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Skyrme-modelpNN form factor and nucleon-nucleon interaction
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We apply the strongpNN form factor, which emerges from the Skyrme model, in the two-nucleon system
using a one-boson-exchange~OBE! model for the nucleon-nucleon (NN) interaction. Deuteron properties and
phase parameters ofNN scattering are reproduced well. In contrast to the form factor of monopole shape that
is traditionally used in OBE models, the Skyrme form factor leaves low-momentum transfers essentially
unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very
appropriate for models of theNN interaction and makes it possible to use a soft pion form factor in theNN
system. As a consequence, thepN and theNN systems can be described using the samepNN form factor,
which is impossible with the monopole.@S0556-2813~97!00503-7#

PACS number~s!: 13.75.Cs, 12.39.Dc, 21.30.Cb
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I. INTRODUCTION

It is well established that boson-exchange models are v
successful in describing the low-energy nucleon-nucle
(NN) interaction @1#. Examples for such models are th
Nijmegen @2#, Paris@3#, and Bonn@4# potentials@5#. Typi-
cally, these models take into account the non-strange me
with masses below 1 GeV plus a 2p-exchange contribution
If the latter is approximated by a scalar-isoscalar boson~with
mass 500–700 MeV!, one speaks of the one-boson-exchan
~OBE! model.

In meson-exchange models for theNN interaction, the
meson-nucleon vertices are, in general, multiplied with
called form factors, which are needed to avoid divergence
loop integrals. While the vertices are derived from effect
meson-nucleon Langrangians which the models are ba
upon, the form factors are introduced essentiallyad hocand
do not emerge from the underlying Lagrangians. Though
substructure of hadrons provides, in principal, a physical p
ture and justification for the form factors, in most OBE mo
els no attempt is made to use form factors that have a th
retical basis in QCD or QCD-related models. Instead
phenomenological ansatz is used for the form factor, like

Fa~q2!5S La
22ma

2

La
21q2 D

na

, ~1!

whereq is the three-momentum transfer,ma the mass of the
exchanged meson, andLa the so-called cutoff mass;na51
defines the monopole form factor andna52 the dipole. In
the contruction of OBE potentials, the cutoff paramet
La are adjusted~together with the meson-nucleon couplin
constants! such as to yield an optimal fit of theNN data.
Typical values forLa range between 1.3 and 2 GeV@4#.

An example for a QCD-inspired form factor is the cloud
bag form factor for the pion@6#, which is given by

FCB~q
2!5

3 j 1~ uquR!

uquR
, ~2!
550556-2813/97/55~3!/1088~8!/$10.00
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where j 1 denotes the spherical Bessel function andR is the
bag radius. The cutoff mass used in Eq.~1! with np51 and
the R used in Eq.~2! are roughly related byLp5A10/R,
which impliesLp'780 MeV forR'0.8 fm. Unfortunately,
pion form factors with these~seemingly very reasonable! pa-
rameters fail in theNN system, since they cut out too muc
of the tensor force provided by the pion: the deuteron qu
rupole moment and asymptoticD/S state ratio and thee1
mixing parameter ofNN scattering~which all depend cru-
cially on the nuclear tensor force! come out too small@7#. A
possible cure for this problem is the introduction of ne
short-range tensor-force generating mechanisms in theNN
system, like the exchange of a heavy pion,p8(1300) @8#,
which can also be viewed as a contribution from correla
p-r exchange@9#. However, this requires one to take th
meson-exchange mechanism seriously at a very short
tance between the interacting nucleons~namely, a distance
equivalent to an exchanged mass of about 1300 MeV, tha
'0.15 fm!. This may be in conflict with the implications o
a soft pion form factor (R'0.8 fm!, which leaves no room
for the exchange of mesons or meson systems heavier th
GeV.

Another aspect of the problem is that models forpN scat-
tering seem to require a softpNN form factor (Lp'800
MeV or R'0.8 fm!, if the analytic expressions Eqs.~1! or
~2! are used for thepNN form factor@10#. Thus, with these
types of form factors, it is impossible to describe thepN and
NN systems consistently.

One reason for this problem may simply be that t
shapes of the form factors conventionally used are not v
appropriate. Note that simplicity and convenience is tra
tionally the main argument for Eq.~1!.

Recently the strongpNN form factor has been extracte
from Skyrme-type models which comprise the essential lo
energy features of QCD in effective nonlinear meson dyna
ics and the description of nucleons as solitons in me
fields. It turned out that the shape of the resulting form fac
is quite different from the conventional monopole form. Th
1088 © 1997 The American Physical Society
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suggests one take another look at theNN system to find out
whether the implications of these models could be helpful
the form factor discussion.

The Skyrme model in its ‘‘adiabatic’’ approximation i
able to give a quite convincing and unified description of
essential features of thepN system throughout and eve
beyond the resonance regions in all elastic scattering c
nels except for theS andP channels@11#. This qualitative
statement should be seen in the light of the fact that
model contains onlyone free parameter, the strength of th
Skyrme term. For theS andP waves the adiabatic approx
mation is not sufficient, due to the interplay between
collective zero modes and the continuum of soliton fluct
tions. Although this makes it technically quite involved
analyze elasticpN scattering at low momentum transfers
theS andP channels, the Skyrme model has been shown
provide the right amount of isospin-independent backgro
scattering and isospin splitting in theS channels@12#, as well
as in theP13 andP31 channels@13#, and an accurate de
scription of theP33 resonance@14#. Only in theP11 channel
does the rise in the phase shift set in at too low energies
to the rather low-lying Roper resonance@13#. Again, this
qualitative result is achieved with one parameter. Extensi
of the Skyrme model~to chiral order 6, or inclusion of vecto
mesons@15#! can improve the agreement in some instan
at the expense of additional parameters, but there has n
been an attempt to find an optimal version which wou
quantitatively cover the experimental data in all scatter
channels.

It should, perhaps, be noted that these results forS and
P waves at low energies were obtained in aK-matrix unita-
rization which probably is not very sensitive to the hig
energy cutoff of an underlying form factor. But it is at ve
low-momentum transfers where the Skyrme model form f
tor deviates crucially from the standard monopole type, a
it is this difference which has been shown to significan
improve the agreement with the observed shape of theP33
resonance@14#.

Altogether it is a fair statement to say that the Skyrm
model and appropriate extensions work reasonably wel
thepN system although this statement has not been analy
in terms of underlying form factors~except for the case o
the P33 resonance in@14#!. It is therefore an interesting
question to ask whether form factors extracted from
Skyrme model will work in theNN system. It is the purpose
of this paper to investigate this question.

In Sec. II, we derive the strongpNN form factor in the
Skyrme model, and in Sec. III we apply this form factor
theNN system. The paper is concluded in Sec. IV.

II. THE STRONG pNN FORM FACTOR

Analyzing the meson-baryon scatteringS matrix in the
soliton sectors of effective meson Lagrangians does not
quire one to separately consider meson-baryon form fact
the spatial structure of the interaction is determined by
self-consistently calculated soliton profiles which natura
enter in a consistent way into the scattering equations. T
holds, of course, also for the analysis of the baryon-bar
interaction, or for the structure of the deuteron or other
clei. Still, there have been attempts to extract meson-bar
r
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form factors from soliton solutions of mesonic action
which would allow for a comparison with form factors typ
cally used in conventional meson-exchange models of
baryon-baryon interaction.

In a fully consistent formulation in terms of soliton an
soliton fluctuations the resultingSmatrix will not depend on
the choice of the field which interpolates between the asym
totic mesonic scattering states. Similarly, a form factor to
used for dressing conventional meson-baryon vertices sh
not depend on the choice of the interpolating field fro
which it is extracted. This raises the question whether i
possible at all to unambiguously extract form factors fro
effective meson theories. In the following we will argue th
this is indeed possible if one takes due care of the lo
metric associated with a given choice of interpolating fiel

These metrical factors have been disregarded in early
tempts to relate the strong form factors to the soliton profi
@16,17#. The procedure suggested by Cohen@16# led to a
shape ofGpNN(t) which for small values of the momentum
transferq2 was roughly compatible with the conventional
used monopole form, Eq.~1!, but the resulting values o
L'0.6 GeV were less than half of the 1.3–1.7 GeV typ
cally required in OBE potentials@1,4#. Later extensions in-
cluding vector mesons explicitly in the effective action@17#
led to some improvement (L'0.85 GeV! without really re-
solving the problem.

In the following, we first give the general argument ho
the procedure in Refs.@16,17# to relate the strong form fac
tors to the soliton profiles should be modified. We then c
culate thepNN form factors for a purely pionic effective
action~for the Skyrme model, and for its extension to chir
order six! and for the standard minimal action which in
cludesr andv mesons.

The procedure followed in Refs.@16,17# is based on the
equation of motion~EOM! for a pion fieldp coupled to a
~fermionic! axial source

~h1mp
2 !pa~x!5J5

a~x!. ~3!

Taking matrix elements for nucleon states and using tran
tional invariance leads to

~2q21mp
2 !^N~p8!upa~0!uN~p!&5^N~p8!uJ5

a~0!uN~p!&
~4!

with q5p82p. The matrix element on the right-hand sid
defines the form factorGpNN through

^N~p8!uJ5
a~0!uN~p!&5GpNN~2q2!ū~p8!ig5t

au~p!
~5!

while the matrix element on the left-hand side to lowest
der in \/Nc is the Fourier transform of the classical mes
field

^N~p8!upa~0!uN~p!&5E eiqxpcl
a ~x!dx. ~6!

Through Eqs.~4!, ~5!, and ~6! thepNN form factor thus is
expressed in terms of the classical solution for the ch
field. It implies that in an EOM for the fluctuating pion fiel
derived from any chiral effective action~conveniently for-
mulated in terms of a unitary matrix fieldU5s1 it•p)
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1090 55G. HOLZWARTH AND R. MACHLEIDT
~h1mp
2 !pa~x!5J5

a@U~x!# ~7!

the matrix elements of the functionalJ5
a@U(x)# in baryonic

configurations may be identified with the corresponding f
mionic matrix elements ofJ5

a(x).
It should be noted, however, that the EOM derived fro

some effective meson action is not immediately obtained
the form~7!, because the kinetic part will generally contain
local metric. Only after a field redefinition to absorb th
metric into the chiral field the correspondingly transform
source function can be compared with the fermionic ma
elements and the form factor. Evidently, this metric can o
be identified from the time-derivative part of the action, b
cause any deviation of the spatial part from the requi
structure¹2pa could be absorbed into the source functi
J5
a@U(x)# without a redefinition of the field.
In terms of the Maurer-Cartan forms

Lm5U†]mU5La
mta ~8!

the kinetic partT of the Lagrangian which determines th
dynamics of the field fluctuations generally is given by

T52
fp
2

2 E La
0MabLb

0d3x ~9!

with

La
05 i @2ṡpa1sṗa1~p3ṗ!a#. ~10!

This also holds for effective theories which contain mo
than two time derivatives in their chiral action, becauseT is
obtained by expanding the Lagrangian to second order in
fluctuations. In the Skyrme model and related models
classical field configurationpcl

a (x) which characterizes the
baryon is the hedgehogU05exp@it•xF(r )# with chiral pro-
file F(r ), rotating in isospace. For solitons of this type t
only isovector which can appear in the metric tensorMab is
the pion field itself, (p5upup̂), thereforeMab has to be of
the form

Mab5MLp̂ap̂b1MT~dab2p̂ap̂b! ~11!

with longitudinal and transverse metrical factorsML and
MT depending ons and upu. The metric in Eq.~9! can be
removed from the kinetic energy by redefining

L̃a
05Mab

1/2Lb
0 . ~12!

For the hedgehog solitonp rotating in isospace with angula
velocity V, the time derivativeṗ is purely transverse while
the scalar parts is static

ṗ5V3p, ṡ50. ~13!

This means that in this caseL̃a
0 absorbs only the transvers

part of the metric

L̃a
05 iAMT@sṗa1~p3ṗ!a# ~14!

and we have
-

n

x
y
-
d

e
e

2L̃ a
0L̃ a

05 ṗ̃aṗ̃a ~15!

with redefined fieldp̃a5AMTpa . This may seem a bit sur
prising becausep is longitudinal ~by definition!, but it is
clearly a consequence of the fact that the redefinition is
termined through the time derivatives of the field.

Combining now Eqs.~4!, ~5!, and ~6! with pcl
a (x) re-

placed byAMTpcl
a , thepNN form factor in the Breit frame

then is obtained as

GpNN~q2!5
8p

3

MNf p

q
~q21mp

2 !

3E
0

`

drr 2 j 1~qr !AMT~r !sinF~r !, ~16!

whereMT(r ) is derived from the effective Lagrangian use
to determineF(r ); MN andmp denote the nucleon and pio
masses, respectively, andfp is the pion decay constant. No
tice that we have changed our notation in Eq.~16! defining
now q[uqu which will be used for the remainder of thi
paper.

As a typical example, we consider the standard Lagra
ian for pseudoscalars with the dominant fourth- and six
order terms

LPS5L~2!1L~4!1L~6!, ~17!

L~2!5
f p
2

4 E @2trLmL
m1mp

2 tr~U1U†22!#d3x, ~18!

L~4!5
1

32e2E tr@Lm ,Ln#2d3x,

~19!

L~6!52
1

2 S 3gv

mv
D 2E BmB

md3x

and baryon currentBm5(1/24p2)emnrstrL
nLrLs. It leads to

the transverse metric to be used in Eq.~16!:

MT~r !511
1

e2f p
2 S F821

sin2F

r 2 D1S 3gv /mv

2 f pp2 D 2sin2Fr 2
F82.

~20!

In the original Skyrme model the termL(6) is not present.
The Skyrme termL(4) therefore has to be supplied with su
ficient strength (3.5,e,4.5) to allow for reasonable soliton
size. In the presence of a suitable sixth-order term com
rable radii can be obtained with reduced fourth-ord
strength (6,e,7). Both terms may be considered as loc
remnants of eliminated vector mesons. Therefore it may
of interest to extract thepNN form factor also from chiral
models with explicit inclusion of vector mesons. Unfort
nately, there are many ways to construct such models and
reasons of simplicity and definiteness we select a minim
model which comprisesr andv mesons together with the
field U in a chiral-covariant way:

LVM5L~2!1L~r!1L~v! ~21!

with
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L~r!5E F2
1

8
trrmnrmn1

mr
2

4
trS rm2

i

2g
~ lm2rm! D 2Gd3x,

~22!

L~v!5E S 2
1

4
vmnvmn1

mv
2

2
vmvm13gvvmB

mDd3x,
~23!

and lm5j†]mj, rm5]mjj†. Herej denotes the square roo
of U

j5U1/25S1 it•P. ~24!

In this case, to isolate the metric for the pseudoscalars
write the relevant kinetic parts ofLVM as

T52E S f p
2

4
tr~ l 01r 0!

21
mr
2

16g2
tr~ l 02r 0!

2Dd3x. ~25!

Again, for the rotating classical hedgehog we have

Ṡ50, Ṗ5V3P ~26!

and obtain

T5
f p
2

2 E S 4S21
mr
2

f p
2g2

P2D Ṗ•Ṗd3x. ~27!

With the chiral profileF(r ) determined from the static mini
mization of Eq.~21! we have

S5cos
F

2
, P5sin

F

2
. ~28!

The transverse metric resulting from Eq.~27! then is

MT~r !5S 11
mr
2

4 f p
2g2

tan2
F

2 D . ~29!

Replacing thev mesons by the baryon current in the lowe
chiral-order local approximation (vm523gv /mv

2Bm) leads
to the sixth-order contribution in Eq.~19!. The elimination of
the r mesons in lowest-order local approximatio
@2grm5 i ( lm2rm)# leads to the Skyrme term withe52g. If
g is chosen to satisfy the KSRF relationg25mr

2/(8 f p
2 ) with

vector meson massmr5770 MeV, i.e., g52.925, and
gv'g, both Lagrangians~17! and ~21! stabilize solitons of
reasonable size. However, it has been observed@18# that af-
ter renormalization of loop corrections the effective coupli
constants in the soliton sector favor a stronger Skyrme t
(e'4) and, correspondingly, a weaker sixth-order te
(gv,1). This is in accordance with ample past eviden
that the simple Skyrme model creates soliton profiles wh
are well suited for many applications.

In Fig. 1 we compare the form factors resulting from Eq
~16! and~20! for the pure Skyrme model with strong Skyrm
term and no sixth-order term (e53.5, gv50; solid line in
Fig. 1!, and for the sixth-order extension wit
e52g55.85, andgv53.1 ~dashed line in Fig. 1!. Both cases
lead to the same values for the pion-nucleon coupling c
stantGpNN(0)50.99(2MN /mp)513.5 and the axial cou
e

t

m

,
h

.

-

pling contantgA51.30. The same values forg and gv we
use also in Eq.~29! for the form factor from the vector-
meson model~dotted line in Fig. 1!.

It is interesting to note that thepNN form factor which
arises from the vector meson Lagrangian shows appr
mately a dipole form, Eq.~1! with na52, with La'1.5
GeV. Thev mesons do not contribute at all to the pion
metric, because their couplingvmB

m to the baryon current
contains at most one time derivative of the pion field. T
term 2tan2(F/2) in Eq. ~29! is due to the chiral invarian
form of ther-p coupling in Eq.~22! and causes the devia
tion from the flat metric ofL(2). This results in the dipole
form. The form factor derived from the corresponding loc
approximation ~dashed line! shows an almost unchange
slope for smallq2 but it suppresses higher momenta mo
efficiently and displays small oscillations above 200mp

2

which may be traced directly to the nonvanishing sixth-ord
term.

Increasing the strength of the Skyrme term, however, p
duces a qualitative change in the low-q2 behavior of the form
factor: The soliton profile created through a strong Skyr
term causes the slope of the form factor nearq250 to be-
come very small and, at the same time the curvature to
come negative. This means that for smallq2 the effective
pNN coupling strength stays much closer to its value
q252mp

2 than for comparable monopole form factors. It
this feature of the Skyrme model which has been shown
improve the agreement of the calculatedP33 phase shifts in
p-N scattering with the data over the wholeD-resonance
region @14#. This very hard behavior of the form factor fo
smallq2 is compensated by a very soft behavior forq2. 50
mp
2 which cuts off higher momenta much more efficient

than typical hard monopole form factors~cf. Fig. 2!. Without
the sixth-order term (gv50) the form factor is monoto-
nously decreasing without oscillations.

III. THE TWO-NUCLEON SYSTEM

In this section, we will apply thepNN form factor ex-
tracted from the ‘‘simple’’ Skyrme model in theNN system.

FIG. 1. Form factors emerging from Skyrme-type models. T
solid line results from the ‘‘simple’’ Skyrme model@Eqs.~16! and
~20! with e53.5 andgv50#, while the dashed line includes a sixth
order term (e55.85 andgv53.1). The dotted line is based upo
the vector meson model, Eq.~21!. All form factors are normalized
to unity at the pion pole.



g
e

le

us

to

tiv
u

ely,

ten-
ift

by

rm

on-
he
tant

new
FF.

in
e

o-

hen

m-
sted
r
par-
-
or
ron,
r

e
d

1092 55G. HOLZWARTH AND R. MACHLEIDT
To facilitate the comparison with traditional work usin
monopole ~or dipole! meson-nucleon form factors, w
choose as our starting point the OBE model of Ref.@1#,
which has also become known as the Bonn-B potential@19#.

A OBE potential is defined as the sum of one-partic
exchange amplitudes (Va

OBE) of certain bosonsa with given
spin, parity, mass, coupling, etc. We use six bosons. Th

V~p8,p!5 (
a5p,h,r,v,d,s

Va
OBE~p8,p!$Fa@~p82p!2#%2

~30!

with p and h pseudoscalar,s and d scalar, andr andv
vector bosons. Each vertex is multiplied with a form fac
Fa ~i.e., two factors per OBE diagram!.

For the unitarizing scattering equation, we use the rela
istic three-dimensional reduction of the Bethe-Salpeter eq
tion suggested by Blankenbecler and Sugar@20#:

T̂~p8,p!5V̂~p8,p!1E d3kV̂~p8,k!
MN

p22k21 i e
T̂~k,p!,

~31!

FIG. 2. Comparison of differentpNN form factors. The solid
line represents the form factor extracted from the ‘‘simple’’ Skyrm
model~the same as the solid line in Fig. 1!. The dashed and dotte
lines are monopole form factors@Eq. ~1! with na51# with cutoff
massesLp50.8 and 1.7 GeV, respectively.
-

,

r

-
a-

whereT̂ denotes theT matrix, andp,k, andp8 are the initial,
intermediate, and final relative three-momenta, respectiv
of the two interacting nucleons. The relationship betweenV̂
andV, the amplitude of Eq.~30!, is

V̂~p8,p!5AMN

Ep8
V~p8,p!AMN

Ep
, ~32!

with Ep[AMN
21p2 andEp8 similarly. For further details see

Appendix A of Ref.@1# and Ref.@21#.
The meson parameters used in the original Bonn-B po

tial are listed in Table I, column Bonn-B. The phase-sh
predictions by Bonn-B for neutron-proton (np) scattering
below 300 MeV laboratory energy are shown in Fig. 3
the dotted lines.

In the Bonn-B model, we replace now the monopole fo
factor applied to thepNN vertex by the ‘‘simple’’ Skyrme
model pNN form factor, i.e., Eqs.~16! and ~20! with
e53.5 andgv50 ~solid curve in Fig. 2!. The form factors of
mesons other than the pion are not changed.

We make some minor adjustments of the coupling c
stants of the vector mesons to optimize the fit of t
P-wave phase shifts, and we fine-tune the coupling cons
of the sigma boson to accurately fit theS-wave effective
range parameters and the deuteron binding energy. The
meson parameters are listed in Table I, column Skyrme
The phase-shift predictions fornp scattering are plotted in
Fig. 3 by the solid lines and deuteron properties are given
Table II. It is clearly seen that the model using the Skyrm
form factor ~FF! at the pion vertex reproduces the tw
nucleon data as well as the original Bonn-B potential.

For comparison, we also show the results obtained w
applying a soft monopole form factor~with Lp50.8 GeV!
for the pion; see dashed line in Fig. 3. Note that, as custo
ary in OBE models, the sigma-boson parameters are adju
such as to fit theSwaves. Obviously, a soft pion form facto
of monopole shape yields disastrous results for several
tial waves ofNN scattering. In particular, the mixing param
eters,e1 ande2, which depend entirely on the nuclear tens
force, are described badly. The same is true for the deute
see column ‘‘Lp50.8’’ of Table II. The common reason fo
.

re
TABLE I. Meson parameters used in the OBE potential models considered in the present work

Bonn Ba Skyrme FFb

Meson JP I ma ~MeV! ga
2/4p @f a /ga# La ~GeV! na ga

2/4p @f a /ga#

p 02 1 138.03 14.4 1.7 1 13.5
h 02 0 548.8 3 1.5 1 3
r 12 1 769 0.9@6.1# 1.85 2 0.9@6.3#
v 12 0 782.6 24.5 1.85 2 26
d 01 1 983 2.488 2.0 1 2.488
s c 01 0 550 8.9437 1.9 1 9.4369

~720! ~18.3773! ~2.0! ~1! ~19.5806!

aReference@19#; for definition ofLa andna see Eq.~1!.
bOBE model that uses the ‘‘simple’’ Skyrme model form factor for the pion; see text for details.
cThes parameters given in parenthesis apply to theT50 NN potential, while the unparenthesized values a
for T51.
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FIG. 3. Neutron-proton (np) phase shifts,d, and mixing parameters,e, for J<2 below 300 MeV laboratory energy,Tlab. The solid lines
show the predictions by the present model using the SkyrmepNN form factor. The dotted lines are the predictions by the original Bonn
model which applies a monopole form factor withLp51.7 GeV at thepNN vertex, while the dashed lines are obtained by applyin
monopole withLp50.8 GeV for the pion. Open circles represent the Nijmegen multienergynp phase shift analysis@22#, and solid dots are
from the VPI single-energy analysis VS35@23#.
ol
b

fer
all these formidable predictions is that the soft monop
also cuts out part of the long-range tensor force created
the pion.
e
y
It is interesting to note that, at large momentum trans

(q2*80mp
2 ), the Skyrme FF~solid line in Fig. 2! is even

softer than the soft monopole form factor~dashed line in Fig.
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TABLE II. Deuteron properties as predicted by OBE potential models discussed in the text and
experiment.

Bonn-B Skyrme FF Lp50.8a Experiment

Binding energy~MeV! 2.2246 2.22454 2.2246 2.224575~9!b

D-state probability~%! 4.99 4.71 2.54 —
Quadrupole moment~fm2) 0.278 0.274 0.242 0.276~3!c

AsymptoticD/S state 0.0264 0.0257 0.0236 0.0256~4!d

aOBE model that uses a monopole form factor withLp50.8 GeV for the pion.
bReference@24#.
cCorrected for meson-exchange currents and relativity@25–27#.
dReference@28#.
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2!. Thus, strong suppression at high-momentum transfer d
not cause problems and is, in fact, the desired property
form factor.

On the other hand, at lowq2, the Skyrme FF stays clos
to its value at the meson pole and atq2'0. In contrast, the
soft monopole falls off drastically already at lowq2. This
causes problems in theNN system since it modifies the long
range part of the nuclear force. It also contradicts the ide
a form factor which is to regularize the short-range inter
tion.

For many years, it has been a great puzzle whyNN mod-
els seeminglyneed a very hardpNN form factor. Based
upon the above discussion, one can now explain this. Tr
tionally, OBE models use form factors of monopole sha
which have the undesirable feature of cutting down also
low-q2 region. The only way to avoid this within the mono
pole concept is to use a very large cutoff mass, l
Lp51.7 GeV in the Bonn-B potential~cf. dotted curve in
Fig. 2!. This large cutoff mass then suggests that the requ
form factor is very hard. However, this is misleading. T
large cutoff mass is needed to avoid an unreasonable
pression of the low-q2 ~equivalent to long-range! region. If
this unwanted low-q2 suppression can be avoided, a s
form factor is no problem in theNN system. The Skyrme FF
proves the point.

There is one last item that deserves attention. The Bon
potential uses for thepNN coupling constant the large valu
gp
2 /4p514.4. In models that apply a monopole for the pio
a large value for thepNN coupling constant is needed t
predict the deuteron quadrupole moment correctly. Howe
recent determinations of thepNN coupling constant have
yielded the valuegp

2 /4p513.560.1 @29# which is substan-
tially smaller than the one above. As discussed in R
@30,31#, the deuteron quadrupole moment is predicted far
small with gp

2 /4p513.5 in OBE models using monopol
form factors.

An important by-product of our present investigation
the result that there is no such problem when the Skyrme
is used. We usegp

2 /4p513.5 when applying the Skyrme F
for the pion, and the deuteron quadrupole moment,Qd , is
then predicted to be 0.274 fm2 which is within the empirical
range ~cf. Table II!. Note that, applying a monopole wit
Lp51.7 GeV, Qd50.266 fm2 is predicted when
gp
2 /4p513.5 is used@31#. The deuteron quadrupole mome
is a long-range property and, thus, sensitive to the lowq2
es
a
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behavior of the form factor. Again, the large values of t
Skyrme FF at lowq2 are clearly preferred by theNN system.

IV. CONCLUSIONS

We have shown in this paper how to extract meso
baryon form factors from the soliton sector of effective m
son theories which do not depend on the choice of the fi
that interpolates between the asymptotic meson states.
crucial ingredient is a redefinition of this field to absorb t
local metric which characterizes the kinetic energy of t
fluctuating field. The axial source in the resulting flat met
then can be used to extract the form factor in the usual w

We have applied this procedure to two standard exam
of effective meson theories: The minimal chiral model f
p,r, andv mesons, and the Skyrme model~with or without
sixth-order extension!. Both models work qualitatively well
in thepN system at least to the extent we could expect fr
one- or two-parameter models.

The resulting strong form factors are considerably
fected by the respective local metric. Previous attem
@16,17# in which the metrical factors were omitted had led
very soft form factors of the conventional monopole type
low q2. Our result for the chiralprv model is close to a
dipole form with a cutoff mass of about 1.5 GeV. This d
ference, however~which originates in the chiral covarian
rpp coupling!, is not sufficient for substantial improvemen
in the application of OBE potentials to the two-nucleon sy
tem.

On the other hand, the Skyrme term is responsible fo
qualitative change in the form factor: It starts with almo
vanishing slope and negative curvature for lowq2, and then
falls off much faster than comparable monopole form fa
tors. In OBE potentials this very hard behavior for lowq2

provides the necessary strength for the tensor force whil
the same time the high momenta are still efficiently cut off
is remarkable that in order to have the full advantage of t
effect it is necessary to employ a Skyrme term with sufficie
strength~Skyrme parametere'4, or less!. The magnitude of
e which is derived from the elimination ofr mesons
(e52g'627) is not sufficient. The fact thate*2g does
not lead to a satisfactory soliton has been noticed in m
instances and is supported by the recent discussion of
corrections in the soliton sector.

We have applied thepNN form factor based upon the
strong Skyrme term in the two-nucleon system using
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OBE model for theNN interaction. Deuteron properties an
phase parameters ofNN scattering are reproduced well.

Traditional OBE models use form factors of monopo
shape and require a very hard pion form factor. This has b
a long-standing puzzle. A comparison of the soft monop
with the Skyrme FF reveals that the latter leaves lo
momentum transfers essentially unaffected while the form
also suppresses the low-momentum region. To avoid
low-q2 suppression, the monopole needs a large cutoff-m
parameter which results in an overall hard form factor.

Because of its strong suppression of large momenta,
D

Li

s
.

l.

hi

r,

A

en
e
-
r
e
ss

he

Skrme FF can be termed as soft. On the other hand, sin
does not suppress low momenta, it is compatible with
NN system. Deuteron properties can be reproduced with
smallpNN coupling constantgp

2 /4p513.5, which does not
work with the monopole.

In summary, the Skyrme FF is a soft pion form factor th
is compatible with thepN andNN system. This is impos-
sible to achieve with form factors of monopole shape.
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