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Extended calculations of the deuteron’s static properties, based on the numerical solution of the Bethe-
Salpeter equation, are presented. A formalism is developed, which provides a comparative analysis of the
covariant amplitudes in various representations and nonrelativistic wave functions. The magnetic and quadru-
pole moments of the deuteron are calculated in the Bethe-Salpeter formalism and the role of relativistic
corrections is discussefi50556-281®6)02309-4

PACS numbeps): 21.45+v, 21.10.Ky, 21.60-n, 27.10+h

I. INTRODUCTION themselves and reactions with the deuteron. More interesting
and precise data are expected after the start of the exciting
A theory applicable for studying nuclear phenomena, inresearch program at CEBAF. Therefore, there is a possibility
volving high energies or momentum transfers of a few GeVto compare exact theoretical results with the experimental
or larger, should be formulated in a relativistically invariant data in a clear way, not dimmed by extra effects, such as the
manner. A traditional approach to processes with nuclei;'more-than-two-body” phenomena.
based on the nonrelativistic Schiinger wave functions, is Still, the relativistic approach to the deuteron is not as
not adequate if a large momentum transfer “sneaks” into thepopular as the one utilizing nonrelativistic wave functions
nuclear amplitudes, and the corresponding nucleon momei7,8]. There are seemingly two main reasons for thisst,
tum p becomes large, sag=m (m is the nucleon mags the deuteron, as any other nucleus, is essentially a nonrela-
One can extend the usage of nonrelativistic wave functiongivistic system, since it is composed of weakly bound mas-
by incorporating successively the relativistic correctionssive nucleons. The bulk of the static properties of such a
~(p/m)", however, it might eventually fail at some value of system obviously can be fitted in the nonrelativistic approach
p. On the other hand, the nonrelativistic approach was foby adjusting the phenomenological potential or the wave
some time the only one which allowed for a detailed descripfunction. Besides, the experimental data for the reactions
tion of the static properties of the nuclei and low and inter-with the deuteron is also mainly available in the nonrelativ-
mediate energy nuclear reactions as well. istic domain.Secongthe relativistic models, especially those
In the recent two decades, extensive studies of fewbased on field theory, are technically more difficult and have
nucleon systems have been performed within Lorentz invaria more sophisticated physical interpretation than the nonrel-
ant modeld1-5]. The success of these elaborate studies alativistic approaches. Both these reasons, together, define the
lows one to conclude that the covariant approach has nowypical pattern for the attempts devoted to promote the con-
the capability to replace, at least for few-nucleon systemssistent relativistic description of the nuclei. The correspond-
the approaches relying on nonrelativistic wave functi@s ing works are usually highly specified for the particular re-
Most of the phenomenological success in the relativisticactions or kinematic domains where the advantage of the
treatment of few-nucleon systems has been achieved withicovariant approach can be explicitly displayed. They are of-
such models which are based on a covariant meson-nucleden filled with technical details uncommon for that part of the
theory and corresponding dynamical equatidds-3]. In  scientific audience which is not directly involved in this re-
these models, the satisfactory results have been obtained fsearch direction. That is why this is so important to have
the nucleon-nucleonNN) scattering, the properties of the simple and intuitively clear interpretations of the relativistic
lightest nuclei, various electromagnetic and hadronic interacealculations, and an explicit systematic method to compare
tions with nuclei, and some advance have been achieved fahe relativistic and nonrelativistic results.
many-body nuclear systenisee, e.g., discussions and fur- In the present work we are going to analyze the extended
ther references ih3]). calculations of the static properties of the deuteron utilizing
The deuteron, as the simplest nuclear system, is an aphe Bethe-SalpetgBS) amplitudes which are recently com-
pealing object to be described by the models invented in thputed numericallf9]. The main goal of our paper is to con-
realm of nuclear physics. There is a fair amount of experitribute to the development of the physical intuition for un-
mental information available about the deuteron’s propertieslerstanding the relativistic calculations and their comparison
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to the nonrelativistic calculations. Our basic idea is to comdow momentum transfe®? [21]. This interest is connected
pute the observable densities of various chafgas, vector to the study of theQ? evolution of the Gerasimov-Drell-
and axial-vector charggs both the relativistic and the non- Hearn sum rulg¢22], which relates the spin-dependent struc-
relativistic formalisms and to use these densities as tools tture functions of the targets to their magnetic moments. For
compare relativistic amplitudes and nonrelativistic waveinstance, only a correct description of the deuteron magnetic
functions, which cannot be rigorously interrelated otherwise@nd quadrupole moments will assure a reliable extraction of
In doing so we pursue, in some sense, the goals opposite g€ information about the neutron structure function from the
the ones we outlined above as typical for the approach withileuteron data. . _
the covariant description of the deuteron. Another goal of Our Paper is organized as follows. In Sec. Il the basic
our paper is to fill some gap in the literature by giving ex- covariant formulae for the electromagnetic current and static

plicit expressions relating the BS amplitudes in different rep-moments of the deuteron are presented. In Sec. Il the gen-
resentations, which will help to compare the relativistic am-€ral definitions of the Bethe-Salpeter amplitudes for the deu-
plitudes computed in different models. teron are given in different representations and their symme-
We calculate here the magnetic and quadrupole moment&y properties are studied in detail. The transformation matrix
of the deuteron within the Bethe-Salpeter formalism. Th€lating the amplitudes in different representations is deter-
investigation of these static characteristics of the deuteron i&ined. The relativistic amplitudes are compared to the non-
still an important topic in nuclear physics. In the nonrelativ- relativistic wave functions, using the calculated observables,
istic models it gives the direct information about the tensor€-9~ the vector and axial charge densities. In Sec. IV the

components in the nucleon-nucleon interaction and the mag:ovariant formulas for the magnetic and quadrupole mo-
nitude of theD wave probability in the deuteron. However ments are derived in the Breit frame. The effects of the Lor-

there is an essential problem in fitting the experimental val€Ntz deformation and dependence of the amplitude on the
ues of the quadrupole and magnetic moments with the sanf&'@tive energy of the two nucleons in the deuteron are ex-
D wave probability in the nonrelativistic calculatiorfsf. ~ PliCitly taken into account. The terms corresponding to the
[10] and references thergiriThe efforts, aiming to solve this Nonrelativistic expressions for the moments are determined
difficulty, go in two main directions, namely calculating the I ex.pI|C|t form and the relauwstlc corrections are computed.
corrections of the meson exchange curréiis-13 and tak- Secﬂon; V and VI contain conclusions and the summary,
ing into account the relativistic effecfd—3,14—17. In the ~ espectively.

conventional approach, the mesonic degrees of freedom and

relativistic effects are treated as corrections to the nonrela- II. RELATIVISTIC KINEMATICS

tivistic potential theory. It is found that, by adding these OFE THE ELECTROMAGNETIC CURRENT

effects to the quadrupole moment, a satisfactory description o

of the data may be achieved for a broad range of different The definition of the quadrupole mome@, and the
potentials[10], while the magnetic moment shows a strongermagnetic momentp, of the deuteron appears most transpar-
sensitivity to the model calculations of the meson exchang€nt if one starts with the famous Rosenbluth form(té
currents. Moreover, the consistency of such calculations i§24]) for the elastic scattering of electrons off the deuteron,
not at all clear. For this reason a comprehensive covariaftD—¢€'+D’,

investigation has its own right. A prominent feature of the
relativistic consideration within the Bethe-Salpeter formal-

ism is that the meson exchange effects due to pair creation do :d_o (A(q2)+B(q2)tanzf (1)
currents is taken into account consisteffl®,18,19, so that dQ lab d€ Mott 2

the essential part of the mentioned effects may be estimated

in a self-consistent way. with the following decomposition of the electromagnetic

The general approach to calculate the static characteristigym factors:
of the deuteron within the BS formalism has been elaborated
by several authors since some tiisee, for instancg3,14—
16,20) and numerical estimates have been performed. How- A(q)=F2(g?) + gnzpé(qu 2 pF2.(9?), )
ever, explicit calculations have been done within additional
approximations for the solution of the BS equation, e.g., for
a separable interaction and by disregarding the negative en-
ergy stateg§15], or with one nucleon on mass shf], or
from a general point of view with adjusting the probability of
the P states in order to fit simultaneously both the quadruwhere =—q%4M3 and My is the deuteron mass.
pole and magnetic momeri{ts6] (for this goal one needs an Q2= —q? denotes the momentum transfer. Then the quadru-
anomalously large pseudoprobability of tie waves, say pole and magnetic moments of the deuteron are defined via
~1.5%). In the present paper we perform a covariant calcuthe normalization conditions for the charded), quadrupole
lation of the quadrupole and magnetic moments of the deutF o), and magnetick ) form factors at vanishing momen-
teron within the exact solution of the BS equation and avoidum transferg?=0:
additional approximations to the problem.

Our present investigation is also partially motivated by
the renewed interest in the experimental investigation of the
nucleon and deuteron spin-dependent structure functions at

B(g2)= % n(1+ n)Fiy(a?), 3)

2 Mp
Fc(0)=1, Fo(0)=MpQp, Fm(0)=pp——-. (4
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The general form of the deuteron electromagnetic current, qr
which is invariant under Lorentz and time-reverse transfor- CQ(qZ)— —J dr( uw— _)12< )
mations, is given by 2\2
'\ € N Co(0)=MpQp, (15
(P" N3P N)y=— 2MDs;(P NI e (PN), (5)
wheree*(P’,\") ande(P,\) are the polarization four vec- C.(q ):Ef dr we|jo > +ij- it
0

tors of the initial and final deuteron states; Greek sub and/or
superscripts denote Lorentz indices to be moved with the
Minkowski metric 9w P and A stand for the 'ghree- CL(0)= 2Py, (16)
momentum and helicity of the deuteron. The covariant nor-
malization of the current reads

lim (P",\"[3,|P,N)= ev- Pu 5>\, : (6)
a*-0 © fuw  w?|. (qr)
+f dl’ _+ ]2 |
The matrix element]j;(r can be expanded in terms of the 0 V2 2 2
scalar form factors in the form
Cs(0)=1-3Pp. 17
= (P'+P)¥| 0, Fa(a?) — 5L 5Fo( ) - i ion ¢
pa 2M2 Fa(q Herej; is the modified Bessel function ath order,u and
w represent thes and D waves of the nonrelativistic deu-
+(959,—949,)G1(q?). (7)  teron wave function, an®p, is the weight of theD wave in

the deuteron wave function.
The scalar form factorf, , and G, are related to the form To calculate the form factorBc g v within the Bethe-
factorsF¢ g v by (cf. [23]) Salpeter formalism one has to express the curfgtin
terms of the BS amplitudes and, then, to extract the coeffi-
cients of different Lorentz structures given by Ed). Tak-
Fe(0®)=Fu(0*)+ 5 7[F1(0®) +(1+ 7)F2(d%) — G1(q?)), ing the limitq2— 0, the static moments can also be obtained.
®) Apparently, these calculations can be done in any particular
reference frame. For example, the Breit frame is especially
FQ(q2)= F1(g?) +(1+ 9)F(g?) — Gy(gd), (9)  convenient for such type of calculations. The Breit frame is
defined by the four-momenta components of the deuteron

Fm(9?)=G1(g?). (10)

Po=Py=E, P=—, P'=

I\)IQ
N Qo

(18)
In the nonrelativistic impulse approximation these deu-

teron form factors read . . . .
Choosingq along the positivez axis and contracting

ijg with the polarization vectors:(P’,A’) and &(P,\),

Fc(a®)=[GR(a%) +GE(g?)]Ce(q?), (1) which obey
Fo(a?)=[GR(a*) +GE(q*)1Cq(a?), (12) , 1 .
e(P',1)=¢(P,1)=— E(0,1,|,0), (19
Mp
Fu(a®) = —=|[GR(a®) + GE(a*)1Cs(a?) L
s(P’,—l)zs(P,—1)=E(0,1,—i,0), (20)

1
+5[Gh(a)+ 6}, <q2>]cL<q2>} (13

e(P,0)=(—7,0,0/1+ 7),

where GPM(g?) (G{P"(g?) are the electricimagnetig
nucleon form factors and the invariant functioB$q?) are

defined by e(P',0)=(y7,0,04/1+ 7), (22)

. one arrives at expressions for the matrix elements of the
(qz):J' dr(u2+w2)j0(%), Ce(0)=1, (14 foertsjteron electromagnetic current in terms of the form fac-
0 :
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(P' N [O/P Ny =ey1+ p{F18\ +27[F1+(1+ n)F, Since the BS amplitudg and its adjointy satisfy the
homogeneous BS equation they are determined up to an ar-
—G1]d\,00\ 0} (22 bitrary constant which is fixed by an additional normaliza-

tion condition. In the ladder approximation the normalization

7 constant may be fixed by computing the matrix element of
<P’,7\’|JX|P,)\):e77’\/1+ NG1(8y a1~ By n-1) the electromagnetic current @f=0, i.e.,
(23 dp )
f i(z—w)ﬂr{x(p;P)mx(p;P)(m— pP1)}=2P,. (30
)
(PUN[P[PA)=—ie V14 nGi(Sy nr1t dhr 1), The normalization condition(30) coincides with the one

(24) used in[14].
The BS amplitude is a (44) matrix in the spinor space,
(P' \'|3%P.\)=0. (25)  and consequently the BS equati@®8) possesses this matrix
structure as well. To solve this matrix equation one can uti-
Thus the magnetic and quadrupole form factors of the deulize a decomposition of the BS amplitude over a complete set

teron are recovered by of (4X4) matrices and solves a system of coupled equations
for the coefficients of such a decomposition. The choice of
m — (P \'=1/3P,\x=0) the representation of the matrices depends on the concrete
wp=-—2 lim , (26) . ; ;
M e attacked problem. Certainly, different representations are re-
D »-0 nl+g ! : o :
lated by linear transformations, and it is straightforwésdt
1 cumbersomgto transform results from one representation to
Qp=—=lim another one. In our opinion, to solve the BS equation and to
M50 compute matrix elements of the deuteron observdlasgor
o 0 o o instance Eq.(30)], a convenient way is to decompose the
><<P A'=0[3°[PA=0)—(P'\'=1|J°|P,\=1) amplitude in terms of the complete set of Dirac matrices,
291+ 7 ' which form the Clifford algebrdfor more details cf[9]). By

(27) exploiting the parity invariance of the BS amplitude

Equgtions(22)—(27) are the basi<_: relations pfoyiding the cal- Pxo(PoP)= 75Yoxo(Pos— P) Yo. (31)
culations of the electromagnetic characteristics of the deu-

teron. In practice, one needs to define explicitly the operatojt may be written for the deuteron, which has positive parity
J,, of the electromagnetic current and calculate its matrixejgenvaluesy,=1, as

elements with the deuteron sta{és\).

P — 5. 0A0_ (n, \7)_ "R 95 A0( ay. FO
IIl. THE BOUND-STATE WAVE FUNCTION Xo(P;P)=vysP+ ¥’ y"A"=(y- V)= ys(y-A) = 2iy"(y-T7)

A. General definitions —29%y5(y- ), (32

Using the technique presented[®, the BS equation for

: 0y avial (A 20 ¢
a bound state in ladder approximation can be written in theVIth pseudoscalarR, A%), axial (A), and vector {7, T, V)

unctions depending only upon the relative four-momentum

f
orm p in the c.m. frame. The angular dependence of the state with
K(po.p)x(p;P) spinJ=1 and its projectionM owing to the rotational in-
) variance of Eq.28) is expressed in terms of the spherical
D A j 4, AP)Tex(p’;P)I'sA(P2) o and vector spherical harmonics. For example, when denoting
= 4ind (p—p')?— u5 ’ X=(P,A% andX=(A,T°T,V), we may write
(28)
X(po,P)=X1(Po,|PY 1m(2p),
K(Po.P)=(Eg—P5— #Mp)>—poMp, (29
v, _ L
where y(p;P) is the BS amplitude for the deuteron in the X(po,p)—L;m X (Po[PDYLp(p)- (33

matrix representatiof®]; A(p;)=pi—m; p=(poy.p); is the

four-momentum of theéth nucleon in the deuteron expressed The corresponding equations for the radial functions can be
in terms of relative four-momenta or p’ and the center-of- found by a partial wave decomposition of the kernel in Eq.
mass(c.m) momentumP=(Mp,0): py,=P/2xp; B enu-  (28) and by carrying out the angular integration. An example
merates the exchanged mesomg;is the mass of the meson; of the system of coupled equations for the radial amplitudes
I's is the interaction vertex between the nucleon and thén the case of one exchanged scalar boson is givéa]irin
corresponding bosoB; and )\Bzg§/4w with gg being the  what follows the notation for the radial amplitudes are kept
coupling constant. We use here the shorthand notatioas in Eq.(32) with the lower index indicating the value of the
f)Ep“)/M for contractions with Dirac matrices,, . angular momenturh in Eq. (33).
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B. The transformation properties of the partial amplitudes TABLE I. The deuteron partial amplitudes and their transforma-
tion properties.

Due to the parity invariance, E¢31), only eight radial

(r:](;rnrlgglr?ents are relevant to describe the deuteron amplitudes; 1, P, A Vv, A A T T, T,
L 1 1 1 0 2 1 0 2

P1,AY Ay, A2, V1, TS, To, o B34 s o o 1 1 1 1 1 1

K + + + + + — + +

Analyzing the behavior of the amplitude under the symmetryry + - + + + — + +

transformations, one can establish the properties of the com
ponents(34). The invariance of the BS equation under the
time-reversal operatiol

Table | summarizes the properties of the partial BS am-
plitudes in the representatig82) under the symmetry trans-
formations.

TX5u(Po.P) =Y V*X3* (Po, —P) Y'Y (35
C. Observables

Relying on the symmetry properties of the partial ampli-
tudes, defined by Eq32), the BS equatior(28) has been
solved numerically9] for the deuteron at rest by performing
. . . 0 a Wick rotationpg—ip4. In our present calculations we in-
|_|[nply that tTef seven partlr?: ar?‘plltudé?}, Vld Al' A°'2|’ clude six meson exchanges of o, p, o, %, and §, which

02 are real functions, while the amplitudg; is purely describe the effectivéIN forces. The set of the meson pa-

and the complex conjugatiod

Kx%(p)=(—DMx° v(p) (36)

imaginary, '-?-'T‘i*:,—T?- _ . rameters, such as masses, coupling constants, and cutoff
The Pauli principle implies that the amplitudes(P)  form factors, employed here is the same aglifi, obtained
changes sign if two nucleons are interchanged, i.e., from a fit of the phase shifts of thdN scattering and the
N binding energy of the deuteron.
Xp(Po,P)=—xp(—Po,—P). (37) The BS amplitude does not have a direct probabilistic

interpretation as the Schiimger wave function. Moreover,
From Egs.(37) and (36) follows that A? and T‘l) are odd there is no simple way to compare these two objects describ-

functions with respect to the operatidh(py— —po): ing the same system, namely the deuteron. In order to make
a comparison possible, we can compute the same matrix el-
A% (pg,p)=—A%(po,p), IIT(po.p)=—Tpo.p), ements of observables in the two approaches and compare

(39 these observables.

For example, theu=0 component of the normalization
and the remaining six amplitudes are even functionppf condition (30) in the rest frame of the deuteron, due to
This symmetry property is useful for the classification of the(D|N(0)y°N(0)|D)=2Mp, is simply a charge of the deu-
amplitude according to two-nucleon states with a given relateron associated with the vector current. In the Wick rotated
tive energy, i.e., the spin classification. system and in terms of the partial amplitud8d) it reads

—Mp(P2+ A2+ 47924+ V2) + (2my—Mp) (Xg 2+ X5 2) = (2my+Mp) (Xo 2+ X5 2)

P1(Xg —V2X3 + X5 —2X5) - J}mvl(f 2Xg + X3 —\2Xg = X3) |, (39)

dp,d|pl|p|?
MD‘zf (2

2:2|p|
e

whereX* =2(T+A/2). Now we define the charge density relativistic analogue, i.e., the square of the deuteron wave
function in the momentum space, which is proportional to

pen[pl) as
u?(p) +w(p).
1 — 5 dp, d|p||p|? In the same manner also the nucleon spin density may be
m(DW(O)Y N(0)|D)= f Wpch(m,lpl), defined as the density of the axial charge

(40 1
Mg ~——(D|N(0) y5y°N(0)|D)

= dp
Pch(|p|)Elez_,;:pch(pmlpb- (41) dp, d|p||p|?
Wpspir{p4y|p|)y

This already may be compared with the corresponding non- (42
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105 . . . , . , , potential models are reproduced by the solution of the BS

equation might be interpreted as the relativistic structure of

103 F rlatisio (55) _ the deuteron which is governed by the nucleon interaction in
----- nonrelativistic (Bonn) states with a positive energy ahd=0, 2, i.e., by3S; and

o' b rometavete e ] 3D, configurations. Therefore, in spite of the quadratic

forms of the partial amplitudes, which are not diagonal in

10! \‘31‘;';; - Egs.(39) and(43), one can define the relativistic analogue of
the probability of theD wave admixture in the deuteron.

103 F 1 Carrying out thd p| integration in Eq(43) and equating the

, , , , LT result to (1-3/2Pp) we find Pp~5% (cf. [14]), which is

0 02 04 06 08 10 12 14 16 compatible with the probabilities of the BoniPf=4.3[8])

p[GeV/q] and Paris Pp=5.9[7]) potential models.

N [GeV )

FIG. 1. The nucleon density in the deuteron computed within ] o )
the BS formalism in comparison with the nonrelativistic results. D. The BS amplitude in different representations

To have a closer analogue with the nonrelativistic consid-
© dpy eration it is convenient to use another basis set of matrices in
pspin(|p|)5fﬁwﬁpspin(p*lm)' 43 the decomposition of the BS amplitude. In the literature the
two-spinor basig26] is frequently used, which means an
In the nonrelativistic limit this density reflects the contribu- outer product of two spinors, representing solutions of the
tion of theD wave admixture in the deuteron, which is pro- free Dirac equation with positive and negative energies. This
portional tou?(p) — (1/2w2(p). basis is labeled by the relative momentymthe helicities
Results of numerical calculation of the defined densities\;, and the energy spip; of the particled14], sometimes
together with a comparison with their nonrelativistic coun-also called the [,\1,A5,p1,p,) representation. In this case
terparts obtained with the Bonn and Paris potentials are predne usually adopts for the partial amplitudes the spectro-
sented in Figs. 1 and 2. All curves exhibit qualitatively simi- scopic notatior?S* L2 i.e.,
lar shapes and are identical in the nonrelativistic region
|p|<0.5 GeVE. If the momentum|p| increases, the devia-
tions of the relativistic results from the nonrelativistic ones
becomes more significant, but still too small to be attributed
to relativistic effects. Rather it is compatible with the model
differences. Particular attention is to be paid to Fig. 2, wherésometimes it is more convenient to change from the
the spin density is depicted. This function is rather sensitivdJ,\1,\>,p1,p>) representation to the representation
to the internal spin-orbital structure of the deuteron. The fac{J,L,S,p) wherep is the projection of the total energy spin
that the “elementary oscillations” of the spin density in the of the system. In this case the notation of the components is
as follows:

SSI—+ ’SSI— 13DI—+ 13DI_ 'lPI'— 11PI+ 13PI—_ '3PI+ )
(44)

Y'=(vl,vfvsvd,u"u”,whw), (45

————— nonrelativistic (Bonn)
~~~~~~~~~~ nonrelativistic (Paris)
relativistic (BS)

whereu,v,w correspond td-=0,1,2, respectively, and or

e mean the odd or even parity relative to {spin function;

the lower indicess andt denote the singlet and triplet spin

configurations, respectively. According to E¢&7) and(36),

the amplitudes 2, v{ are odd and $,v{ are even functions

of pg. The partial amplitudes in the basi#4) and(45) are of

a more familiar form and show a more transparent physical

meaning since they may be compared with the deuteron

states in the nonrelativistic limit. It is intuitively cledsee

also Figs. 1 and)2that the two nucleons in the deuteron are

mainly in states with. =0,2 and with positive energy so that

one may expect that the probability of states with negative

energies and. =1 in Egs.(44) and (45) is much smaller in

comparison with the probability for thdS ~ and 3D; * (or

u* andw™) configurations. Moreover, it can be shown that

the waves®S; © and ®D; " directly correspond to thg and

D waves in the deuteron, while those with the negative en-
FIG. 2. The nucleon spin distribution in the deuteron computedergy vanish in the nonrelativistic limit.

within the BS formalism in comparison with the nonrelativistic re-  The partial amplitude$44) are defined through the fol-

sults. lowing decomposition of the BS amplitude:

Dypin [GeV I

10-4 -
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- -1 . -
xD(po,p)=§ ba(Po.|PDVIA(P), (46) p3®(a~A)+2l®(a-T)=\—E(|+p3)®(o-x+)
. 1 . N
where a={J,L,S,p1,p,} labels different states of the sys- +—=(-p3®(o-X).
tem; ¢, denotes the partial amplitudes in E@i5), and V2
Viu(p) are the spin-angular functions (49)

Then Eqs.(48) and (49), together with the symmetry prop-
erties of our partial amplitudes listed in Table I, show that

Vi (p)=it > (LmS$JM)(ESlESZ Ss) the desired relation between the two representations appears
sism 272 as follows:
XYLm(P)UZHP)ULA(—p). (47)
T SITXg, %SiT~Xg, D3, DIT~Xg,
In Eq. (47) the quantities)?(p) are the free nucleon spinors; 3p‘i~T°, 3pf1’~v1, 1p§~p1, 1pg~A2_
the explicit matrix form for the spin-angular functions
Viu(p) is given in Appendix A. The relation between Eq¢34) and (45) can be established

n order to establis_h a connection between the represent@-xacuy_ The components being odd in the relative energy
tion (32) and the spinor basié44)—(46) we represent the o ve andAj, T are related directly to each other via
Dirac matrices in Eq(32) as a direct product of Pauli matri- ~°

ces of the nucleon spiar and thep spin

vd=—iAj, vi=2T}, (50)
L ) - R - whereas the remaining six components are connected via lin-
xo(P)=p ®[IP=2i(0-To)]+ip°@[IA’+ (0 V)] ear combinations. By representing these amplitudes as six-
5 At 2l 3 48 component  vectors, Y'=(vg,v7,u,u”,w",w_) and
tpee(a-A)+218(a-T). (48) WT=(P;,V1,Xg . Xg . X5 ,X3), the transition fron¥ to V¥ is

provided by a unitary transformationy=UW¥ [with
det(U)=—1, andUU "= 1] with the following explicit form
The last two terms in Eq48) may be rewritten as of the transition matrix:

|
w~| N
(@)

S
|

S
|
™

%

o 2
{ 3
\F _ 2 1+ 1-1+£ 0 2\21-\1+£
3 3 { 3¢ 3 ¢
g NIRRT 1T R 23 1-\TT P . 6D
3 3 3 { 3
2 \ﬁ 0 2214142 14V 112
3 V3 3 { 3
2 \F 2\21-\1+£ 0 1-1+£ 1+1+ £
B V3 3¢ 3 {
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TABLE Il. The pseudoprobabilities of the partial waves in the

deuteron. B somn ]
10°® E - — Paris —g

Wave ut wt u- wo - S 3
P.(%) 95.014 5.106 —0.002 —0.003 10 L il
Wave ve vy v vy F 3
P (%) -0.010 -0.08  -0015  —0.008 - 3
1 E E

z  f ?

with ¢=|p|/m. In the nonrelativistic limit, wherg<1, the e ]
matrix U becomes diagonal =
10 *f AN

U= diag —1,1,1,1-1,—1), (52 "

. . . . . 10 °g E

and our representation coincides with the one in the spinor g E
basis. In what follows all formulas will be derived in terms - .
of the partial amplitude$44) or (45), nevertheless the nu- 10 '(; — o.'5 : 1.'0 —

merical calculations are performed with our solutiéd4) by plGeV/d]

utilizing Eqgs.(50) and (51).
Coming back to the normalization condition it is easy to

' FIG. 3. The momentum dependence of t*& * component
show that Eq(39) may be transformed to a diagonal form

defined by Eq(55) (solid line) in comparison with the correspond-
ing nonrelativistic wave functions with Bonn and Paris potentials
(dotted and dashed lines, respectiyely

=LY (P4.IP]), &Y (p4.|p)1=1,
(53

_fdm dlpl[pl®
(2m*

v (lpl)= \/2f dps @/ Ya(palPDIPMpL. (55

which is exactly the normalization condition used i@]. In
Eq.(53) Y denotes the eight-component vecdté), andw is
a diagonal matrix

Thus ¢“ may be regarded as the absolute value of the rela-
tivistic wave function of the deuteron in the state[for
instance,a=5 corresponds to &S; * configuration,a=7

to D], etc., cf. Eq.(45)].

) Figures 3 and 4 display the behavior of the relativistic
&)=— dlagMD’MD’MD'MD’MD_ZEp’ZEp+MD!

10

Mp— 2E,,2E,+ Mp), (54)

L

so that the integrand in E@53) consists of a sum of qua- 1
dratic terms of radial function¥, weighted withw, . There-
fore each term, after integration, may be interpreted as
pseudoprobability of finding the corresponding relativistic
state in the deuteron. The result of our numerical calculations
of the pseudoprobabilities is presented in Table Il. It is seen
that an admixture of the negative energy amplitudes affects
the contribution of the positive energy states. The appearance
of the negative contributions of waves with negatpeapin
is not a surprise; it follows from the physical meaning of the
normalization condition according to that the contribution of
each term in Eq(593) is the effective baryon charge in the
corresponding state. The pseudoprobabilitiesSoand D
waves(see Table Il are close to the corresponding probabili-
ties obtained in the nonrelativistic Bonn and Paris potentials, T I E—
as expected, since the deuteron is essentially a nonrelativistic
system.

To investigate the behavior of the partial amplitudes and |G, 4. The momentum dependence of 2} * component.

their nonrelativistic limits, we employ once more the normal-The solid line(BS-I) depicts the result of computation by E&5);

Lol

10

[*D*(p)1

T T TTTHIT

[ REET|

10

T T TTTIT
Lol

107

T T T

Ll

p(GeV/c]

ization integral(30), now however in the form of Eq53).
Then, similar to Eqs(41) and(43), we define the following
functions* depending upotp| by

the dotted line(BS-1l) includes the contribution oP waves(see
text); short-dashed and long-dashed lines depict the nonrelativistic
wave functions with Bonn and Paris potentials, respectively.
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(P1+m)G(p;P)(Po+m)
P)= (56)
X (pi—m?)(p3—m?)
0™ .
] From Eqgs.(46) and (56) it is possible to find a decomposi-
i tion for the vertexG(p;P). In doing so, one introduces the
] two four-vectors of on-mass-shell particles corresponding to
o the Dirac spinors in Eq47), i.e.,
klz(Ep!p)! kZZ(Ep-_p)v Ep: \/p2+m2-
07 ; P=(Po.p)- (57)
] Then in Eq.(56) the inverse propagator of the nucleons may
1 be represented in terms of the vect&is by
I | 5—11=ﬁ)+‘— -t k,—m)S-i(1
10 -3 1 | 1 i ! ~
0.0 05 1.0 15 +(k,+m)STH(D)],
® v (kp+m)S; ()]
FIG. 5. The momentum dependence of thavaves defined by o E_ A =i .o -1
I -1
wave functionsy;g and 4, (solid lineg versus the relative (ke tmM)SH(2)], (58)

momentum|p| in comparison with the nonrelativistis and where
D waves. We conclude that with an accuracy of model am-
biguities in the nonrelativistic calculatiorigiven here by the 1
difference between Paris and Bonn wave functions, i.e., the S (1)=<%+p TE )
dashed lines in Figs. 3 and the large relativistic compo- * 2 R A
nents are close to their nonrelativistic analogues up to
|[p|~m. However, there is a distinctive difference in the M -1
shape of theD waves in the two approaches. Namely, the Si(2)=<——p01 Ep) ) (59)
nonrelativistic functions change the sign in the region

|p|~m, whereas the BS component does not dqcfothe
solid line labeled as BS-I in Fig.)4To understand this we
tentatively introduce an auxiliary definition of the relativistic
D wave which is just the difference between the integrand in ST LU (p)=sgr(p1)S, (LHU(—p),
the normalization condition and the contribution of the
837" component, i.e., we introduce in the definition of the
D wave the contribution of all the negative energy states:
s ~\ W 2+w ?+u"?+---. In this case only two wave

functionsyq andy, determine the normalization of the BS
amplitude, and the correspondence with the nonrelativistic

limit becomes one to one. In Fig. 4 the functigy is la- Gu(pPiP)=2 G*(po.Ilp)Viy(—p), (61)
beled by BS-II, and it is seen that it displays a minimum in @
the same region as the nonrelativistic functions, i.e., it ha
the same shape as the nonrelativifliavave. One observes
that the nonrelativistid wave already mimics relativistic
effects, so that in calculations of relativistic corrections to the

nonrelativistic approaches an overestimate of the magnitude Y4(Po,|p))=S,,(1)S,,(2)G*(po,|p]).- (62)
of such corrections may occur. For completeness, in Fig. 5

we present the wave functions far=1; since the waves The relation Eq.(62) implies that the BS amplitudegl6)
u~ andw™ are negligibly small, even in comparison with the have sharp maxima aroum=0, while the behavior of the

wavesL =1, they are not presented here. partial verticesG*(po,|p|) is predicted to appear as smooth
functions of the relative energigee alsd14]).

The behavior of the vertex functions is shown in Figs. 6
and 7 for the configurationdS; © and®D; * as functions of

In studying the nonrelativistic correspondence of the sothe relative energp, and momentunhp| in the Wick rotated
lutions of the BS equation it is convenient to work with the system. One observes that the dependence of the vertex func-
BS verticesG(p; P) defined by tions upon the relative energy is weak, hence one may expect

Because of

S H2)UL(—p)=sgr(p2)S,,(2)UZ%(p),  (60)

the decomposition o (p;P) reads

hence the partial amplitudes and the vertex functions are in-
terrelated via the following simple expression:

E. The vertex functions
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FIG. 6. The behavior of the
vertex functionG(py,|p|) for the
37" configuration in the deu-
teron in dependence op, and

[pl.

G(po, Ip])

that the nonrelativistic and relativistic verticespgt=0 have o G"(po.lp) G (0/p)é(po.lpl)
similar structures as fqncﬂons o). From this observation Po. [P [(Mp/2— Ep)z— P2l [(Mpl2— Ep)z— p2]
and Eq.(62) we establish another relation between the BS (63)

amplitudes and nonrelativistic wave functions. Below, as an

example, we show how one can obtain the relativistic wave

function for the3S; ™ configuration from the BS amplitude. with &0,Jpl)=1, where the dimensionless function
The energy dependence of the componehtis factorized  &(po,|p|) reflects the energy dependence of the vertex func-
into two parts, namely a dependence on the scalar propagten. In view of the smooth behavior of the vertices as func-
tors (59) and a vertex function. Then, using the smoothnesgion on p,, one may replace this function by a constant,
of the vertex as function o, we replace it by its value at £(0,p|)=~&o with &~1. Then in the normalization integral

Po=0 multiplied with a smooth function dfy, i.e., Eqg. (53) the integration over the relative energy may be car-
ried out explicitly and the remaining part corresponds to the

FIG. 7. The same as Fig. 6 but
for the 3D; * configuration.

G(po, Ipl)
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7 10 3 3
10* 3 5 ;
1 1 1 3 E
10 3 E 3 3
] ] 2 ] i
'3 51073 E
& - 1
: ]
G107 E 1 1
- ; ; 10 = 4 E
10 -2 E 3 i E
] . 10 7 E
10 ° / 3 B 3
] I : .
] - 7 1
10 -4 T T T T T T T T T T T T T T 10 4 T T T T T T T T T T T T T T
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
p{GeV/c] plGeV/q]
FIG. 8. The nonrelativistic limit of théS; © component defined FIG. 9. The same as Fig. 8 but for ti®; * components.
by Eq.(64) (solid line) in comparison with the nonrelativistic wave
functions with Bonn and Paris potentigidotted and dashed lines, IV. THE STATIC CHARACTERISTICS
respectively. OF THE DEUTERON

Let us calculate now the static moments of the deuteron in
he BS formalism. The conserved electromagnetic current of
the deuteron(5) in terms of the BS amplitude is given by

square of the nonrelativistic wave function, i.e., we definet
the nonrelativistic limit of the BS amplitude™ by

Mo—2E, <P’,)\’|J#|P,)\>=—ieNof d*p Tr{x\(p’;P")
Yol Ipl) = £gu ™ (0] p)) 2= (64 )
’ ’ 4\Mp KT (@ xa(PiP)S(P2) 1, (69)

- - : where  Se(pp)=p,+m, p'=p+q/2, P'=P+q, Np
Similar definitions, using Eqg53), (54), (59), and(62), are = 1/(27)%2My. The quantityT', is the photon-nucleon

valid for other waves. The generalized relativisB@ndD  electromagnetic vertex, which is assumed to be of the on-
waves in this manner are displayed in Figs. 8 and 9. Thesgass-shell form

figures should be compared with Figs. 3 and 4, which display

the modulugthat is without the signof the wave functions, P

whereas Figs. 8 and 9 rely on the absolute values. One can r,(q)= yﬂFi(qz)— %aquFg(qZ), (66)
consider this as a new way of finding the nonrelativistic ana-

logues of the BS amplitudes. The actual calculations have s ) ,

been performed witté,=1. A comparison with the corre- Where o,,=(1/2)ly,,7,], and F; are isoscalar Dirac
sponding nonrelativistic wave functions f|—0 shows (Paul) form factors of the nucleon wittF,(0)="F5(0)
that, by choosing the parametéy=1, we slightly overesti- = /2, k=pp+u,—1, anduy, , are the proton and neutron
mate (by about 10% the relativistic functiongsee Figs. 6 anomalous magnetic mor_nent; in units of the nuclear magne-
and 7. It is worth stressing that in our solution of the BS ton €/(2m). The gauge invariance of the electromagnetic
equation the relativisti® wave does not change its sign in current in the ladder approximation has been proveji#j

the interval up tdp|~1.5 GeVE. This is the most essential (€€ alsd25)). _ _ _
difference between the relativistic and nonrelativistic ap- 'NOW we have to interrelate the expression for the static
proaches in this region. Therefore, one can expect that tHEOMents(26) and (27), which are determined in the Breit
relativistic corrections to physical quantities in the deuterori’@me, and the BS amplitudes, which are numerically ob-
up to|p|~1 GeVk are relatively small; to distinguish them tained in the rest frame of the deuteron. This relation is given
one should either compute observables which are known ey the general transformation rules

perimentally with a very high precision and sensitive to the 1 .

spin structure, or find special processes where the large com- (P P)=A(L))\ (L7 P Pem)A(L),  (67)
ponents are suppressed and only the states with negative en- o .

ergies are relevant. (P PHY=A"HL) X\ (LP ;Pcm)A(L), (68



54 BETHE-SALPETER AMPLITUDES AND STATC ... 997

A NL)Se(EP—p) A(L)=Sc(L P, — £ 1p) L, plitude itself and might be characterized by effects of the
(LIS (2 P) (£)=5¢(z P, P) (69) negative energy partial statésspecially nondiagonal expec-
tation values of the current betweeis; © and 1P{(©),
whereA is the operator for spin-1/2 particles corresponding3p{®):(® partial statey (ii) a dependence of the amplitude

to the Lorentz transformatioR=LP,, P'=L"'Pc, upon the relative energg,+0; in studying the static char-
- acteristics of the deuteron this effect is called retardation in
A(L)= Mp+ Py (70 the BS amplitude(iii) an effect of boosting to the internal
 PMa(EL-Ma) o(E+Mp) space-time variable, that is the effect®# 1, (iv) effects of
the deformation of the BS amplitude concerning the booster
with the corresponding Lorentz transformation maifix A(L)#1.
In fact, in the matrix elemen{72) these boost effects
Vitn 0 0 -y reduce to a deformation of the photon-nucleon vertex, Eq.
0 10 0 (73), and to corrections frofhA ~*(£)]% In our case, i.e., as
L= . (71 7—0 [see Eqs(26) and (27)] for Egs. (72) and (73) one
0 0 1 0 may write
-Jp 0 0 JV1+9y
~1 12 7
The direction of the boost is supposed to be parallejto [ATHO =1+ Vnyoyst 2’ (78)
Then, after the Lorentz transformation of the integrand in Eq.
(65), the matrix element takes the form A(L)yoA(L)= g, (79
N . — = A(L)y1A(L)=y1[A(L)]?, 80
(P/\'13,1P.N) = —ieNg [ dp Tr[m(p o)) (EnAL=nl ML) (80
. . A(L)¥,8A(L)= 7,8, (a=0,D. (8D)
XX}\(p;Pc.m)SF(EPc.m._p) In what follows, the deviation of the quantifyA ~*(£)]?

from unity in the matrix element Eq72) we call the effects
X[Al([,)]z] 72 of the Lorentz boost in the BS amplitude.

A. The quadrupole moment
where

_ 1. General formulas
L ()=A(OT (@)A(L) (73 According to Eqs(27), (66), and(78)—(81) the result for

and the variablg' is represented via andq as the quadrupole momentum is presented as follows:

p'=Lp' ®B=L(p®+ aq)=L%p+35Lq, (79 Q=2 > (a'”'|Qla?)

aa’ pp'
with components

=> X [(a'"|Qcla?)+(a’" |QLE|ar)

p®' =(1+27)po— 291+ 7p*~Mpy, (75
p¥ =p*,pY’ =pY, (76) +(a'?'|Qula”)+(a’?'|Q[a”)], (82

p? = (14 27)p*— 2\ 7V1+ 7p°+ M7 1+ 7. (777 Where the subscript€ andM mean the corresponding con-
tribution of the charge and magnetic part of the photon-

Equation(72) is the starting point in evaluating the static nucleon vertex66), and the superscript LB is the contribu-
moments of the deuteron in the BS formalism. The mairtion of the Lorentz boostA (£) 12— 1.
peculiarities of this matrix element, in comparison with the The corresponding matrix elements of the zeroth compo-
familiar nonrelativistic expression, come from the Lorentznent of the deuteron electromagnetic current in the definition
transformation and from the relativistic nature of the BS am+27) take the form £ =0,1)

e d* — P o)
JE)A,)\)(P’P)ZMJ i(z—:ler()()\(p’;P)'yOX)\(p;P)SF<E_p) ] (83

e d* — P -
I (PP =gy ﬁ”[“(p””“mp;")SF(E“’) Ws]’ >

(AN) _ e K d4p (! A ~N A . (P )_1
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eK\/—

p -1
PP~ oy amy ) (2w )4Tr[“(p P (o= Grobn (P P)SF( p) yml' o

As the next step the partial wave decomposition of E§3)—(86) has to be performed. Then one expands the integrands in
Taylor series aroundy=0 and carries out the limiy— 0. It is clear that one has to keep corrections includd{g;) in both
the wave functiony(pg,p’;P) and the matrixA (L).

This scheme of the calculation allows one to investigate separately the contribution of different relativistic effects men-
tioned above. Equationi84) and(86) are new contributions which account for the effect of the boosted photon-nucleon vertex.
Moreover, also the Lorentz deformation effect of the BS amplitude is taken into account in these matrix elements through the
relative momentunp’.

Obviously, the main contributions to the quadrupole moment come from the charg(saﬁ’étha”), computed with the
largeS andD components of the BS amplitude. For these states, with

p=p'=+1, (87

one can recover the nonrelativistic formula for the quadrupole moment of the deuteron and separate the corrections due to the
relativistic Fermi motion of the nucleons and the retardation in the relative energy

Q5= X (a"|Qcla®)=Q\ QL. (89)

a,a’=SD

The two terms on the right-hand sidRHS) of Eq. (88) reflect the existence of derivatives with respect to the momentum
|p| and the relative energy in the corresponding integrands:

1(Ep—m)?

+=dpo|p|?d|p| Mp 2po\°
Q" +)__2|\/| j_mf Tiemt |52 TP, Wu+(po 1el)”

1 14E;‘+5E§m2—3m4+20E§ W (po. o2+ 1 gl = (ool
- — W - W
120 |p|2Eg Po. P Po:IP |p| (9|p| Po. [P
Lo (o lpl) =g (po o+ A2 2 AES T SESESEM oW (po.lpl)
+ 5aW " (Pos [P 2 W (Po, P + =5 4 Po.|PHW™ (Po.|P
20 Jlp| 60 pI°Ep
V2 2E,+3m 1 9 \J2 2E,—3m 1 9
+ o = Ut (Po, P = =W (Po|Pl) + mm —— =W (P | P = == U™ (Po,
20 Ep (pO |p|)|p| &|p| (po |p|) 20 Ep (pO |p|)|p| 0—’|p| (po |p|)
ﬁ & vz & } Iplz{
+ wt u ut wt wh
W (po.[Pgr5u (Po.[PD + 55U (o Ipl)a|p|z (Po.[PD |+ 5 4z |3 o™ (PolPD?
1 9 3.2
+w(po,|p)—= =—w'(pgy,|p|)+ ut wt ++2wt u
(Po:[PD7 5757w (Pos P+ 5z U™ (Po. [PHW™ (po, [P+ V2w (o, |p|)IIDI ﬁ|p| " (o,
+2u” ||—1 7wt [d (89
u (pOi p)|p| a|p|W (pO! p)

and
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2
u™(po.|PN===W" (Po.|P|)
Pg

. f f*“dpolplzdlpl 3 [, 2Po|°
2m* 10Mp\ - Mp

J
u+(po,|pl)a—w+(po.lpl)+

Mo
T2 P

QU )= f f“cdpolplzdlpl1||0|2
v, 2Mp ) = i(2m)* 5M32

-

d 92
+w (po,lpl)—zu+(po,|pl)}—w+(po,|pl)—zw+(po,|pl)
apo ﬁpo

X

1+m
E,

1+m
E,

2

J +=dpolp/®d|p| |p|
+ 7wt
+Tw (p0!|p|)apow (p01|p|)}+ f f |(2’7T)4 5MD

2 2
W' (Po,|pl)+W" (Po,

Mo
ST P

w*(po Ipl)iu+(po IpI)}
P75 ,

2po Mp
MD)(E_ > +Po
2

Ipod|p|

u" (po. PN

x{f

u*(po.lp)) | +W*(po.|p|) W*(po,lpl)},

(90

whereu™ (po,|pl) andw™ (po,|p|) represent the radial function of the corresponding partial s&8gs and °D; . In the
nonrelativistic approximatior&,—my, po/Mp—0, Eq.(89) yields

+=d po|p|*d|p| 9 R
(+,+) B
T 2Mp 10[f_ocf i(2m)” (7|p|2 To alpl “(poslpl)

W' (Po.Ipl)

# 5 49 3 +=d po|p|%d|p|
_ _ - _ + +
Hﬂpﬁ+mamYWmJW (Po.lph)u ”“m“HEP ) 2Mp zaf f Ti2mt
o | 6) (o lp) |w( ||%E MD) (91)
2t T Tz W , w , - -
alpP? "o alpl  Jp?/ ™ PP Po- PV Ee

Equation(91) does not have a “true” nonrelativistic form yet because of the integration pyeHowever, by utilizing

Egs.(63) and(64) with £,=1 and carrying out the, integration explicitly, the familiar nonrelativistic expressi@¥] for the
guadrupole moment is reproduced exactly:

1 dlp| [ ,d%o(|pl) da(Ipl) dyo(|pl) 2(d¢2(|P|))2 2]
Q=" 20 2m) V8| Il apl i 3IPlaPD—gror | PP g | TelvalphI . (92

whereo(|p|) and ,(|p|) are defined by Eq64) and correspond to the nonrelativisBcandD components of the deuteron
wave function(see, also Figs. 8 and.9As seen from Eq(92) the main contribution to the matrix elemdi89) is expected to
come from the interference of the positi8eandD states in the deuteron; the remaining terms with negatigpins are the
contribution of the relativistic Fermi motion.

The second tern@%**) in Eq. (88) and the matrix element of the Lorentz boost operd®® are of a pure relativistic

nature and reflect the relativistic corrections to the quadrupole moment. For instance, for the positive states the corrections
Q(++) aa’ SD<a,+|Q |a+> are

N +wdpo|p|2d|p| Mo, 1—@ 1 6E;—2mE,—m? L polp)?
oMol Jo i(2m? \FpT 2 "Po Mo 5Mp E, E2 Po.IP
(93
+ + + w +
+ 20" (po.|Phw* (Po.|P1) | + V2Pl u* (po, ||D|)a|p| (Po.lPD+w" (po,[pl) &|p|u " (Pos[p])
+[plw™ (po, |p|)0|p| +(Po,|p|)]
f J+°°dpo|p|2d|p| £ Mo 1 Inf
oM, ) . iem® |~ 2 "PoJs m2E,
+ 9 + + J + + ? +
X1 V2| u*(po.Ipl) =—=wW* (po.IPD) +W (Po.Ip)) =—u™ (po.|p) [+W " (Po.lp) =—wW " (po.lpD - (94)
dPo dPo dPo

After integration by parts in Eq$93) and (94) one obtains
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e (+= (+=dpo/p|>d|p| Mp 2po) 2 1
(++)—_ — __= _ 7 _
Qus 2MDL>O fo i2m? | Ep” 2 TPo Mo/ 5Mp E,
2EZ—mE,—m? 1 (95
><{pT{ﬁU*(po,lpl)W*(po,lleEW*(po,lpl)ZH
p
“ o ﬁxﬁxd%'ppd'p'} {1201 | Bt o, 1w (poslph-+ 2" (ool (%6)
2MD —» Jo |(277)4 SM%Ep Ep Po. [P Po. P 2 Po.|P .

It is seen that the magnitude of this term is of orderThis contribution is below the experimental data
Qs ~(Ip|¥M3)QLH ) and vanishes in the nonrelativistic Qp=(0.285%-0.0003) fnf [30] by about 6%, nevertheless
limit. In order to achieve self-consistency in the nonrelativ-it is larger than the usual nonrelativistic calculations. This is
istic approach to the deuteron form factors and electrodisinan understandable effect because of the specific feature of
tegration reactions, various relativistic corrections to the mathe solution of the BS equation for which the sum of the
trix elements must be taken into account, such as mesopseudoprobabilities of the positi&andD waves is larger
exchange currents and pair term contributiph3,28,29. In  than 1. In this context, since the pseudoprobabilities of the
the covariant description of the deuteron these effects argmaining configurations are negative, the transitions with
partially accounted for by calculating transitions betweenp waves are expected to play an important role in studying
states with negative energies; the contributiorPodtates in he static characteristics of the deuteron. Particularly interest-
the deuteron electromagnetic current corresponds to digag js the calculation of the off-diagonal expectation value
grams with nucleon-antinucleon pair creation in the old fashy i\ con thes and P partial states, which is predicted to

ioned perturbanon th_eory. Moreover, 8] it h"."s. been ._replace the meson exchange contribution in nonrelativistic
shown that, considering the deuteron electrodisintegration

process within the light-front dynamics, beside the dominanFalcg!at'ons[ls’ﬂ' !ndeed, our numencal resglt points to a
contribution of expectation values wih andD waves, an significant contribution of the mentioned matrix elements in

extra matrix element with transitions between positive ancFomparnson with other nondiagonal transitions, namely

negative energy states is relevant to describe the electrodis-

integration amplitude. It has been also shown that the contri-

bution of this extra component exactly reproduces the pair<u+|éc|ve>zo_0052 e <U+|éc|v°>= —0.0027 f?
term corrections in the nonrelativistic limit. An investigation s ' ! (98)
of the correspondence between the light-front dynamics ap-

proach and the BS amplitude has sho8] that the extra

lqomponenélir[lts] miﬁhbg imitated b()j/strarlljsitions be;ween & (for example, among other nondiagonal matrix elements the
inear combination o waves ands or D waves. Hence oo one e |00 = —0.000 07 fnd).

in our calculation the pair terms are taken into account via .
P The part of the quadrupole moment with o@tiagonal

calculations of off-diagonal expectation values of the rel- . X . .
evant current between ti and P partial wave statessee and nondiagonalexpectation values gives a small negative

also discussions ifil0,16)). A more detailed analysis of the contribution to the first term in Eq.(82): (|Qcl)oud
nonrelativistic limit of the expression for the quadrupole mo-=—0.0007 fnf. Gathering together all the contributions we
ment with keeping leading corrections1/m will be pre-  obtainQc=0.2706 fnf.
sented elsewhere. An estimate of the corrections owing to the dependence
_ on the relative energy, Eq88), shows that they are rather
2. Numerical results small: QEJT):O.OOOG .

The full expression for the quadrupole moment consists of The Lorentz boost corrections have been calculated and
a multitude of terms likewise Eq89) with quadratic com-  they are found to be negative. Their total contribution is
binations of partial states and terms with second denvatwe@tB: —0.0029 fn? which, together withQc, gives the fi-
d%19|p|?, #*/ap; and mixed one/4|p|dp, computed be-  naj result for the electric part of the quadrupole moment of
tween different partlal BS amplltudes. Their analytlcal form the deuterorQ:O_2683 fnt. An important moment should
has been evaluated by an algebraic formula manipulatiope stressed here. The contribution of the Lorentz boost terms
code. Numerical calculations have been performed by usingjith nondiagonal transitions betwe&and P waves are of

our solutions of the BS equation for the partial amplitudesthe same order of magnitude as those in E&§) but of
Eqg. (34) and relationg50) and (51). We find that the main opposite sign

contribution to the deuteron quadrupole moment gives the
first term in Eq.(82) and that the transitions between energy

even states dominate, i.e., . R LB| . ” . . LB| . 2
(v7|Qc lvey=—0.0053 fnf, (v"|Qc |v{)=0.0027 fnt.
Q;+=0.2690 fnf. (97) € s o (99)
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Equa_tions(98) apd (99 shqu t_hat the cqntribption of pair Up=phs+ g+ po + g, (101
creation terms in nonrelativistic calculations is predicted to
be negligibly small for the quadrupole moment and confirmwhere the matrix elements between states with positive en-
the qualitative results obtained [@6). ergies in Eq.(101) are labeled by the subscrigt and the
Note that our classification of the matrix elements into thesubscript— means that the corresponding matrix element
main part and Lorentz boost correctiopsf. Eq. (82)] is  implements at least one wave with negative energy. The ma-
rather conventional and does not reflect directly the contritrix elementsu;_ reflect the relativistic corrections. In order
bution of relativistic effects. However, by using Ed88), to emphasize the nonrelativistic analogue of the magnetic
(91, and(92) we may present our results in the form moment in the expression for the, we subtract the corre-
sponding nonrelativistic formula, and the remaining part we
Qp=Qua+ 0Q,e=(0.2690-0.0007 fm2, (100  denote aR. , which is the relativistic corrections due to the
Fermi motion effects. Then the functiops.. can be repre-
where the nonrelativistic pa@Qyg is determined by the large sented by
components of the BS amplitude and does not depend upon
the derivatives with respect to the relative energy and upon ~ _ 3 !
the Lorentz boost effectsiQ,, is the contribution of all the P =(ppt ) (Pur 4 Pu) =2 (ppt sn ™ 2)Pur R

remaining terms and, obviously, is of a pure relativistic na- (102

ture. It is seen that the relativistic corrections to the quadru-

pole moment are negative and reinforce the discrepancy, al- p1-=3 (pt ma) (Pye+ Po)+ 3 (Pe+ Pyo)

though their magnitude is rather small. A similar conclusion

has been drawn ifil6] from a more qualitative analysis of + 3 (Pyet+P,o)+R;_, (103

the deuteron moment within the BS formalism. >

Another source of the relativistic corrections is the contri- L

bution of the magnetic part of the effective curre@82) po-=—(ppt pun)Pu-+Pu-+3 (pt un)Pu-

which vanishes in the nonrelativistic limit. Our calculation 5

shows that its contribution to the quadrupole moment is ~ 4 Pu-tRy, (104

negative too{|Quy|)=—0.0005 fnt, so that our final result

for the deuteron quadrupole moment @, =0.2678 fnf, ab

i.e., the discrepancy i) is about 6%. “3—:a2’b S (109
B. The magnetic moment wherea=u",w*,u”,w™, b=v$,vg,vf,v¢, andP; are the

pseudoprobabilities of the corresponding partial state. In Egs.
(102—(104) the diagonal expectation values between states
According to Egs(26), (65), and(78)—(81) the result for  with L=0,2,1 are written explicitly; the off-diagonal contri-

1. General formulas

the magnetic moment can be written as butions are included in the terniand u;_, where
|
1 2m| o+ moeoomo 2m 1 my .+ m o .om-o
Ri==glpptun—1+r|HL —pHz —Hs = 1= |Pu — gl et n=1= 3 |HL —pHz = Hs
1/, 2m V2 m\ e
—Z(l—v)Pv\ﬁ‘f—? ,up‘f‘,u,n—l—m)Hl{ W (106
Ry == o 1= 2™ st pont | (Pyet Poo) == 1= 20| (Papet P po) + 2 (2H%F ¥ — et oty 4 Lpgetof 2 ot ot
=2 || et it 5 (Pugt Pue) =5 w | (Prest Preo) 5(2H, s )t gH, 510
2 e o e o 2 e o 4 e o 4m2 e o o _e \/E o _e
+E(HZS'”S+2H§;'”S)—EHSS’”5+§H§3'”S+ﬁ M,,+Mn—1+W)Hgt'”s+ﬁ(ﬂp+un—1)H;t i S
0o e
—2\2H s, (107
1 2m| - m - om - w- m - m 3 2m
Rz,——g Mp+ﬂn—1—v Hl —MHZ +MH3 - ,LLp+/,Ln 1+ M H1 —MHZ +MH3 +Z 1—V w

+—(Mp+,un—1+—)Hlf’W. (108
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The quantitieC?P andHi“"“ are given in Appendix B. Now V. CONCLUDING REMARKS
the nonrelativistic formula_fpr the magneti_c moment may be |, this paper we have investigated in some detail the nu-
recovered exactly by rewriting the term. in the form merical solution of the Bethe-Salpeter equat[® with a
realistic one-boson exchange interaction. Special attention
Mi=punrt ALy, (109 has been paid to a study of the relation of the partial BS
amplitudes to the nonrelativistic wave functions and to the
where covariant description of the static characteristics of the deu-
teron. In our analysis we consider various bases used in de-
unr= (pt mn) = 3 (p+ pn— 3)Pp fining the partial BS amplitudes and the transition from one
basis to another. The representation based on the complete
reproduces the nonrelativistic formula, and the relativisticset of the Dirac matrices and their bilinear combinations is

corrections due to the Fermi motion effects are found to be extremely convenient in computing the deuteron
observables and processes with the deut¢&in since in
Ap =Ry —(pmpt pn)(Py-+Py-+PyetPotPetPpo).  this case the dependence on the kinematical variables is

(110  mainly included in the definition of the partial amplitudes
(except for one spinor propagator, which usually appears
Finally, the total contributions to the deuteron magneticwhen computing diagrams for concrete processes[%ge

moment read and the matrix structure of the corresponding matrix element
is almost independent of the intrinsic deuteron variables.
Mmp=punrT AW, However, in this representation an analysis of the deuteron
structure in terms of familiag, D, etc., components and an
Au=R,+Apu_+us_, (111  investigation of the correspondence of the obtained results

with their nonrelativistic analogues is straightened. For this
sake it is more convenient to use thespin classification of

Ap=—(ppt pa)l3 (PyetPyo)+(Pyet Po)+ 2P - the amplitudes for which a physical interpretation of results
is easier. In order to combine the advantages of these two
+ 3 P,-1+ %(P3p<1e+ PU?)+ 3 (P1p§+ P1 pcl))+ P, representations the corresponding unitary transformation has
been presented explicitly, cf. E¢51). With this at hand,
—2P,-+R_+R,_. (1120  calculations of various processes can be performed easily in

the basis of the Dirac matrixes and the final expression may
be treated in terms of the spin partial amplitudes by utiliz-
ing Eq. (51). This scheme of calculation has been employed
EXp'ICIt numerical calculations give for the total deuteron in order to Compute the pseudoprobab”ities of different par-
magnetic moment the valugp=0.856 140 €/2m) which  tial states and to find the nonrelativistic limit of the ampli-
differs from the experimentally known momente tudes. In Sec. Il different methods of comparison of our
=(0.857 406-107°) (e/2m) [16] by less than 0.15%. amplitudes with the nonrelativisti§ and D waves are pre-
This result consists of the nonrelativistic contribution plussented. Apparently, the most appropriate way to define the
the following relativistic corrections(i) the main correction nonrelativistic limits of the BS amplitudes is to use the rela-
to the nonrelativistic value of the magnetic momentr  tion (64), which is based on an analysis of the behavior of
=0.850 718 ¢/2m) that comes from the transitions be- the BS vertex functions in dependencempand|p| and on
tween positive energy states aRdstatesv¢, ve, vy, v¢,  the nonrelativistic relation between the vertices and wave
cf., the term us_ in Eq. (111)]; it gives us_ functions in the momentum space. Numerical results, dis-
=6.099< 10 3(e/2m) and contains~0.71% of the total played in Figs. 8 and 9, show that the generalized BS wave
magnetic moment(ii) relativistic corrections from the ex- functions(64) are close to the nonrelativistic ones only for
pectation values of positive energy states of the Lorentznoderate values ofp|, while a difference occurs for
transformation of the intrinsic variables in the BS amplitude|p|=m. This means that for rough estimates of possible rela-
[the termR, in Eq. (111)], which is found to be negative, tivistic effects one may calculate the corresponding nonrela-
i.e., R, =—9.75x10 4(e/2m); (iii) the termAu_, and the tivistic expressions by utilizing the wave functiof&4) in-
sum of transitions between states with negative energgtead of the nonrelativisti® andD waves. Obviously, for a
(u™,w7), and transitions betwedp states themselves, and a consistent investigation of the relativistic corrections it is
part coming from normalization effedtsf. Eq.(110]; thisis  necessary to use the covariant calculations with complete BS
a positive contribution with\ x_ =2.99x 10" %(e/2m) to the  amplitudes.
total moment. We have investigated the quadrupole and magnetic mo-
An analysis of our numerical results obtained for the off-ments of the deuteron within the BS formalism by computing
diagonal expectation values between tBeand P partial  in the Breit frame the matrix elements of the electromagnetic
wave states shows that, in contrast to E§8) and(99), the  current of the deuteron. In our analysis we considered all the
contributions of terms like pair creation corrections in thispossible relativistic effects connected with both the Lorentz
case do not compensate each other and give a total contribtransformation from the rest frame of the deuteron to the
tion to the magnetic moment-0.35%, which is almost Breit frame and with the dependence of the amplitude on the
50% of the total relativistic correction. relative energyp,. By utilizing results of the investigation of

2. Numerical results
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the properties of the BS amplitudes performed in Sec. lll and TABLE lll. Spin-angular functiond:?M for the deuteron chan-
their nonrelativistic limits, the static moments of the deu-nel.
teron have been presented as a sum of two terms: one of

them possesses a direct nonrelativistic analogue, the other @ 87T},
one is of pure relativistic nature. We pay special attention to 3 N
the contribution of the nondiagonal expectation values be- S1 Em

tweenS and P configurations which are thought to include
into the relativistic calculations the effects of pair currents,
which are widely discussed in nonrelativistic theories. It has
been shown that for the quadrupole moment the different 3p, @[%%M(krkz)—(pfwﬂpfl
partial transitions betwee8 and P components possess a
noticeable magnitude, however, their summed contribution is
found to be negligibly smallsee Egs.(98) and (99)],
whereas for the magnetic moment these matrix elements give

almost 50% of the relativistic effects. We obtain a good de-

scription of the experimental data for the magnetic moment. xo(Po.P)Uc=>, b4(Po.IPDT %(P)Uc, (A1)
The computed value of the quadrupole moment is below the a

experimental data by about 6%. That indicates that even a

consistent relativistic computation does not perfectly dewith I'$,(p)

scribe the data in the impulse approximation. Probably, an

adjustment of the operator of the electromagnetic current of

3 1 k. —k
D, _E[§M+g(kl—kz)(PiMﬂprz]

Py \/§(ng)”)|—1

the deuteron is needed, e.g., by including additional terms L

not accounted for within the present approach, such as me- Tu(p)=i %m (LmS3IM) Sl2 S2|Ss

son exchange currents with two-meson exchange diagrams A T

or A isobars[10]. XYLm(p)Uij(p)UQj (—p), (A2)
VI. SUMMARY whereU. is the charge conjugation matriklc=ivy,vy,.

) ) ) One can exploit thep spin dependence and replace
In summary an analysis of the properties of the partiak-« (p)EI‘;I"’l”Z(p), where

Bethe-Salpeter amplitudes, obtained as numerical solution of "
the BS equation with a realistic interaction, has been per-
formed. In order to compare relativistic amplitudes with the Kotm 1+ Ko

1 + Yo=3 2—Mm
nonrelativistic wave functions a method, based on the com-]“j(j*( TSP, ) ——m=,
parative analysis of the observables, has been developed. VZE (M+E,) 2 V2Ep(m+Ep)
The static characteristics of the deuteron, i.e., the quadrupole
and magnetic moments, have been computed within the _
Bethe-Salpeter formalism with satisfactory accuracy. Our rel’ v (P)
sults let us trust in the reliability of our approach, so that it - N

can be used for other tasks, e.g., when tackling the nuclear _ ke—m 1ty T (0.8 ki+m
effects in extracting the neutron structure function from scat- W/ZEp(mjL Ep) 2 Y «/2Ep(m+ E )

tering experiments off the deuteron.

,|;1+m 1+ ')/0 a +m

Ho 7(p)=\/2Ep(m+Ep) 2 | MP g)\/zEp( m+E,)
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was performed. The spin-angular structures for some partial waves are
shown in Table Ill. Here,, is the polarization vector of the
deuteron with the components in the rest frame given by

APPENDIX A
The matrix form of the spin-angular functiob®,(p), Eq. —(—1—-i.0/2 =(1—i.0)/\2 =(0.0
(47), may be obtained explicitly by replacing the outer prod- £1=(-1-10N2, £1=(1-1012, &=(0, (’,i)zi)

uct of the free nucleon spinotﬂ;‘s’i(p) by their direct product,
Ugll(p)®U’s’22T(—p). The BS amplitude then takes the form and the four-vectog ,,= (0,€,,).
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APPENDIX B Gi  Ai(pa.pl) B
Below we list the explicit form of the quantitie8®™®and 1 (E—m)Mmi/(|p|E?) —w,
He" @ in Eq. (101). By introducing new function&® the 2 —(E-mmpZ/(|p|E?) 1
mentioned quantities are expressed as follows: 3 Iplpa 91 9p,
4 M —w,dldp
v e .. \Bm  rear 5  _p2 il '
=u"p C =EM[G1+4GQ 4G5 G- 4G, P [Pl
6 (E—m)(2E+3m)p,/(|p|E) 1
& 7 (E—-m)(E?+2mE+2m?)Mp,/(|p|E®) 1
6m
T:Ut,l)g: C™= 15 M[ G G;IGgiGg_Ggﬂ, 8 |p|(3E+2m)/(2E) _ﬁ)ao”/(?p4
9 (3E+2m)Mp,/E alalp|
Fm 10 (2E+m)mM/(|p|E?) —w,
3 _ 2 2
r=WE S CT=ao U[GI+GI+4GI+Gi+4GE], 11 —(2E+m)mpi/(|p[EY) 1
12M 12 (2E?-2mE-3m?)p4/(|p|E) 1
13 (E3-2mE?+4m®)Mp,/(|p|E®) 1
V3 m 14 (3E—4m)|p|/(2E) — w,0l9p
—\wx ,,0. T:__ — T T a 4
T=Woust CT=og M[G12— 13* G14+ G5+ Gagl, 15  (3E—4m)Mp,/E 1
16 (E—m)(7E+3m)p,/(|p|E) 1
Jy3 m 17 2E-m)M(2E2—mE-m?)p,/(|p|E3) 1
— 5 .,€. T T_ T T
T=Uneen C=gg M[ Cle~C1rtGe=Go* Gzl 15 |p|(3E-m)/(2E) ~ w,dlp,
19 (E—m)psM/E ald|p|
—_ 9= ,,0. T_—\/§ m T T T 1 T T 20 (E—m)ZM/(4|p|E2) T Wa
7=u-,v;: C _+?M Gt G+ G5+ ZG4+G5 21 —(E—m)2p§/(|p|E2) 1
22 |p|l/(2E) —w,
_\/§ . 2 )
+?K622, 23 (7E*+2mE—-3m?)p,/(|p|E) 1
24 (4E3+3mE2—m*)Mp,/(|p|E®) 1
& 25 (E2+mE+m?)M/(4|p|E?) —w,
=+ T m T T T — 2 2 2 2
r=w* v CT=gg [ G5 Gt Gl-Glg*Ggl, 26 ~(EtmEtm )2/ (Ip|E?) 1
27  (3E+2m)p, ald|p|
& 28 (3E-4m)p, aldlpl
6 m 1 —
r=w*vp: C'=F 5 17| Gt Gt Gi+ 7Gi+G3 29 (SE=m)p, ol d|p|
\/E kG
6 Analogously, the function$i®® (H*“=H?) are of the

: _ same structure a8* with
where theG{"* are integrals of the form !

[ Ai(p4.|pl) B [ Ai(pa.|pl) B
Nfdp4dlplIplei(p4,|pl)[BiYa(p4,Ipl)]Ya/(pmlpl), 1 $1-mE) w, 6  MmYE? 1
2 Y1-M/2E) w, 7 -pim/EZ 1
andAi(ps,|p|) are scalar functions3; may be either a dif- 3 —p,/E 1 8 p,m3/E3 1
fgrential_opgrator oLFhﬁ typé/ dp,, (9/8.|p|dor. a shcaI?rIIfunp— 4 pLM/E 1 9 Ip|2m/E 3l ap,
tion (p4——|.p0), which are summarized in the following 5 1/2 o, 10 Iplpam/E a1d|p|
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