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Three-potential formalism for the three-body Coulomb scattering problem
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We propose a three-potential formalism for the three-body Coulomb scattering problem. The corresponding
integral equations are mathematically well behaved and can succesfully be solved by the Coulomb-Sturmian
separable expansion method. The results show perfect agreements with existing lowredeeqnd p-d
scattering calculation$S0556-28187)01103-5

PACS numbg(s): 21.45:+v, 03.65.Nk, 02.30.Rz, 02.60.Nm

I. INTRODUCTION benchmarkn-d and p-d below-breakup scattering results. It

. . is found that in all cases excellent agreement is achieved.
. Since the Faddeev equations are the fundamental €AUshe method therefore appear as a promising and efficient
tions of the three-body problems their solutions are of centr ool for solving the Coulomb three-body scattering problem,
interest in many branches of physics. This is especially trugq it can be adapted to more general cases and can be ex-

in nuclear physics because three-body calculations serve agghged to above-breakup Coulomb scattering calculations.
distinguished tool for studying the fundamental nucleon-

nucleon interactions. A general interaction may have a local
or nonlocal short-range part and a long-range Coulomb part. l. THREE-POTENTIAL FORMALISM FOR THE
The solution of the Faddeev equations with such type of THREE-BODY COULOMB SCATTERING PROBLEM
potentials is not an easy job, especially the Coulomb inter- The Noble’s approach, which is, in fact, a two-potential
action and the scattering dynamics make the procedure vefigrmalism, requires the knowledge of the complete solution
complicated. There exists extensive literature on the subjedf the three-body Coulomb problem. Bencze has suggested
(see, e.g., Ref§1-3] and references thergiso we restrict to replace the incalculable three-body Coulomb Green’s op-
ourselves only to practical approaches. erator by the channel-distorted Coulomb Green’s operator
There are two genuinely different approaches in the pract10]. In this section below we will follow the derivation of
tical Faddeev calculations that in some extent can handIRef. [10], but instead of neglecting the intermediate range
Coulomb-like interactions in scattering-state problems. Onéolarization potential, we will link the three-body Coulomb
of them is based on the solution of the configuration-spac&reen’s operator to the channel-distorted Coulomb Green’s
differential equations using the asymptotic boundary condioperator via a Lippman-Schwinger equation. Thus we will
tions [4]. In the other approach, in order that the standarcrrive at a set of Faddev-Noble and Lippmann-Schwinger
techniques could be applied, the long-range Coulomb poterintegral equations which are mathematically well behaved
tial is screened, and then, as the screened Coulomb potentfg¢cause all the long-range interactions are kept in the
goes to the unscreened one, a renormalization procedure §Feen’s operator.
applied[5]. However, in spite of the rapid development we The Hamiltonian of a three-body system with short-range
have witnessed in the past few years, only limited solutionglus Coulomb two-body interactions reads
below or above the breakup threshold are availablgsest,
e.g., Refs[6-§|). H=H0+vi+vz+v§+vg+v2+v$, (h)
Another approach to the nuclear three-body problem with
Coulomb interaction were derived along the two-potentiakyhereHO is the three-body kinetic energy operatoy, de-
formalism. The first, and formally exact, approach was prongtes the interaction in subsystem and the superscrifg
posed by Noblg9]. In this formulation all the Coulomb  anqgc stand for short range and Coulomb, respectively. We
interactions were included in “free” Green’s operator. ThuSintroduce here the usual configuration-space Jacobi coordi-
the corresponding Fadd_eev—NobIe equations are ma}themaﬂatesga and 7,: &, is the coordinate between the pair
c_aIIy well behaved and in the absence qf Coulomb mteracw’y) and 7, is the coordinate between the particteand
tion th_ey fall back’ to the standard equations. prever, f‘hffhe center of mass of the paiB(y). Thus the potential
_assomated Green’s ope_rator is not_known, so this formallsnaa’ the interaction between the paiB(y), appears as
is not suitable for practical calculations. v (£.).
The.alm of this paper is to tregt the three-body Coulomb ™ 114 asymptotic Hamiltonian is defined as
scattering problem via the solution of the Faddeev-Noble
integral equations. In Sec. | below we shall derive a “three-
potential” formalism. We will arrive at a set of Lippmann-
Schwinger and Faddeev equations which form a mathemati-
cally well-behaved set of integral equations. In Sec. Il below@nd the asymptotic states are the eigenstatds,of
we shall describe how the solution can be reached. In Sec. Il
below we shall compare our calculations with existing H,|®,)=E|®,), (3)

H,=H%+vS+0¢, 2
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where (£,74|P o) =(7alXa)(€al b}, @ product of a free

1081

In Eqg. (10) the potentialV® is of short-range type and

motion in coordinatey,, and a bound-state in the two-body G contains all the Coulomb interactions. Now, all the for-

subsystent,, .
We define two asymptotic Coulomb Hamiltonians as
HS=H+ oS +vS+v5+us (4)
and
Ho=H+0S+0vS+uS, (5)

Whereug is an auxiliary potential in coordinate, , which is
required to have the asymptotic form

Z(Zp+2,)
Na

(6)

ug

as n,—. In fact ug is an effective Coulomb interaction

between the center of mass of the subsystetwith charge
Zz+Z,) and the third particléwith chargezZ,).
Let us introduce the resolvent operators,

G(2)=(z—H) 1, (7)
GS(2)=(z—HS Y, ®)
Gu(2)=(z—Ho L 9

mulas which exist in the conventional short-range three-body
theory can analogously be derived, only the channel Green'’s
operatorG,, has to be replaced, la Noble, byGS through-

out. One can analogously perform the Faddeev decomposi-
tion and for the Faddeev componehtd,™)) of the scattering
function

PN =limieG(E,*ie)|P,)

e—0

(16)

one arrives at the Faddeev-Noble integral equations

95y = 850 DEE) + GS(E£i0)[03] 9y + ) wf)gn

with a cyclic permutation irx, 3, .

The S-matrix elements of scattering processes can be ob-
tained from the resolvent of the total Hamiltonian by the
reduction techniquéll]

Sgn.am= lim limige'Eon~Ean(® 5 |G(E ym+ie)|D o).
t—owe—0

(18)

The subscripm andn denote thenth andnth eigenstates of
the corresponding subsystems, respectively. If we substitute
now Eg. (10) into Eq. (18) we can get, like in[10], the

The operegorGg is Noble’s channel Coulomb Green'’s op- following two terms:

erator andG,, is the channel distorted Coulomb Green’s op-

2 _

erator introduced by BencZd0]. These operators are con- S oam= lim limige'Esn~Ean( P 5 IGS(E ;i ti€)| P o),

nected via the following resolvent relations:

G(2)=G$(2)+GS(2)V*G(2), (10)

GL(2)=Gu(2)+G(2)U"GL(2), (1)
whereV*=v%+v5 andU*=vg+05—-ug.

In the potentialU® the Coulomb tail ofo5+0v$ is com-
pensated b}ag. As concerning the asymptotic motidff* is
of short-range type, so Eqll) is mathematically well be-
haved. The scattering states

|DCEN = limieGS(Exie)|®,) (12)
e—0
satisfy the Lippmann-Schwinger equations
|DCEN = | DUV + G (E£i0)U,|PSH), (19
where
|BC )= limieG (Exie)|dD,). (14)

e—0

In configuration-space representation the s¢é§)> are
given as

(Eaad OV = (7,5 W Eul ) (15)

where (7,/X")) are scattering functions in the Coulomb-

like potentialu§ .

t—oe—0

(19

S5 = lim limige'Esn Eam(d 5 |GS(E ,p+ie)

Bn,am™
t—oeg—0

XVEG(E gt i8)|® o) (20)

We substitute again Eq11) into Eq.(19) and the first term
yields again two further terms

S = lim limi e/ Eon=Eam{(D 4| G o (Eym+i8)| D 4,
t—xe—0

(21)

S2) = lim limi g€/ Eon~Eam (P 5 |G (Eym+ie)

t—oe—0

XUGL(Egm+i8)| P om)- (22
Making use of the properties of the resolvent operators the
limits can be performed and we arrive at the following,
physically very plausible, result. The first ter®{,) ., is

the S matrix of a two-body single channel scattering on the
potentialu$

Sir am= 8paBamS(US). (23)

If u€is a pure Coulomb interactioB(uS) falls back to the

S matrix of the Rutherford scattering. The second term,
S om. describes a two-body multichannel scattering on the
potentialU“
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S<ﬂzn) amz—27Ti53a5(Egn—Eam)(5%])|U”|q’an+)>- demonstrated in benchmark calculations of the three-body
’ (24)  bound-state problem without and with Coulomb interactions.
In both cases the solution showed a rapid convergence and,
The third term gives an account of the complete three-bodywhenever comparisons were possible to existing results in
dynamics the literature, correct predictions for the binding energies and
3 ) (=) +) wave functions were achieved. The method was also applied
Sin am=— 2 8(Egn—E,m)(P5, VAL, (25  in realistic calculation$19].

o ) In Sec. Il A below we will define the basis states in two-
Utilizing the properties of the Faddeev componéilt8] the 5§ three-particle Hilbert space. In Sec. Il B below we re-
matrix elements in E¢(25) can be rewritten in a form which .4t ate some of the most important formulas of the two-
is better suited for numerical calculations body problem(the details are given in Ref§14,15,17),

while in Sec. Il C below the solution of the three-body Cou-
<CI)2§1_)|VB|\IIEJH)>: 2 <¢§r(1_)|l)2| ‘ﬂ%ﬁ)- (26) lomb 'scatt_ering problem along the CS separable expansion
o] technigue is presented.

We note, that if the Coulomb interactions are absent the

whole “three-potential” formalism falls back to the conven- A. Basis states

tional short-range formalism. The CS functions, which are the solutions of the Sturm-
Liouville problem of hydrogenic systenj&0], in some an-
Il. SOLUTION OF THE THREE-BODY INTEGRAL gular momentum stateare defined in configuration and mo-
EQUATIONS mentum space as

To solve operator equations in quantum mechanics one ! 12 L+1—br 2141
needs a suitable representation for the operators. For solving {r[n)= nF 21+ 1)1 (2br)!*te LT (2br)
integral equations it is especially advantageous if one uses ' (27)
such a representation where the Green’s operator is simple.
The free Green’s operator takes a very simple form in mogng
mentum representation. This is the main reason why for the

solution of Faddeev equations, in the presence of short-range 2|+3/2|!(n+|+1)\/m b(2bp)'*1
interactions, momentum-representation techniques are per- (p|nl)=  REViVIE)
forming so successfullysee for a recent review Ref13]). Ja(n+2i+1)r  (p7+b%)

Since the momentum representation is a continuous repre- 2_p2

sentation, to solve the equation one needs also some kind of ><Gln+1(32_2 , (28)
discretization. pe+b

For the two-body Coulomb Green’s operator there exists a
Hilbert-space basis in which its representation is very simplefespectively, and=0,1,2, ... . Herel. andG represent the
it is the Coulomb-SturmiafC9) basis. In this representation Laguerre and Gegenbauer polynomials, respectively,and
space the Coulomb Green’s operator can be given by simplk&lates to the energy in the Sturm-Liouville equation. We
and well-computable analytic functiofi$4]. This basis is a takeb as a fixed real parameter, thus working with energy-
countable set. If we represent the interaction term on a finitéhdependent bound state CS functions. In an angular momen-
subset of the basis it looks like a kind of separable expansiofm subspace they form a complete set
of the potential, so the integral equation becomes an alge-
braic equation. The completeness of the basis ensures the i - )
convergence of the method. 1= lim ngo [l (nl|= lim 1, (29)
In the past few years along this idea we have developed a N=e N
guantum-mechanical approximation method for treatinqN
Coulomb-like interactions in two-body calculations. Bound-
and resonant-state calculations were presented Id$tthen
the method was extendgd to scattering stpté$ a_nd mu_lti- (r[fly= E(rlnl). (30)
channel problem$16]. Since only the asymptotically irrel- r
evant short range interaction is approximated, the correct
(two-body Coulomb asymptotics is guaranteed. The corre- The three-body Hilbert space is a direct sum of two-body
sponding computer codes for solving two-body bound-Hilbert spaces. Thus, the appropriate basis in angular mo-
resonant-, and scattering-state problems were also publish&dentum representatidomitting the explicit spin and isospin
[17]. dependence from our notatipshould be defined as the di-
Recently the CS separable expansion approach was afect product
plied for solving the three-body bound-state problem in the
presence of short-range plus repulsive Coulomb interactions InvIN)=[nl),®[¥\),, (n,»=012,..), (31
[18]. The homogeneous Faddeev-Noble integral equations
were solved by expanding only the short-range part of thevith the CS states from Eq27) or Eqg.(28). Herel and\
interaction in a separable form while treating the long-rangalenote the angular momenta of the two-body pair)) and
part in an exact manner. The efficiency of the method wa®f the third particlex relative to the center of mass of the

N

here|nl) in configuration-space representation reads
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pair, respectively. Now the completeness relation takes th@vhile the matrix elements of the potential may be evaluated
form (with angular momentum summation implicitly in- (numerically for any given short-range potential either in

cluded

N
1=lim D, |nwIN) g (nvIX|= lim 12,

N—on,v=0

(32

N—s o0

where the configuration-space representation in terms of Ja-

cobi coordinate€, and », reads

1

(£ana NVIN) = (EanalWIN) .

€aTla 33

It should be noted that in the three-particle Hilbert space w

configuration or in momentum space, the matrix elements
(42) and the overlag41) can be calculated analyticall{t4];

the corresponding computer code is available from Ref].
This fact then also allows to calculate the matrix elements of
the full Green’s operator in the whole complex plane,

9(2={lgr@] *=vi} ™,

this will be needed later on in the solution of the three-body
problem with charged particles. Of course, bound-state solu-
tions can also be generated by solving the homogeneous ver-

(43)

Sion of Eq.(40).

can introduce three equivalent bases which belong to frag-

mentationa, B, andy.

B. Coulomb-Sturmian separable expansion
in two-body problems

Let us study a two-potential case of short-range plus

Coulomb-like interactions

vi=vi+v¢ (34

and consider the inhomogeneous Lippmann-Schwinger equ

tion for the scattering statie),) in some partial wavé
[9)=14)+gr(E)vilu).

Here |¢C) is the regular Coulomb functiorg®(E) is the
two-body Coulomb Green’s operator

(39

97 (E)=(E—hP—v©) "1 (36)

with the free Hamiltonian denoted Hy . We make the fol-
lowing approximation on Eq35)

) =lel) + 97 (E) Lyw iyl ), (37
i.e., we approximate the short-range potentiaby a sepa-

rable form

N

vi~ 3 [nl)oinT],

n,n'=0

(39)

where
vy=(nlv7In’l). (39

Multiplied with the CS stategnl| from the left, Eq.(37)

turns into a linear system of equations for the wave-function

coefficientsyy, = (Ml| )

[@F(E) = ofl¢h=ef , (40)
where ) -
¢in=(Nller) (41)
and -
G (B)=(AIGFE)T'). (42)

C. Coulomb-Sturmian separable expansion approach
to three-body Coulomb scattering problems

In the set of Faddeev-Noble equatiofls) we make the
following approximation:

| ) = Opal P + Gl v 2 1K ¥) + L0 S 1R )] '
44

i.e., we approximate the short-range potentiain the three-
Q_ody Hilbert space by a separable form

N

v~ X [ArIN), 03 40 v TN, (45)
n,v,n’,v =0 -
where
glsa)\anv,l’ﬂx'ﬁn'v’:(l_5aﬁ)a<nyl)\|vf1|nrvrl’)">ﬁ'
(46)

In Eq. (45) the ket and bra states are in different fragmenta-
tion depending on the environments of the potential opera-
tors in the equations.

Muliplied with the CS state§<ﬁm| from the left, Egs.
(44) turn into a linear system of equations for the coefficients

of the Faddeev components , n,= o(nvIX|¥,):

[(G®) 1= v%]y=DC, (47)

with
GF st s = Bap o MPIN|GENVTN), (48)

and
OF, 1= u(NVIN|DS). (49)

Notice that the matrix elements of the Green’s operator are
needed only between the same partitierwhereas the ma-
trix elements of the potentials occur only between different
partitions @ and 8. The latter may again be evaluated nu-
merically either in configuration or momentum space by
making use of the transformation of Jacobi coording®4s.
Unfortunately neither the matrix elemen{48) nor the
overlap(49) are known. However, Eq$11) and(13), which
are, in fact, two-body Lippmann-Schwinger equations, link
them to relatively simpler quantities. If we perform again the
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separable approximation on potentift with the help of the

formal solution of Eq(11) we may now express the inverse I —
matrix[GS(E)]"*as X S i

(G ~1=(G,) t-U*, (50)

FIG. 1. ContourC for the integral forG,(E+i¢) in case of the

where three-body scattering problem. The cont@uencircles the continu-
B _ ous and discrete spectrum Imga. In thee—0 limit the topology of
Gix il A = AnVIN[G,In"v'I'\"), (51)  the contour should be kept.

and 6|a)\anv,|')x’ﬂ’v’(E+io)
U onrm =N UI 0N Y (52) ) -
=— fﬁ dwW, (WA [(E+i0—w—h, )~ Hnp’'\"),

In a similar way, with the help of the formal solution of Eq. 2mi Je “
(13) we get

_ o X o (w=h )TN, (58
PC=[(G,) =U*T G,) Py, (53
- - - - - where both matrix elements occurring in the integrand are
where known from the two-particle cadef. Eq. (43)].
Pa=o{nVIN| D). (54) IV. TESTS OF THE METHOD
The statd&ba), in fact, is a product of a two-body bound- In this section we demonstrate the performance of the

state wave function in coordinat¢, and a two-body method in calculations of three-body short-range and Cou-

scattering-state wave function in coordinagg. Their CS

representations are known from the two-particle case of the TABLE I. Convergence of the’s,q phase shifts for three-

previous sectiomicf. Eq. (40)]. nucleon system interacting via the MT I-lll potential at various
For the calculation of the matrix elements in E§1) we  energies, with increasing basis for the separable expaniate-

proceed in a similar way as in the case of three-body boungotes the maximum number of basis states employed fand v.

states[18]. Since inH,, of Eq. (5) we can write the three- 'he Phase shifts are in degrees.
particle free Hamiltonians as a sum of two-particle free

. . 2é)\nd

Hamiltonians N 0.1 MeV 1.0 MeV 2.18 MeV
HO=hg +h . 55 10 —4.0908 —20.704 —32.896

- 11 —3.6803 —20.330 —33.596

the HamiltonianH , appears as a sum of two Hamiltonians 12 —3.8876 —20.450 —33.599
acting on different coordinates 13 —3.4583 —20.630 —33.901
~ 14 —3.5189 —20.562 —33.963

Ho=h¢ +h, 56 15 ~3.3017 ~20.629 —33.834

16 —3.3434 —20.653 —33.723

with he =h? +v3(é,)+vS(£) and h, =hd +ui(7.), 17 —3.3293 ~20.636 —33.594
which, of course, commute. Thus we can apply the convolui8 —3.2914 —20.660 —33.525
tion theorem22] 19 —3.2940 —20.652 —33.341
~ 20 —3.2764 —20.654 —33.282
Gu(2)=(z—h; —h, )7* 21 —3.2783 —20.656 —33.267

22 —3.2709 —20.653 —33.290

:% fﬁ dw(z-w—h, )"Yw—-h, )L (57 2 -3.2715 —20.655 —33.326

7 Jc “ “ 24 —3.2688 —20.654 —33.377

25 —3.2688 —20.654 —33.424

Here the contou€ should encircle, in positive direction, the ,g — 32681 —20.654 —133.460
spectrum ofhga without penetrating into the spectrum of ,- _3.2678 —20.654 —33.483
h,, . For scattering-state energies at redtiese singularities  2g —3.2678 —20.654 —33.491
overlap. To find the correct path one should take the29 —3.2676 —20.654 —33.486
z=E+ie case with finitee. Now the condition onC can 30 —3.2676 —20.654 —33.473
easily be fulfilled and then, one should take the:0 limit 31 —3.2675 —20.654 —33.456
allowing only analytic deformation for the conto@ [see 32 —3.2675 —20.654 —33.438
Fig. 1]. 33 —3.2675 —20.654 —33.423
After sandwiching the above Green’s operator betweerys —3.2675 —20.654 —33.413

the CS states, the integral in E&.7) appears in the form
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TABLE II. Convergence of thezapd phase shifts for three- TABLE lll. “8,4and?8,4 phase shifts for three-nucleon system
nucleon system interacting via the MT I-lll potential at various interacting via the MT I-1ll potential at various energies. The phase
energies, with increasing basis for the separable expanNiate- shifts are in degrees.
notes the maximum number of basis states employed fand ».

The phase shifts are in degrees. 46nd 28nd
. E Ref.[6] This work Ref.[6] This work

N 0.1 MeV 1_05,{’,76\, 2.0 MeV 0.001 —2.09 -2092  -0230  -0.229

0.05 —14.6 —14.62 —-1.99 —1.988
10 —0.9485 —16.376 —28.405 0.1 —20.4 —20.44 —3.28 —3.267
11 —0.7947 —15.924 —28.659 0.2 —-28.3 —28.29 —5.68 —5.670
12 —0.8794 —16.089 —28.564 0.3 —-34.0 —33.98 -7.95 —7.944
13 —0.6721 —16.195 —28.847 0.4 —-38.5 —38.54 —-10.1 —10.09
14 —0.7015 —16.138 —28.874 05 —42.4 —42.37 —12.1 —12.12
15 —0.6241 —16.210 —28.840 0.6 —45.7 —45.69 —-14.0 —14.03
16 —0.5962 —16.226 —28.865 0.7 —48.6 —48.63 —-15.8 —15.83
17 —0.5817 —16.216 —28.840 0.8 —51.2 —51.27 -17.5 —17.53
18 —0.5575 —16.241 —28.802 0.9 —-53.6 —53.66 -19.1 -19.13
19 —0.5572 —16.232 —28.800 1.0 -55.8 —-55.86 -20.7 —20.65
20 —0.5446 —16.238 —28.774 1.633 —-66.7 —-66.72 —-28.6 —28.60
21 —0.5455 —16.238 —28.767 2.180 —-73.6 —-73.6 —33.6 —-33.4
22 —0.5390 —16.236 —28.764
23 —0.5394 —16.238 —28.761
24 —0.5362 —16.236 —28.765 modified phase shift from short-range plus polarization po-
25 —0.5363 —16.237 —28.768 tential (6%P9 were presented, and the corresponding values
26 -0.5350 —-16.237 —28.772 were used in the calculation of the scattering lengths®
27 —0.5349 —16.237 —28.776 However, since our three-potential formalism allows a
28 —0.5345 —16.237 —28.778 unigue separation of these two effects we can also calculate
29 —0.5343 —16.237 —28.780 the Coulomb plus polarization modified short-range phase
30 —0.5342 —16.237 —28.780 shift 5°* and the corresponding scattering leng
31 —0.5341 —16.237 —28.780 Theoretically the scattering length should be calculated from
32 —0.5341 —16.237 —28.779 6% sinceagf* is minus infinite[23]. In practical calcula-
33 —0.5340 —16.237 —28.778 tions the extrapolatlon to zero energy were made from higher
34 —0.5340 —16.237 —28.778 energy and this minus infinity limit were not seen. Careful

analyses of low-energy-d calculations indicated that in
ese conditiona;f® is a good approximation taag®
58 23,24. We have calculated the scattering Iength from

lombic scattering phase shifts at energies below the break
threshold. We have selected cases that serve as benchma
for various three-body scattering calculations. As an example
we take a model three-nucleon prob|em withwave TABLE V. 45pd andzﬁpd phase shifts for three-nucleon System
Malfliet-Tjon (MT) I-lll potentlal acting in singlet and trip- interacting via the MT I-Ill potential at various energies. The phase
let states, as parametrized in RES]. We have calculated Shifts are in degrees.
guartet and doublet-d and p-d phase shifts and compare . "
them to the results of the configuration-space Faddeev calcu- Spa Spa
lations of Ref[6]. E Ref. [6] This work Ref.[6] This work
Before presenting the final results, let us demonstrate th
convergence of the results for scattering phase shifts at vari-
ous energies. We take extreme cases, one is at very lo

.001 0.0 0.0 0.0 0.0
—2.69 —2.694 —0.113 —0.112

energy, another one is jut below the breakup threshold, th@1 —746 —7.458 —0.537 —0.534
third one is in between. We select two-channel doublet —15.6 —15.56 —1.96 —1.949
and p-d cases, because this case is more complicated thgh3 —219 —21.86 —3.73 —3.720
the one-channel quartet case. Tables | and Il show that coff-4 —27.0 —27.00 —5.62 —5.612
vergence up to four significant digits can comfortably 0-5 —313 —31.34 —7.53 —7.520
achieved withN =30 terms applied fon and v in the sepa- 0.6 —-35.1 —-35.11 —9.40 —9.39%4
rable expansion. Remarkably, the speed of convergence &7 —38.4 —38.43 —11.2 —11.21
everywhere similar, irrespective of energy and whether 0.8 —41.4 —41.40 —13.0 —12.96
not Coulomb forces are present. 0.9 —44.1 —44.09 -146 —14.63

In Tables Ill and IV we compare our converged results t01.0 —46.5 —46.55 —-16.2 -16.24
the configuration-space Faddeev calculations of the L0$8.667 -37.3 -37.37 -10.6 —-10.62
Alamos-lowa grou6]. We can report perfect agreements in 1.333 —535 —53.49 -21.1 —21.08
all cases. 2.0 -63.8 —63.74 —-28.8 —28.78

In Tables Il and IV and also in Ref6] the Coulomb
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both phase shifts using the formula of RE13] TABLE V. p-d scattering lengths for three-nucleon system in-
teracting via the MT I-lll potential.
limack)=li tanilo) (59
a=lma(kK)=1m——--+, .
0 .o KC k) This work Ref.[6]
: toede 13.76 13.8
wherek is the wave number and 4525,3 13.79
27 2554 0.161 0.17
CZ( k) = EQT_]— (60) 25‘;[3,5 0.195

with »=me?/%k, m being the reduced mass. Froafk) ) ) ) ]
values correspondig to energies down to 0.01 MeV in théOnvergence properties and can in practice be made arbi-
doublet case and to 0.001 MeV in the quartet case, where tHE&Mly accurate by employing an increasing number of terms
phase shift still can reliably be calculated, we extrapolated td the expansion. The usage of the Coulomb-Sturmian basis
zero energy. The results are given in Table V. We can sel$ essential as it allows an exact analytic representation of the
that the effect of the polarization potential can realy be nefWo-body Green's operator, and thus t,he contour integral for
glected in the calculation of the-d scattering lengths. the channel distorted Coulomb Green’s operator can be cal-
Besides the number of terms in the expansion there iSulated also in the practice. _
only one parameter in the method, theparameter of the We have presente_d bel_ovy-breakup calculations and got
basis. This should be chosen according to the range of therfect agreements with existing benchmark results. We have
potential. We have found that the converged results do ndtPServed a fast convergence with respect to increasing the
depend orb and for a wide range of reasonable values everlUMmpPer of terms in the expansion. Using high rank expan-
the speed of the convergence is rather insensitive to theion We got very accurate results. The quality of the conver-

choice ofb. In all calculations presented the same value wad€nce is practically the same in the short-range and Coulomb
applied b=1 fm~Y) cases, Coulombic calculations need only roughly 30% more

computer time. Although the example presented here is
rather simple, but not unrealistic, the method can handle
more complicated potentials, as were demonstrated in bound
We have proposed a three-potential formalism for treatingtate calculation18,19.
the three-body Coulomb scattering problem. In absence of Certainly, the toughest problems in nonrelativistic three-
Coulomb interactions the formalism falls back to the usualbody scattering are the above-breakup calculations with Cou-
short-range formalism. According to the three-potential picdomb interactions. In this respect, the method presented here,
ture the three-body Coulomb scattering starts with a twois very promising since the equations used are mathemati-
body single channel Coulomb scattering, then it goes over téally well behaved also for this case. The extension of the
a two-body multichannel scattering on the intermediatecontour integral for above-breakup energies is straightfor-
range polarization potential, finally comes the three-bodyward. The only foreseeable problem is, that the interaction
scattering due to the short-range potentials. This formalisnyolume is much bigger and one needs much higher terms in
preserves the mathematical correctness of the Noble’s ajphe expansion. Indeed, test calculations show that for ener-
proach, and along the idea of channel distorted formalism ogies just a little bit above the breakup threshold with terms
Bencze, without neglecting important terms, gives solvablelp toN=34 we can reach acceptable convergence and good
equations. agreements with benchmark resy$], but the method fails
These “solvable” equations are certainly too complicatedto reach convergence for higher energies. This indicates that
for most of the numerical methods available in the literaturethe mathematical formulation is correct, but the available
but the Coulomb-Sturmian separable expansion method cagpmputing power is not sufficient. So, the method needs
cope with them. It solves the three-body integral equationsome more polishing and we have to think a little bit further.
by expanding only the short-range part of the interaction in a
separable form on a Hilbert-space basis while treating the
long-range part in an exact manner via a proper integral rep-
resentation of the three-body channel distorted Coulomb This work has been supported by OTKA under Contract
Green’s operator. As a consequence the method has godtb. T17298.

V. CONCLUSION
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