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The loffe current constants for the proton are evaluated using a Poingarént solution of the three-body
Dirac equation, for the (1/2° positive parity configuration. Results are also compared to the QCD sum rule
predictions and with the random instanton liquid mod&0556-28136)06008-9
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I. INTRODUCTION This is a continuation of effortt2] to compare the results of
QCD sum rules to the results of quark potential models.
The loffe currents are an attempt to incorporate what is The loffe current constant for the proton couples the pro-
known about the quark content of a QCD description ofton wave function to the vacuum. The loffe current constant
strongly interacting baryons. Namely the™* has three Provides a connection to the electromagnetic form fadtls
quarks of the same flavor existing in orbital angular momen#t large momentum transfer. It is also a factor in the decay
tum zero statefl]. From SU3) symmetry, similar consider- amplitude of the proton in some QCD theories. The loffe
ations apply for the nucleon described as three quarks, pwhurrent constant can be calculated given a theory of the quark

u quarks, and ond quark. If one is restricted to considering structure in the proton. One needs the probability amplitude

currents proportional to the product of three quark field op-é?%tu?tgrﬁzgeueslguarks are at the center of mass of the proton

erators without derivatives, then the form of the current is™" """ | oo three-quark model, the charge and spin of
. ++ 1
uhnamb|guous for thel .hFor the nucleon, two forms for the proton are modeled by assigning appropriate charges to
the current emergkL,2]. They are the assumed three quark constituents, and assigning them to
o b c abc a (1/2")* configuration coupled to a total angular momen-
Mm=[U)Cy () 75y, d (x)€ @ tum of one-half. The configuration is labeled by the upper
component quantum numbers for each quark. The three-body
Dirac equation is used to describe the dynamics of a bound
?) relativistic three-quark system.
The hyperspherical method has been applied to the three-

C is a charge conjugation matrig; b, andc are color indi-  P0dy Dirac equatio,6], where hyperangular averages of a

ces for the quarks; andis the totally antisymmetric tensor. diagonal central potential and the .rellativis_tic kinetic energy
The sum over repeated indices is understoeg, is the operator were evaluated. The basic idea is to use the chain
14

and

2= [Ua(X)CO'#VUb(X)] '}/SO-MVdC(X) eabc-

combination of Dirac matrices rule of calculus to change the partial derivatives of the ki-
’ netic energy operator with respect tg, etc., into partial
=1 (VYo Vo ¥u)I2. ©) derivatives with respect to the hyperradius. The hyperspheri-

cal formulation expands the three-body bound state wave
These are the only two positive parity, spin one-half currentdunction into a set of configurations, each of which has a
that can be constructd@], these are the so-called loffe cur- hyperradial and a hyperangular factor.
rents for the nucleon. The nucleon coupling to the two loffe  In the method of hyperspherical functions, one obtains a

currents is given by self-adjusted quark system in which the parameters of the
_ guark-quark interaction determine the size of the sygtéin
(0] 71,4 N(p,MZ)):)\T'Z\/[ZE/(ZW)?’]U(p,MZ)e*'px, This method has been used to make numerous calculations of

(4)  the structure of heavy baryons and other multiquark systems
using various potentials for the interquark interactj8o].
where|[N(p,M,)) denotes a nucleon state with momentumThe importance of a relativistic approach for description of
p, and spinz componenM,. U(p,M,) is the corresponding the dipole form factor of the proton has been shgw@. In
free fermion spinor and’i"z is the loffe current constanE is  this paper we are using the wave functions of the proton
the nucleon rest mass energy. The main result of this paper [$,11] which reproduce the proton size, to calculate the loffe
to calculate the loffe current constant using a covariant soeurrent constant.
lution for the composite wave function of three quarks from  Thus the eight radial components of the (1y2 compos-
the relativistic three-body Dirac equation in the center ofite three-quark wave function have been giyémni 1] a hy-
mass frame. In this frame, the proton rest frapés zero.  perradial dependence d(r)=constXexp(—Lr?). K de-
notes the orbital angular momentum in a given component,
zero for the large cubed first component which survives in

*Electronic address: gstrobel@hal.physast.uga.edu the nonrelativistic limit, and up to three for the small cubed
"Permanent address: Institute of Nuclear Physics Moscow Stateighth component of the (172 composite three-body wave
University, Moscow, Russia. function.

0556-2813/96/5¢)/888(6)/$10.00 54 888 © 1996 The American Physical Society



54 IOFFE CURRENT CONSTANT FROM A RELATIVISTIC ... 889

The strength of the hypercentral quadratic potential for a given quark mass was adjusted to reproduce the proton rest
energy. The Lorentz character of the potengsalalar, vector, tensor, etés determined by requiring an analytic solution of the
three-body Dirac equation in hyperspherical coordinates. This potential vanishes at zero separation, in agreement with the idea
of asymptotic freedom.

Il. THEORY

The composite field, for a three-body system is given by
D(X1,X2,X3) =W (X)W (X2)W(X3), )

where theW (x)’s are single-particle wave functions, ards a four-vector describing the particle coordinates. It is important

to vary the action with respect to the composite field only, and one will then obtain a linear equation for the composite field.
This is in contrast to varying the action with respect to the single-particle wave functions, which results in nonlinear differ-

ential integral equations to solve. One obtains for the composite field, the three-body Dirac equation, written in covariant form
as

[(y¥id,—mp)ey“n,@y“n, +y'n,0(yid,—my)ey'n,

i D (X1,X2,X3)=0. 6
+'y”77#®'y”77ﬂ®('y/‘|(9#—m3) —I2<J V”(d”)] ( 1172 3) ()

Here n,, is a timelike four-velocity vector of the system. component formalism, it reduces to a Bquals eight com-
In the center of momentum frame,, is (1 0 0 0. d;; isthe  ponent wave function. The three-fermion composite wave
transverse difference of the two four vectotsandx; . Here  function, @, is written as
Xij is defined as; —xj)z, so that the transverse difference is
=2 U(Q)R(p), ©)
dij ={— (%= %)%+ (x;;- )22 (7)

) where the sum is over the various configurations. In general,
In the center of momentum frame, the transverse differencg,e sum over configurations is eventually truncated by a

simplifies to .the magnitude of.the usual radial separatioq Ofnultibody angular momentum barrier that favors small or-
the two particlesy;; . The motion of the center of mass is g angular momenta configurations for short ranged forces.

correctly handled by the three-body Dirac equation in thisrhe hypercentral approximation truncates this sum to that of
frame b_y use of some version of the J_acobl coordlnat_es. Thig single configuratior () is a product of the orbital, spin,
results in a covariant three-body one-time equation with relaflavor, and color part of the wave function for each of the
tivistic potentials. The time is the_ time of the center of Massyarticles, and includes the angular momentum couplidg.

In a three-body system, there is no dependence on e€ithefongtes the hyperangles, and the other spin, flavor, and color
relative time. When the three-body composite particle wave. . ginates of the system. The angular momentum coupling
function normalization is defined on a three-dimensional spayg [i1,i21912,JsIM,). i1, i2, andjs are the total angular

tial surfgce perpendicular to a unit four-vector, which is qnantum of each of the three particlds, is the interme-
.(1 000 m_the Qverz_all center of momentum frame, .then_ the,rediate coupling of the first pair. The total angular momentum
is no relative time in the composite particle Hamiltonian in of the third particle is coupled td,, to produced, the total
this frame. . L . ngular momentum of the three-body system, and d&em-
The three-body Dirac equation is solved in hypercentratgonemMz_ Sums over then values are understood. For the

approximation. The six space coordinates necessary ucleonJ is one-half, and;, can be only zero or one for the

specify the location of the particles are taken as a hyperra ) . : : . .
! X o ) gurations considered here. Doing the hyperangular inte-
dius, p, and five hyperangle€). The hyperradius is defined gration results in the three-body Dirac equation becoming a

as set of coupled differential equations involving derivatives
with respect to the hyperradius. An eight by eight matrix is
obtained for the Hamiltonian which operates on the compos-
o . ite three-body wave function involving products of the upper
The hypercentral approximation utilizes the hyperangular avang jower components for each single-particle wave func-
erage of theZ;.;V;;(d;;) potential terms. For the solution {jon The unknown hyperradial dependence is symmetric
used here, this is taken as proportional to the hyperrad|u§pon exchange of any pair of coordinates.

squared. The hyperangular reduction 01_‘ these equatiqns has The factors that make up thé(Q) part of the composite
been reported elsewhef6,6]. The equations and solutions \yaye function are now expressed in detail. The color singlet

are somewhat simpler expressed in terms of thabove,  part of the composite wave function of three quarks can be
rather than the hyperradius. written as a factor:

The composite wave function is originally & €quals 64
component wave function. In the Dirac upper and lower two- Yeolor= de{abc)/\6, (10

p2=ri+ri+ri=2r?3, (8)
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where a, b, and ¢ denote the three color indices of the In terms ofF andG, the single-particle upper and lower
quarks. This determinant is totally antisymmetric upon ex-component to the one-body Dirac equation, the composite
change of color indices. The rest of the composite waveavave function radial components from particles 1, 2, and 3
function must therefore be totally symmetric upon exchangere:

of coordinates. The composite wave function can be rewrit-

ten as Component 123
b= wcolor‘ﬁfcwspace (11 Ry FFF

R, GFF

The flavor and angular momentum coupling part can be ex- Rs FGE
pressed as R, GGF
Ci11 Can Rs FFG
¢fc:(Xs[J11]2]1a]3‘]Mz>+XA[J1!]2]01]3JMZ>)/\/§- 12 Rs GEG
(12 R, FGG

Here the flavor part consists of onlyor d components, the Rg GGG

symmetric upon exchange of the first pair being 19

Xs=[duutudu ZUUd]/\/E (13 We define aA (x,x’) =K(x)+K(x'). Herex denotes the
and the antisymmetric upon exchange of the first pair beingomposite wave function component index listed above,
ranging from 1 to 8. This angular momentum coefficient var-
XAz[udu—duu]/\/E. (14) ies from element to element in the Hamiltonian matrix. The
orbital angular momentum potential barrier is in part of the
The combined symmetry of the flavor angular momentunkinetic energy operator defined as
coupling part is maintained by the angular momentum cou-

pling factors having the same symmetry as the corresponding D(n)=(d/dr+n/r). (19
flavor part.J;, is 1 for the symmetric flavor part, anli, is
zero for the antisymmetric flavor part. The normalization of the wave function is now consid-

The composite three-body wave function is an eight-ered. Each configuration is here separately considered nor-
component column vector with unknown hyperradial depenmalized to unity. After the hyperangular integration, the nor-
dence to be determined. The color, flavor, angular momenmalization for a configuration is
tum coupling, and the orbital factors of the composite wave
function are all collected into the factar((2).

— (/322 5 2
The orbital part of the wave function for each quark is 1~ (2/™ N g J pdp(ROTLAXX) +61/2}.

given by (20)
Ci(ri/p)'YMz101,1/2]jm) The (1/2")® configuration has been solved for harmonic-
dM(ry) = ) . oscillator-like potentiald5]. This assumed hyperradial de-
" i(;l.flcl,(rl/p)"ylnj' Ly, 1/2]jm) pendence correctly handles the angular momentum domi-

(15) nated shape of the wave function at small distances, and also
the charge radius of the proton, if the quark mass is 0.110

The upper and lower components of this equation are nowseV or less. The hypercentral potential required for the so-
also named~ andG, respectively, for a shorthand notation lution is obtained analytically by substitution into the three-
for the upper and lower components of the single-particlebody Dirac equation above, and equating coefficients.
wave function.fy,, is the intrinsic spin one-halfup or down
spinor cor_nponemwave function for the quark intrinsic spin. Il THE (1/2*)° CONFIGURATION SOLUTION
The coefficients are

For the (1/2)° configuration theK values are

C,=[2T(/+3/2)]"2 (16)
I'(n) is the gamma function of order. / and/" differ by L1 L2 L3 K
one and sum to twicg. The one-body paritysr, determines
/. The orbital part is based on solid harmonics,/p)” 1 0 0 0 0
times a spherical harmoniN,T/(?i). The orbital part can be 2 1 0 0 1
expressed as solid harmonics involving only the Jacobi relag 0 1 0 1
tive coordinates. We use the individual coordinates of the, 1 1 0 2
guarks however, constrained as 5 0 0 1 1
> > > 6 1 0 1 2
ri{+ro+rz=0 7 7 0 1 1 5
in writing the composite wave function. 8 1 1 1 3
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The Hamiltonian matrix, after hyperangular integration for the {}#2configuration, is

[(3M~E) -D(5)3 —D(5)3 0 —D(5)/3 0 0 o |
D(0) (M—E) 0 -D(6)4 0 ~D(6)/4 0 0
D(0) 0 (M—E) -D(6)/4 0 0 —D(6)/4 0
o 0 D(-1) D(-1) (-M-E) 0 0 0 —D(7)/5
D(0) 0 0 0 (M—~E) —D(6)/4 —D(6)/4 0 1)
0 D(-1) 0 0 D(-1) (-M-E) 0 —D(7)/5
0 0 D(~1) 0 D(-1) 0 (-M—-E) ~D(7)/5
0 0 0 D(-2) 0 D(-2) D(-2) (-3M-E)

The angular momentum barrier is in thép term of the kinetic energy operatdd,(n). This equation is the hyperangular
integrated form of the equatigiH —E]¥ =0 for the (1/2)° configuration. The ordering of the eight components of the
hyperradial part of the composite three-body wave function is as listed it1Bg.An analytic solution has been found for

these equations when a specific harmonic oscillator potential is utilized for the case of all three particles identical. For three
identical particles, and with each particle with the same set of quantum numbers, one expects the corfgpRantand

Rs to be equal, and also for the componeRg Rg, and R; to equal each other. Then the wave function has only four
unknown component®};, R,, R,, andRg. For the (1/2)2 configuration, including central diagonal quadratic interactions
along the diagonal, results in thex4t Hamiltonian matrix that operates on the four unknown components:

(BM—E+n,r?) -D(5) 0 0 R,
D(0) (M—E+nyr?) —-D(6)/2 0 R, o 22
0 2D(—1) (-M—E+n,r?) -D(7)/5 R,|
0 0 3D(-2) (=3M—E+ngr?) Ry
|
This matrix operates on the hyperradial components n,=(E—3M)%(E+3M)/108,
R:,R,,R,, andRg. Solutions of this equation were foufd]
of the form n,=n,/2,
R:I.:A eX[Z(—LI’Z), n4:n1/5,
R,=R3;=Rs=Br exp(—Lr?), ng=0. (25
R,=Rg=R,=Cr2exp(—Lr?), To get the Gaussian-type solution, the interaction in the
small component must vanish. The ansatz solution is substi-
Rg=Dr3exp(—Lr2) (23) tuted into the four by four Hamiltonian matrix, the differen-
’ tiation is carried out, and coefficients of like powersradre
where equated. Setting the coefficietto unity, the above solution
is obtained. Normalizing this configuration to unity multi-
A=1, plies all the components by a constat determined from
Eqg. (20), compared to the values quoted above. The energy
B=—(E—3M)/6 E must be greater than the sum of the rest massis, i
' order for the Gaussian size parameterto be positive. This
Cc—p2 is necessary for bound, normalizable wave functions.
D=R3 IV. RESULTS

This solution has two parameters, the system endggy,
L=(E—3M)(E+3M)/36, (29 and the quark mas$/l. E is set to the proton rest energy.
The quark mass is varied. This is almost an unconstrained
when the oscillator potential parameters are chosen so thaparameter in the potential model solution. The proton charge
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radius is nearly reproduced for any value of the quark mass 0.16

up to about 0.110 GeV. oda |
Using the three-quark composite wave function detailed
above as the proton wave function for spin up, i.e., 042 ¢
M,=+1/2, we consider 0.1}
& 0.08 |
1,=(0] 74| ®(0,+1/2)). 26 &
=
The color factor td 4 is 0.04 |
CF= Gabc(abc) Peolor= \/g (27 0oy
0
: 0 005 01 045 02 025 03 035
The flavor part td; is Quark Mass(GeV)
FP=(uud|¢c) = —[(j1j2) 1] MZ>/‘/§’ (28) FIG. 1. loffe coupling constant; for the proton.

using the flavor spin coupling parts of the wave function,

Egs.(12)—(14). Callingm;, m,, andm; the z components S=(E—3M)/(E+3M). (35
of spin of the three quarks, we have merely the product tol_h. leads t
two Clebsch Gordan coefficients, IS leads to

AN=7343L)%? (1+ S/2)%2, (36)

(Mymym|(j1j2)1j3IM,)
= (1/2my,1/2m,| 1m; +m,) (1m; +m,, 1/2mg| IM,). We noteL has the units ofGeV)? in the above equation.
Summing over the quark spim componentsm;, m,,

(29 and m3, we obtain

:] is one-half, a}ndw2=+1/2. The charge conjugation matrix = 10AN/ 7943 37)
in the current is symmetric,

0 o, This evaluation of the first loffe current allow the determi-

C=iy*y’=—i o 0 (300  nation of the loffe coupling constank} . This loffe cou-

2 pling constant is shown versus assumed quark mass in Fig. 1.

The calculation of the second loffe constant is similiar. With

and we also need I,=(0| 7,/ ®(0,+ 1/2)) (38

0 1 : L
- this eventually simplifies to
Y |_1 0_| . (31)

|2: - \/E E <m2|Co-,uv|mSZ><m3| ysauv|m33>
ms2,ms3

So, collecting these factors, we have o
X(mlmszms3|(m 2)1aJ 3JM2>¢space (39)

Il=—ﬁm;n§ (M| Cy,Ims;)(mg|y°y,|mss) This must also be summed over the three-quadompo-
' nents of spinmy, m,, andmgs. The final result is

><<m1m82m$3|(jlj 2)11j 3JMZ>¢space (32)

This must also be summed over the three-quadompo-
nents of spinm,, m,, andms. At the origin, only one of the The second loffe coupling constant is shown in Fig. 2. It is
eight components of the space part of the relativistic com-

posite particle wave function is nonzero. The first, upper 0.3
component cubed survives. Each quark has zero orbital an-
gular momentum in this component of the composite wave
function. The normalized wave function there is given by 02|

#(0)=AN(Co/4m)3, (33

where N is the normalizing coefficient determined by Eq.
(20), and the coefficient€, are given in Eq(16).

For this Gaussian-type wave function for the quarks in a
proton, the normalization can be obtained analytically as 0

I ,=20AN/7%4/3. (40)

0.25

015 |

Az (Gev3)

01}

0.05

2 3/2, 3 3 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
N“=7*43L)°/(1+S/2)", (39 Quark Mass(GeV)

where FIG. 2. loffe coupling constant, for the proton.
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twice the first loffe coupling constant for the proton wave pole plus continuum modglinvolve at least two quarks
function utilized here. which have to flip their chirality. It might be that the RILM

Equation(41) shows the results of our calculations for the has problems reproducing those amplitudes.
loffe coupling constant with quark masses of zero and 0.25

GeV which can be compared with the QCD sum rule predic- V. CONCLUSIONS
tions and also with the random instanton liquid model L . s
(RILM): Zero quark masses are possible in this relativistic poten-

tial model of the proton. For a zero mass quark, the first loffe
QCD current constant is 0.12&eV) 3. The maximum coupling

Dirac model - Dirac model = RILM constant occurs for a quark mass of about 0.075 GeV. A

Quantity ~ M=0 M=0.25 GeV  [3] [1] quark mass of about 0.25 GeV is required for the potential
Ay 0.122 0.032 0.032 0.035 model to reproduce the loffe current constant value of 0.032
+0.001 +0.008 (GeV)® as determined by QCD sum rul¢3]. The second
loffe current constant, for an assumed quark mass of 0.25
h2 0.244 0.064 +O(')0g84 GeV, agrees with QCD sum rule estimates.

The relativistic potential quark model is able to be param-
(41)  etrized to successfully predict loffe current constants in
agreement with QCD sum rule predictions. With the har-
E/monic oscillatorlike proton wave function used here, the sec-

Our calculation results are in good agreement with th . . :
ond loffe current constant is twice the first constant.

RILM for A, and not so good agreement wix. The ex-
planation for that is as follows. The parameters for the
nucleon and the delta were obtained by a global fit to the six
nucleon and the four delta correlation functions. The simple We are indebted to E. Shuryak for the idea of these cal-
“nucleon pole plus continuum” model gives a very good culations and for very useful discussions. We have benefited
simultaneous description for the complete set of correlatiofrom discussions and remarks with T. Schafer, S. Cherny-
functions. This agreement is particularly good for correlatorsshev, and A. Blotz about the results of QCD and RILM
involving the first loffe current, while it is somewhat worse concerning the loffe current constants. One of(KsVv.S.)

for the other ones. Notg3] that the correlation functions would like to thank the theory group of SUNY for the hos-
P3 andP6 (which show deviations from the simple nucleon pitality extended during a stay there.
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