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Ioffe current constant from a relativistic three quark model
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The Ioffe current constants for the proton are evaluated using a Poincare´ invariant solution of the three-body
Dirac equation, for the (1/21)3 positive parity configuration. Results are also compared to the QCD sum
predictions and with the random instanton liquid model.@S0556-2813~96!06008-6#
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I. INTRODUCTION

The Ioffe currents are an attempt to incorporate wha
known about the quark content of a QCD description
strongly interacting baryons. Namely theD11 has three
quarks of the same flavor existing in orbital angular mome
tum zero states@1#. From SU~3! symmetry, similar consider-
ations apply for the nucleon described as three quarks,
u quarks, and oned quark. If one is restricted to considerin
currents proportional to the product of three quark field o
erators without derivatives, then the form of the current
unambiguous for theD11. For the nucleon, two forms for
the current emerge@1,2#. They are

h15@ua~x!Cgmu
b~x!#g5gmd

c~x!eabc ~1!

and

h25@ua~x!Csmnu
b~x!#g5smnd

c~x!eabc. ~2!

C is a charge conjugation matrix;a, b, andc are color indi-
ces for the quarks; ande is the totally antisymmetric tensor
The sum over repeated indices is understood.smn is the
combination of Dirac matrices,

smn5 i ~gmgn2gngm!/2. ~3!

These are the only two positive parity, spin one-half curre
that can be constructed@3#, these are the so-called Ioffe cu
rents for the nucleon. The nucleon coupling to the two Io
currents is given by

^0uh1,2uN~p,Mz!&5l1,2
N A@2E/~2p!3#U~p,Mz!e

2 ipx,
~4!

where uN(p,Mz)& denotes a nucleon state with momentu
p, and spinz componentMz . U(p,Mz) is the corresponding
free fermion spinor andl1,2

N is the Ioffe current constant.E is
the nucleon rest mass energy. The main result of this pap
to calculate the Ioffe current constant using a covariant
lution for the composite wave function of three quarks fro
the relativistic three-body Dirac equation in the center
mass frame. In this frame, the proton rest frame,p is zero.
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This is a continuation of efforts@2# to compare the results o
QCD sum rules to the results of quark potential models.

The Ioffe current constant for the proton couples the p
ton wave function to the vacuum. The Ioffe current consta
provides a connection to the electromagnetic form factors@4#
at large momentum transfer. It is also a factor in the dec
amplitude of the proton in some QCD theories. The Io
current constant can be calculated given a theory of the qu
structure in the proton. One needs the probability amplitu
that all three quarks are at the center of mass of the pro
simultaneously.

In a relativistic three-quark model, the charge and spin
the proton are modeled by assigning appropriate charge
the assumed three quark constituents, and assigning the
a (1/21)3 configuration coupled to a total angular mome
tum of one-half. The configuration is labeled by the upp
component quantum numbers for each quark. The three-b
Dirac equation is used to describe the dynamics of a bo
relativistic three-quark system.

The hyperspherical method has been applied to the th
body Dirac equation@5,6#, where hyperangular averages of
diagonal central potential and the relativistic kinetic ener
operator were evaluated. The basic idea is to use the c
rule of calculus to change the partial derivatives of the
netic energy operator with respect tor 1, etc., into partial
derivatives with respect to the hyperradius. The hypersph
cal formulation expands the three-body bound state w
function into a set of configurations, each of which has
hyperradial and a hyperangular factor.

In the method of hyperspherical functions, one obtain
self-adjusted quark system in which the parameters of
quark-quark interaction determine the size of the system@7#.
This method has been used to make numerous calculation
the structure of heavy baryons and other multiquark syste
using various potentials for the interquark interaction@8,9#.
The importance of a relativistic approach for description
the dipole form factor of the proton has been shown@10#. In
this paper we are using the wave functions of the pro
@5,11# which reproduce the proton size, to calculate the Io
current constant.

Thus the eight radial components of the (1/21)3 compos-
ite three-quark wave function have been given@5,11# a hy-
perradial dependence ofR(r )5constr Kexp(2Lr 2). K de-
notes the orbital angular momentum in a given compone
zero for the large cubed first component which survives
the nonrelativistic limit, and up to three for the small cub
eighth component of the (1/21)3 composite three-body wave
function.
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The strength of the hypercentral quadratic potential for a given quark mass was adjusted to reproduce the prot
energy. The Lorentz character of the potential~scalar, vector, tensor, etc.! is determined by requiring an analytic solution of the
three-body Dirac equation in hyperspherical coordinates. This potential vanishes at zero separation, in agreement with
of asymptotic freedom.

II. THEORY

The composite field, for a three-body system is given by

F~x1 ,x2 ,x3!5C~x1!C~x2!C~x3!, ~5!

where theC(x)’s are single-particle wave functions, andx is a four-vector describing the particle coordinates. It is importan
to vary the action with respect to the composite field only, and one will then obtain a linear equation for the composite
This is in contrast to varying the action with respect to the single-particle wave functions, which results in nonlinear d
ential integral equations to solve. One obtains for the composite field, the three-body Dirac equation, written in covarian
as

H @~gmi ]m2m1! ^ gmhm ^ gmhm 1gmhm ^ ~gmi ]m2m2! ^ gmhm

1gmhm ^ gmhm ^ ~gmi ]m2m3! 2(
i, j

Vi j ~di j !] J F~x1,x2,x3!50. ~6!
.

i

s

t

i
r
i

r

o

ve

ral,
a
r-
es.
of

e

olor
ing

m

e

te-
a
s
is
s-
er
c-
ric

let
be
Herehm is a timelike four-velocity vector of the system
In the center of momentum frame,hm is ~1 0 0 0!. di j is the
transverse difference of the two four vectors,xi andxj . Here
xi j is defined as (xi2xj )

2, so that the transverse difference

di j5$2~xi2xj !
21~xi j •h!2%1/2. ~7!

In the center of momentum frame, the transverse differen
simplifies to the magnitude of the usual radial separation
the two particles,r i j . The motion of the center of mass i
correctly handled by the three-body Dirac equation in th
frame by use of some version of the Jacobi coordinates. T
results in a covariant three-body one-time equation with re
tivistic potentials. The time is the time of the center of mas
In a three-body system, there is no dependence on ei
relative time. When the three-body composite particle wa
function normalization is defined on a three-dimensional sp
tial surface perpendicular to a unit four-vector, which
~1 0 0 0! in the overall center of momentum frame, then the
is no relative time in the composite particle Hamiltonian
this frame.

The three-body Dirac equation is solved in hypercent
approximation. The six space coordinates necessary
specify the location of the particles are taken as a hyper
dius,r, and five hyperangles,V. The hyperradius is defined
as

r25r 1
21r 2

21r 3
252r 2/3. ~8!

The hypercentral approximation utilizes the hyperangular a
erage of the( i, jVi j (di j ) potential terms. For the solution
used here, this is taken as proportional to the hyperrad
squared. The hyperangular reduction of these equations
been reported elsewhere@5,6#. The equations and solutions
are somewhat simpler expressed in terms of ther above,
rather than the hyperradius.

The composite wave function is originally a 43 equals 64
component wave function. In the Dirac upper and lower tw
s

ce
of

is
his
la-
s.
her
ve
a-
s
e
n

al
to
ra-

v-

ius
has

-

component formalism, it reduces to a 23 equals eight com-
ponent wave function. The three-fermion composite wa
function,F, is written as

F5( U~V!R~r!, ~9!

where the sum is over the various configurations. In gene
the sum over configurations is eventually truncated by
multibody angular momentum barrier that favors small o
bital angular momenta configurations for short ranged forc
The hypercentral approximation truncates this sum to that
a single configuration.U(V) is a product of the orbital, spin,
flavor, and color part of the wave function for each of th
particles, and includes the angular momentum coupling.V
denotes the hyperangles, and the other spin, flavor, and c
coordinates of the system. The angular momentum coupl
is @ j 1 , j 2#J12, j 3JMz&. j 1 , j 2 , and j 3 are the total angular
momentum of each of the three particles,J12 is the interme-
diate coupling of the first pair. The total angular momentu
of the third particle is coupled toJ12 to produceJ, the total
angular momentum of the three-body system, and itsz com-
ponentMz . Sums over them values are understood. For th
nucleon,J is one-half, andJ12 can be only zero or one for the
configurations considered here. Doing the hyperangular in
gration results in the three-body Dirac equation becoming
set of coupled differential equations involving derivative
with respect to the hyperradius. An eight by eight matrix
obtained for the Hamiltonian which operates on the compo
ite three-body wave function involving products of the upp
and lower components for each single-particle wave fun
tion. The unknown hyperradial dependence is symmet
upon exchange of any pair of coordinates.

The factors that make up theU(V) part of the composite
wave function are now expressed in detail. The color sing
part of the composite wave function of three quarks can
written as a factor:

ccolor5det~abc!/A6, ~10!
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890 54GEORGE L. STROBEL AND K. V. SHITIKOVA
where a, b, and c denote the three color indices of th
quarks. This determinant is totally antisymmetric upon e
change of color indices. The rest of the composite wa
function must therefore be totally symmetric upon exchan
of coordinates. The composite wave function can be rew
ten as

F5ccolorc f ccspace. ~11!

The flavor and angular momentum coupling part can be
pressed as

c f c5~xs@ j 1 , j 2#1,j 3JMz&1xA@ j 1 , j 2#0,j 3JMz&)/A2.
~12!

Here the flavor part consists of onlyu or d components, the
symmetric upon exchange of the first pair being

xs5@duu1udu22uud#/A6 ~13!

and the antisymmetric upon exchange of the first pair be

xA5@udu2duu#/A2. ~14!

The combined symmetry of the flavor angular moment
coupling part is maintained by the angular momentum c
pling factors having the same symmetry as the correspon
flavor part.J12 is 1 for the symmetric flavor part, andJ12 is
zero for the antisymmetric flavor part.

The composite three-body wave function is an eig
component column vector with unknown hyperradial dep
dence to be determined. The color, flavor, angular mom
tum coupling, and the orbital factors of the composite wa
function are all collected into the factorU(V).

The orbital part of the wave function for each quark
given by

f jp
m ~r 1!5F Cl~r 1 /r! lYl

mlz1/2[ l ,1/2]jm&

isW 1• r̂ 1Cl 8(r 1 /r)
l 8Yl 8

ml8z1/2[ l 8,1/2]jm&
G .

~15!

The upper and lower components of this equation are n
also namedF andG, respectively, for a shorthand notatio
for the upper and lower components of the single-part
wave function.z1/2 is the intrinsic spin one-half~up or down
spinor component! wave function for the quark intrinsic spin
The coefficients are

Cl 5@2/G~ l 13/2!#1/2. ~16!

G(n) is the gamma function of ordern. l and l 8 differ by
one and sum to twicej . The one-body parity,p, determines
l . The orbital part is based on solid harmonics, (r i /r)

l

times a spherical harmonic,Yl
ml ( r̂ i). The orbital part can be

expressed as solid harmonics involving only the Jacobi r
tive coordinates. We use the individual coordinates of
quarks however, constrained as

rW11rW21rW350 ~17!

in writing the composite wave function.
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In terms ofF andG, the single-particle upper and lower
component to the one-body Dirac equation, the compos
wave function radial components from particles 1, 2, and
are:

Component 123

R1 FFF
R2 GFF
R3 FGF
R4 GGF
R5 FFG
R6 GFG
R7 FGG
R8 GGG

~18!

We define aL(x,x8)5K(x)1K(x8). Herex denotes the
composite wave function component index listed abov
ranging from 1 to 8. This angular momentum coefficient var
ies from element to element in the Hamiltonian matrix. Th
orbital angular momentum potential barrier is in part of th
kinetic energy operator defined as

D~n!5~d/dr1n/r !. ~19!

The normalization of the wave function is now consid
ered. Each configuration is here separately considered n
malized to unity. After the hyperangular integration, the nor
malization for a configuration is

15~2/p3/2!N2(
x
E r5dr~Rx!

2/G$@L~x,x!16#/2%.

~20!

The (1/21)3 configuration has been solved for harmonic
oscillator-like potentials@5#. This assumed hyperradial de-
pendence correctly handles the angular momentum dom
nated shape of the wave function at small distances, and a
the charge radius of the proton, if the quark mass is 0.11
GeV or less. The hypercentral potential required for the s
lution is obtained analytically by substitution into the three
body Dirac equation above, and equating coefficients.

III. THE „1/21
…

3 CONFIGURATION SOLUTION

For the (1/21)3 configuration theK values are

x L1 L2 L3 K

1 0 0 0 0
2 1 0 0 1
3 0 1 0 1
4 1 1 0 2
5 0 0 1 1
6 1 0 1 2
7 0 1 1 2
8 1 1 1 3
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The Hamiltonian matrix, after hyperangular integration for the (1/21)3 configuration, is

~21!

The angular momentum barrier is in then/r term of the kinetic energy operator,D(n). This equation is the hyperangula
integrated form of the equation@H2E#C50 for the (1/21)3 configuration. The ordering of the eight components of t
hyperradial part of the composite three-body wave function is as listed in Eq.~18!. An analytic solution has been found fo
these equations when a specific harmonic oscillator potential is utilized for the case of all three particles identical. Fo
identical particles, and with each particle with the same set of quantum numbers, one expects the componentsR2, R3, and
R5 to be equal, and also for the componentsR4, R6, andR7 to equal each other. Then the wave function has only fo
unknown components,R1 , R2 , R4, andR8. For the (1/21)3 configuration, including central diagonal quadratic interactio
along the diagonal, results in the 434 Hamiltonian matrix that operates on the four unknown components:

~22!
n
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This matrix operates on the hyperradial compone
R1 ,R2 ,R4, andR8. Solutions of this equation were found@5#
of the form

R15A exp~2Lr 2!,

R25R35R55Br exp~2Lr 2!,

R45R65R75Cr2exp~2Lr 2!,

R85Dr 3exp~2Lr 2!, ~23!

where

A51,

B52~E23M !/6,

C5B2,

D5B3,

L5~E23M !~E13M !/36, ~24!

when the oscillator potential parameters are chosen so t
ts

at

n15~E23M !2~E13M !/108,

n25n1/2,

n45n1/5,

n850. ~25!

To get the Gaussian-type solution, the interaction in t
small component must vanish. The ansatz solution is sub
tuted into the four by four Hamiltonian matrix, the differen
tiation is carried out, and coefficients of like powers ofr are
equated. Setting the coefficientA to unity, the above solution
is obtained. Normalizing this configuration to unity multi
plies all the components by a constantN, determined from
Eq. ~20!, compared to the values quoted above. The ene
E must be greater than the sum of the rest masses, 3M , in
order for the Gaussian size parameter,L, to be positive. This
is necessary for bound, normalizable wave functions.

IV. RESULTS

This solution has two parameters, the system energy,E,
and the quark mass,M . E is set to the proton rest energy
The quark mass is varied. This is almost an unconstrain
parameter in the potential model solution. The proton char
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892 54GEORGE L. STROBEL AND K. V. SHITIKOVA
radius is nearly reproduced for any value of the quark m
up to about 0.110 GeV.

Using the three-quark composite wave function deta
above as the proton wave function for spin up, i
Mz511/2, we consider

I 15^0uh1uF~0,11/2!&. ~26!

The color factor toI 1 is

CF5eabc~abc!ccolor5A6. ~27!

The flavor part toI 1 is

FP5^uuduc fc&52u~ j 1 j 2!1 j 3JMz&/A3, ~28!

using the flavor spin coupling parts of the wave functio
Eqs.~12!–~14!. Callingm1 , m2 , andm3 the z components
of spin of the three quarks, we have merely the produc
two Clebsch Gordan coefficients,

^m1m2m3u~ j 1 j 2!1 j 3JMz&

5~1/2m1,1/2m2u1m11m2!~1m11m2 ,1/2m3uJMz!.

~29!

J is one-half, andMz511/2. The charge conjugation matr
in the current is symmetric,

~30!

and we also need

~31!

So, collecting these factors, we have

I 152A2 (
ms2,ms3

^m2uCgmums2&^m3ug5gmums3&

3^m1ms2ms3u~ j 1 j 2!1,j 3JMz&cspace. ~32!

This must also be summed over the three-quarkz compo-
nents of spin,m1, m2, andm3. At the origin, only one of the
eight components of the space part of the relativistic co
posite particle wave function is nonzero. The first, up
component cubed survives. Each quark has zero orbita
gular momentum in this component of the composite w
function. The normalized wave function there is given by

c~0!5AN~C0 /A4p!3, ~33!

whereN is the normalizing coefficient determined by E
~20!, and the coefficientsC0 are given in Eq.~16!.

For this Gaussian-type wave function for the quarks i
proton, the normalization can be obtained analytically as

N25p3/2~3L !3/~11S/2!3, ~34!

where
ss

ed
.,

n,

to

m-
er
an-
ve

.

a

S5~E23M !/~E13M !. ~35!

This leads to

AN5p3/4~3L !3/2/~11S/2!3/2. ~36!

We noteL has the units of~GeV! 2 in the above equation.
Summing over the quark spinz componentsm1 , m2 ,

andm3, we obtain

I 1510AN/p9/4A3. ~37!

This evaluation of the first Ioffe current allow the determ
nation of the Ioffe coupling constant,l1

N . This Ioffe cou-
pling constant is shown versus assumed quark mass in Fi
The calculation of the second Ioffe constant is similiar. Wi

I 25^0uh2uF~0,11/2!& ~38!

this eventually simplifies to

I 252A2 (
ms2,ms3

^m2uCsmnums2&^m3ug5smnums3&

3^m1ms2ms3u~ j 1 j 2!1,j 3JMz&cspace. ~39!

This must also be summed over the three-quarkz compo-
nents of spin,m1, m2, andm3. The final result is

I 2520AN/p9/4A3. ~40!

The second Ioffe coupling constant is shown in Fig. 2. It

FIG. 1. Ioffe coupling constantl1 for the proton.

FIG. 2. Ioffe coupling constantl2 for the proton.
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twice the first Ioffe coupling constant for the proton wav
function utilized here.

Equation~41! shows the results of our calculations for th
Ioffe coupling constant with quark masses of zero and 0
GeV which can be compared with the QCD sum rule pred
tions and also with the random instanton liquid mod
~RILM !:

Dirac model Dirac model RILM QCD
Quantity M50 M50.25 GeV @3# @1#

l1 0.122 0.032 0.032
60.001

0.035
10.008

l2 0.244 0.064 0.080
60.004

~41!

Our calculation results are in good agreement with
RILM for l1 and not so good agreement withl2. The ex-
planation for that is as follows. The parameters for t
nucleon and the delta were obtained by a global fit to the
nucleon and the four delta correlation functions. The sim
‘‘nucleon pole plus continuum’’ model gives a very goo
simultaneous description for the complete set of correlat
functions. This agreement is particularly good for correlat
involving the first Ioffe current, while it is somewhat wors
for the other ones. Note@3# that the correlation functions
P3 andP6 ~which show deviations from the simple nucleo
-
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pole plus continuum model! involve at least two quarks
which have to flip their chirality. It might be that the RILM
has problems reproducing those amplitudes.

V. CONCLUSIONS

Zero quark masses are possible in this relativistic po
tial model of the proton. For a zero mass quark, the first Io
current constant is 0.122~GeV! 3. The maximum coupling
constant occurs for a quark mass of about 0.075 GeV
quark mass of about 0.25 GeV is required for the poten
model to reproduce the Ioffe current constant value of 0.
~GeV! 3 as determined by QCD sum rules@3#. The second
Ioffe current constant, for an assumed quark mass of 0
GeV, agrees with QCD sum rule estimates.

The relativistic potential quark model is able to be para
etrized to successfully predict Ioffe current constants
agreement with QCD sum rule predictions. With the h
monic oscillatorlike proton wave function used here, the s
ond Ioffe current constant is twice the first constant.
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