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Extended calculations of the deuteron’s static properties, based on the numerical solution of the Bethe-
Salpeter equation, are presented. A formalism is developed, which provides a comparative analysis of the
covariant amplitudes in various representations and nonrelativistic wave functions. The magnetic and quadru-
pole moments of the deuteron are calculated in the Bethe-Salpeter formalism and the role of relativistic
corrections is discussed.@S0556-2813~96!02309-6#
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I. INTRODUCTION

A theory applicable for studying nuclear phenomena, i
volving high energies or momentum transfers of a few Ge
or larger, should be formulated in a relativistically invarian
manner. A traditional approach to processes with nucl
based on the nonrelativistic Schro¨dinger wave functions, is
not adequate if a large momentum transfer ‘‘sneaks’’ into t
nuclear amplitudes, and the corresponding nucleon mom
tum p becomes large, sayp>m (m is the nucleon mass!.
One can extend the usage of nonrelativistic wave functio
by incorporating successively the relativistic correction
;(p/m)n, however, it might eventually fail at some value o
p. On the other hand, the nonrelativistic approach was
some time the only one which allowed for a detailed descr
tion of the static properties of the nuclei and low and inte
mediate energy nuclear reactions as well.

In the recent two decades, extensive studies of fe
nucleon systems have been performed within Lorentz inva
ant models@1–5#. The success of these elaborate studies
lows one to conclude that the covariant approach has n
the capability to replace, at least for few-nucleon system
the approaches relying on nonrelativistic wave functions@6#.
Most of the phenomenological success in the relativis
treatment of few-nucleon systems has been achieved wi
such models which are based on a covariant meson-nucl
theory and corresponding dynamical equations@1–3#. In
these models, the satisfactory results have been obtained
the nucleon-nucleon (NN) scattering, the properties of the
lightest nuclei, various electromagnetic and hadronic inter
tions with nuclei, and some advance have been achieved
many-body nuclear systems~see, e.g., discussions and fur
ther references in@3#!.

The deuteron, as the simplest nuclear system, is an
pealing object to be described by the models invented in
realm of nuclear physics. There is a fair amount of expe
mental information available about the deuteron’s propert
54-2813/96/54~3!/986~20!/$10.00
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themselves and reactions with the deuteron. More interest
and precise data are expected after the start of the excit
research program at CEBAF. Therefore, there is a possibi
to compare exact theoretical results with the experimen
data in a clear way, not dimmed by extra effects, such as
‘‘more-than-two-body’’ phenomena.

Still, the relativistic approach to the deuteron is not a
popular as the one utilizing nonrelativistic wave function
@7,8#. There are seemingly two main reasons for this.First,
the deuteron, as any other nucleus, is essentially a nonr
tivistic system, since it is composed of weakly bound ma
sive nucleons. The bulk of the static properties of such
system obviously can be fitted in the nonrelativistic approa
by adjusting the phenomenological potential or the wa
function. Besides, the experimental data for the reactio
with the deuteron is also mainly available in the nonrelati
istic domain.Second, the relativistic models, especially those
based on field theory, are technically more difficult and ha
a more sophisticated physical interpretation than the nonr
ativistic approaches. Both these reasons, together, define
typical pattern for the attempts devoted to promote the co
sistent relativistic description of the nuclei. The correspon
ing works are usually highly specified for the particular re
actions or kinematic domains where the advantage of t
covariant approach can be explicitly displayed. They are o
ten filled with technical details uncommon for that part of th
scientific audience which is not directly involved in this re
search direction. That is why this is so important to hav
simple and intuitively clear interpretations of the relativisti
calculations, and an explicit systematic method to compa
the relativistic and nonrelativistic results.

In the present work we are going to analyze the extend
calculations of the static properties of the deuteron utilizin
the Bethe-Salpeter~BS! amplitudes which are recently com-
puted numerically@9#. The main goal of our paper is to con-
tribute to the development of the physical intuition for un
derstanding the relativistic calculations and their comparis
986 © 1996 The American Physical Society
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54 987BETHE-SALPETER AMPLITUDES AND STATIC . . .
to the nonrelativistic calculations. Our basic idea is to co
pute the observable densities of various charges~e.g., vector
and axial-vector charges! in both the relativistic and the non
relativistic formalisms and to use these densities as tool
compare relativistic amplitudes and nonrelativistic wa
functions, which cannot be rigorously interrelated otherwi
In doing so we pursue, in some sense, the goals opposi
the ones we outlined above as typical for the approach wit
the covariant description of the deuteron. Another goal
our paper is to fill some gap in the literature by giving e
plicit expressions relating the BS amplitudes in different re
resentations, which will help to compare the relativistic a
plitudes computed in different models.

We calculate here the magnetic and quadrupole mom
of the deuteron within the Bethe-Salpeter formalism. T
investigation of these static characteristics of the deutero
still an important topic in nuclear physics. In the nonrelati
istic models it gives the direct information about the tens
components in the nucleon-nucleon interaction and the m
nitude of theD wave probability in the deuteron. Howeve
there is an essential problem in fitting the experimental v
ues of the quadrupole and magnetic moments with the s
D wave probability in the nonrelativistic calculations~cf.
@10# and references therein!. The efforts, aiming to solve this
difficulty, go in two main directions, namely calculating th
corrections of the meson exchange currents@11–13# and tak-
ing into account the relativistic effects@1–3,14–17#. In the
conventional approach, the mesonic degrees of freedom
relativistic effects are treated as corrections to the nonr
tivistic potential theory. It is found that, by adding thes
effects to the quadrupole moment, a satisfactory descrip
of the data may be achieved for a broad range of differ
potentials@10#, while the magnetic moment shows a strong
sensitivity to the model calculations of the meson exchan
currents. Moreover, the consistency of such calculations
not at all clear. For this reason a comprehensive covar
investigation has its own right. A prominent feature of t
relativistic consideration within the Bethe-Salpeter form
ism is that the meson exchange effects due to pair crea
currents is taken into account consistently@10,18,19#, so that
the essential part of the mentioned effects may be estim
in a self-consistent way.

The general approach to calculate the static character
of the deuteron within the BS formalism has been elabora
by several authors since some time~see, for instance,@3,14–
16,20#! and numerical estimates have been performed. H
ever, explicit calculations have been done within additio
approximations for the solution of the BS equation, e.g.,
a separable interaction and by disregarding the negative
ergy states@15#, or with one nucleon on mass shell@3#, or
from a general point of view with adjusting the probability o
the P states in order to fit simultaneously both the quad
pole and magnetic moments@16# ~for this goal one needs an
anomalously large pseudoprobability of theP waves, say
;1.5%). In the present paper we perform a covariant cal
lation of the quadrupole and magnetic moments of the d
teron within the exact solution of the BS equation and av
additional approximations to the problem.

Our present investigation is also partially motivated
the renewed interest in the experimental investigation of
nucleon and deuteron spin-dependent structure function
-
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low momentum transferQ2 @21#. This interest is connected
to the study of theQ2 evolution of the Gerasimov-Drell-
Hearn sum rule@22#, which relates the spin-dependent stru
ture functions of the targets to their magnetic moments.
instance, only a correct description of the deuteron magn
and quadrupole moments will assure a reliable extraction
the information about the neutron structure function from
deuteron data.

Our paper is organized as follows. In Sec. II the ba
covariant formulae for the electromagnetic current and st
moments of the deuteron are presented. In Sec. III the g
eral definitions of the Bethe-Salpeter amplitudes for the d
teron are given in different representations and their sym
try properties are studied in detail. The transformation ma
relating the amplitudes in different representations is de
mined. The relativistic amplitudes are compared to the n
relativistic wave functions, using the calculated observab
e.g., the vector and axial charge densities. In Sec. IV
covariant formulas for the magnetic and quadrupole m
ments are derived in the Breit frame. The effects of the L
entz deformation and dependence of the amplitude on
relative energy of the two nucleons in the deuteron are
plicitly taken into account. The terms corresponding to t
nonrelativistic expressions for the moments are determi
in explicit form and the relativistic corrections are compute
Sections V and VI contain conclusions and the summa
respectively.

II. RELATIVISTIC KINEMATICS
OF THE ELECTROMAGNETIC CURRENT

The definition of the quadrupole momentQD and the
magnetic momentmD of the deuteron appears most transp
ent if one starts with the famous Rosenbluth formula~cf.
@24#! for the elastic scattering of electrons off the deutero
e1D→e81D8,

ds

dV U
lab

5
ds

dV U
Mott

SA~q2!1B~q2!tan2
u

2D ~1!

with the following decomposition of the electromagne
form factors:

A~q2!5FC
2 ~q2!1 8

9h2FQ
2 ~q2!1 2

3 hFM
2 ~q2!, ~2!

B~q2!5 4
3 h~11h!FM

2 ~q2!, ~3!

where h52q2/4MD
2 and MD is the deuteron mass

Q252q2 denotes the momentum transfer. Then the quad
pole and magnetic moments of the deuteron are defined
the normalization conditions for the charge (FC), quadrupole
(FQ), and magnetic (FM) form factors at vanishing momen
tum transferq250:

FC~0!51, FQ~0!5MD
2QD , FM~0!5mD

MD

m
. ~4!
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The general form of the deuteron electromagnetic curre
which is invariant under Lorentz and time-reverse transfo
mations, is given by

^P8,l8uJmuP,l&52
e

2MD
«r* ~P8,l8!Jm

rs«s~P,l!, ~5!

where«* (P8,l8) and«(P,l) are the polarization four vec-
tors of the initial and final deuteron states; Greek sub and
superscripts denote Lorentz indices to be moved with t
Minkowski metric gmn ; P and l stand for the three-
momentum and helicity of the deuteron. The covariant no
malization of the current reads

lim
q2→0

^P8,l8uJmuP,l&5e
Pm

MD
dl8,l . ~6!

The matrix elementJrs
m can be expanded in terms of th

scalar form factors in the form

Jrs
m 5~P81P!mS grsF1~q

2!2
qrqs

2MD
2F2~q

2! D
1~gr

mqs2gs
mqr!G1~q

2!. ~7!

The scalar form factorsF1,2 andG1 are related to the form
factorsFC,Q,M by ~cf. @23#!

FC~q2!5F1~q
2!1 2

3 h@F1~q
2!1~11h!F2~q

2!2G1~q
2!#,

~8!

FQ~q2!5F1~q
2!1~11h!F2~q

2!2G1~q
2!, ~9!

FM~q2!5G1~q
2!. ~10!

In the nonrelativistic impulse approximation these de
teron form factors read

FC~q2!5@GE
p~q2!1GE

n~q2!#CE~q2!, ~11!

FQ~q2!5@GE
p~q2!1GE

n~q2!#CQ~q2!, ~12!

FM~q2!5
MD

m F @GE
p~q2!1GE

n~q2!#CS~q
2!

1
1

2
@GM

p ~q2!1GM
n ~q2!#CL~q

2!G , ~13!

whereGE
(p,n)(q2) (GM

(p,n)(q2)) are the electric~magnetic!
nucleon form factors and the invariant functionsC(q2) are
defined by

CE~q2!5E
0

`

dr~u21w2! j 0S qr2 D , CE~0!51, ~14!
nt,
r-

/or
he

r-

-

CQ~q2!5
3A2
2h E

0

`

drS uw2
w2

2A2D j 2S qr2 D ,
CQ~0!5MD

2QD , ~15!

CL~q
2!5

3

2E0
`

dr w2F j 0S qr2 D1 j 2S qr2 D G ,
CL~0!5 3

2 PD , ~16!

CS~q
2!5E

0

`

drS u22 w2

2 D j 0S qr2 D
1E

0

`

drS uwA2 1
w2

2 D j 2S qr2 D ,
CS~0!512 3

2 PD . ~17!

Here j i is the modified Bessel function ofi th order,u and
w represent theS andD waves of the nonrelativistic deu-
teron wave function, andPD is the weight of theD wave in
the deuteron wave function.

To calculate the form factorsFC,Q,M within the Bethe-
Salpeter formalism one has to express the current~5! in
terms of the BS amplitudes and, then, to extract the coef
cients of different Lorentz structures given by Eq.~7!. Tak-
ing the limitq2→0, the static moments can also be obtaine
Apparently, these calculations can be done in any particu
reference frame. For example, the Breit frame is especia
convenient for such type of calculations. The Breit frame
defined by the four-momenta components of the deuteron

P05P085E, P52
q

2
, P85

q

2
. ~18!

Choosingq along the positivez axis and contracting
Jrs

m with the polarization vectors«(P8,l8) and «(P,l),
which obey

«~P8,1!5«~P,1!52
1

A2
~0,1,i ,0!, ~19!

«~P8,21!5«~P,21!5
1

A2
~0,1,2 i ,0!, ~20!

«~P,0!5~2Ah,0,0,A11h!,

«~P8,0!5~Ah,0,0,A11h!, ~21!

one arrives at expressions for the matrix elements of t
deuteron electromagnetic current in terms of the form fa
tors:
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^P8,l8uJ0uP,l&5eA11h$F1dll812h@F11~11h!F2

2G1#dl8,0dl,0%, ~22!

^P8,l8uJxuP,l&5e
Ah

2
A11hG1~dl8,l112dl8,l21!,

~23!

^P8,l8uJyuP,l&52 ie
Ah

2
A11hG1~dl8,l111dl8,l21!,

~24!

^P8,l8uJzuP,l&50. ~25!

Thus the magnetic and quadrupole form factors of the d
teron are recovered by

mD5
m

MD
A2 lim

h→0

^P8,l851uJxuP,l50&

AhA11h
, ~26!

QD5
1

MD
2 lim

h→0

3
^P8,l850uJ0uP,l50&2^P8,l851uJ0uP,l51&

2hA11h
.

(27)

Equations~22!–~27! are the basic relations providing the ca
culations of the electromagnetic characteristics of the d
teron. In practice, one needs to define explicitly the opera
Jm of the electromagnetic current and calculate its ma
elements with the deuteron statesuP,l&.

III. THE BOUND-STATE WAVE FUNCTION

A. General definitions

Using the technique presented in@9#, the BS equation for
a bound state in ladder approximation can be written in
form

K~p0 ,p!x~p;P!

1(
B

lB

4ip3E d4p8
L~p1!GBx~p8;P!GBL~p2!

~p2p8!22mB
2 50,

~28!

K~p0 ,p![~Ep
22p0

22 1
4 MD

2 !22p0
2MD

2 , ~29!

wherex(p;P) is the BS amplitude for the deuteron in th
matrix representation@9#; L(pi)5 p̂i2m; p5(p0 ,p) i is the
four-momentum of thei th nucleon in the deuteron express
in terms of relative four-momentap or p8 and the center-of-
mass~c.m.! momentumP5(MD ,0): p1,25P/26p; B enu-
merates the exchanged mesons;mB is the mass of the meson
GB is the interaction vertex between the nucleon and
corresponding bosonB; and lB[gB

2/4p with gB being the
coupling constant. We use here the shorthand nota
p̂[pmgm for contractions with Dirac matricesgm .
eu-
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Since the BS amplitudex and its adjointx̄ satisfy the
homogeneous BS equation they are determined up to an
bitrary constant which is fixed by an additional normaliz
tion condition. In the ladder approximation the normalizati
constant may be fixed by computing the matrix element
the electromagnetic current atq250, i.e.,

E d4p

i ~2p!4
Tr$x̄~p;P!gmx~p;P!~m2 p̂1!%52Pm . ~30!

The normalization condition~30! coincides with the one
used in@14#.

The BS amplitude is a (434) matrix in the spinor space
and consequently the BS equation~28! possesses this matrix
structure as well. To solve this matrix equation one can u
lize a decomposition of the BS amplitude over a complete
of (434) matrices and solves a system of coupled equati
for the coefficients of such a decomposition. The choice
the representation of the matrices depends on the conc
attacked problem. Certainly, different representations are
lated by linear transformations, and it is straightforward~but
cumbersome! to transform results from one representation
another one. In our opinion, to solve the BS equation and
compute matrix elements of the deuteron observables@as for
instance Eq.~30!#, a convenient way is to decompose th
amplitude in terms of the complete set of Dirac matrice
which form the Clifford algebra~for more details cf.@9#!. By
exploiting the parity invariance of the BS amplitude

PxD~p0 ,p!5hPg0xD~p0 ,2p!g0 , ~31!

it may be written for the deuteron, which has positive par
eigenvalueshP51, as

xD~p;P!5g5P1g5g0A02~g•VW !2g5~g•AW !22ig0~g•TW0!

22g0g5~g•TW !, ~32!

with pseudoscalar (P, A0), axial (AW ), and vector (TW0, TW , VW )
functions depending only upon the relative four-momentu
p in the c.m. frame. The angular dependence of the state w
spin J51 and its projectionM owing to the rotational in-
variance of Eq.~28! is expressed in terms of the spheric
and vector spherical harmonics. For example, when deno
X5(P,A0) andXW 5(AW ,TW0,TW ,VW ), we may write

X~p0 ,p!5X1~p0 ,upu!Y1M~Vp!,

XW ~p0 ,p!5 (
L50,1,2

XL~p0 ,upu!Y1M
L ~Vp!. ~33!

The corresponding equations for the radial functions can
found by a partial wave decomposition of the kernel in E
~28! and by carrying out the angular integration. An examp
of the system of coupled equations for the radial amplitud
in the case of one exchanged scalar boson is given in@9#. In
what follows the notation for the radial amplitudes are ke
as in Eq.~32! with the lower index indicating the value of th
angular momentumL in Eq. ~33!.
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B. The transformation properties of the partial amplitudes

Due to the parity invariance, Eq.~31!, only eight radial
components are relevant to describe the deuteron amplit
namely,

P1 ,A1
0 ,A0 ,A2 ,V1 ,T1

0 ,T0 ,T2 . ~34!

Analyzing the behavior of the amplitude under the symme
transformations, one can establish the properties of the c
ponents~34!. The invariance of the BS equation under t
time-reversal operationT

TxMD ~p0 ,p!5g1g3xM
D * ~p0 ,2p!g1g3 ~35!

and the complex conjugationK

KxM
D ~p!5~21!Mx2M

D ~p! ~36!

imply that the seven partial amplitudesP1, V1, A1
0, A0,2,

T0,2 are real functions, while the amplitudeT1
0 is purely

imaginary, i.e.,T1
0*52T1

0.
The Pauli principle implies that the amplitudexD(p)

changes sign if two nucleons are interchanged, i.e.,

xD~p0 ,p!52xD
1~2p0 ,2p!. ~37!

From Eqs.~37! and ~36! follows that A1
0 and T1

0 are odd
functions with respect to the operationP(p0→2p0):

PA1
0~p0 ,p!52A1

0~p0 ,p!, PT1
0~p0 ,p!52T1

0~p0 ,p!,
~38!

and the remaining six amplitudes are even functions ofp0.
This symmetry property is useful for the classification of t
amplitude according to two-nucleon states with a given re
tive energy, i.e., ther spin classification.
o

de,

ry
m-
e
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la-

Table I summarizes the properties of the partial BS am
plitudes in the representation~32! under the symmetry trans-
formations.

C. Observables

Relying on the symmetry properties of the partial ampl
tudes, defined by Eq.~32!, the BS equation~28! has been
solved numerically@9# for the deuteron at rest by performing
a Wick rotationp0→ ip4. In our present calculations we in-
clude six meson exchanges ofp, v, r, s, h, andd, which
describe the effectiveNN forces. The set of the meson pa
rameters, such as masses, coupling constants, and cu
form factors, employed here is the same as in@14#, obtained
from a fit of the phase shifts of theNN scattering and the
binding energy of the deuteron.

The BS amplitude does not have a direct probabilist
interpretation as the Schro¨dinger wave function. Moreover,
there is no simple way to compare these two objects desc
ing the same system, namely the deuteron. In order to ma
a comparison possible, we can compute the same matrix
ements of observables in the two approaches and comp
these observables.

For example, them50 component of the normalization
condition ~30! in the rest frame of the deuteron, due t
^DuN̄(0)g0N̄(0)uD&52MD , is simply a charge of the deu-
teron associated with the vector current. In the Wick rotat
system and in terms of the partial amplitudes~34! it reads

TABLE I. The deuteron partial amplitudes and their transforma
tion properties.

2S11L1 P1 A1
0 V1 A0 A2 T1

0 T0 T2

L 1 1 1 0 2 1 0 2
S 0 0 1 1 1 1 1 1
K 1 1 1 1 1 2 1 1

P 1 2 1 1 1 2 1 1
MD52E dp4dupuupu2

~2p!4 H 2MD~P1
21A1

0214T1
021V1

2!1~2mN2MD!~X0
121X2

12!2~2mN1MD!~X0
221X2

22!

1
2A2upu

A3
P1~X0

12A2X2
11X0

22A2X2
2!2

2A2upu

A3
V1~A2X0

11X2
12A2X0

22X2
2!J , ~39!
ve
to

be
whereXW 6[A2(TW6AW /2). Now we define the charge densit
rch(upu) as

1

2MD
^DuN̄~0!g0N~0!uD&5E dp4 dupuupu2

~2p!4
rch~p4 ,upu!,

~40!

rch~ upu![E
2`

` dp4
2p

rch~p4 ,upu!. ~41!

This already may be compared with the corresponding n
y

n-

relativistic analogue, i.e., the square of the deuteron wa
function in the momentum space, which is proportional
u2(p)1w2(p).

In the same manner also the nucleon spin density may
defined as the density of the axial charge

1

2MD
^DuN̄~0!g5g

0N~0!uD&

5E dp4 dupuupu2

~2p!4
rspin~p4 ,upu!,

~42!
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rspin~ upu![E
2`

` dp4
2p

rspin~p4 ,upu!. ~43!

In the nonrelativistic limit this density reflects the contrib
tion of theD wave admixture in the deuteron, which is pro
portional tou2(p)2(1/2)w2(p).

Results of numerical calculation of the defined densit
together with a comparison with their nonrelativistic cou
terparts obtained with the Bonn and Paris potentials are
sented in Figs. 1 and 2. All curves exhibit qualitatively sim
lar shapes and are identical in the nonrelativistic reg
upu<0.5 GeV/c. If the momentumupu increases, the devia
tions of the relativistic results from the nonrelativistic on
becomes more significant, but still too small to be attribut
to relativistic effects. Rather it is compatible with the mod
differences. Particular attention is to be paid to Fig. 2, wh
the spin density is depicted. This function is rather sensit
to the internal spin-orbital structure of the deuteron. The f
that the ‘‘elementary oscillations’’ of the spin density in th

FIG. 1. The nucleon density in the deuteron computed wit
the BS formalism in comparison with the nonrelativistic results.

FIG. 2. The nucleon spin distribution in the deuteron compu
within the BS formalism in comparison with the nonrelativistic r
sults.
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potential models are reproduced by the solution of the
equation might be interpreted as the relativistic structure
the deuteron which is governed by the nucleon interactio
states with a positive energy andL50, 2, i.e., by 3S1 and
3D1 configurations. Therefore, in spite of the quadra
forms of the partial amplitudes, which are not diagonal
Eqs.~39! and~43!, one can define the relativistic analogue
the probability of theD wave admixture in the deuteron
Carrying out theupu integration in Eq.~43! and equating the
result to (123/2PD) we find PD'5% ~cf. @14#!, which is
compatible with the probabilities of the Bonn (PD54.3 @8#!
and Paris (PD55.9 @7#! potential models.

D. The BS amplitude in different representations

To have a closer analogue with the nonrelativistic cons
eration it is convenient to use another basis set of matrice
the decomposition of the BS amplitude. In the literature
two-spinor basis@26# is frequently used, which means a
outer product of two spinors, representing solutions of
free Dirac equation with positive and negative energies. T
basis is labeled by the relative momentump, the helicities
l i , and the energy spinr i of the particles@14#, sometimes
also called the (J,l1 ,l2 ,r1 ,r2) representation. In this cas
one usually adopts for the partial amplitudes the spec
scopic notation2S11LJ

r1 ,r2 i.e.,

3S1
11 ,3S1

22 ,3D1
11 ,3D1

22 ,1P1
12 ,1P1

21 ,3P1
12 ,3P1

21 .
~44!

Sometimes it is more convenient to change from
(J,l1 ,l2 ,r1 ,r2) representation to the representati
(J,L,S,r) wherer is the projection of the total energy sp
of the system. In this case the notation of the componen
as follows:

YT[~vs
o ,v t

e ,vs
e ,v t

o ,u1,u2,w1,w2!, ~45!

whereu,v,w correspond toL50,1,2, respectively, ando or
emean the odd or even parity relative to ther spin function;
the lower indicess and t denote the singlet and triplet sp
configurations, respectively. According to Eqs.~37! and~36!,
the amplitudesvs

o ,v t
e are odd andvs

e ,v t
o are even functions

of p0. The partial amplitudes in the basis~44! and~45! are of
a more familiar form and show a more transparent phys
meaning since they may be compared with the deute
states in the nonrelativistic limit. It is intuitively clear~see
also Figs. 1 and 2! that the two nucleons in the deuteron a
mainly in states withL50,2 and with positive energy so tha
one may expect that the probability of states with nega
energies andL51 in Eqs.~44! and ~45! is much smaller in
comparison with the probability for the3S1

11 and 3D1
11 ~or

u1 andw1) configurations. Moreover, it can be shown th
the waves3S1

11 and 3D1
11 directly correspond to theS and

D waves in the deuteron, while those with the negative
ergy vanish in the nonrelativistic limit.

The partial amplitudes~44! are defined through the fol
lowing decomposition of the BS amplitude:

in
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xD~p0 ,p!5(
a

fa~p0 ,upu!VMa ~p!, ~46!

wherea5$J,L,S,r1 ,r2% labels different states of the sys
tem; fa denotes the partial amplitudes in Eq.~45!, and
VMa (p) are the spin-angular functions

VMa ~p!5 i L (
s1s2m

~LmSsuJM!S 12 s1 12 s2USsD
3YLm~ p̂!Us1

r1~p!Us2

r2~2p!. ~47!

In Eq. ~47! the quantitiesUs
r(p) are the free nucleon spinors

the explicit matrix form for the spin-angular function
VMa (p) is given in Appendix A.

In order to establish a connection between the represe
tion ~32! and the spinor basis~44!–~46! we represent the
Dirac matrices in Eq.~32! as a direct product of Pauli matr
ces of the nucleon spins and ther spin

xD~p!5r1^ @ ÎP22i ~s•TW0!#1 ir2^ @ ÎA01~s•VW !#

1r3^ ~s•AW !12I ^ ~s•TW !. ~48!

The last two terms in Eq.~48! may be rewritten as
-

;
s

nta-

r3^ ~s•AW !12I ^ ~s•TW !5
1

A2
~ Î1r3! ^ ~s•XW 1!

1
1

A2
~ Î2r3! ^ ~s•XW 2!.

~49!

Then Eqs.~48! and ~49!, together with the symmetry prop-
erties of our partial amplitudes listed in Table I, show tha
the desired relation between the two representations appe
as follows:

3S1
11;X0

1 , 3S1
22;X0

2 , 3D1
11;X2

1 , 3D1
22;X2

2 ,

3P1
e;T1

0 , 3P1
o;V1 ,

1P1
e;P1 ,

1P1
o;A1

0 .

The relation between Eqs.~34! and ~45! can be established
exactly. The components being odd in the relative ener
vs
o , v t

e andA0
1 , T0

1 are related directly to each other via

vs
o52 iA0

1 , v t
e52T0

1 , ~50!

whereas the remaining six components are connected via
ear combinations. By representing these amplitudes as s
component vectors, ỸT5(vs

e ,v t
o ,u1,u2,w1,w2) and

CT5(P1 ,V1 ,X0
1 ,X0

2 ,X2
1 ,X2

2), the transition fromỸ toC is
provided by a unitary transformationỸ5UC @with
det(U)521, andUUT51# with the following explicit form
of the transition matrix:
U5
z

2A11z2

31
2
2

z
0 A2

3
2A2

3
2

2

A3
2

A3

0
2

z

2

A3
2

A3
A2

3
A2

3

A2

3
2

2

A3
11A11z2

z

12A11z2

3z
0

2A2
3

12A11z2

z

2A2

3
2

2

A3
12A11z2

3z

11A11z2

z

2A2
3

12A11z2

z
0

2

A3
A2

3
0 2

2A2
3

12A11z2

z
2
11A11z2

z

12A11z2

3z

2
2

A3
A2

3
2
2A2
3

12A11z2

z
0

12A11z2

3z
2
11A11z2

z

2 ,
~51!
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with z5upu/m. In the nonrelativistic limit, wherez!1, the
matrix U becomes diagonal

U5 diag~21,1,1,1,21,21!, ~52!

and our representation coincides with the one in the spin
basis. In what follows all formulas will be derived in term
of the partial amplitudes~44! or ~45!, nevertheless the nu-
merical calculations are performed with our solutions~34! by
utilizing Eqs.~50! and ~51!.

Coming back to the normalization condition it is easy t
show that Eq.~39! may be transformed to a diagonal form

2

MD
E dp4 dupuupu2

~2p!4
@Y1~p4 ,upu!,v̂Y~p4 ,upu!#51,

~53!

which is exactly the normalization condition used in@14#. In
Eq. ~53! Y denotes the eight-component vector~45!, andv̂ is
a diagonal matrix

v̂52 diag~MD ,MD ,MD ,MD ,MD22Ep,2Ep1MD ,

MD22Ep,2Ep1MD), ~54!

so that the integrand in Eq.~53! consists of a sum of qua-
dratic terms of radial functionsYa weighted withva . There-
fore each term, after integration, may be interpreted
pseudoprobability of finding the corresponding relativist
state in the deuteron. The result of our numerical calculatio
of the pseudoprobabilities is presented in Table II. It is se
that an admixture of the negative energy amplitudes affe
the contribution of the positive energy states. The appeara
of the negative contributions of waves with negativer spin
is not a surprise; it follows from the physical meaning of th
normalization condition according to that the contribution o
each term in Eq.~53! is the effective baryon charge in the
corresponding state. The pseudoprobabilities ofS and D
waves~see Table II! are close to the corresponding probabil
ties obtained in the nonrelativistic Bonn and Paris potentia
as expected, since the deuteron is essentially a nonrelativi
system.

To investigate the behavior of the partial amplitudes a
their nonrelativistic limits, we employ once more the norma
ization integral~30!, now however in the form of Eq.~53!.
Then, similar to Eqs.~41! and~43!, we define the following
functionsca depending uponupu by

TABLE II. The pseudoprobabilities of the partial waves in th
deuteron.

Wave u1 w1 u2 w2

Pa(%) 95.014 5.106 20.002 20.003
Wave vs

e v t
o vs

o v t
e

Pa(%) 20.010 20.082 20.015 20.008
or

o

as
c
ns
en
cts
ce

e
f

-
ls,
stic

d
l-

ca~ upu!5A2E dp4 vauYa~p4 ,upu!u2MD
21. ~55!

Thusca may be regarded as the absolute value of the re
tivistic wave function of the deuteron in the statea @for
instance,a55 corresponds to a3S1

11 configuration,a57
to 3D1

11 , etc., cf. Eq.~45!#.
Figures 3 and 4 display the behavior of the relativisti

FIG. 3. The momentum dependence of the3S1
11 component

defined by Eq.~55! ~solid line! in comparison with the correspond-
ing nonrelativistic wave functions with Bonn and Paris potentia
~dotted and dashed lines, respectively!.

FIG. 4. The momentum dependence of the3D1
11 component.

The solid line~BS-I! depicts the result of computation by Eq.~55!;
the dotted line~BS-II! includes the contribution ofP waves~see
text!; short-dashed and long-dashed lines depict the nonrelativis
wave functions with Bonn and Paris potentials, respectively.
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wave functionsc0
1 andc2

1 ~solid lines! versus the relative
momentumupu in comparison with the nonrelativisticS and
D waves. We conclude that with an accuracy of model a
biguities in the nonrelativistic calculations~given here by the
difference between Paris and Bonn wave functions, i.e.,
dashed lines in Figs. 3 and 4! the large relativistic compo
nents are close to their nonrelativistic analogues up
upu;m. However, there is a distinctive difference in th
shape of theD waves in the two approaches. Namely, t
nonrelativistic functions change the sign in the regi
upu;m, whereas the BS component does not do so~cf. the
solid line labeled as BS-I in Fig. 4!. To understand this we
tentatively introduce an auxiliary definition of the relativist
D wave which is just the difference between the integrand
the normalization condition and the contribution of t
3S1

11 component, i.e., we introduce in the definition of t
D wave the contribution of all the negative energy stat
c̃2

1;Aw121w221u221•••. In this case only two wave
functionsc0

1 andc̃2
1 determine the normalization of the B

amplitude, and the correspondence with the nonrelativi
limit becomes one to one. In Fig. 4 the functionc̃2

1 is la-
beled by BS-II, and it is seen that it displays a minimum
the same region as the nonrelativistic functions, i.e., it
the same shape as the nonrelativisticD wave. One observe
that the nonrelativisticD wave already mimics relativistic
effects, so that in calculations of relativistic corrections to
nonrelativistic approaches an overestimate of the magni
of such corrections may occur. For completeness, in Fig
we present the wave functions forL51; since the waves
u2 andw2 are negligibly small, even in comparison with th
wavesL51, they are not presented here.

E. The vertex functions

In studying the nonrelativistic correspondence of the
lutions of the BS equation it is convenient to work with th
BS verticesG(p;P) defined by

FIG. 5. The momentum dependence of theP waves defined by
Eq. ~55!.
m-

the
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x~p;P!5
~ p̂11m!G~p;P!~ p̂21m!

~p1
22m2!~p2

22m2!
. ~56!

From Eqs.~46! and ~56! it is possible to find a decomposi-
tion for the vertexG(p;P). In doing so, one introduces the
two four-vectors of on-mass-shell particles corresponding
the Dirac spinors in Eq.~47!, i.e.,

k15~Ep ,p!, k25~Ep ,2p!, Ep5Ap21m2,

p5~p0 ,p!. ~57!

Then in Eq.~56! the inverse propagator of the nucleons ma
be represented in terms of the vectorsk1,2 by

S21~1![
P̂

2
1 p̂2m5

1

2Ep
@~ k̂12m!S2

21~1!

1~ k̂21m!S1
21~1!#,

S21~2![
P̂

2
2 p̂2m5

1

2Ep
@~ k̂22m!S2

21~2!

1~ k̂11m!S1
21~2!#, ~58!

where

S6~1!5SMD

2
1p07EpD 21

,

S6~2!5SMD

2
2p07EpD 21

. ~59!

Because of

S21~1!Us
r1~p!5sgn~r1!Sr1

~1!Us
r1~2p!,

S21~2!Us
r2~2p!5sgn~r2!Sr2

~2!Us
r2~p!, ~60!

the decomposition ofG(p;P) reads

GM~p;P!5(
a

Ga~p0 ,upu!VMa ~2p!, ~61!

hence the partial amplitudes and the vertex functions are
terrelated via the following simple expression:

Ya~p0 ,upu!5Sr1
~1!Sr2

~2!Ga~p0 ,upu!. ~62!

The relation Eq.~62! implies that the BS amplitudes~46!
have sharp maxima aroundp050, while the behavior of the
partial verticesGa(p0 ,upu) is predicted to appear as smooth
functions of the relative energy~see also@14#!.

The behavior of the vertex functions is shown in Figs.
and 7 for the configurations3S1

11 and 3D1
11 as functions of

the relative energyp0 and momentumupu in the Wick rotated
system. One observes that the dependence of the vertex fu
tions upon the relative energy is weak, hence one may exp
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FIG. 6. The behavior of the
vertex functionG(p0 ,upu) for the
3S1

11 configuration in the deu-
teron in dependence onp4 and
upu.
a
v

c-
-
t,

r-
e

that the nonrelativistic and relativistic vertices atp050 have
similar structures as functions ofupu. From this observation
and Eq.~62! we establish another relation between the B
amplitudes and nonrelativistic wave functions. Below, as
example, we show how one can obtain the relativistic wa
function for the3S1

11 configuration from the BS amplitude.
The energy dependence of the componentu1 is factorized
into two parts, namely a dependence on the scalar propa
tors ~59! and a vertex function. Then, using the smoothne
of the vertex as function ofp0 we replace it by its value at
p050 multiplied with a smooth function ofp0, i.e.,
S
n
e

ga-
ss

u1~p0 ,upu!5
G1~p0 ,upu!

@~MD/22Ep!
22p0

2#
5
G1~0,upu!j~p0 ,upu!
@~MD/22Ep!

22p0
2#
~63!

with j(0,upu)51, where the dimensionless function
j(p0 ,upu) reflects the energy dependence of the vertex fun
tion. In view of the smooth behavior of the vertices as func
tion on p0, one may replace this function by a constan
j(0,upu)'j0 with j0;1. Then in the normalization integral
Eq. ~53! the integration over the relative energy may be ca
ried out explicitly and the remaining part corresponds to th
FIG. 7. The same as Fig. 6 but
for the 3D1

11 configuration.



in
t of

on-

ne-
tic

tic
t
b-
en

996 54L. P. KAPTARI et al.
square of the nonrelativistic wave function, i.e., we defin
the nonrelativistic limit of the BS amplitudeu1 by

c0~ upu!5j0u
1~0,upu!

MD22Ep

4AMD

. ~64!

Similar definitions, using Eqs.~53!, ~54!, ~59!, and~62!, are
valid for other waves. The generalized relativisticS andD
waves in this manner are displayed in Figs. 8 and 9. The
figures should be compared with Figs. 3 and 4, which displ
the modulus~that is without the sign! of the wave functions,
whereas Figs. 8 and 9 rely on the absolute values. One
consider this as a new way of finding the nonrelativistic an
logues of the BS amplitudes. The actual calculations ha
been performed withj051. A comparison with the corre-
sponding nonrelativistic wave functions atupu→0 shows
that, by choosing the parameterj051, we slightly overesti-
mate ~by about 10%! the relativistic functions~see Figs. 6
and 7!. It is worth stressing that in our solution of the BS
equation the relativisticD wave does not change its sign in
the interval up toupu;1.5 GeV/c. This is the most essential
difference between the relativistic and nonrelativistic a
proaches in this region. Therefore, one can expect that
relativistic corrections to physical quantities in the deutero
up to upu;1 GeV/c are relatively small; to distinguish them
one should either compute observables which are known
perimentally with a very high precision and sensitive to th
spin structure, or find special processes where the large co
ponents are suppressed and only the states with negative
ergies are relevant.

FIG. 8. The nonrelativistic limit of the3S1
11 component defined

by Eq.~64! ~solid line! in comparison with the nonrelativistic wave
functions with Bonn and Paris potentials~dotted and dashed lines,
respectively!.
e
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n
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IV. THE STATIC CHARACTERISTICS
OF THE DEUTERON

Let us calculate now the static moments of the deuteron
the BS formalism. The conserved electromagnetic curren
the deuteron~5! in terms of the BS amplitude is given by

^P8,l8uJmuP,l&52 ieNDE d4p Tr$x̄l8~p8;P8!

3Gm~q!xl~p;P!SF~ p̂2!
21%, ~65!

where SF(p2)5 p̂21m, p85p1q/2, P85P1q, ND
51/(2p)4/2MD . The quantityGm is the photon-nucleon
electromagnetic vertex, which is assumed to be of the
mass-shell form

Gm~q!5gmF1
s~q2!2

k

2m
smnq

nF2
s~q2!, ~66!

where smn5(1/2)@gm ,gn#, and Fi
s are isoscalar Dirac

~Pauli! form factors of the nucleon withF1(0)5F2(0)
51/2, k5mp1mn21, andmp,n are the proton and neutron
anomalous magnetic moments in units of the nuclear mag
ton e/(2m). The gauge invariance of the electromagne
current in the ladder approximation has been proven in@14#
~see also@25#!.

Now we have to interrelate the expression for the sta
moments~26! and ~27!, which are determined in the Brei
frame, and the BS amplitudes, which are numerically o
tained in the rest frame of the deuteron. This relation is giv
by the general transformation rules

xl~p;P!5L~L!xl~L21p;Pc.m.!L
21~L!, ~67!

x̄l~p8;P8!5L21~L!x̄l~Lp8;Pc.m.!L~L!, ~68!

FIG. 9. The same as Fig. 8 but for the3D1
11 components.
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L21~L!SF~ 1
2 P2p!21L~L!5SF~ 1

2 Pc.m.2L21p!21,
~69!

whereL is the operator for spin-1/2 particles correspondin
to the Lorentz transformationP5LPc.m., P85L21Pc.m.,

L~L!5
MD1 P̂g0

A2MD~E1MD!
~70!

with the corresponding Lorentz transformation matrixL

L5S A11h 0 0 2Ah

0 1 0 0

0 0 1 0

2Ah 0 0 A11h

D . ~71!

The direction of the boost is supposed to be parallel toqZ .
Then, after the Lorentz transformation of the integrand in E
~65!, the matrix element takes the form

^P8,l8uJmuP,l&52 ieNDE d4p TrH x̄l8~p8;Pc.m.!G̃m~q2!

3xl~p;Pc.m.!SFS 12Pc.m.2pD 21

3@L21~L!#2J , ~72!

where

G̃m~q!5L~L!Gm~q!L~L! ~73!

and the variablep8 is represented viap andq as

p85Lp8~B!5L~p~B!1 1
2 q!5L2p1 1

2Lq, ~74!

with components

p085~112h!p022AhA11hpz2MDh, ~75!

px85px,py85py, ~76!

pz85~112h!pz22AhA11hp01MDAhA11h. ~77!

Equation~72! is the starting point in evaluating the stati
moments of the deuteron in the BS formalism. The ma
peculiarities of this matrix element, in comparison with th
familiar nonrelativistic expression, come from the Loren
transformation and from the relativistic nature of the BS am
g

q.

c
in
e
tz
-

plitude itself and might be characterized by~i! effects of the
negative energy partial states~especially nondiagonal expec
tation values of the current between3S1

11 and 1P1
(e),(o) ,

3P1
(o),(e) partial states!, ~ii ! a dependence of the amplitude

upon the relative energyp0Þ0; in studying the static char-
acteristics of the deuteron this effect is called retardation
the BS amplitude,~iii ! an effect of boosting to the interna
space-time variable, that is the effect ofLÞ1, ~iv! effects of
the deformation of the BS amplitude concerning the boos
L(L)Þ1.

In fact, in the matrix element~72! these boost effects
reduce to a deformation of the photon-nucleon vertex, E
~73!, and to corrections from@L21(L)#2. In our case, i.e., as
h→0 @see Eqs.~26! and ~27!# for Eqs. ~72! and ~73! one
may write

@L21~L!#2.11Ahg0g31
h

2
, ~78!

L~L!g0L~L!5g0 , ~79!

L~L!g1L~L!5g1@L~L!#2, ~80!

L~L!gaq̂L~L!5gaq̂, ~a50,1!. ~81!

In what follows, the deviation of the quantity@L21(L)#2
from unity in the matrix element Eq.~72! we call the effects
of the Lorentz boost in the BS amplitude.

A. The quadrupole moment

1. General formulas

According to Eqs.~27!, ~66!, and~78!–~81! the result for
the quadrupole momentum is presented as follows:

QD5 (
a,a8

(
r,r8

^a8r8uQ̂uar&

5 (
a,a8

(
r,r8

@^a8r8uQ̂Cuar&1^a8r8uQ̂C
LBuar&

1^a8r8uQ̂Muar&1^a8r8uQ̂M
LBuar&#, ~82!

where the subscriptsC andM mean the corresponding con
tribution of the charge and magnetic part of the photo
nucleon vertex~66!, and the superscript LB is the contribu
tion of the Lorentz boost@L(L)21#221.

The corresponding matrix elements of the zeroth comp
nent of the deuteron electromagnetic current in the definiti
~27! take the form (l50,1)
J0
~l,l!~P,P!5

e

2MD
E d4p

i ~2p!4
TrH x̄l~p8;P!g0xl~p;P!SFS P2 2pD 21J , ~83!

J0
~l,l!~P,P!5Ah

e

2MD
E d4p

i ~2p!4
TrH x̄l~p8;P!g0xl~p;P!SFS P2 2pD 21

g0g3J , ~84!

J0
~l,l!~P,P!52

e

2MD

k

4mN
E d4p

i ~2p!4
TrH x̄l~p8;P!L~L!~g0q̂2q̂g0!L~L!xl~p;P!SFS P2 2pD 21J , ~85!
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J0
~l,l!~P,P!52

e

2MD

kAh

4mN
E d4p

i ~2p!4
TrH x̄l~p8;P!~g0q̂2q̂g0!xl~p;P!SFS P2 2pD 21

g0g3J . ~86!

As the next step the partial wave decomposition of Eqs.~83!–~86! has to be performed. Then one expands the integrands
Taylor series aroundh50 and carries out the limith→0. It is clear that one has to keep corrections includingO(h) in both
the wave functionx(p08 ,p8;P) and the matrixL(L).

This scheme of the calculation allows one to investigate separately the contribution of different relativistic effects
tioned above. Equations~84! and~86! are new contributions which account for the effect of the boosted photon-nucleon ve
Moreover, also the Lorentz deformation effect of the BS amplitude is taken into account in these matrix elements thro
relative momentump8.

Obviously, the main contributions to the quadrupole moment come from the charge part^a8r8uQCuar&, computed with the
largeS andD components of the BS amplitude. For these states, with

r5r8511, ~87!

one can recover the nonrelativistic formula for the quadrupole moment of the deuteron and separate the corrections d
relativistic Fermi motion of the nucleons and the retardation in the relative energy

QD
C5 (

a,a85S,D
^a81uQ̂Cua1&5Qp

~1,1 !1Qp0
~1,1 ! . ~88!

The two terms on the right-hand side~RHS! of Eq. ~88! reflect the existence of derivatives with respect to the moment
upu and the relative energy in the corresponding integrands:

Qp
~1,1 !52

e

2MD
E

2`

1`E
0

1`dp0upu2dupu
i ~2p!4 S Ep2

MD

2
1p0D H S 12

2p0
MD

D 2F2
1

12

~Ep2m!2

upu2Ep
2 u1~p0 ,upu!2

2
1

120

14Ep
415Ep

2m223m4120Ep
3m

upu2Ep
4 w1~p0 ,upu!21
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and



n

rrections

54 999BETHE-SALPETER AMPLITUDES AND STATIC . . .
Qp0
~1,1 !5

e

2MD
E

2`

1`E
0

1`dp0upu2dupu
i ~2p!4

1

5

upu2

MD
2 SEp2

MD

2
1p0D H 2A2Fu1~p0 ,upu!

]2

]p0
2w

1~p0 ,upu!

1w1~p0 ,upu!
]2

]p0
2u

1~p0 ,upu!G2w1~p0 ,upu!
]2

]p0
2w

1~p0 ,upu!J 1
e

2MD
E

2`

1`E
0

1`dp0upu2dupu
i ~2p!4

3

10MD
S 12

2p0
MD

D 2
3SEp2

MD

2
1p0D HA2F S 11

m

Ep
Du1~p0 ,upu!

]

]p0
w1~p0 ,upu!1S 11

m

Ep
Dw1~p0 ,upu!

]

]p0
u1~p0 ,upu!G

1w1~p0 ,upu!
]

]p0
w1~p0 ,upu!J 1

e

2MD
E

2`

1`E
0

1`dp0upu2dupu
i ~2p!4

upu
5MD

S 12
2p0
MD

D SEp2
MD

2
1p0D

3HA2Fu1~p0 ,upu!
]2

]p0]upu
w1~p0 ,upu!1w1~p0 ,upu!

]2

]p0]upu
u1~p0 ,upu!G1w1~p0 ,upu!

]2

]p0]upu
w1~p0 ,upu!J ,

~90!

whereu1(p0 ,upu) andw1(p0 ,upu) represent the radial function of the corresponding partial states3S1
11 and 3D1

11 . In the
nonrelativistic approximation,Ep→mN , p0 /MD→0, Eq. ~89! yields
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Equation~91! does not have a ‘‘true’’ nonrelativistic form yet because of the integration overp0. However, by utilizing
Eqs.~63! and~64! with j051 and carrying out thep0 integration explicitly, the familiar nonrelativistic expression@27# for the
quadrupole moment is reproduced exactly:

QD52
1

20E dupu
~2p!3 HA8F upu2

dc0~ upu!
dupu

dc2~ upu!
dupu

13upuc2~ upu!
dc0~ upu!
dupu G1upu2S dc2~ upu!

dupu D 216@c2~ upu!#2J , ~92!

wherec0(upu) andc2(upu) are defined by Eq.~64! and correspond to the nonrelativisticS andD components of the deutero
wave function~see, also Figs. 8 and 9!. As seen from Eq.~92! the main contribution to the matrix element~89! is expected to
come from the interference of the positiveS andD states in the deuteron; the remaining terms with negativer spins are the
contribution of the relativistic Fermi motion.

The second termQp0
(1,1) in Eq. ~88! and the matrix element of the Lorentz boost operator~82! are of a pure relativistic

nature and reflect the relativistic corrections to the quadrupole moment. For instance, for the positive states the co
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~94!

After integration by parts in Eqs.~93! and ~94! one obtains
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It is seen that the magnitude of this term is of orde
QLB
(11)'^upu2/MD

2 &Qp
(1,1) and vanishes in the nonrelativistic

limit. In order to achieve self-consistency in the nonrelativ
istic approach to the deuteron form factors and electrodisi
tegration reactions, various relativistic corrections to the m
trix elements must be taken into account, such as mes
exchange currents and pair term contributions@13,28,29#. In
the covariant description of the deuteron these effects a
partially accounted for by calculating transitions betwee
states with negative energies; the contribution ofP states in
the deuteron electromagnetic current corresponds to d
grams with nucleon-antinucleon pair creation in the old fas
ioned perturbation theory. Moreover, in@18# it has been
shown that, considering the deuteron electrodisintegrati
process within the light-front dynamics, beside the domina
contribution of expectation values withS andD waves, an
extra matrix element with transitions between positive an
negative energy states is relevant to describe the electrod
integration amplitude. It has been also shown that the cont
bution of this extra component exactly reproduces the pa
term corrections in the nonrelativistic limit. An investigation
of the correspondence between the light-front dynamics a
proach and the BS amplitude has shown@19# that the extra
component in@18# may be imitated by transitions between a
linear combination of theP waves andS or D waves. Hence
in our calculation the pair terms are taken into account v
calculations of off-diagonal expectation values of the re
evant current between theS andP partial wave states~see
also discussions in@10,16#!. A more detailed analysis of the
nonrelativistic limit of the expression for the quadrupole mo
ment with keeping leading corrections;1/m will be pre-
sented elsewhere.

2. Numerical results

The full expression for the quadrupole moment consists
a multitude of terms likewise Eq.~89! with quadratic com-
binations of partial states and terms with second derivativ
]2/]upu2, ]2/]p0

2 and mixed ones]2/]upu]p0 computed be-
tween different partial BS amplitudes. Their analytical form
has been evaluated by an algebraic formula manipulati
code. Numerical calculations have been performed by usi
our solutions of the BS equation for the partial amplitude
Eq. ~34! and relations~50! and ~51!. We find that the main
contribution to the deuteron quadrupole moment gives th
first term in Eq.~82! and that the transitions between energ
even states dominate, i.e.,

Qp
1150.2690 fm2. ~97!
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This contribution is below the experimental da
QD5(0.285960.0003) fm2 @30# by about 6%, nevertheles
it is larger than the usual nonrelativistic calculations. This
an understandable effect because of the specific featur
the solution of the BS equation for which the sum of t
pseudoprobabilities of the positiveS andD waves is larger
than 1. In this context, since the pseudoprobabilities of
remaining configurations are negative, the transitions w
P waves are expected to play an important role in study
the static characteristics of the deuteron. Particularly inter
ing is the calculation of the off-diagonal expectation val
between theS and P partial states, which is predicted t
replace the meson exchange contribution in nonrelativi
calculations@18,19#. Indeed, our numerical result points to
significant contribution of the mentioned matrix elements
comparison with other nondiagonal transitions, namely

^u1uQ̂Cuvs
e&50.0052 fm2, ^u1uQ̂Cuv t

o&520.0027 fm2

~98!

~for example, among other nondiagonal matrix elements
largest one iŝw1uQ̂Cuvs

e&520.000 07 fm2).
The part of the quadrupole moment with odd~diagonal

and nondiagonal! expectation values gives a small negati
contribution to the first term in Eq.~82!: ^uQ̂Cu&odd
520.0007 fm2. Gathering together all the contributions w
obtainQC50.2706 fm2.

An estimate of the corrections owing to the depende
on the relative energy, Eq.~88!, shows that they are rathe
small:Qp0

(11)50.0006 fm2.

The Lorentz boost corrections have been calculated
they are found to be negative. Their total contribution
QC
LB520.0029 fm2 which, together withQC , gives the fi-

nal result for the electric part of the quadrupole moment
the deuteronQ50.2683 fm2. An important moment should
be stressed here. The contribution of the Lorentz boost te
with nondiagonal transitions betweenS andP waves are of
the same order of magnitude as those in Eq.~98! but of
opposite sign

^v1uQ̂C
LBuvs

e&520.0053 fm2, ^v1uQ̂C
LBuv t

o&50.0027 fm2.
~99!
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Equations~98! and ~99! show that the contribution of pai
creation terms in nonrelativistic calculations is predicted
be negligibly small for the quadrupole moment and confi
the qualitative results obtained in@16#.

Note that our classification of the matrix elements into
main part and Lorentz boost corrections@cf. Eq. ~82!# is
rather conventional and does not reflect directly the con
bution of relativistic effects. However, by using Eqs.~88!,
~91!, and~92! we may present our results in the form

QD5QNR1dQrel5~0.269020.0007! fm2, ~100!

where the nonrelativistic partQNR is determined by the large
components of the BS amplitude and does not depend u
the derivatives with respect to the relative energy and u
the Lorentz boost effects;dQrel is the contribution of all the
remaining terms and, obviously, is of a pure relativistic n
ture. It is seen that the relativistic corrections to the quad
pole moment are negative and reinforce the discrepancy
though their magnitude is rather small. A similar conclusi
has been drawn in@16# from a more qualitative analysis o
the deuteron moment within the BS formalism.

Another source of the relativistic corrections is the con
bution of the magnetic part of the effective current~82!
which vanishes in the nonrelativistic limit. Our calculatio
shows that its contribution to the quadrupole moment
negative too,̂ uQ̂Mu&520.0005 fm2, so that our final result
for the deuteron quadrupole moment isQD50.2678 fm2,
i.e., the discrepancy inQD is about 6%.

B. The magnetic moment

1. General formulas

According to Eqs.~26!, ~65!, and~78!–~81! the result for
the magnetic moment can be written as
r
to
rm

the

tri-

pon
pon

a-
ru-
, al-
on
f

tri-

n
is

mD5m11m121m221m32 , ~101!

where the matrix elements between states with positive
ergies in Eq.~101! are labeled by the subscript1 and the
subscript2 means that the corresponding matrix eleme
implements at least one wave with negative energy. The m
trix elementsm i2 reflect the relativistic corrections. In orde
to emphasize the nonrelativistic analogue of the magn
moment in the expression for them1 we subtract the corre-
sponding nonrelativistic formula, and the remaining part w
denote asR1 , which is the relativistic corrections due to th
Fermi motion effects. Then the functionsm

•••

can be repre-
sented by

m15~mp1mn!~Pu11Pw1!2 3
2 ~mp1mn2

1
2 !Pw11R1 ,

~102!

m125 1
2 ~mp1mn!~Pv t
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1 1
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e1Pvs
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2 5
4 Pw21R22 , ~104!

m325(
a,b

Ca,b, ~105!

wherea5u1,w1,u2,w2, b5vs
e ,vs

o ,v t
e ,v t

o , andPi are the
pseudoprobabilities of the corresponding partial state. In E
~102!–~104! the diagonal expectation values between sta
with L50,2,1 are written explicitly; the off-diagonal contri
butions are included in the termsR andm32 , where
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The quantitiesCa,b andHi
a8,a are given in Appendix B. Now

the nonrelativistic formula for the magnetic moment may
recovered exactly by rewriting the termm1 in the form

m15mNR1Dm1 , ~109!

where

mNR5~mp1mn!2 3
2 ~mp1mn2

1
2 !PD

reproduces the nonrelativistic formula, and the relativis
corrections due to the Fermi motion effects are

Dm15R12~mp1mn!~Pu21Pw21Pvs
e1Pvs

o1Pv t
e1Pv t

o!.

~110!

Finally, the total contributions to the deuteron magne
moment read

mD5mNR1Dm,

Dm5R11Dm21m32 , ~111!

Dm252~mp1mn!@
1
2 ~Pv t

e1Pv t
o!1~Pvs

e1Pvs
o!12Pu2

1 1
2 Pw2#1 1

4 ~P3P
1
e1Pv t

o!1 1
2 ~P1P

1
e1P1 P

1
o!1Pu2

2 5
4 Pw21R121R22 . ~112!

2. Numerical results

Explicit numerical calculations give for the total deutero
magnetic moment the valuemD50.856 140 (e/2m) which
differs from the experimentally known momentmexpt
5(0.857 40661026) (e/2m) @16# by less than 0.15%.
This result consists of the nonrelativistic contribution pl
the following relativistic corrections:~i! the main correction
to the nonrelativistic value of the magnetic momentmNR
50.850 718 (e/2m) that comes from the transitions be
tween positive energy states andP states@vs

e , vs
o , v t

e , v t
o ,

cf., the term m32 in Eq. ~111!#; it gives m32

56.09931023(e/2m) and contains;0.71% of the total
magnetic moment;~ii ! relativistic corrections from the ex
pectation values of positive energy states of the Lore
transformation of the intrinsic variables in the BS amplitu
@the termR1 in Eq. ~111!#, which is found to be negative
i.e.,R1529.7531024(e/2m); ~iii ! the termDm2 , and the
sum of transitions between states with negative ene
(u2,w2), and transitions betweenP states themselves, and
part coming from normalization effects@cf. Eq.~110!#; this is
a positive contribution withDm252.9931024(e/2m) to the
total moment.

An analysis of our numerical results obtained for the o
diagonal expectation values between theS and P partial
wave states shows that, in contrast to Eqs.~98! and~99!, the
contributions of terms like pair creation corrections in th
case do not compensate each other and give a total cont
tion to the magnetic moment;0.35%, which is almost
50% of the total relativistic correction.
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V. CONCLUDING REMARKS

In this paper we have investigated in some detail the n
merical solution of the Bethe-Salpeter equation@9# with a
realistic one-boson exchange interaction. Special attent
has been paid to a study of the relation of the partial B
amplitudes to the nonrelativistic wave functions and to th
covariant description of the static characteristics of the de
teron. In our analysis we consider various bases used in
fining the partial BS amplitudes and the transition from on
basis to another. The representation based on the comp
set of the Dirac matrices and their bilinear combinations
found to be extremely convenient in computing the deuter
observables and processes with the deuteron@31# since in
this case the dependence on the kinematical variables
mainly included in the definition of the partial amplitude
~except for one spinor propagator, which usually appea
when computing diagrams for concrete processes, see@9#!,
and the matrix structure of the corresponding matrix eleme
is almost independent of the intrinsic deuteron variable
However, in this representation an analysis of the deute
structure in terms of familiarS, D, etc., components and an
investigation of the correspondence of the obtained resu
with their nonrelativistic analogues is straightened. For th
sake it is more convenient to use ther spin classification of
the amplitudes for which a physical interpretation of resu
is easier. In order to combine the advantages of these
representations the corresponding unitary transformation
been presented explicitly, cf. Eq.~51!. With this at hand,
calculations of various processes can be performed easil
the basis of the Dirac matrixes and the final expression m
be treated in terms of ther spin partial amplitudes by utiliz-
ing Eq. ~51!. This scheme of calculation has been employ
in order to compute the pseudoprobabilities of different pa
tial states and to find the nonrelativistic limit of the ampl
tudes. In Sec. III different methods of comparison of ou
amplitudes with the nonrelativisticS andD waves are pre-
sented. Apparently, the most appropriate way to define
nonrelativistic limits of the BS amplitudes is to use the rel
tion ~64!, which is based on an analysis of the behavior
the BS vertex functions in dependence onp0 and upu and on
the nonrelativistic relation between the vertices and wa
functions in the momentum space. Numerical results, d
played in Figs. 8 and 9, show that the generalized BS wa
functions ~64! are close to the nonrelativistic ones only fo
moderate values ofupu, while a difference occurs for
upu>m. This means that for rough estimates of possible re
tivistic effects one may calculate the corresponding nonre
tivistic expressions by utilizing the wave functions~64! in-
stead of the nonrelativisticS andD waves. Obviously, for a
consistent investigation of the relativistic corrections it
necessary to use the covariant calculations with complete
amplitudes.

We have investigated the quadrupole and magnetic m
ments of the deuteron within the BS formalism by computin
in the Breit frame the matrix elements of the electromagne
current of the deuteron. In our analysis we considered all
possible relativistic effects connected with both the Loren
transformation from the rest frame of the deuteron to t
Breit frame and with the dependence of the amplitude on t
relative energyp0. By utilizing results of the investigation of
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the properties of the BS amplitudes performed in Sec. III a
their nonrelativistic limits, the static moments of the de
teron have been presented as a sum of two terms: on
them possesses a direct nonrelativistic analogue, the o
one is of pure relativistic nature. We pay special attention
the contribution of the nondiagonal expectation values
tweenS andP configurations which are thought to includ
into the relativistic calculations the effects of pair curren
which are widely discussed in nonrelativistic theories. It h
been shown that for the quadrupole moment the differ
partial transitions betweenS and P components possess
noticeable magnitude, however, their summed contributio
found to be negligibly small@see Eqs.~98! and ~99!#,
whereas for the magnetic moment these matrix elements
almost 50% of the relativistic effects. We obtain a good d
scription of the experimental data for the magnetic mome
The computed value of the quadrupole moment is below
experimental data by about 6%. That indicates that eve
consistent relativistic computation does not perfectly d
scribe the data in the impulse approximation. Probably,
adjustment of the operator of the electromagnetic curren
the deuteron is needed, e.g., by including additional ter
not accounted for within the present approach, such as
son exchange currents with two-meson exchange diagr
or D isobars@10#.

VI. SUMMARY

In summary an analysis of the properties of the par
Bethe-Salpeter amplitudes, obtained as numerical solutio
the BS equation with a realistic interaction, has been p
formed. In order to compare relativistic amplitudes with t
nonrelativistic wave functions a method, based on the co
parative analysis of the observables, has been develo
The static characteristics of the deuteron, i.e., the quadru
and magnetic moments, have been computed within
Bethe-Salpeter formalism with satisfactory accuracy. Our
sults let us trust in the reliability of our approach, so that
can be used for other tasks, e.g., when tackling the nuc
effects in extracting the neutron structure function from sc
tering experiments off the deuteron.
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APPENDIX A

The matrix form of the spin-angular functionsVMa (p), Eq.
~47!, may be obtained explicitly by replacing the outer pro
uct of the free nucleon spinorsUsi

r (p) by their direct product,

Us1

r1(p)^Us2

r2T(2p). The BS amplitude then takes the form
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ped.
pole
the
re-
it
lear
at-

J.
e
ter
Na-
ada
,
ics
k

d-

xD~p0 ,p!UC5(
a

fa~p0 ,upu!GM
a ~p!UC , ~A1!

with GM
a (p)

GM
a ~p!5 i L (

s1s2m
~LmSsuJM!S 12 s112 s2USsD

3YLm~ p̂!Us1

r1~p!Us2

r2T~2p!, ~A2!

whereUC is the charge conjugation matrix,UC5 ig2g0.
One can exploit ther spin dependence and replac

GM
a (p)[GM

ã ,r1r2(p), where

GM
ã ,11~p!5

k̂11m

A2Ep~m1Ep!

11g0

2
G̃M

ã ~p,j!
k̂22m

A2Ep~m1Ep!
,

GM
ã ,22~p!

5
k̂22m

A2Ep~m1Ep!

211g0

2
G̃M

ã ~p,j!
k̂11m

A2Ep~m1Ep!
,

GM
ã ,12~p!5

k̂11m

A2Ep~m1Ep!

11g0

2
G̃M

ã ~p,j!
k̂11m

A2Ep~m1Ep!
,

GM
ã ,21~p!5

k̂22m

A2Ep~m1Ep!

12g0

2
G̃M

ã ~p,j!
k̂22m

A2Ep~m1Ep!
,

~A3!

with ãP$L,S,J%.
The spin-angular structures for some partial waves a

shown in Table III. HerejM is the polarization vector of the
deuteron with the components in the rest frame given by

j115~21,2 i ,0!/A2, j215~1,2 i ,0!/A2, j05~0,0,1!,
~A4!

and the four-vectorjM5(0,jM).

TABLE III. Spin-angular functionsG̃M
ã for the deuteron chan-

nel.

ã A8pG̃M
ã

3S1 ĵM

3D1 2
1

A2
@ ĵM1

3
2( k̂12 k̂2)(pjM)upu22]

3P1 A 3
2 @

1
2 ĵM( k̂12 k̂2)2(pjM)#upu21

1P1 A3(pjM)upu21
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APPENDIX B

Below we list the explicit form of the quantitiesCa,b and

Hi
a8,a in Eq. ~101!. By introducing new functionsGi

a,b the
mentioned quantities are expressed as follows:

t5u6,vs
e : Ct5

A6
12

m

M
@G1

t14G2
t24G3

t2G4
t24G5

t #,

t5u6,vs
o : Ct5

A6
15

m

M
@2G6

t7G7
t7G8

t6G9
t2G27

t #,

t5w6,vs
e: Ct5

A3
12

m

M
@G10

t 1G11
t 14G3

t1G4
t14G5

t #,

t5w6,vs
o : Ct5

A3
15

m

M
@G12

t 6G13
t 6G14

t 7G15
t 1G28

t #,

t5u6,v t
e : Ct5

A3
15

m

M
@6G16

t 2G17
t 1G8

t2G9
t6G27

t #,

t5u6,v t
o : Ct57

A3
3

m

M FG20
t 1G21

t 1G3
t1

1

4
G4

t1G5
t G

7
A3
3

kG22
t ,

t5w6,v t
e : Ct5

A6
15

m

M
@6G23

t 2G24
t 1G18

t 2G19
t 6G29

t #,

t5w6,v t
o : Ct57

A6
3

m

M FG25
t 1G26

t 1G3
t1

1

4
G4

t1G5
t G

6
A6
6

kG22
t ,

where theGi
a,a8 are integrals of the form

NE dp4 dupuupu2Ai~p4 ,upu!@BiYa~p4 ,upu!#Ya8~p4 ,upu!,

andAi(p4 ,upu) are scalar functions;Bi may be either a dif-
ferential operator of the type]/]p4, ]/]upu or a scalar func-
tion (p452 ip0), which are summarized in the following
tabular form:
Gi Ai(p4 ,upu) Bi

1 (E2m)Mm/(upuE2) 2va

2 2(E2m)mp4
2/(upuE2) 1

3 upup4 ]/]p4
4 M 2va]/]p4
5 2p4

2 ]/]upu
6 (E2m)(2E13m)p4 /(upuE) 1

7 (E2m)(E212mE12m2)Mp4 /(upuE3) 1

8 upu(3E12m)/(2E) 2va]/]p4
9 (3E12m)Mp4 /E ]/]upu
10 (2E1m)mM/(upuE2) 2va

11 2(2E1m)mp4
2/(upuE2) 1

12 (2E222mE23m2)p4 /(upuE) 1

13 (E322mE214m3)Mp4 /(upuE3) 1

14 (3E24m)upu/(2E) 2va]/]p4
15 (3E24m)Mp4 /E 1

16 (E2m)(7E13m)p4 /(upuE) 1

17 2(E2m)M (2E22mE2m2)p4 /(upuE3) 1

18 upu(3E2m)/(2E) 2va]/]p4
19 (3E2m)p4M /E ]/]upu
20 (E2m)2M /(4upuE2) 2va

21 2(E2m)2p4
2/(upuE2) 1

22 upu/(2E) 2va

23 (7E212mE23m2)p4 /(upuE) 1

24 (4E313mE22m3)Mp4 /(upuE3) 1

25 (E21mE1m2)M /(4upuE2) 2va

26 2(E21mE1m2)p4
2/(upuE2) 1

27 (3E12m)p4 ]/]upu
28 (3E24m)p4 ]/]upu
29 (3E2m)p4 ]/]upu

Analogously, the functionsHi
a,a8(Hi

a,a[Hi
a) are of the

same structure asGi
a,a8 with

i Ai(p4 ,upu) Bi i Ai(p4 ,upu) Bi

1 1
2(12m/E) va 6 Mm2/E2 1

2 1
2(12M /2E) va 7 2p4

2m/E2 1
3 2p4 /E 1 8 p4m

3/E3 1
4 p4m/E 1 9 upu2m/E ]/]p4
5 1/2 va 10 upup4m/E ]/]upu
.
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