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Three-potential formalism for the three-body Coulomb scattering problem

Z. Papp
Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, H–4001 Debrecen, Hungary

~Received 8 October 1996!

We propose a three-potential formalism for the three-body Coulomb scattering problem. The corresponding
integral equations are mathematically well behaved and can succesfully be solved by the Coulomb-Sturmian
separable expansion method. The results show perfect agreements with existing low-energyn-d and p-d
scattering calculations.@S0556-2813~97!01103-5#

PACS number~s!: 21.45.1v, 03.65.Nk, 02.30.Rz, 02.60.Nm
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I. INTRODUCTION

Since the Faddeev equations are the fundamental e
tions of the three-body problems their solutions are of cen
interest in many branches of physics. This is especially t
in nuclear physics because three-body calculations serve
distinguished tool for studying the fundamental nucleo
nucleon interactions. A general interaction may have a lo
or nonlocal short-range part and a long-range Coulomb p
The solution of the Faddeev equations with such type
potentials is not an easy job, especially the Coulomb in
action and the scattering dynamics make the procedure
complicated. There exists extensive literature on the sub
~see, e.g., Refs.@1–3# and references therein! so we restrict
ourselves only to practical approaches.

There are two genuinely different approaches in the pr
tical Faddeev calculations that in some extent can han
Coulomb-like interactions in scattering-state problems. O
of them is based on the solution of the configuration-sp
differential equations using the asymptotic boundary con
tions @4#. In the other approach, in order that the stand
techniques could be applied, the long-range Coulomb po
tial is screened, and then, as the screened Coulomb pote
goes to the unscreened one, a renormalization procedu
applied@5#. However, in spite of the rapid development w
have witnessed in the past few years, only limited solutio
below or above the breakup threshold are available yet~see,
e.g., Refs.@6–8#!.

Another approach to the nuclear three-body problem w
Coulomb interaction were derived along the two-poten
formalism. The first, and formally exact, approach was p
posed by Noble@9#. In this formulation all the Coulomb
interactions were included in ‘‘free’’ Green’s operator. Th
the corresponding Faddeev-Noble equations are mathem
cally well behaved and in the absence of Coulomb inter
tion they fall back to the standard equations. However,
associated Green’s operator is not known, so this formal
is not suitable for practical calculations.

The aim of this paper is to treat the three-body Coulo
scattering problem via the solution of the Faddeev-No
integral equations. In Sec. I below we shall derive a ‘‘thre
potential’’ formalism. We will arrive at a set of Lippmann
Schwinger and Faddeev equations which form a mathem
cally well-behaved set of integral equations. In Sec. II bel
we shall describe how the solution can be reached. In Sec
below we shall compare our calculations with existi
550556-2813/97/55~3!/1080~8!/$10.00
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benchmarkn-d andp-d below-breakup scattering results.
is found that in all cases excellent agreement is achiev
The method therefore appear as a promising and effic
tool for solving the Coulomb three-body scattering proble
as it can be adapted to more general cases and can b
tended to above-breakup Coulomb scattering calculation

II. THREE-POTENTIAL FORMALISM FOR THE
THREE-BODY COULOMB SCATTERING PROBLEM

The Noble’s approach, which is, in fact, a two-potent
formalism, requires the knowledge of the complete solut
of the three-body Coulomb problem. Bencze has sugge
to replace the incalculable three-body Coulomb Green’s
erator by the channel-distorted Coulomb Green’s opera
@10#. In this section below we will follow the derivation o
Ref. @10#, but instead of neglecting the intermediate ran
polarization potential, we will link the three-body Coulom
Green’s operator to the channel-distorted Coulomb Gree
operator via a Lippman-Schwinger equation. Thus we w
arrive at a set of Faddev-Noble and Lippmann-Schwin
integral equations which are mathematically well behav
because all the long-range interactions are kept in
Green’s operator.

The Hamiltonian of a three-body system with short-ran
plus Coulomb two-body interactions reads

H5H01va
s1vb

s1vg
s1va

C1vb
C1vg

C , ~1!

whereH0 is the three-body kinetic energy operator,va de-
notes the interaction in subsystema, and the superscripts
andC stand for short range and Coulomb, respectively. W
introduce here the usual configuration-space Jacobi coo
natesja and ha ; ja is the coordinate between the pa
(b,g) andha is the coordinate between the particlea and
the center of mass of the pair (b,g). Thus the potential
va , the interaction between the pair (b,g), appears as
va(ja).

The asymptotic Hamiltonian is defined as

Ha5H01va
s1va

C , ~2!

and the asymptotic states are the eigenstates ofHa

HauFa&5EuFa&, ~3!
1080 © 1997 The American Physical Society
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where ^jahauFa&5^hauxa&^jaufa&, a product of a free
motion in coordinateha and a bound-state in the two-bod
subsystemja .

We define two asymptotic Coulomb Hamiltonians as

Ha
C5H01va

s1va
C1vb

C1vg
C ~4!

and

H̃a5H01va
s1va

C1ua
C , ~5!

whereua
C is an auxiliary potential in coordinateha , which is

required to have the asymptotic form

ua
C;

Za~Zb1Zg!

ha
~6!

as ha→`. In fact ua
C is an effective Coulomb interactio

between the center of mass of the subsystema ~with charge
Zb1Zg) and the third particle~with chargeZa).

Let us introduce the resolvent operators,

G~z!5~z2H !21, ~7!

Ga
C~z!5~z2Ha

C!21, ~8!

G̃a~z!5~z2H̃a!21. ~9!

The operatorGa
C is Noble’s channel Coulomb Green’s op

erator andG̃a is the channel distorted Coulomb Green’s o
erator introduced by Bencze@10#. These operators are con
nected via the following resolvent relations:

G~z!5Ga
C~z!1Ga

C~z!VaG~z!, ~10!

Ga
C~z!5G̃a~z!1G̃a~z!UaGa

C~z!, ~11!

whereVa5vb
s1vg

s andUa5vb
C1vg

C2ua
C .

In the potentialUa the Coulomb tail ofvb
C1vg

C is com-
pensated byua

C . As concerning the asymptotic motionUa is
of short-range type, so Eq.~11! is mathematically well be-
haved. The scattering states

uFa
C~6 !&5 lim

«→0
i«Ga

C~E6 i«!uFa& ~12!

satisfy the Lippmann-Schwinger equations

uFa
C~6 !&5uF̃a

~6 !&1G̃a~E6 i0!UauFa
C~6 !&, ~13!

where

uF̃a
~6 !&5 lim

«→0
i«G̃a~E6 i«!uFa&. ~14!

In configuration-space representation the satesuF̃a
(6)& are

given as

^jahauF̃a
~6 !&5^haux̃a

~6 !&^jaufa&, ~15!

where ^haux̃a
(6)& are scattering functions in the Coulom

like potentialua
C .
-

In Eq. ~10! the potentialVa is of short-range type and
Ga
C contains all the Coulomb interactions. Now, all the fo

mulas which exist in the conventional short-range three-b
theory can analogously be derived, only the channel Gree
operatorGa has to be replaced, a` la Noble, byGa

C through-
out. One can analogously perform the Faddeev decomp
tion and for the Faddeev componentsuca

(6)& of the scattering
function

uCa
~6 !&5 lim

«→0
i«G~Ea6 i«!uFa& ~16!

one arrives at the Faddeev-Noble integral equations

uca
~6 !&5dbauFam

C~6 !&1Ga
C~E6 i0!@va

s ucb
~6 !&1va

s ucg
~6 !&]

~17!

with a cyclic permutation ina,b,g.
TheS-matrix elements of scattering processes can be

tained from the resolvent of the total Hamiltonian by t
reduction technique@11#

Sbn,am5 lim
t→`

lim
«→0

i«ei ~Ebn2Eam!t^FbnuG~Eam1 i«!uFam&.

~18!

The subscriptm andn denote themth andnth eigenstates of
the corresponding subsystems, respectively. If we subst
now Eq. ~10! into Eq. ~18! we can get, like in@10#, the
following two terms:

Sbn,am
~1,2! 5 lim

t→`

lim
«→0

i«ei ~Ebn2Eam!t^FbnuGa
C~Eam1 i«!uFam&,

~19!

Sbn,am
~3! 5 lim

t→`

lim
«→0

i«ei ~Ebn2Eam!t^FbnuGa
C~Eam1 i«!

3VbG~Eam1 i«!uFam&. ~20!

We substitute again Eq.~11! into Eq. ~19! and the first term
yields again two further terms

Sbn,am
~1! 5 lim

t→`

lim
«→0

i«ei ~Ebn2Eam!t^FbnuG̃a~Eam1 i«!uFam&,

~21!

Sbn,am
~2! 5 lim

t→`

lim
«→0

i«ei ~Ebn2Eam!t^FbnuG̃a~Eam1 i«!

3UaGa
C~Eam1 i«!uFam&. ~22!

Making use of the properties of the resolvent operators
limits can be performed and we arrive at the followin
physically very plausible, result. The first term,Sbn,am

(1) , is
theS matrix of a two-body single channel scattering on t
potentialua

C

Sbn,am
~1! 5dbadnmS~ua

C!. ~23!

If ua
C is a pure Coulomb interactionS(ua

C) falls back to the
S matrix of the Rutherford scattering. The second ter
Sbn,am
(2) , describes a two-body multichannel scattering on
potentialUa
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1082 55Z. PAPP
Sbn,am
~2! 522p idbad~Ebn2Eam!^F̃bn

~2 !uUauFam
C~1 !&.

~24!

The third term gives an account of the complete three-b
dynamics

Sbn,am
~3! 522p id~Ebn2Eam!^Fbn

C~2 !uVbuCam
~1 !&. ~25!

Utilizing the properties of the Faddeev components@12# the
matrix elements in Eq.~25! can be rewritten in a form which
is better suited for numerical calculations

^Fbn
C~2 !uVbuCam

~1 !&5 (
gÞb

^Fbn
C~2 !uvb

s ucgm
~1 !&. ~26!

We note, that if the Coulomb interactions are absent
whole ‘‘three-potential’’ formalism falls back to the conven
tional short-range formalism.

III. SOLUTION OF THE THREE-BODY INTEGRAL
EQUATIONS

To solve operator equations in quantum mechanics
needs a suitable representation for the operators. For so
integral equations it is especially advantageous if one u
such a representation where the Green’s operator is sim
The free Green’s operator takes a very simple form in m
mentum representation. This is the main reason why for
solution of Faddeev equations, in the presence of short-ra
interactions, momentum-representation techniques are
forming so successfully~see for a recent review Ref.@13#!.
Since the momentum representation is a continuous re
sentation, to solve the equation one needs also some kin
discretization.

For the two-body Coulomb Green’s operator there exis
Hilbert-space basis in which its representation is very sim
it is the Coulomb-Sturmian~CS! basis. In this representatio
space the Coulomb Green’s operator can be given by sim
and well-computable analytic functions@14#. This basis is a
countable set. If we represent the interaction term on a fi
subset of the basis it looks like a kind of separable expan
of the potential, so the integral equation becomes an a
braic equation. The completeness of the basis ensures
convergence of the method.

In the past few years along this idea we have develope
quantum-mechanical approximation method for treat
Coulomb-like interactions in two-body calculations. Boun
and resonant-state calculations were presented first@14#, then
the method was extended to scattering states@15# and multi-
channel problems@16#. Since only the asymptotically irrel
evant short range interaction is approximated, the cor
~two-body! Coulomb asymptotics is guaranteed. The cor
sponding computer codes for solving two-body boun
resonant-, and scattering-state problems were also publi
@17#.

Recently the CS separable expansion approach was
plied for solving the three-body bound-state problem in
presence of short-range plus repulsive Coulomb interact
@18#. The homogeneous Faddeev-Noble integral equat
were solved by expanding only the short-range part of
interaction in a separable form while treating the long-ran
part in an exact manner. The efficiency of the method w
y
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demonstrated in benchmark calculations of the three-b
bound-state problem without and with Coulomb interactio
In both cases the solution showed a rapid convergence
whenever comparisons were possible to existing result
the literature, correct predictions for the binding energies a
wave functions were achieved. The method was also app
in realistic calculations@19#.

In Sec. III A below we will define the basis states in tw
and three-particle Hilbert space. In Sec. III B below we
capitulate some of the most important formulas of the tw
body problem~the details are given in Refs.@14,15,17#!,
while in Sec. III C below the solution of the three-body Co
lomb scattering problem along the CS separable expan
technique is presented.

A. Basis states

The CS functions, which are the solutions of the Stur
Liouville problem of hydrogenic systems@20#, in some an-
gular momentum statel are defined in configuration and mo
mentum space as

^r unl&5F n!

~n12l11!! G
1/2

~2br ! l11e2brLn
2l11~2br !

~27!

and

^punl&5
2l13/2l ! ~n1 l11!An!

Ap~n12l11!!

b~2bp! l11

~p21b2!2l12

3Gn
l11S p22b2

p21b2D , ~28!

respectively, andn50,1,2, . . . . Here,L andG represent the
Laguerre and Gegenbauer polynomials, respectively, anb
relates to the energy in the Sturm-Liouville equation. W
takeb as a fixed real parameter, thus working with energ
independent bound state CS functions. In an angular mom
tum subspace they form a complete set

15 lim
N→`

(
n50

N

uñl &^nlu5 lim
N→`

1N , ~29!

whereuñl & in configuration-space representation reads

^r uñl &5
1

r
^r unl&. ~30!

The three-body Hilbert space is a direct sum of two-bo
Hilbert spaces. Thus, the appropriate basis in angular
mentum representation~omitting the explicit spin and isospin
dependence from our notation! should be defined as the d
rect product

unn ll&a5unl&a ^ unl&a , ~n,n50,1,2, . . .!, ~31!

with the CS states from Eq.~27! or Eq. ~28!. Here l andl
denote the angular momenta of the two-body pair (b,g) and
of the third particlea relative to the center of mass of th
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pair, respectively. Now the completeness relation takes
form ~with angular momentum summation implicitly in
cluded!

15 lim
N→`

(
n,n50

N

unn l l̃&aa^nn llu5 lim
N→`

1N
a , ~32!

where the configuration-space representation in terms o
cobi coordinatesja andha reads

^jahaunn l l̃&a5
1

jaha
^jahaunn ll&a . ~33!

It should be noted that in the three-particle Hilbert space
can introduce three equivalent bases which belong to f
mentationa, b, andg.

B. Coulomb-Sturmian separable expansion
in two-body problems

Let us study a two-potential case of short-range p
Coulomb-like interactions

v l5v l
s1vC ~34!

and consider the inhomogeneous Lippmann-Schwinger e
tion for the scattering stateuc l& in some partial wavel

uc l&5uf l
C&1gl

C~E!v l
suc l&. ~35!

Here uf l
C& is the regular Coulomb function,gl

C(E) is the
two-body Coulomb Green’s operator

gl
C~E!5~E2hl

02vC!21 ~36!

with the free Hamiltonian denoted byhl
0 . We make the fol-

lowing approximation on Eq.~35!

uc l&5uw l
C&1gl

C~E!1Nv l
s1Nuc l&, ~37!

i.e., we approximate the short-range potentialv l
s by a sepa-

rable form

v l
s' (

n,n850

N

unl̃&v l
s^n8 l̃ u, ~38!

where

v l
s5^nluv l

sun8l &. ~39!

Multiplied with the CS stateŝñl u from the left, Eq.~37!
turns into a linear system of equations for the wave-funct
coefficientsc ln5^ñl uc l&

@„gl
C~E!…212v l

s#c l5w l
C , ~40!

where

w ln
C5^ñl uw l

C& ~41!

and

glnn8
C

~E!5^ñl ugl
C~E!uñ8l &. ~42!
e

a-

e
g-

s

a-

n

While the matrix elements of the potential may be evalua
~numerically! for any given short-range potential either
configuration or in momentum space, the matrix eleme
~42! and the overlap~41! can be calculated analytically@14#;
the corresponding computer code is available from Ref.@17#.
This fact then also allows to calculate the matrix elements
the full Green’s operator in the whole complex plane,

gl~z!5$@gl
C~z!#212v l

s%21, ~43!

this will be needed later on in the solution of the three-bo
problem with charged particles. Of course, bound-state s
tions can also be generated by solving the homogeneous
sion of Eq.~40!.

C. Coulomb-Sturmian separable expansion approach
to three-body Coulomb scattering problems

In the set of Faddeev-Noble equations~17! we make the
following approximation:

uca&5dbauFam
C &1Ga

C@1N
ava

s1N
b ucb&11N

ava
s1N

g ucg&],
~44!

i.e., we approximate the short-range potentialva
s in the three-

body Hilbert space by a separable form

va
s' (

n,n,n8,n850

N

uñn ll&a vab
s

b^n8n8l 8l 8̃u, ~45!

where

v lalann,l 8bl8bn8n8
s

5~12dab!a^nn lluva
s un8n8l 8l8&b .

~46!

In Eq. ~45! the ket and bra states are in different fragmen
tion depending on the environments of the potential ope
tors in the equations.

Muliplied with the CS statesa^nn l l̃u from the left, Eqs.
~44! turn into a linear system of equations for the coefficie

of the Faddeev componentsc lalann5a^nn l l̃uca&:

@~GC!212vs#c5FC, ~47!

with

Glalann,l 8al8an8n8
C

5dab a^nn l l̃uGa
Cun8n8l 8l 8̃&a ~48!

and

F lalann
C 5a^nn l l̃uFa

C&. ~49!

Notice that the matrix elements of the Green’s operator
needed only between the same partitiona whereas the ma-
trix elements of the potentials occur only between differe
partitionsa and b. The latter may again be evaluated n
merically either in configuration or momentum space
making use of the transformation of Jacobi coordinates@21#.

Unfortunately neither the matrix elements~48! nor the
overlap~49! are known. However, Eqs.~11! and~13!, which
are, in fact, two-body Lippmann-Schwinger equations, li
them to relatively simpler quantities. If we perform again t
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1084 55Z. PAPP
separable approximation on potentialUa with the help of the
formal solution of Eq.~11! we may now express the invers
matrix @Ga

C(E)#21 as

~Ga
C!215~G̃a!212Ua, ~50!

where

G̃lalann,l
a8l

a8n8n85a^nn lluG̃aun8n8l 8l8&a ~51!

and

Ulalann,l
a8l

a8n8n8
a

5a^nn lluUaun8n8l 8l8&a . ~52!

In a similar way, with the help of the formal solution of E
~13! we get

Fa
C5@~G̃a!212Ua#21~G̃a!21F̃a , ~53!

where

F̃a5a^nn lluF̃a&. ~54!

The stateuF̃a&, in fact, is a product of a two-body bound
state wave function in coordinateja and a two-body
scattering-state wave function in coordinateha . Their CS
representations are known from the two-particle case of
previous section@cf. Eq. ~40!#.

For the calculation of the matrix elements in Eq.~51! we
proceed in a similar way as in the case of three-body bo
states@18#. Since inH̃a of Eq. ~5! we can write the three
particle free Hamiltonians as a sum of two-particle fr
Hamiltonians

H05hja

0 1hha

0 , ~55!

the HamiltonianH̃a appears as a sum of two Hamiltonia
acting on different coordinates

H̃a5hja
1hha

, ~56!

with hja
5hja

0 1va
s (ja)1va

C(ja) and hha
5hha

0 1ua
C(ha),

which, of course, commute. Thus we can apply the convo
tion theorem@22#

G̃a~z!5~z2hja
2hha

!21

5
1

2p i RCdw~z2w2hha
!21~w2hja

!21. ~57!

Here the contourC should encircle, in positive direction, th
spectrum ofhja

without penetrating into the spectrum o

hha
. For scattering-state energies at realz these singularities

overlap. To find the correct path one should take
z5E1 i« case with finite«. Now the condition onC can
easily be fulfilled and then, one should take the«→0 limit
allowing only analytic deformation for the contourC @see
Fig. 1#.

After sandwiching the above Green’s operator betwe
the CS states, the integral in Eq.~57! appears in the form
e

d

-

e

n

G̃lalann,l
a8l

a8n8n8~E1 i0!

5
1

2p i RCdwa^ñlu~E1 i02w2hha
!21unn8l 8̃&a

3 a^h̃ l u~w2hja
!21un8l 8̃&a , ~58!

where both matrix elements occurring in the integrand
known from the two-particle case@cf. Eq. ~43!#.

IV. TESTS OF THE METHOD

In this section we demonstrate the performance of
method in calculations of three-body short-range and C

TABLE I. Convergence of the2dnd phase shifts for three-
nucleon system interacting via the MT I-III potential at vario
energies, with increasing basis for the separable expansion.N de-
notes the maximum number of basis states employed forn andn.
The phase shifts are in degrees.

2dnd

N 0.1 MeV 1.0 MeV 2.18 MeV

10 24.0908 220.704 232.896
11 23.6803 220.330 233.596
12 23.8876 220.450 233.599
13 23.4583 220.630 233.901
14 23.5189 220.562 233.963
15 23.3917 220.629 233.834
16 23.3434 220.653 233.723
17 23.3293 220.636 233.594
18 23.2914 220.660 233.525
19 23.2940 220.652 233.341
20 23.2764 220.654 233.282
21 23.2783 220.656 233.267
22 23.2709 220.653 233.290
23 23.2715 220.655 233.326
24 23.2688 220.654 233.377
25 23.2688 220.654 233.424
26 23.2681 220.654 233.460
27 23.2678 220.654 233.483
28 23.2678 220.654 233.491
29 23.2676 220.654 233.486
30 23.2676 220.654 233.473
31 23.2675 220.654 233.456
32 23.2675 220.654 233.438
33 23.2675 220.654 233.423
34 23.2675 220.654 233.413

FIG. 1. ContourC for the integral forG̃a(E1 i«) in case of the
three-body scattering problem. The contourC encircles the continu-
ous and discrete spectrum ofhja

. In the«→0 limit the topology of
the contour should be kept.
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lombic scattering phase shifts at energies below the brea
threshold. We have selected cases that serve as benchm
for various three-body scattering calculations. As an exam
we take a model three-nucleon problem withs-wave
Malfliet-Tjon ~MT! I-III potential, acting in singlet and trip-
let states, as parametrized in Ref.@6#. We have calculated
quartet and doubletn-d and p-d phase shifts and compar
them to the results of the configuration-space Faddeev ca
lations of Ref.@6#.

Before presenting the final results, let us demonstrate
convergence of the results for scattering phase shifts at v
ous energies. We take extreme cases, one is at very
energy, another one is jut below the breakup threshold,
third one is in between. We select two-channel doubletn-d
and p-d cases, because this case is more complicated
the one-channel quartet case. Tables I and II show that
vergence up to four significant digits can comfortab
achieved withN530 terms applied forn andn in the sepa-
rable expansion. Remarkably, the speed of convergenc
everywhere similar, irrespective of energy and whether
not Coulomb forces are present.

In Tables III and IV we compare our converged results
the configuration-space Faddeev calculations of the
Alamos-Iowa group@6#. We can report perfect agreements
all cases.

In Tables II and IV and also in Ref.@6# the Coulomb

TABLE II. Convergence of the2dpd phase shifts for three
nucleon system interacting via the MT I-III potential at vario
energies, with increasing basis for the separable expansion.N de-
notes the maximum number of basis states employed forn andn.
The phase shifts are in degrees.

2dpd

N 0.1 MeV 1.0 MeV 2.0 MeV

10 20.9485 216.376 228.405
11 20.7947 215.924 228.659
12 20.8794 216.089 228.564
13 20.6721 216.195 228.847
14 20.7015 216.138 228.874
15 20.6241 216.210 228.840
16 20.5962 216.226 228.865
17 20.5817 216.216 228.840
18 20.5575 216.241 228.802
19 20.5572 216.232 228.800
20 20.5446 216.238 228.774
21 20.5455 216.238 228.767
22 20.5390 216.236 228.764
23 20.5394 216.238 228.761
24 20.5362 216.236 228.765
25 20.5363 216.237 228.768
26 20.5350 216.237 228.772
27 20.5349 216.237 228.776
28 20.5345 216.237 228.778
29 20.5343 216.237 228.780
30 20.5342 216.237 228.780
31 20.5341 216.237 228.780
32 20.5341 216.237 228.779
33 20.5340 216.237 228.778
34 20.5340 216.237 228.778
up
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modified phase shift from short-range plus polarization p
tential (dc,ps) were presented, and the corresponding val
were used in the calculation of the scattering lengthsapd

c,ps.
However, since our three-potential formalism allows
unique separation of these two effects we can also calcu
the Coulomb plus polarization modified short-range ph
shift dcp,s and the corresponding scattering lengthsapd

cp,s .
Theoretically the scattering length should be calculated fr
dcp,s sinceapd

c,ps is minus infinite@23#. In practical calcula-
tions the extrapolation to zero energy were made from hig
energy and this minus infinity limit were not seen. Care
analyses of low-energyp-d calculations indicated that in
these conditionapd

c,ps is a good approximation toapd
cp,s

@6,8,23,24#. We have calculated the scattering length fro

TABLE III. 4dnd and
2dnd phase shifts for three-nucleon syste

interacting via the MT I-III potential at various energies. The pha
shifts are in degrees.

4dnd
2dnd

E Ref. @6# This work Ref.@6# This work

0.001 22.09 22.092 20.230 20.229
0.05 214.6 214.62 21.99 21.988
0.1 220.4 220.44 23.28 23.267
0.2 228.3 228.29 25.68 25.670
0.3 234.0 233.98 27.95 27.944
0.4 238.5 238.54 210.1 210.09
0.5 242.4 242.37 212.1 212.12
0.6 245.7 245.69 214.0 214.03
0.7 248.6 248.63 215.8 215.83
0.8 251.2 251.27 217.5 217.53
0.9 253.6 253.66 219.1 219.13
1.0 255.8 255.86 220.7 220.65
1.633 266.7 266.72 228.6 228.60
2.180 273.6 273.6 233.6 233.4

TABLE IV. 4dpd and
2dpd phase shifts for three-nucleon syste

interacting via the MT I-III potential at various energies. The pha
shifts are in degrees.

4dpd
2dpd

E Ref. @6# This work Ref.@6# This work

0.001 0.0 0.0 0.0 0.0
0.05 22.69 22.694 20.113 20.112
0.1 27.46 27.458 20.537 20.534
0.2 215.6 215.56 21.96 21.949
0.3 221.9 221.86 23.73 23.720
0.4 227.0 227.00 25.62 25.612
0.5 231.3 231.34 27.53 27.520
0.6 235.1 235.11 29.40 29.394
0.7 238.4 238.43 211.2 211.21
0.8 241.4 241.40 213.0 212.96
0.9 244.1 244.09 214.6 214.63
1.0 246.5 246.55 216.2 216.24
0.667 237.3 237.37 210.6 210.62
1.333 253.5 253.49 221.1 221.08
2.0 263.8 263.74 228.8 228.78
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both phase shifts using the formula of Ref.@23#

a5 lim
k→0

a~k!5 lim
k→0

2
tand~k!

kC2~k!
, ~59!

wherek is the wave number and

C2~k!5
2ph

e2ph21
~60!

with h5me2/\k, m being the reduced mass. Froma(k)
values correspondig to energies down to 0.01 MeV in
doublet case and to 0.001 MeV in the quartet case, where
phase shift still can reliably be calculated, we extrapolated
zero energy. The results are given in Table V. We can
that the effect of the polarization potential can realy be
glected in the calculation of thep-d scattering lengths.

Besides the number of terms in the expansion there
only one parameter in the method, theb parameter of the
basis. This should be chosen according to the range of
potential. We have found that the converged results do
depend onb and for a wide range of reasonable values ev
the speed of the convergence is rather insensitive to
choice ofb. In all calculations presented the same value w
applied (b51 fm21).

V. CONCLUSION

We have proposed a three-potential formalism for treat
the three-body Coulomb scattering problem. In absence
Coulomb interactions the formalism falls back to the us
short-range formalism. According to the three-potential p
ture the three-body Coulomb scattering starts with a tw
body single channel Coulomb scattering, then it goes ove
a two-body multichannel scattering on the intermedia
range polarization potential, finally comes the three-bo
scattering due to the short-range potentials. This formal
preserves the mathematical correctness of the Noble’s
proach, and along the idea of channel distorted formalism
Bencze, without neglecting important terms, gives solva
equations.

These ‘‘solvable’’ equations are certainly too complicat
for most of the numerical methods available in the literatu
but the Coulomb-Sturmian separable expansion method
cope with them. It solves the three-body integral equati
by expanding only the short-range part of the interaction i
separable form on a Hilbert-space basis while treating
long-range part in an exact manner via a proper integral
resentation of the three-body channel distorted Coulo
Green’s operator. As a consequence the method has
s

D
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convergence properties and can in practice be made a
trarily accurate by employing an increasing number of ter
in the expansion. The usage of the Coulomb-Sturmian b
is essential as it allows an exact analytic representation of
two-body Green’s operator, and thus the contour integral
the channel distorted Coulomb Green’s operator can be
culated also in the practice.

We have presented below-breakup calculations and
perfect agreements with existing benchmark results. We h
observed a fast convergence with respect to increasing
number of terms in the expansion. Using high rank exp
sion we got very accurate results. The quality of the conv
gence is practically the same in the short-range and Coulo
cases, Coulombic calculations need only roughly 30% m
computer time. Although the example presented here
rather simple, but not unrealistic, the method can han
more complicated potentials, as were demonstrated in bo
state calculations@18,19#.

Certainly, the toughest problems in nonrelativistic thre
body scattering are the above-breakup calculations with C
lomb interactions. In this respect, the method presented h
is very promising since the equations used are mathem
cally well behaved also for this case. The extension of
contour integral for above-breakup energies is straight
ward. The only foreseeable problem is, that the interact
volume is much bigger and one needs much higher term
the expansion. Indeed, test calculations show that for e
gies just a little bit above the breakup threshold with ter
up toN534 we can reach acceptable convergence and g
agreements with benchmark results@25#, but the method fails
to reach convergence for higher energies. This indicates
the mathematical formulation is correct, but the availa
computing power is not sufficient. So, the method nee
some more polishing and we have to think a little bit furth
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TABLE V. p-d scattering lengths for three-nucleon system
teracting via the MT I-III potential.

This work Ref.@6#

4dpd
c,ps 13.76 13.8

4dpd
cp,s 13.79

2dpd
c,ps 0.161 0.17

2dpd
cp,s 0.195
,
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