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Polarized deep-inelastic scattering from nuclei: A relativistic approach
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We discuss spin-dependent, deep-inelastic scattering from nuclei within a covariant framework. In the
relativistic impulse approximation this is described in terms of the amplitude for forward, virtual-photon
scattering from an off-mass-shell nucleon. The general structure of the off-shell nucleon hadronic tensor is
derived, and the leading behavior of the off-shell nucleon structure functions computed in the Bjorken limit.
The formalism, which is valid for nucleons bound inside nuclei with spin 1/2 or 1, is applied to the case of the
deuteron[S0556-281®6)05908-7

PACS numbse(s): 13.60.Hb, 24.10.Jv, 25.30.Fj

I. INTRODUCTION In this paper we present a full derivation of the modifica-
. L . . tion of the nucleon structure in the off-mass-shell region for
The role of special relativity in nuclei has been an impor-_ . . : :
: SR : . ; pin-dependent DIS. A brief outline for the special case of
tant consideration in recent years in the pursuit of consisten . X .
- . . massless quarks was given previously in RBl. Here we
descriptions of nuclear electromagnetic processes at high en- . . :
. . : ..~ extend the discussion 5] to the most general case, includ-
ergies[1]. Evidence suggests, for instance, that nonrelativis<
i i . ing mass terms. In Sec. Il we analyze the most general form
tic models are inadequate to account for elastic form factors . ) :
of the antisymmetric part of the off-shell hadronic tensor
of few-nucleon systems at large momentum transfers, or to , . . .
i o L2 which enters the calculation of the spin-dependent cross sec-
provide a quantitative description of proton-nucleus crosg

: . Pn. Any relativistic model of polarized DIS from nuclei
sections over the full energy range. While meson degrees of . " ; Lo . .
within the impulse approximation must be consistent with

freedom almost certainly play some role in these dlscrepar}-he symmetry constraints on the truncated hadronic tensor

cies, for a full and consistent theoretical description that doeaerived here. Furthermore, we calculate the scaling behavior

not manifestly break Lorentz covariance, one must also in- : - ; .
. f the expansion coefficients of the off-shell tensor in leading
corporate effects that arise from the off-mass-shell nature of . . : ;

twist. This enables us to present for the first time a model-
the bound nucleons.

A process in which effects associated with the off—mass-irldePendent proof of gauge invariance of the off-shell, spin-

shell deformation of the nucleon structure function may alsodEpend?m hqdrpnlc tensor. ) o
have an impact is deep-inelastic scatteriByS) of leptons Working within the nuclear impulse approximatice.,
from nuclei. Until recently, the issue of nucleon off-shellness"€dlecting effects due to final state interactionis Sec. Il
has largely been ignored in this problem, even in calculation¥/@ Present a model-independent result for the nuclear struc-
based on the so-called relativistic impulse approximationture functiongj in terms of the off-shell nucleon tensor and
Often the only relativistic corrections made are kinematic,the off-shell nucleon-nucleus scattering amplitude. The im-
without consideration of the dynamics that may be affectegpulse approximation assumes that inelastic scattering from
when the nucleon in a nuclear medium is off shell. nuclei proceeds via incoherent scattering from individual
The in-medium modification of the nucleon structure in nucleons, which is believed to be a good approximation if
unpolarized scattering was discussed in RE2s3], and, as  one is sufficiently far away from the smadl+egion. The
the only example for which relativistic nuclear wave func- formal results are valid for spin 1/2 and spin 1 nuci@hey
tions have been calculated, a quantitative study of the effecigan also be applied to the case of DIS from a nucleon dressed
for a deuterium nucleus made in R¢#]. The deuterium by 3 meson cloud7—10].) Furthermore, we investigate the
analysis was extended to polarized processes in Ff. conditions for the validity of the usual convolution model

where it was found that, while small for moderate values ofi11_1¢, which involves factorization of subprocesses at the
Bjorkenx, the off-shell effects can become sizable in theCrOSS sectiorfrather than at the amplitugiéevel.

region of rt_algtiyistic kinematic=0.8 (see also Re[.6] for Using these results, in Sec. IV we illustrate the applica-
a nonrelativistic treatmentApart from the appreciation of ot the formalism to the special case of the deuteron.

the Importance of relativity in nuclei per se, there is aiso 3Some of the numerical results, obtained in the massless
practical need to understand the role of off-shell effects in . :
uark limit, have been presented in RE5S]. For complete-

light nuclei such as deuterium or helium. In the absence of! W mpare here the results for the proton and deuteron
free neutron targets, these nuclei are the only sources of ijLess, we compare here the resulls for the proton a eutero

formation on the spin structure of the neutron in DIS, whichstructure functions with the latest available dataginand

is essential for testing fundamental QCD sum rules, such a81 . s Well as with unpolarized quark distributions. Finally,
the Bjorken sum rule. in Sec. VI we make some concluding remarks.
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Il. POLARIZED NUCLEON STRUCTURE FUNCTIONS G, ()= 705 .(p.0) 70 30

Here we analyze the general structure of the amplitude for ) o
the forward scattering of a virtual photon from a polarized, According to the constraints in EgE3) the most general
off-mass-shell nucleon(n fact, the formalism is valid for form for the truncated tensor must (& 6]
any spin-1/2 fermion with substructureRecall that the an- .
tisymmetric part of the hadronic tensor for an ﬁn-shell GLu(P.0) =i €,,050"(PPDY5G () + PP YsG g+ ¥*¥5G )
Cvtiiigﬁnaén terms of the structure functlogﬁ' and g, is +iO-B)\p)\'YSG(Up)—i_iUﬁ)\qAYSG(Uq)

+ipPa* Py, ¥5G(opg) 4
N
MW,.(p,s,q)

where the coefficient§; are scalar functions qf andg. In
P A Eq. (4) we have listed only those structures which lead to a
st ﬁp )gz(p,q)), gauge-invariant truncated tensor, i®“G,,=q"G,,=0. In
(1)  Sec. IIB we will show that, at least in the Bjorken limit,
terms such asﬂmﬁp“yﬁ that do not satisfy this condition,
where p and q are the four-momenta of the nucleon and are absent.
photon, respectively. Her®l stands for the nucleon mass, The structure functjorg?l of an on-shell nucleon is ob-
ands is the nucleon polarization vector. Since we will be tained by multiplyingG,,, with the nucleon Dirac spinors
interested in the leading twist components of the structurgsee Eq.(2)] and with the projection operator:
functions only, we will not discuss the structure function
g,, which contains both twist-2 and twist-3 contributions. ) LPa s-qM2sf—p-qp?
Our aim will be to generalize the tensor structure in  Fur™1€uvasd s-q 2M{MA G+ (s F—(p-q)3}
Wﬁy to describe deep-inelastic scattering from an off-shell
nucleon, namely one with?# M?2. We start with the obser-
vation that the antisymmetric nucleon tensor can be writtes a result we get g’f(x) as the on-shell limit
as (p°>—M?y—1) of the off-shell structure func-
tion g} (x/y,p?), defined as

M

=i ﬁ e,u,vaqua( S'Bg?(qu) +

MW, (p,5,0)=U(p,5)G,..(p.a)u(p.s), (2
R =N 2| _on. )
whereG ,,(p,q) is the “truncated” nucleon tensor, whose gl(y,p ) 2p-a(p-AG(q) T Gy T MGop)
Dirac structure represents deep-inelastic scattering from a
generally off-shell nucleon, and(p,s) is the free Dirac ~Mp-aGspg); (6)

spinor for a nucleon with momentum and spins. In the

—02 2 N
following we give the general expression for the truncatedg’here xly=Q /Zg'% ar:jd f,th_e,Q ieﬁendence I!rgld has

tensorG,,,, which satisfies the discrete symmetries, in termsf eer:_ supﬂ)’ze_sseE ' 6 € .ﬁ |tn|t|on c; tt E gene;al|zeh structure
of a number of “truncated coefficient functions,” or off- 'Unction,g; in 9. (6), will turn out to be useful when we

shell nucleon structure functions. Following this, we derivediSCUss the nuclear spin-structure functigf), in Sec. Ill.
expressions for the off-shell structure functions in the
Bjorken limit. B. Truncated functions in the Bjorken limit

In this section we discuss the scaling properties of the
A. Truncated nucleon structure functions coefficient functionsG;y, and the question of the gauge-
In analyzing the off-shell nucleon structure, it will be con- transformation properties of the truncated tensor. We work
venient to expand the truncated nucleon terngp in terms ]E_thQhOUt In the Bjorken limit .Q P-g—=c, Q /P'q
of independent basis tensors, such tégtu is invariant un- ixed), and.con3|der onlyl thg !eadmg twist contnbqups 0
der parity and time reversal. These constraints can be sunrgge hadronic tensor. In this limit, the tens@y,, can be writ-

marized by the following conditions: nas

G,.(p.9)=PGH(B,§) P, (3a) &, (p.a)= f dKTIH(P K k)], (D)

G,./(p,9)=(7TG*"(p,q)T H*, (8D where the trace is over quark indices. In Ef.the antisym-

. , metric tensorr ,, describes the hard, photon-quark interac-
where P and 7 are the parity and time reversal operators,iion and is given by

respectively.(In the Dirac representation they are expressed

in terms of the Dirac matrices a®=vy, and 7= —iysC, r(kg)=k+m)y, (k+d+m)y,(k+m)—(ue ),
whereC=iy?y, is the charge conjugation operajoie also . . (8a)
use the notatiop,, = p* andq,=q* to distinguish covariant

and contravariant four-vectors. The truncated tensor must =A,,(K Q) 757“+A;,,m/3(k,(1)0“ﬁ, (8b)

also be Hermitian, which requires thatnote that
GL=—G,.) where
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A;Lva(k!q) =i (qze,uvka—'_ (k2_ m2) €uvqa

_2(kMEkan_kV6kan))v (8C)

A,uvaﬁ(kvq) == im(ngﬂagvﬁ+ zqa( kygvﬁ_ kvg,u,ﬁ))(Sd)

Herek is the interacting quark four-momentum, amds its
mass. We use the notatios),, ;= e#,,aﬂk“qﬁ. (The com-
plete forward scattering amplitude would also contain a
crossed photon process which we do not consider here, since P.S P,S
in the subsequent model calculations we focus on valence

quark distributions. The function(k,p) represents the soft FIG. 1. DIS from a polarized nucleus in the impulse approxima-
quark-nucleon interaction. Since one is calculating thdion. The nucleus, virtual_nucleon, and photon momenta are depoted
imaginary part of the forward scattering amplitude, the inte-PY P, P, andq, respectively, and stands for the nuclear spin
gration over the quark momentuta is constrained bys vector. The upper blob represents the truncated antisymmetric

functions which put both the scattered quark and the nc”,]in.r_]ucleon tenso6 ,,, while the lower one corresponds to the polar-

uve

teracting spectator system on-mass-shell: ized nucleon-nucleus amplitude
~  d*%k 27 (k+a)?—m?]27 5[ (p—k)2—m3] Hap=(PaKp=Pake) o3P KT 1+ (Pa0y g = Ppoa)
= 4 2_m2\2 ’
(2m) (k*=m") © X(pM ot KM 3) + (Kuory g— Koy o) (M 4+ KM 5)

A , 02 s the | - i of th + 0056t €xpapP kP ys(BF7+ Kfg)
where mg=(p— i invariant m r
speecteato? s;EStem). > TG TVATIAITE Tss SAtares of e + Expap¥s? (P oK 10), (13b
Taking the trace over the quark spin indices we find
where the functiong...q andf;.. ;o are scalar functions of
HeB, (100  p andk.

Performing the integration ovet in Eq. (7) and using
whereH,, andH,; are vector and tensor coefficients, respec-Egs. (13), we obtain expressions for the truncated structure
tively. The general structure éf, andH ,; can be deduced functions G;, in terms of the nonperturbative coefficient
from the transformation properties of the truncated nucleodunctionsf; andg;. The explicit forms of these are given in
tensorG,,, and the tensora,,,, andA,,, .. Namely, from Appendix I. From Eq.(4) we then obtain the leading twist

AL (K a)=A,,.(ka) and A**(k,G)=—A,,.(k,q), we contributions to the truncated nucleon ten&y, . It is im-

THLHN )= A eH T AL

have portant to note that at leading twist the non-gauge-invariant
contributions toG,,, vanish, so that the expansion in Ed)
H(p,k)=—PH (P T(')p‘r (113 is the most general one which is consistent with the gauge
’ @ ' invariance of the hadronic tensor.
Ha(p,k)=(TH (BT *, (11b)
I1l. NUCLEAR STRUCTURE FUNCTIONS
a — at
H*(p,k)=yoH*"(p,K) v0. (119 Our discussion of polarized deep-inelastic scattering from

o ) . - nuclei is restricted to the nuclear impulse approximation, il-
Similarly, sinceA% ,,5(k,q)=A,,.qs(k,0) andA*"*A(k,q )  |ustrated in Fig. 1. Nuclear effects which go beyond the im-

=Auvap(k,q), one finds pulse approximation include final state interactions between
_ the nuclear debris of the struck nucl€dr?], corrections due
H*A(p,k)=PH ,4(P.K)P", (129  to meson exchange curres8—20 and nuclear shadowing
(seg[21-24 and references thergirSince we are interested
He(p k)= —(THaﬁ(E,E)TT)*, (12h) in the medium- and large-regions, coherent multiple scat-

tering effects, which lead to nuclear shadowing %e£0.1,
s wpt will not be relevant. In addition, it has been argyéd that
H*"(p,k) = yoH*""(p.K) v0. (129 meson exchange currents are less important in polarized

deep-inelastic scattering than in the unpolarized case since
With these constraints, the tensdtg andH,z; can be pro-  their main contribution comes from pions.

jected onto Dirac and Lorentz bases as follows: Within the impulse approximation, deep-inelastic scatter-
ing from a polarized nucleus with spin 1/2 or 1 is then de-
H,=p.vs(Pg:+Kg,) +K,ys(Pgs+Kga) scribed as a two-step process, in terms of the virtual photon-

i N K 4 nucleon interaction, parametrized by the truncated
17503, K (PaGs T Kals) 747507 antisymmetric nucleon tens@,,(p.q), and the polarized
+iy50, (P g5+ Kk go), (139  nucleon-nucleus scattering amplitudgp,P,S). The anti-
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symmetric part of the nuclear hadronic tensor can then b&he sum is taken over all possible nuclear recoil st®kes
written as with momentumP—p and invariant masslz, and N(0)
stands for the nucleon field operator at the origin. The am-
(p Sq)—| Ma €,vapdl { SPg(P,q) plitude A(p,P,S) can furthermore be expanded in the
P-q nucleon Dirac space as

sﬁ——zpﬂ)g (P, q)}

(14) A(p,P,S):; 27T5((P_p)Z_MZR)('YS'YaAg—FO-aBBgB)'
o ) (18
:JWTr[A(paprs)Gp,v(piq)]

15 where the pseudovector and tensor structdifeand B3? are
Here P, p, and q are the nucleus, off-shell nucleon, and functions ofp,P, andS. Other structures do not contribute to
photon momenta, respectively. For a spin 1/2 nucleus, sucWs, and are omitted. For example, a pseudoscalar term
as °He, the vectoiS® (S°=—1,P-S=0) is the nuclear spin (~ vys) is forbidden by hermiticity and time reversal invari-
vector, while for spin 1 targets, such as deuterit8fi,is  ance of\Nﬁy. From Egs.(4), (15), and(18) we obtain, after
defined in terms of polarization vectos§' [25]: the appropriate projection,

Sa(m)E_ieaﬁ)\Psg*STPp/MA, (16)

: . I . P-q
wherem=0,=1 is the spin projection. Using the fact that the gf(x)= —————>' fd d - Ar(p- G+ G(.)
nuclear recoil states are on shell, one finds for the nucleon-gl 4m°M S R y pz[q RIP-A%) )

nucleus amplitude
P +P-ArP-AG(p) + 7-BrM(G(op) = P+ AG(opg) 1,

A(p.P.9)=2 (P-p.RIN(0)|P.S)(P.SIN(0)[P—p.R) (19
x2m8((P—p)2—M3). (17 with the tensor
1 2
%B:(S-Q)ZM%\—(P-C{)Z(p. qP'qeaﬁPq+ MAp'qS'qeaﬁqS+ P'qqafﬁqu_ P'qQﬁEaqu

+ Mis‘qqaéﬂpqs_ Mis‘qqﬂeapqs)- (20)

Here x=Q%2P-q is the Bjorken scaling variable and . —

y=p-q/P-q is the light-cone fraction of the deuteron mo- A(p.P,S)=2, (P—p,s|N(0)|P,S)(P,S|N(0)|P—p,s)
mentum carried by the struck nucleon. Equati@f) shows s

that factorization of the nuclear structure functigf) into x2m8((P—p)2—M?), (2D
nuclear (48,B%%) and nucleon G()) parts, as would be

required for convolution, is not possible. In addition, thewhere the sum is taken over the sgiof the recoil nucleon.
presence of the structuf@y, in g’l*, but not ing? [see Eq. The deuteron-nucleon matrix elements in E2{l) are related
(6)], leads to explicit convolution breaking. Convolution canto the deuteron-nucleon vertex functibg via [26] (see also

be recovered, however, in the nonrelativistic lifgt, as will Ref. [27]):
be shown explicitly in the next section for the case of the
deuteron.

1
(P—p,sIN(0)|P,S)= p—Mfg(P,p)STCT(P— p,s).
IV. DEUTERON 22

The general results of the previous section can now be
applied to the case of a deuteron target. Consistent with th€he deuteron polarization vectary, , is related to the spin
standard treatments of the relativistic deuteron bound stateector S by Eq. (16). C is the charge conjugation operator,
problem, the deuteron recoil state is taken to be a singlandu(P—p,s) is the Dirac spinor of the recoil nucleon with
nucleon. From Eq(17) one therefore obtains the nucleon- momentumP—p and spins. In terms of the deuteron-
deuteron scattering amplitude: nucleon vertex function, Eq$21) and (22) give
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— oMm_Mmx
=e,€p

A(p,P,S) (B—M)TE(P,p)(P—p—M)

XTE(P,p)(p—M) 127 8((P—p)2—M?),
(23
with Tp=yol' b vo.

To be specific, we will use in our numerical calculations
the relativistic vertex function from Ref26]. In this work

I'p is represented through a relativistic deuteron wave func-

tion which containss- andD-state componenis andw, and
also triplet and singleP-state contributions; andvg. After

choosing the polarization of the deuteron one can express the

pseudovector and tensor componend$, and B*#, of the
deuteron-nucleon amplitudd 8) in terms of the deuteron-

nucleon vertex function — or equivalently through the deu-

teron wave function componeritsee Eq(24) below]. Then
Eq. (19) yields the deuteron spin structure functighl.

We will follow this procedure in the deuteron rest frame
where the photon momentum is chosen along-tedirec-
tion, g=(qo;0r,—1q|). Furthermore, we are free to fix the
deuteron spin projection to be=+1. As in the general
case in Eq(19), one does not obtain a result compatible with
exact convolution. However, by writing- A4, p-.A, and
7-B in terms of the relativistic deuteron wave function, we

G. PILLER, W. MELNITCHOUK, AND A. W. THOMAS

Asmo)=ﬂf11<p>(30+3z>w+1<p>5<p0—MD+Ep>,(27)

where VW (p) is the usualnormalized nonrelativistic deu-

teron wave functior(see, e.g., Ref28]). S, and S, are the

zero andz components of the nucleon spin operator, defined

as[6]

A S. p B
VI

1
m(0p+d1),p' (283)

~ 1
SZ=§(0"Z)+ ay), (28b)
with o P" the SU(2) Pauli spin matrices acting on the pro-
ton and neutron spin wave function, respectively. In terms of
the deuteron wave functioW ,(p), one has

q-Aon=TBon=8w3P-qMN\P11<p>(3o+3z>\v+1<pz. )
29

The factorA'= [d|p|p?(u?+w?) ensures that the normaliza-
tion agrees with that of the relativistic calculation. The func-
tion Af(y) then satisfies/gdyAf(y)=1—3/20p, where
wp=Jd|p|p>W?/ N is the nonrelativistid-state probability.

find that all nonfactorizable corrections to convolution are atin the NN potential model of Ref[26] with a pseudovector

least of order ¢/c)?, or involve relativistic P-state wave
functions. This is easily seen by separatipng4 and 7-5
into an “on-shell” part, which is proportional to the nonrel-
ativistic deuteron wave functidrsee Eq(29) below], and an
off-shell component: q- A=q- Ay +q- Ay, and 7-5B
=T Byt 7B o, Where

uw

V2

q- Aon="T-Bon=2m?P-qM| u?+ (1—3cog6)

w)z

P,

2
W+
M

u— —

V2

with p,=|p|coss, Ep:\/M2+ p? and co®=(yMp—po)/|p|.
The “off-shell” componentsq- Ay and 7-By, and also
p-A are given in Appendix B. They are either of higher
order in (v/c) compared with the leading “on-shell” contri-
bution in Eqg.(24), or they involve relativistid® states.

Using Egs.(6), (19), and(24) we can decomposﬁ’ into
a convolution component plus an off-shell correction:

. (29

3
—(1— 500520

idy X
0200= [ Tarnad| 5]+ s geen. (29
Here we can identify
p+
Af(y)= | d*pA 5( - 26
(y)JpS(p)yMD (26)

7NN interaction, theD-state probability isvp=4.7%. The
convolution term in Eq(25) completely agrees with the non-
relativistic limit up to order ¢/c) if contributions from rela-
tivistic P states are neglected, and the off-shell structure
functiong Y(x/y,p?) from Eq.(6) is replaced by the on-shell
one. The relativistic, convolution breaking, “off-shell” con-
tribution 60N g? in Eq. (25) is given explicitly in Appendix

B.

We should also make a note about comparing calculations
which use relativistic and nonrelativistic wave functions.
While convolution itself is valid to orderu/c)? [6], the
renormalization of the relativistic wave function itself intro-
duces corrections of ordew{c)?, since theP-state wave
functionsvg, are of orderv/c compared with thes- and
D-state functions. Therefore the correct nonrelativistic limit
can be obtained directly from the relativistic calculation only
to orderv/c [29].

V. NUMERICAL RESULTS

Using the results of the preceeding sections, we present
here the numerical results for the polarized nucleon and deu-
teron structure functions. In our relativistic treatment, the
modeling of the virtual photon-off-shell nucleon interaction
is most naturally done in terms of relativistic quark-nucleon
vertex functions.

A. Relativistic quark-nucleon vertex functions

While the scaling behavior oG, can be derived from
the parton model, their complete evaluation requires model-

with the difference of probabilities to find a nucleon in the dependent input for the nonperturbative parton-nucleon
deuteron with light-cone momentum fractigrand spin par-  physics, which in our case is parametrized by the functions
allel and antiparallel to that of the deuteron. For a deuterorf,.. ;g andg;...q. Because the nucleon recoil state that re-

with polarizationm= +1, AS(p) corresponds to the spectral mains a spectator to the hard collision is on-mass shell, the
function: functions f;...19,91...9 can be simply written in terms of
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relativistic quark-nucleon vertex functiong,[2,4,5,30—-32
Expressed through’ and the propagator of the spectator
(“diquark™) system,Sp(p—k), one obtains for the matrix
H(k,p) from Eq.(7):

H(k,p)=Im[V(k,p)Sp(p—kVkp)], (30
wherey= voV 0. Because both the quark and nucleon have

spin 1/2, the spectator system can be in either a spin O or ! :
spin 1 state. Therefore the only vertices that need to be con- 0 0.25 0.5 0.75 1

sidered(for quarks in the ground stgtare those which trans- (a) x
form as scalars or pseudovectors under Lorentz transforma- 10

tions. We approximate the “diquark” propagators by the
form  Sp(p—k)=[(p—k)?>-m3j]"* for S=0, and
S5 (p—K)=[—g*+(p—K) *(p—K)Imi]/[(p—k)*—m}]
for S=1, wheremy andm; are the masses associated with
the scalar and pseudovector spectator states.

Following earlier work{5], we will use the ansatz

Vo(k,p) =165 (k,p)+ Bk P (k,p), (313

0 0.25 0.5 0.75
VE(k,p) =y ysa(K,p), (31b ) x

for the S=0 andS=1 vertices, respectively. The parameter ~FIG. 2. Unpolarized valence quark distributiox&i,+dy) and

B determines the relative contributions from the two Sca|a'd\£/u\,. 2The solid line represents distributions eyolyed from scale

vertices. Although a more general approach is possible, i to Q?=10 Ge\~. Dotted curves are parametrizations from Ref.

which one could include all possible Lorentz and Dirac 33].

structures, in practice since the vertices will be constrained _ ) L _

phenomenologically, the above set will suffice. Without loss(0-32 GeM? using leading order evolutidh is shown in

of generality, to simplify the numerical analysis we will also Fig. 2. The cutoffs used for the scalar vertices are

work in the massless quark limitg—0. A@P=(1.0,1.1) GeV, and the exponeni§ " =(2.0,2.8),
Inserting the above vertex functions into @) and com-  With the mixing paramete=2.73. The parameters for the

paring with Eq. (4), we can determine the functions pseudovector vertex ard;=1.8 GeV andn;=3.2. The

f1...10 U1...9 appearing in Eqg13). For the scalar vertices mass parameters associated with the intermediate spectator

we find states are taken to bao(l)=(p—k)2=0.9(1.6) GeV.
With the same parameters, the polarized valence distribu-
9= —2B% )2, tions are then calculated according to the relafions
07= (46"~ K*B%($0")7, (323 Auy(0)= 3 Ago(x)— £ Ada(x), 39

—284@ oD
Ge=25¢a"d0 Ady(x)=— L Agy(x), (34)

while for the pseudovector vertex:

whereAqy andAq; are the polarized quark distributions for
_ 5 B o scalar and pseudovector spectator states, respectively. The
917~ Hf(d’l) T 79277037047 E{g“ (32D first moments of the polarized valence distributions in the
proton then turn out to befédxAuV(x)=O.99 and

with all other functions being zero. fédxAdV(x)= —0.27, which saturates the Bjorken sum rule:
The momentum dependence in the vertices is paramfgdx Auy(x)—Ady(x)]=ga. The total momentum carried
etrized by the multipole form: by valence quarks at the scale® is around 85%, leaving

about 15% to be carried by the sea.
®g(p,k)=Ng(p?)k?/ (K= AJ"s

(p?=M? for the free nucleon The cutoff parameterd g While a next-to-leading order analysis is important for a precise
and exponentsig are fixed by fitting the unpolarized up determination of th€? dependence daj; and the Bjorken sum rule
(uy) and down () valence quark distributions, as dis- [34], the present treatment is perfectly adequate for the purpose of
cussed in Refs[2,5]. The normalization constanfds are  evaluating the relative sizes of the nuclear corrections.
determined through baryon number conservation. A best fit 2Note that the formal results do not rely on the use of(8U

to the experimentaly,+dy,, andd /uy, data[33] at Q?=10  spin-flavor symmetry — these relations merely provide a conve-
GeV? [when evolved from the renormalization scalé= nient way to parametrize the polarized quark distributif8e.
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FIG. 3. Valence component of the protgn structure function FIG. 5. Ratio of deuteron and nucleon structure functions in the
at Q=10 Ge\?. The data for the full structure functiog! are  full model (solid), and with a constant depolarization factor
from Refs.[35-38. 1-3/2wp (dotted, with wp=4.7% [26]. The dashed curve is the

ratio of g calculated via convolution tg® calculated in the rela-
The x dependence of thévalence part of thepolar- tivistic model.
ized proton structure function xgf(x) =x[4Auy(x)
+ Ady(x)]/18 is shown in Fig. 3. In the valence quark domi- ity of the deuteron structure function to tpé dependence of
nated region X>0.3) the result agrees rather well with the the quark-nucleon vertex should limit the uncertainty intro-
SLAC, EMC, and SMC proton dafg85—38. A negatively  duced through the specific choice of vertex functions in Egs.
polarized sea component & 0.3 would bring the curve (31). Any model dependence associated with alternative ver-
even closer to the data points. tex structures would be compensated to some extent by the
Having fixed the nucleon inputs, we next estimate the sizélecessary adjustments to their momentum dependence — the
of the relativistic corrections to the deuteron structure funck? dependence is constrained by refitting the nucleon data,
tion. and thep? dependence by readjusting the normalization con-
stantsNg. Nevertheless, it would be interesting to explore
B. Polarized deuteron structure function the residual model dependence numerically.
. The resulting ratiog?/gY, is displayed in Fig. 5. For
The total valence part of the structure function of the deu]argex it exhibits the same characteristic shape as for the

teron, calcula}ted from Eq(25), is shown in Fig. 4. T.he (unpolarized nuclear EMC effect, namely a dip of 7—8 %
agreement W'th. the' SM39) gnd SLAC E14340] data in at x~0.6 and a steep rise due to Fermi motion %or0.6.
:hE valencedr_egu?tﬂ Is also c?_wt?_ goo?.trl:lote thakt carle must bI':;or smallx it stays below unity, where it can be reasonably
aken regarding the normaiization of the quark-nucieon ver, ., approximated by a constant depolarization factor,
tex functions when the nucleon is no longer on shell. In thi

s ; . )
simple model, the modifications of the vertex functions are1 8/2wp, as is typically done in data analysg39,40.

. L .~ “Also shown in Fig. 5 is the ratio of the convolution ansatz
made via thezexphcnp (_jependence of the normallzathn [Egs. (25)—(27)] to the full calculation(dashed curve As
ponstantS\lS(p ). !r? practice, ?ecause the structure funCt'onone can see, this ansatz works remarkably well for most
IS not very sensmve_ to the 2dependence in the quark- the only sizable deviations occurring fa>0.8, which is
nucleon vertex functionsNg(p<) can be taken to be con-

. " outside the range covered by previous experiments. Never-
stant. The numerical values of these normalization constanty \1ass  future experiments, both inclusive and semi-
are fixed through valence quark number conservation in th?nclusiv,e will be able to accéss the very largeegion, in
deuteron's spin-averaged distributions. They turn out to b hich ca'se the issue of nuclear — and in particular 'relativ—

0.8% and 1.7% smaller for the scalar and pseudovector Vefe.. " ctots will need to be seriously addressed
tices, respectively, than for the free nucleon. The insensitiv- '

VI. CONCLUSION

We have discussed polarized nuclear deep-inelastic scat-
tering within a covariant framework. In this context we ana-
lyzed the structure of the forward scattering amplitude of a
. virtual photon from a bound, off-mass-shell nucleon, focus-
ing especially on its symmetry properties. Within the im-
pulse approximation, we derived the most general, relativis-
tic expression for the nuclear structure functigh. Our
results clearly demonstrate that, in general, nuclear and

0 0.25 0.5 0.75 1 nucleon pieces do not factorize in a relativistic treatment of

x nuclear structure functions. The conventional convolution

model can only be recovered by taking the nonrelativistic

FIG. 4. Valence part of the deuteron structure functigh, limit for the nucleon-nucleus amplitude and assuming the

compared with the data for the fudl structure function from the on-shell limit for the off-shell nucleon structure function.
SMC and SLAC E14339,4Q. We showed numerical results for the deuteron structure
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function g7, where the off-shell nucleon tensor was calcu- ACKNOWLEDGMENTS
lated within a relativistic spectator model. At moderate We would like to thank S. Kulagin and W. Weise for

(<027) we found that nuclear g_ffects in the deutero_n arehelpful comments and discussions. This work was supported
dominated by thé-state probability of the deuteron. Bind- in part by the Australian Research Council, BMBF and the

ing and Fermi motion become significant only at large ) g Department of Energy Grant No. DE-FG02-93ER-
Also off-shell corrections turned out to be small at moderate40762.

X, but increase considerably in the regior 0.8.

With respect to the present experimental situation the
main uncertainty in the extraction of the neutron structure
function g still comes from the deuteroB-state probabil-
ity. For practical purposes, the off-shell modification of the Here we present the complete expressions for the trun-
bound nucleon structure function has to be taken into aceated structure function§y from Eqg. (4) in terms of the
count when high precision data at largdbecome available. functionsf;...,oandg;...q in Egs.(13):

APPENDIX A: TRUNCATED STRUCTURE FUNCTIONS

X ([ 5 X X X o, X x|\ 2
Gp) yvP= dkij | m“+k —2p-k)—/ 91+)—/92 _)—/(k —m?) 93+)—/94 +2 y 9
2_ kX X e X
+2m| k®>—p ky f7+yf8 +2my f9+yf10 : (A1)

fz):d_i[(z 2\n. le— 2.0 L2\ 2 ,25 2(5)2)
G<q><y,p fp_q (Mm=+2k%)p-k—((m=+k?)p=+4(p-k) >y+3ppky g2

x\ 2\ (1,
v |1z (K=m9g,—miy|+m

X
+| k2= 4p-k—+3p? y

y

X x\ 2
3k?p-k—2(p?k?+2(p- k)2)§+3p2p- k(—) )f8

+2m

X X x\2
p-k—pz—)fg—(k2—4p'k—+3p2(—) )97
y y y

X ~ X x\2 1
Gw)(;,pz):fdk((kz—Zp-ksz ;) )(—p-kgz—g(kz—mz)gﬁm —(m*+k?)gy

2
el k2= 2p-k 42 X| | (= p-kfgt f10)— 2m(p-kfg+ K3f A3
m p y p y (—=p-kfg+fi9—2m(p-kfg 10) { » (A3)

X 2 el | 12 X 2l X ’ 1o = 2, m2 X 2%
Giom|y:P*|= | dk||K=2p-kg+p? 7] || —p-kgs— 5 (K=m*)gs—gg | +(K*+m")| ga+ T g | —2m| p-k—p*Tf,
2 2 X ? X
—m| k“—p y f3+2m)—/f6 : (A4)

G X 2l _dk k— 2% k2+m?)ge+2m(p2f,+p-kfa+f (A5)
(eq)| TP - p p [( m)gg+2m(p-f,+p-kfz+fg)]
y p-q y
G (X 2) Jdi{ ( K(m?-+ 2K%) — (K2 m2) p2+ 4(p- K)2) + 3p? k(x)z)
-, = _ = . m — m . — . —
(opa)| p p-q p p p y p p y Os
2 X 2 X 2 1 2 2 2X
+lk —4p-k)—/+3p y _E(k —m9)gsg—0ggtmfs|—2m| p-k—p y far, (AB)

wherep-k=(p?+k?—m32)/2 andx/y=k-q/p-q=Q?/2p-q.

APPENDIX B: RELATIVISTIC CORRECTIONS TO NUCLEAR STRUCTURE FUNCTIONS

As outlined in Sec. IV the pseudovector and tensor components of the nucleon-deuteron scattering anddlitantk,
B%? in Eq.(18), can be separated into an on-shell part, which is proportional to the nonrelativistic deuteron wave function, and
an off-shell componeny- A=q- Ayt - Ao, aNd7T-B=T-B,,+7-B o . The on-shell component Ay,,=7-8B o, iS given in
Eq. (24). The off-shell contributions, which are of higher ordervifc or involve relativisticP states, are
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E wl® 3(p 3
. =272p. _P_ | | E_ZP 2, © (1_
q- Ag=2m°P-qM| cos 6 L (u 5 2\m Mco§0 vt+\/§(1 cog0)v g,
w
Jr\/—<cosaﬁ—u 1- cosze))um— \/§<cos9— M(1— cos ) |wu,+ \/—|p|(1 co §6)(U_E)US1 (B1)
and
p E,—M p?
2 2 p _ X 11—
T-Boy=2m*P-qM?| | M(M+Ep) —cogo+ 2 (1 cosh) v w21 cogh)
e E,—CoSO(E,+2M) JBuws ) 3 2 +2p2 1 co2p) - £ Ep COSOH(E,+M)|
M M uw v ECO (1—cos6)— — v
3( p, Ep—e—2M , 3 Eof. s
> —M-l-TCOSZG Ut+ﬁ l—m 2+M (l_CO§9)USUt
3lpl [ _p, —e |pl Ep—e
+\[§V —2+ 2 cogd—1—3cogd UUt+\/§V M~ cos - Wo,
|pl w
+\/§V(1—cos’-a) u—ﬁ vsl, (B2)

where p,=|p|cosb, Ep:\/M2+ p? and co®=(yMp—po)/|p|. Also the convolution breaking contributiom- A in Eq. (19)
represents a relativistic correction in comparison with the “on-shell” amplitude:

w2 3MDpZ 2 w

Taking into account these relativistic contributions to the nucleon-deuteron amplitude, one obtains the relativistic correction
to the convolution component af in Eq. (25):

A-p=27*MpM

P,
(Mp—2Ep) 7| u

P-q
é*“f)gi’(x):mf dydpz[ (gl(x/y p?)— gl(x/y)w)w Aoi(P+0G(q)+ ()

+T'BoffM(G(rrp)_p'qG((rpq))"'p'Ap'qG(p)}- (84)
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