_ler perturl_aatlon theory. The corre- ACKNOWLEDGMENTS
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