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Realistic expanding source model for invariant one-particle multiplicity distributions and two-
particle correlations in relativistic heavy-ion collisions
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We present a realistic expanding source model with nine parameters that are necessary and sufficient to
describe the main physics occurring during hydrodynamical freeze-out of the excited hadronic matter produced
in relativistic heavy-ion collisions. As a first test of the model, we compare it to data from centtalASi
collisions atp,;,/A=14.6 GeVt measured in experiment E-802 at the Brookhaven Alternating Gradient
Synchrotron. An overalk? per degree of freedom of 1.055 is achieved for a fit to 1416 data points involving
invariant7*, 7, K*, andK ~ one-particle multiplicity distributions ang™ andK™* two-particle correlations.

The 99%-confidence region of parameter space is identified, leading to one-dimensional error estimates on the
nine fitted parameters and other calculated physical quantities. Three of the most important results are the
freeze-out temperature, longitudinal proper time, and baryon density along the symmetry axis. For these we
find values of 92.9+ 4.4 MeV, 8.2+ 2.2 fmk, and 0.0222 30585 fm ~3, respectively.

[S0556-28186)04808-X]

PACS numbg(s): 25.75—q, 21.65+f, 24.10.Jv, 24.10.Nz

I. INTRODUCTION mental data through a minimization gf. This approach is
somewhat different from a standard nuclear hydrodynamical
It is a widely accepted theory that if nuclear matter attainsapproach, in which some equation of state must be assumed
a high enough energy density, it will undergo a phase tranin order to determine how the fluid evolves from its initial
sition from normal hadronic matter into a quark-gluon condition to its final freeze-oi]. One problem with stan-
plasma(QGP [1-4]. Since the discovery of such a QGP dard nuclear hydrodynamics is that the formidable computa-
would represent a significant advancement in the fundamertions involved make a minimization of? impractical, so
tal understanding of nuclear interactions, there are a numbe&ven when the agreement with experiment is quite good, one
of relativistic heavy-ion experiments both currently runningcan never be sure that thkbest point in the infinite-
and being planned which hope to test this theory. Unfortu-dimensional space of all possible initial conditions, equations
nately, if a QGP is formed in the laboratory, its quick expan-of state, and freeze-out criteria has been found. Our more
sion and cooling will cause it to transition back into normal limited goal is to tackle just the problem of determining the
hadronic matter long before anything can be detected. Thugroperties of the system during freeze-out.
any signals for the prior existence of a QGP will necessarily We begin by reviewing the Wigner-function formulation
be subtle and indirect. of hydrodynamical freeze-out and defining nine parameters
In order to work backwards from the final observed statethat are necessary and sufficient to properly describe the
of the detected hadrons to an earlier state which may or magross properties of the source during freeze-out. Although in
not have included a QGP, it is necessary to use a reliabl8ec. Il B we use the language of hydrodynamical evolution
transport model. One approach which has been quite su€e.g., rarefaction waves and coolingp motivate our ap-
cessful in the past is to treat the expanding nuclear matter ggoach, it should be noted that our calculations are actually
a hydrodynamical fluid. This fluid is very hot and dense im-concerned only with freeze-out — not with the hydrody-
mediately after the collision, but with time it expands andnamical evolution which might have led to it. Section Il D
cools. When some criterion is mé.g., falling below a cer- then includes a short explanation of how resonance decays
tain temperature or densjtyit is assumed that the fluid are taken into consideration. Once the model is defined, Sec.
“freezes out” and becomes a collection of noninteracting,lll outlines our general method for constructing, deter-
free-streaming hadrons. The freeze-out hypersurface is thusining the goodness of the fit, and estimating uncertainties
some three-dimensional surface which separates hydrodyna the model parameters. With these tools in hand, we com-
namically interacting nuclear fluid from free-streaming had-pare our nine-parameter model to data from centrat $iu
rons. According to this picture, when these hadrons are obsollisions atp,,/A=14.6 GeVE, measured in experiment
served in detectors, their distributions and correlation€E-802 at the Brookhaven Alternating Gradient Synchrotron
contain information about the temperature, expansion velocitAGS) [6—8]. The 1416 data points used consist of invariant
ties, chemical potentials, size, and shape of the fluid duringr®, =, K*, andK~ one-particle multiplicity distribution
freeze-out. measurements as well as” andK ™ two-particle correlation
The purpose of this paper is to present a physically reameasurements. This paper represents an attempt to simulta-
sonable parametrization of the freeze-out process, and thereously find the best fit to one-particle distribution and three-
to find the best values for the freeze-out parameters by condimensional two-particle correlation data with a single ex-
paring theoretical distributions and correlations to experipanding source model. We found that the fits converged
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54 REALISTIC EXPANDING SOURCE MODEL FOR ... 867
rapidly and consistently, yielding an overgft per degree of where the— (+) sign is for bosongfermiong. The quanti-
freedom of 1.055. ties u#(x), T(X), u.(x), and

nﬂ(x)=f d3a,(x") 8 (x—x") 2
Il. DETAILS OF THE MODEL 3

A. Wigner function formulation denote the local hydrodynamical flow velocity, temperature,

The Wigner function for particles of type: with spin chemical potential, and_ normal-pointing freeze-out hypersur-
J, coming directly from a hydrodynamical system involving faceé element, respectively. Throughout the paper we use

a sharp three-dimensional freeze-out hypersurfa¢e]is units in whichz=c=k=1, wheref: is Planck's constant
divided by 2, c is the speed of light, andl is the Boltz-

mann constantexcept in the figures and tables, where we

Si(x,p) = 2J,+1 P-Nn(x) reinsert c). Integrating the direct Wigner function over
@ (2m)° exp{[p-u(X)— u X)T(X)}*1’ spacetime generates the Cooper-Frye formula for the one-
(1) particle distribution10]:
|

) . 2J,t1 p*

par =f d*xSM(x,p)= ——5 f 3 —. 3
« (P) P = T ) e e (Ut i T 0] L ©

|
The subscripts on the integral denotes the limits to the B. Definition of the model parameters

hypgrsurface for afinite—siz%icri system. Because the observed o, model is applicable to nearly central collisions of

particles are on mass sheR,’ depends only on the three- jyrarelativistic nuclei. For large sets of many nearly central

vectorp rather than on the four-vectqr. collisions, the data should be azimuthally symmetric, so we
In addition to particles coming directly from the freeze- assume azimuthal symmetry in our model. Inmediately after

out surface, there are also some which come from the decape collision, we assume the formation of a hot, dense source
of resonances. The total Wigner function for partieleis  \which moves with some velocity ;= tanhy, relative to the

then comprised of two parts: lab while it expands and cools in its own rest frame. If the
A incoming nuclei are relativistic enough in the source frame,
S (%,P)=SM(X,p) + Sres. (X, P). (4)  their strong Lorentz contraction makes their thickness in the

beam ) direction negligible, so it should be a good ap-
where the second term is determined by the direct Wigneproximation to assume that the collision took place on a
functions of the contributing resonanceee Sec. Il ) The  single plane at=z=0. Assuming also that the longitudinal
total observed multiplicity distribution for particle is flow velocities subsequently imparted to each bit of the

nuclear fluid remain constant throughout the expansion,

these velocities take the simple form first suggested in
Pa(p):f d*xS,(x,p). (5)  [16,17, namely

z
The correlation function for two particles of type with Bm)= ¢ =tanhm, ()
momentap, andp, can similarly be expressed in terms of
the Wigner functiof11-15
where p=tanh (z/t) is the spacetime rapidity of that bit of
|fd4xSa(x,K)exp(iq . x)|2 fluid in the source frame. We will show shortly that this flow
Ca(q,K)=1x\, P (1) P.(py) . (6)  profile leads to a longitudinally boost-invariant local energy.
o PPl P2 Unlike in the longitudinal direction, there is no initial mo-
o . tion in the transverse direction. After the collision, however,
where the deviation from unity of the paramelermeasures  arefaction waves work their way radially inward, causing

the amount of coherent production of particles of type  he matter to accelerate transversally outward. The resulting
Although the on-shell momenta of the two particles is cOM- ee.dimensional expansion causes the fluid to cool until
gljletely specified by the six momentum componentXi  gyentually a low enough temperature is reached so that the
(P11t P2) andq=p;—p,, itis nevertheless notationally con- matter effectively stops interacting and “freezes out.” We
venient to make the full off-shell four-vector definitions -ynsider a model in which both the temperatdreand

1 — i 1 . .
K=3(p1+pz) andq=p;—p,. Since both the one-particle chemical potential are constant at freeze-out. For the latter,
distribution and the two-particle correlation function are de-e define

termined by the Wigner function, we need only find a suit-
able parametrization of this function in order to compare a
hydrodynamical model to these data. Ma=BapptSoust | pti. (8
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HereB,, S,, andl . are the bar_yon, strangeness, and isospin p-u(x)=y,mcosh (y,~yo—nl—p,-u (p) (12
numbers of particle typer, while uy,, us, and u; are the o ) .
corresponding chemical potentials. depends on the rapidity of the particle and the spacetime

Although there are many possible ways to parametrize thg2Pidity of the source only through their difference. Since
radial flow at freeze-out, the actual profile chosen may not b&00sting to a frame moving with longitudinal velocity
nearly as important as the average transverse velocity of tH@Ia"l‘ie to the source frame can be done by subtracting
profile [18]. Recent hydrodynamical studies have obtained@nh (V) from both (/,—y ¢ and 7, the difference of these
transverse flow profiles which are relatively linear in duantities is boostinvariant. ,
p=+x?+y? out to a certain radius, outside of which they In keeping with the boost-invariant profile, we assume

drop off quickly[19—21. For simplicity, we assume a linear that freeze-out along the=0 symmetry axis of the source
profile, and to preserve boost-invariance, we foll@&—23 occurs at a constant proper tirfie7]. Due to transverse ex-

by defining it to be independent afandt in the longitudi- ~Pansion effects, however, freeze-out may occur sooner for
nally comoving frame of the source. In other words, we pa-Matter withp=0. These assumptions are incorporated into
rametrize the total flow velocity of the system in the sourcel® following equation describing the freeze-out hypersur-
frame by

u#(x) = y,(coshy, B,cosp, B,sin¢g,sinhy), 9
wherey,=1/y1— ,82, with

t?— 22
— = +7?=const,, 13
1+ a(p/R)? 'f
where o, parametrizes the radial behavior of the freeze-out
p process. At a given constant slice m for —1<a<0,
ﬂp(p)=vt(§). (100 freeze-out proceeds radially from outside to inside. For ex-
ample, freeze-out for the=0 slice begins on the outside

HereR is the maximum transverse radius of the source andp=R) at timet=t;= 7y1+a; and continues until the in-

v  is the magnitude of the transverse velocity of the fluid atSide (p=0) freezes out at tim¢=t,=r7;. The casex;>0

p=R. Note thatg, is the flow velocity in the longitudinally ~corresponds to the less-likely possibility of freeze-out pro-

comoving frame, but that the transverse component of théeeding radially from the inside to the outside, whilg=0

total flow velocity in the source frame i8,/costy. represents a freeze-out which occurs at the same time for all
That the flow profile is in fact boost-invariant can be mostpoints with a givere. The temporal duration of freeze-out for

easily seen by first rewriting the source-frame particle fourthe z=0 slice is just given by

momentum in the form At(2=0)=|t,—ty] = 7|1 — \/1+_6Yt|- (14)

To derive the prefactop-n(x) for the spacelike hyper-
surface defined by Eq13), it is most convenient to use the
spacelike variables, x, andy. We have[21]

p#=(mcosityp,—Ys),p. ,msinhy,—yy), (11

where m= \/Ez—pz2 is the “transverse mass,”
yp=tanh‘1(pZ/E) is the rapidity of the particle in the lab

frame, andp, is the transverse momentum two-vector. . dX” dX¢ dxB
Throughout this paper, we will use the subsctipto denote d o, (X)= €uraB g dx d_yd ndxdy, (15
the vector made from the two transverse components of a
four-vector. Note that the quantity where the coordinate vector on the hypersurface is given by
|
XH=(7/1+ ay( p/R)2coshy,x,y, V1 + ay( p/ R)?sinhy). (16

Doing the algebra, we find

p-d3o(x) = 7{ N1+ ay(p/R)Zmicosti(y p—yd — 7] — aup, - X, 7/R¥}d dxdy, 17

wherex, =(x,y). Again, since the onlyy,—y¢ andn de-  ample. In other words, on the hypersurfake the spacelike
pendencies come through the differefi¢g ,—yg)— 7], the  coordinatesp and » satisfy the inequality
above expression is longitudinally boost invariant.

Since we are interested in realistic finite systems, it is 2 2
. L p i

necessary to put some spacelike limits on the hypersurface. @‘F —=<1. (19
We have already mentioned the maximum transverse radius 7o

R; we also assume the existence of a maximum longitudinal

radiusz;= 7sinhy, which is achieved by the source at time Since in the above equatiom; appears alone and not in
t3= 7(coshy,. Because colliding nuclei have more matter in combination with §,—yJ), these limits break boost invari-
the center =0) than on the outside, we take our source toance. Using Eq(2) and the definitionr= t?—z%, we obtain
be spheroidal ip and 7 (as opposed to cylindrical, for ex- in the source frame
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Si + Au, central 7% on the outside ap=R and works its way in, reaching the

Par/A=14.6 GeV/c center att=t,=7;. Figure 2 shows an illustration of the
hydrodynamical fluid for seven different instances in source-
frame time. The inner surfaces at each time are actually

20 freezing out, while the outer end caps are the boundaries of
fluid which will freeze out later. Since the end caps are not
yet on the freeze-out hypersurface, their exact shapes are not

10 ¢ actually determined by our model and are shown only to
(fm/c) illustrate the finite nature of the source. By tine 7,
freeze-out has worked its way to the center, so for later times
0 the source becomes two separated receding fireballs of con-

tinually decreasing size.
For symmetric projectile-target collisions, the rapidity
20 of the source frame relative to the lab is given simply by the
average of the projectile and target rapidities. For asymmet-
FIG. 1. Freeze-out hypersurface, which specifies the positions imic collisions, however, the precise value yf depends on
spacetime where the expanding hydrodynamical fluid is convertethow many “participant” nucleons in each nucleus collide to
into a collection of noninteracting, free-streaming hadrons. The paform the hydrodynamica| source. The center of mass of the
rameters used areR=8.0 fm, ~=8.2 fmk, 7,=1.47, and gpurce is just the center of mass of the incoming participants

a;=—0.86. rather than the total center of mass of all of the incoming
nucleongparticipants+ spectators Given the masses of the
aP, X, T incoming nucleiy, could be estimated either purely on geo-
p-n(x)=y mcosh (y,—Ys — n]— m metrical grounds or it could be treated as another variable
adp parameter to be fit to data. For the asymmetric+SiAu
X 8(1— 11+ ay(pIR)2) (1 — (p/R)? collisi(r)]ns studied in this paper, we choose the latter ap-
proach.
— (5l n9)?). (19 Although at first we considered separate incoherence pa-

rameters for pions and for kaons, we subsequently found that
The freeze-out hypersurface as a functiont,op, andz  very good fits could be obtained by setting=1 and allow-
shown in Fig. 1 corresponds ®=8.0 fm, 7t=8.2 fmk,  ing only \, to vary as a parameter. Moreover, two of the
70=1.47, anda,= —0.86, which are parameters that we de-chemical potentialsy.s and u;, can be determined from the
termine in Sec. IV B for the reaction considered hgge8].  remaining nine parameters by imposing the constraints that
As mentioned before, since, is negative, freeze-out begins the total strangeness of the sum of all particles in the source
vanishes and that the total isospin per baryon is the same as

Source freezeout that of the participants before the collisi¢gee next subsec-
Si+ Au, central 7% tion). The nine adjustable parameters of our model can be
Prp/A=14.6 GeV/c grouped in the following wayT, w,/T, and A describe

_ intrinsic properties of the fluidR, v, and«; describe trans-
Time ¢ (fm/c) = verse aspects of the freeze-out; and 7, and 7; describe
s.10 longitudinal and boost-invariant aspects of the freeze-out.
5.65 C. Constraint equations
The total number of particles of type which freeze out
8.20 on the hypersurface is given by
. d’p
Ndlr:f_Pdlr , 20
10.75 « E ¢ (P) (20
13.30 wherePY" is defined by Eq(3). Given the numbers of each
particle species, the total strangeness and isospin per baryon
) 585 of the system are simply
’
+ 1840

gi
Sl s i) = 2 SaNG (s, 1),
a

FIG. 2. Seven snapshots at equal spacings in the source-frame
timet of the part of the source of Fig. 1 that is freezing ¢aner
surfaceyor has not yet frozen oend caps To draw the end caps | _ s N )
at each time, we usedv,=0.683c and assumed that none of the o Hsi i) _ Zala Célr('us”u') ,
fluid was accelerated prior to reaching the freeze-out hypersurface. Bot( s i) Z4BoNg' (1s, 1)

21
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where we have suppressed all parameter dependencies ex- B. .
. . proj tar
cept those ofus and «;. The sum ina is over all mesons ||0:T[Zpr0j_(Aproj_ Zpg) 1+ 2An
with masses below 900 MeV and all baryons with masses prol ol
below 1410 MeV. For particles of a given mass, all of the X[Zar= (Atar—Za ]- (22

1SOSpIn, baryon, a_md Strangen_ess states_are considered Seﬁ"@'get the isospin per baryon of the participants, we simply
rately since the different chemical potential of egske Ed.  jiide the above equation =B,y + By, The quantities

(8)] leads to a different value dfj". Bproj/B and By, /B can be determined by equating the in-
The initial isospin per baryon of the system depends orcoming target and projectile momenta in the participant

the number of participant protons and neutrons from eacleenter-of-mass frame. Explicitly,

nucleus. We define the target proton number, nucleon num- . .

ber, and number of participants @g,, Ay, andBy,, re- B proSINNY proj~Ys) = MyB SINYs—Yia),  (23)

spectively. Making similar definitions for the projectile and wherey,,; andyy,, are the initial projectile and target rapidi-

noting that each protofmeutron has isospin 1/2{ 1/2), we  ties andmy is the nucleon mass. Using this relation, it is easy

find the total isospin of the incoming participants: to show that the initial isospin per baryon of the system is
given by

I 1 (Zproj/Aproj)Sinr(ys_ Ytar) + (Ztar/Atar)Sinr(yproj_ ys)
- - =+ - - .
Bl, 2 SINN(Ys— Yiar) + SINN(Y proj— Y's)

(29)

In general, the initial isospin per baryon depends upon thdest when it is used to fit only data from produced particles
parametery, but for symmetric collisiongor any collision  such as mesons and antiprotons. Of course, once the param-

in which Zp,.i/ A= Ziar/ Aar) , 1/BJ is independent ofs. eters have been determined from a fit to mesons, for ex-
We are now ready to write down explicitly the constraint @mple, it is always possible to compare the proton distribu-
equations forus and u; : tion predicted by the model with the data to get an idea of
how many of the measured protons are “participants” and

Siotl( s, i) =0, how many are “spectators.”
It is significant that even if only meson data are consid-
Lot s, i) | ered, it is still possible to determine the baryon chemical

B a ) Bl (25  potential u, from the relative abundances #*’'s and
tot(:“s#h) 0 _, . ",
K™’s. For any system which has a positive baryon number,

For a given set of the nine remaining parameters, these equiflere are moré\’s and’s produced tham\'s andX’s. This

tions allow one to find unique values pf, and ; as well as leads to a net negative strangeness among all of the baryons.

their derivativese.g.,du/dT). From the constraint of Eq25), it follows that mpreK*’s
Notice that the baryon number of this model reflects onlythanK™'s are produced. In other words, the difference be-

the participant baryons and is not constrained to be the sanf#&€enK ™ andK ™~ abundances provides an indirect measure-

as the total baryon number of the two incoming nuclei. Thement of baryon number and hence sf.

rationale behind this is that in many collisions there are

“spectator” nucleons whose evolution is not well described

by a hydrodynamically expanding source. Since these spec- For single-generation decays, the resonance contribution

tators may nonetheless end up in detectors, this model works the Wigner function is given bj24,25

D. Resonance decays

d3p.3 4 ” 78 ir
Sres—»a(xyp):% fE_gf d Xﬁfo d7'ﬁrﬁexF(_FﬁTﬁ)54 X= Xﬁ"‘m_ﬁp,e (I)Bea(pﬁap)sz(xﬁvpﬁ)v (26)

where the sum ing is over each decay channel of each resonance that will produce a patticlehe quantity
D4 .(Pg,P) is the probability density_ that a resonance with momenpyywill decay into a particlex with momentum
p. For a two-body decap— «+ X that is isotropic in the rest frame of the resonance,

bg
4mpo(mg;m,,My)

Pg-P
mg )’

5( EO( mﬁ ym,, 1mX)_ (27)

Dy o x(Pg,p)=

whereby is the branching ratio of the particular decay channel and
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E . _ 1 2 2_ 2
o(mMmg;m,,my) > (Mg=+m,=—my?)

Mg
. 1 2 2 2 2
pO(mﬁimava)zz_rnB\/[mB _(ma+mX) ][m,B _(ma_mX) ] (28)
A three-body decayB— a+X+Y can be treated as a IIl. DETERMINATION OF THE PARAMETERS BY  x?
two-body decay intax and a system with the combined in- MINIMIZATION

variant mas of particlesX andY. SinceM can vary from

; . ) A. Construction of x?
my+my to mg—m,, it must be integrated over with an

appropriate probability density. 124,26, this has been A single pointi of an experimentally measured one-
shown to be particle distribution for a particle of type can be charac-
terized by the setg P! o), whereo™™ s the statistical
P(M)= Po(Mg;m,,M)po(M;my,my) error of the measurement. There are also systematic errors
J gilgjd'\ﬂpo(mﬁ;ma,M)po(M;mx,mY) associated with these measurements, which are usually ex-

(29) pressed in terms of a percentageR)f for each particlex.
We denote the percent systematic errorflyy so that the
Using this probability density, we have for three-body de-total error for pointi is given by

cays > :
oni= o+ (f P2 (33
mg—m

B a
(Dﬁ’ﬂa“(”(pﬁ'p):fmxmydMP(M)q)Bﬂa*M(pﬁ'p)' For each type of particler, we construct its contribution
(30) X2 to the totaly? in the following way:

The resonances included which contribute to the charged 5 [Pia— P.(p;i,0)]
pion distributions aré27] Xa(0)=2 o2 , (34)

| a,i

nomttm whereP (p, 0) is defined by Eq(5), 6 is used to represent
all of the model parameterg (v, etc), and the sum is over
all of the measured data points.

A similar contribution toy? can be constructed by com-
paring two-particle correlation data to the corresponding
model calculations. The main difference with correlation
measurements is that most of the systematic errors are re-

7]—>7T++7T_+ Y,
p—m+ T,

wo—7 7 +7°,

wowt T, moved when dividing the two-particle distribution measure-
ment in the numerator by the product of the one-particle
K* =K+, distribution measurements in the denominator. All of the in-
dividual one- and two-particle contributions #’ can be
AN+, combined into an overal{? of the form
P —P.(pi,0)]?
(1385 A + 1, =33 [ - (pi i)g
@ ! a; + (fapuz)
3(1385—3 + m,

C\,—Cu(qi K, 0]
vy s L Cala RO

A (1405 —3 + . (32 : (35

B i a;j
. .
The K* and A resonances also contribute to the kaon anthere we explicitly show the dependencey&fon the model

nucleon distributions, respectively. rameters. By varying these parameters to minimizé,

Since the mod.el uses separate isospin, baryon, angle can find the best fit of the model to the data. Our pro-
strangeness chemical potentials, each species of each reg@v

b d e e th ¢ ams can minimize? by using either the Simplex method
nance must be treated separately. For example, there are four,, Levenberg-Marquardt meth2s].
different channels by which negative pions can be produce

from delta decay: B. Confidence in the overall fit

A7(1=-3/2B=1)—n+7", b=0.994, By the central limit theorem, it is well known that the
probability distribution of the sum of a very large number of
A%1=-1/2B=1)—p+7~, b=0.994/3, small random deviations almost always converges to a nor-
_ L mal distribution. In the remainder of this paper, we will as-
AT (1==-32B=—-1)—=p+7~, b=0.994, sume that a sufficiently large number of measurements have

—_ o been taken so that the measurement errors are normally dis-
A (I==-1/2B=—-1)—n+7w", b=0.994/3. (32 tributed around their true values. With this assumption as
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well as the assumption of a perfect model, the probability A
densityIT, of obtaining a minimum ofy? equal tox2,, is CL= fo dx?Iy(x?). (37)
given by the chi-square functid28,29
1 XZ w21 For example, if we choose a region definedy 21.666 for
2 N = 2 min a model withM =9, Eq.(37) tells us that C.L=0.99. This
L (Xmin) 2 (vl2) exp Xm|n/2)( 2 ) -+ 89 means that we have 89% confidence that the true parameter
set lies among all possible sets which result ig?46) less
wherev is the number of degrees of freedom of the fit. For athan y?2,,+21.666. By inverting Eq(37), it is possible to
model withM adjustable parameters fit b data pointsy is  find the appropriaté\ for M parameters which leads to any
simply N— M. Since the above distribution is single-peakeddesired confidence level.
with a mean ofv and a variance of/2v, it follows that for a OnceA has been determined in this way, the desired re-
perfect model the most probable valuesy@f,, per degree of ~ gion in parameter space is found by making a Taylor expan-
freedom are close to one. A value Qfmm/v much larger  sion of y?(6) about its minimum a®:
than one corresponds to a small probability density and con-
. . M 2.2
sequently leads one to question whether the model usedisa , =~ , 1 — — I
good one or whether the error bars on the data have beenX (6)=Xmin* Eab2=1 (02— 0a) (0~ ab)ggaggb e
underestimated. Conversely, a value /v much less ' 0 (38)
than one seems too good to be true and leads one to question
whether the error bars on the data have been overestimatelotice that the gradient terms disappear because we are ex-
A more quantitative way to determine the “goodness” of panding around a minimum. If we assume that higher-order
the fit is to integratd1,(x?) over x? from thexzmin actually terms are also negligible close to the minimum, then the
found in the fit to infinity. The resulting functioR,(x2,,) is  desired region of parameter space is just the
the probability that random measurement errors and a perfedd -dimensional hyperellipsoidal volume defined by
model would lead to a minimum of? at least as big as the
one actually foundy?,,, A fit to a “good” model results in
a small x2,,, and aP,(x3,) which is greater than some
acceptable probabilitye.g., 5%. A fit to a “poor” model,
on the other hand, results in a largg,, and a small value of Where the curvature matriR,; is just one-half of the second
P,(x2:). If, for example, one obtaine®,(x2,) =101 it  derivative matrix ofy*.
would be very difficult to believe that the large value of From Eq.(39), it is apparent that the exact curvature ma-
x2;, giving rise to that small probability had come about triX Dap involves terms of the form
purely by way of random measurement errors; it is far more

M
abzzl (62— 02)Dap( Gp— Op) <A, (39)

likely that there is something seriously wrong with the P Pa(pi,0) | *Pa(pi, 0)
model. Of course, the choice of which probability should gfta‘z+(faP‘a)2 905096y
actually be used to draw the line between “good” and
“bad” models is a purely subjective judgement. For our cri- and
terion, we choose that probability to be a few percent. ,
Cp—Cp(qi . Ki,0)|5°Cp(q; K, 6)
C. Estimated errors in the parameters o? 30506}

Assuming the model is determined to be a “good” one, For a good modelP! —P, andC' —C,, are nothing more
2 . . o o o o
the parameters found afr,, may reveal some interesting a1 the random measurement errors at the poirgince

physics. If, for example, an unexpectedly low freeze-Outhege errors can have either sign and should in general be
temperature is discovered in a fit, it is necessary t0 knowncorejated with the model, terms of the above form tend to
how confident one can be in that particular low value. In4ncal out when summed over By dropping these terms

other words, we need to estimate the possible error in thake ohtain the approximate curvature matrix that is actually
fitted parameter due to random measurement errors in thesaq in the model:

experiment. More generally, one would like to determine the

region |n M—dimens?o_nal parameter space which has a high 1 AP (p;i,0)\ [ IP,(p;,6)
probability of containing the underlying true parameter val- Dab=z 2 o 2 70 70 o
ues. For example, we would like to be able to say “there is a @ 1o+ (faPy) a b

99% chance .that the true parameter”values fall within such 1 [3C4(q;,K;,0)\ [ IC4(q.K;,0)
and such region of parameter space. +z —

For normally distributed measurement errors, the relevant B0 90, 90y 3
region is one consisting of all combinations of parameters (40)

6 which would lead to a value of?(6) less thanxzmin+A,

where A is some constant number. The confidence level The best and most complete way to specify the parameter
“C.L.” for a specific A and a specific number of parameters confidence region is to calculate the above curvature matrix
M is given by the integral of aM-degree-of-freedom chi- and then employ Eq.39). However, in order to get a quick
square distribution28,29: idea of the size of the region, it is useful to provide one-
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y pants. The invariant one-particle multiplicity distributions for
7*, 77, K", andK~ were obtained from an on-line data-
base[7] and then organized into input files in which each
line contained the information

8]\-/1 yp,i ’ pt,i ’ Pi! o-iStat'

I
" These data were presented in graphical forr6ilp where it
was estimated that systematic errors for all of the particles
I | exceptK™'s were 10-15 %, while those for th€™’s may
! ! have been as much as 20%. For our fits, we used constant

:‘—57_: systematic errors of 15% for pions aid™'s and 20% for
K™'s.

| |

| [ R In addition to these data, we obtained preliminary three-

T dimensional correlation data for both™ andK™* [8]. For the

correlation data, the momenta of the identical particles were
FIG. 3. An example 99%-confidence ellipse for a model with measured relative to a fixed frameaf,=1.25. Each two-

two parameters showing how one-dimensional errors on those pgarticle event was then three-dimensionally binned accord-
rameters are estimated. ing to the componentq,, Qou, andqsgige Of its mMomentum

difference. We use here the standard notatioz d&noting
dimensional error estimates on each parameter. One way the beam direction, “out” denoting the direction parallel to
do this is by determining the largest and smallest values ofhe component of the average momentifmwhich is per-
each parameter that can be obtained on the hyperellipsoigendicular to the beam, and “side” denoting the remaining
For example, suppose we had only two parameférand  transverse directiof30]. The convention was used that
vy, and we determined that the confidence region was thg,=p; o~ P2, out iS @lways positive[31]. Since this con-
interior of the ellipse shown in Fig. 3. The one-dimensionalvention identifies which particle is “particle 1" and which is
error estimate$T and dv,; shown in the figure would give “particle 2,” the remaining two momentum differences,
one a rough idea of the size of the ellipse. One must be,=p,,—p,, andqgge= P1.sige— P2.sige CaN and did take ei-
careful in using these one-dimensional simplifications, how+ther sign. In other words, there were bins with negative val-
ever, since for example the point ¢ 6T,v.+ dvy) lies out-  ues ofq, andqgge as well as those with positive values. For
side the confidence region. Mathematical determination ogach bin inq, the average values of =3(y;+y,) and
the one-dimensional error estimates is derived in AppendiX = (p; o, P2ou) for the pairs in that bin were calculated
A for the adjusted parameters and in Appendix B for addi-and recorded. Thus, in the correlation input files, each line
tional calculated quantities of physical interest. contained the information

IV. FITTING TO E-802 DATA <Y>i ' <Kt>i . Ozis Couti» Dsidejs Ci, g,
A. Description of the data

Having developed our model, we used it to fit meson datavhere( ); represents the average value over theibin
from central Si+ Au collisions atp,,,/ A=14.6 GeV¢t mea- Due to the very large number of correlation data points,
sured in experiment E-802 at the AG&-8]. As mentioned not all of the data were used. In particular, fof we used
previously, we did not attempt to fit proton or deuteron dataonly points for which theg; at the center of the bin satisfied
due to the difficulty of disentangling spectators from partici-the inequality

TABLE I. Nine adjusted source freeze-out parameters.

Value and uncertainty

Parameter at 99% confidence
Nuclear temperaturé 92.9+ 4.4 MeV
Baryon chemical potentigk, /T 5.97 = 0.56

Pion incoherence fraction,, 0.65+ 0.11
Transverse freeze-out radits 8.0+ 1.6 fm
Transverse freeze-out velocity 0.683+ 0.048c
Transverse freeze-out coefficiemt @ -0.86793,
Source rapidityy 1.355+ 0.066
Longitudinal spacetime rapidity, 1.47 + 0.13
Longitudinal freeze-out proper timg 8.2+ 2.2 fmk

8Physically,«, cannot be less thas 1, since that value corresponds to freeze-out beginning immediately at
t=0.
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TABLE Il. Curvature matrixD. Derivatives with respect to the parameters are ordered in rows and
columns in the same way as for the parameters in Table I. The units of each element are given by the inverse
of the units of the associated row and column paraméeegs, the units 0D, are 1(MeV fm)].

65.72 1174 —11.16 175.6 1859 —54.69 606.7 524.4 140.5

117.4 393.1 —9.373 295.8 1717 —36.53 867.3 740.1 222.9

—-11.16 —9.373 2017 —127.6 368.7 100.0 —110.7 -—124.2 —82.88

175.6 295.8 —127.6 509.4 4641 —169.9 1761 1501 395.3
D=1859 1717 368.7 4641 87117 —2530 13964 14133 4107

—54.69 —36.53 100.0 —169.9 —2530 3135 —-678.5 —580.9 —123.0

606.7 867.3 —110.7 1761 13964 —6785 19418 10296 1315

524.4 740.1 —124.2 1501 14133 —580.9 10296 7643 1158

140.5 2229 —82.88 395.3 4107 —123.0 1315 1158 319.0

A, \?2 [Qoul® [ Gsidel duced to reflect only the physical region. The curvature ma-
ﬁ)) 1700 Tl 7100 =1 (4D trix D and its inverse, the covariance matfx ®, are pre-

sented in Tables Il and IllI, respectively. Having found the
with the components af measured in Me\d. Similarly, for ~ minimum, it is possible to calculate a number of other related

K™ we used only data points satisfying quantities of physical interest. Some of these are constrained
) 5 ) parameters such as;, while others are calculated quantities
&) n &ut) qside) <1 42) such as the maximum longitudinal expansion velocity
250 125 125 ' v =tanh(n,) achieved by the source in its center-of-mass

frame. One of the most interesting of these quantities is the

Our rationale for omitting some of the data points was thalpcal baryon density at freeze-out. Appendix B describes
most of the physically important information is contained athow each of the related quantities is calculated, while Table
low momentum differences. For momentum differencesyy shows all of these quantities with their estimated errors.
greater than those specified above, the model predicted a The “goodness” of the fit can be seen by looking at Fig.
correlation function very close to one, while the actual dataq, which shows a plot of the probability density, of Eq.
fluctuated wildly about this value with huge error bars. Fur-(36) for 1407 degrees of freedom versyé,.. The high
thermore, we found that the use of different momentumq,ohapility density of the resulting2,,= 1484.6 is good evi-
d|fferenc§ .CUtOﬁS did not S|gn|f|c§ntly a_ffeq our results. dence that there is nothing seriously wrong with the model.

Combining both the one-particle distributions and the| ¢a .t integration of the shaded region determines that there

two-particle correlations, we used a total of 1416 data pointT%S a 7.4% chance of obtaining a value ,@ﬁ] at least that
: n

g‘r:ﬂgt?s' dﬁgﬁisth;rﬁigoﬁne adjustable parameters, theigrge when fitting an absolutely perfect model to the data. To
' get an idea of how much each data set contributed to the
overall y2.., we have broken down the individual contribu-
tions in Table V. Obviously, all of the data sets are fit rea-
The best-fit parameter values and their estimated errorsonably well, although thg? per degree of freedom for the
(see Appendix A at a 99% confidence level for the mini- negative-pion one-particle distribution is slightly higher than
mum x? found are listed in Table I. Since the 99%- the rest.
confidence hyperellipsoid overlaps an unphysical region in The goodness of fit for the one-particle distributions can
which a;<—1, the lower error estimate om; has been re- also be seen qualitatively by looking at direct comparisons of

B. Results of the fit

TABLE llI. Covariance matrixD ~*. The ordering of the rows and columns is the same as in Table II. The
units of each element are 4@imes the inverse of the units in Table[B.g., the units of D ~1),/10* are

MeV fm].

8860 —-891.5 -53.42 —-1180 —-61.21 —121.3 -11.63 -29.23 -—935.8
—891.5 143.9 2.678 76.55 7.407 5.523 1.195 4.962 81.77
—53.42 2.678 5.827 6.837 —0.04256 —1.918 0.04292 —0.3064 15.44
—1180 76.55 6.837 1244 24.25 146.0 1.241-8.943 —1302

D '=-61.21 7.407 —0.04256 24.25 1.080 4.091 0.1796  0.04903-21.53
—-121.3 5523 —1.918 146.0 4.091 61.51 0.1794 0.9064—164.8
—11.63 1.195 0.04292 1.241 0.1796 0.1794 1.998-3.112 3.576
—29.23 4962 —0.3064 —8.943 0.04903 0.9064 —3.112  8.359 2.626

—935.8 81.77 1544 —1302 -—21.53 -—164.8 3.576 2.626 2193
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TABLE IV. Additional calculated physical quantities.

Value and uncertainty

Quantity at 99% confidence
Source velocity 0.875° 332 ¢
Longitudinal velocityv , 0.900" 5555 ¢
Longitudinal freeze-out radiuz; 16.9755fm
Beginning freeze-out timé, 3.1%2% fmlc
Freeze-out time, at source center 8:2.2 fmkc
Final freeze-out time; 18.8" 28 fmic
Freeze-out widthA 7 in proper timé 5.97 54 fmic
Baryon chemical potentigk,, 55473 MeV
Strangeness chemical potentjal 75713 Mev
Isospin chemical potentiat; -5.3" 1Y MeVv
NumberB,,; of baryons originating from projectile 26.1788
NumberB,,, of baryons originating from target 57722

Total numberB,, of baryons in source 837328
Baryon densityn; at beginning of freeze-ott 0.057" 5 pgpfm ™3
Baryon densityn, along symmetry axis 0.0222" 05085 fm —3

&Calculated under the additional assumption that the exterior matier @tthat freezes out first has been
moving with constant transverse velocity from timet=0 until timet;.

®The upper limit ofx for this quantity arises because the beginning freeze-outttjroeuld be zero, at which
time the shape is an infinitesimally thin disk.

the model to the data. Figures 5-8 show the theoretical anghore lowp, protons than are predicted by the model. In our
experimental meson invariant one-particle multiplicity distri- picture, we consider these protons to be target spectators
butions as functions afn,—m for various rapidities. As ex- which may have interacted somewhat, but not enough to be
pected from the low value ofZ;,, the overall agreement considered part of the hydrodynamical system. It should also
looks excellent. be noted that since our model does not distinguish between a
Although proton data were not used for the main fit, oncedeuteron and a separate proton and neutron, some of the
the best parameters have been found, it is possible to calcexcess when the model overpredicts the proton data may be

late the proton distribution and compare it with the experi-due to leaving out deuteron coalescence.

mental data. Figure 9 shows that the model predictions agree As mentioned before, the main problem with including

with the proton data moderately well for rapidities of 1.3 or proton data in the fits is figuring out how to eliminate con-
greater. For lower rapidities, however, the data show fatamination by spectators. Nevertheless, in order to get some

idea of how the inclusion of protons might affect our results,

0008 ——r—F T+ T T 1T T T we made four different fits in which we included all proton

| | data in the following rapidity ranges: X5/ ,<1.9,
v=1416 - 9 = 1407 13$ypS 1.9, 1.$yp$2.1, and 13§ypS21 These fits all
= 0.006 |- - give extremely similar results, so we will discuss only the
% | | last case. The 190 proton data points for this case bring the
<
[0)
2, 0.004 - . TABLE V. Individual contributions toy?.
g Best fit — Type of data Ndata v X2 X?lv
o 0002 o one particle 231 229.5 238.0 1.037
r 7 7~ one particle 239 237.5 266.2 1121
0.000 PR [N S WU TN N AUUON T TN N 1 oo Bity K+ one particle 137 136.1 140.6 1.033
1200 1300 1400 1500 1600 K™ one particle 49 48.7 51.2 1.051
Minimum of * w* correlation 464 461.1 498.0 1.080
K* correlation 296 294.1 290.7 0.988
FIG. 4. The probability densityl, of Eq. (36) for obtaining a  Total 1416 1407.0 1484.6 1.055

particular minimum ofy? from a fit with 1407 degrees of freedom
v to a perfect model. There is a 7.4% chance that a perfect mod&in determining the number of degrees of freedom for the individual

would have given rise to ,azmm at least as large as the one actually contributions, we have allocated the nine adjustable parameters
found, 1484.6. among each type of data in proportion to the number of data points.
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D .0 %o Pan/A=14.6 GeV/c @ 2,55 .5 Positive kaons
¢ 10 %qg  Positive pions DN 3 8 IXQ 5
O’JQ St Yo ~
~ '.l.... c —2 I'._... 0 7 W=
5 102 Yo g 10 2l 07
Fi 0.7 2 ™5 0.9
% 10 09 A W
3 14 a 10 T 1.1

2 e S
3 107 o 2 al b
g_ 1.5 § 10_6 o.--,,_.." Y, 1.5
= 1.7
= 10-% & g ate 583 §< . % 1.7
® o 1.9 ~ - 3 1.9
= ,NAA“ Dn f 54 % 10—8 (x10™) L1} 29
.g 10-1° W ] 23 '§
p= (x107°) ™ 25 £
- 10—12 ||||||||2|.7| T TR N N B A 10_10 TR Y Y Y T L S
00 05 10 15 20 0.0 05 1.0 1.5
Transverse Kinetic Energy (GeV) Transverse Kinetic Energy (GeV)

FIG. 5. Comparison between model predictions and experimen- FIG. 7. Comparison between model and experimekitaldis-
tal data[6,7] for the invariantz™ one-particle multiplicity distribu- ~ tributions, scaled as in Fig. 5.
tion EA®N/dp3=1/(2rm)d*N/dy,dm, as a function ofy, and
m;—m. For visual separation, the results at a particular particler,=8.1+2.1 fmk. The central values themselves for all of
rapidity y, relative to the laboratory frame are scaled by the factorthe parameters except,/T lie within the individual 99%-
10°(7¥0). Although not always distinguishable on the scale of theconfidence intervals of the original fisee Table)l Even for
graphs, stat?stical errors are given by th(_e inn_er error bars, and tot% o/ T, the 99%-confidence interval for the fit with protons
errors are given by the outer error bars in Figs. 5-9. overlaps that for the original fit. In other words, inclusion of

o the proton data changes the best-fit parameter values only

nlzjmber of deggees of freedom up to 1597. The minimumy;thin their stated uncertainties. It does, however, lead to a
x“ of 1730.4 (*/»=1.084) is obtained with the following  sjgnificant reduction in the calculated number of projectile
parameters: T=95.8t3.9 MeV, pu,/T=5.30+0.28, participants. For the fit with protons included, the number of
A ,=0.66+ 0613%' R=7.8+15 fm, v,=0.64080.03&, projectile participants is reduced to 1% 1.4, which is to be
a=—0.87"033, ys=1.320£0.072, 7o=1.480.14, and  compared to 26.128 found in Table IV and to 28 nucleons

102 T 1 rrr o r [ 11717 | L

Si + Au, central 7%
plab/A = 146 GeV/C
. Negative pions

10° Si + Au, central 7%
Pan/A=14.6 GeV/c
Negative kaons
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FIG. 6. Comparison between model and experimentaldis- FIG. 8. Comparison between model and experimeKtaldis-

tributions, scaled as in Fig. 5. tributions, scaled as in Fig. 5.
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&; Y=15 Si+ Au, central 7%

o 102 Si + Au, central 7% K‘=50°_MgV/C Pun/A=14.6 GeV/c

g y Pan/A=14.6 GeV/c Geide = Positive kaons

) Dy, Protons
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.§ ok 185 1.9 FIG. 11. Dependence of the predictiéd two-particle correla-

g 21 tion functionC upon the longitudinal and “out” momentum differ-

£ oo L L N ences, for fixed values of the other three quantities upon w@ich
0.0 0.5 1.0 15 2.0 depends.

Transverse Kinetic Energy (GeV)

) _ K; andY -y, are used for the plots, the effects of the “out-
FIG. 9. Comparison between model and experimental protoriong,, cross term[22,32,33 can be seeffespecially in the
distributions, scaled as in Fig. 5. Note that these proton data werE i A .
not included in the fit. .aons) as a slight twisting in the major axes of the correla-
tion function.
in a 28Si nucleus. If one were to take the proton fit seriously, Data from central St Au collisions at the AGS have
one might wonder how a central Si Au collision could also been compared to a thermal modell34]. There it was
possibly give rise to 10 projectile spectators. It is our viewargued that a freeze-out temperature of 120-140 MeV was
that the unresolved issues of coalescence and spectator sepansistent with these data. We, on the other hand, have found
ration in our model make it better to simply neglect the pro-a much lower temperature of 92:9.4 MeV (see Table)l
tons altogether, just as we did in our original fit. For theTo explain this significant discrepancy, we would like to
remainder of the paper, we will always refer only to thatpoint out a few differences between our approach and that of
original fit. [34]. First of all, they assumed that transverse and longitudi-
Since the preliminary correlation data that was used hagal flow are completely separable. This led them to compare
not yet been published, we show here in Figs. 10 and 1} thermal model that had been integrated over all rapidities
(9z,90u) Projections of the correlation functions calculated[21] with data from a single midrapidity bin. In contrast, we
by the model. Notice that whereas the kaon correlation funcypake no such assumption. Secondly, the model us€84in
tion intercepts the=0 axis at 2, the pion correlation func- neyer specifies the size or shape of the freeze-out hypersur-
tion intercepts the axis at 1.65, corresponding t0 a value Oface |y addition to preventing comparisons to two-particle
N\ »=0.65. Notice also that since nonvanishing values of bo”borrelations, this ambiguity forces them to multiply each of

their one-patrticle distributions by an arbitrary normalization

Y=15 Si + Au, central 7% : :
K, = ;90 E”;’V’C Pl A= 14.6 GeVic factor before comparing to the normalized data®f Not

Positive pions only does our unambiguous parametrization of the freeze-out
hypersurface allow us to compare to two-particle correla-
tions, it also allows us to see the significant effects that dif-
ferent temperatures have on the absolute normalizations of
one-particle distributions. Another significant difference be-
tween the two approaches is that[B4] only two points in
temperature were studied, whereas in our approach the whole
nine-dimensional parameter space is explored, resulting in
the absolute minimum of?.

In order to see how much worse higher temperature fits
would be, we made a number of runs at various fixed tem-
peratures, allowing all of the other parameters to vary. The
results are given in Table VI and in Fig. 12, a plot of the
minimum x? at a fixed temperature vs that temperature. As

FIG. 10. Dependence of the predicted two-particle correla-  Table VI shows, the value of” for T=120 MeV is 2025.4.
tion functionC upon the longitudinal and “out” momentum differ- Again by integratindll, of Eq. (36), we can determine that
ences, for fixed values of the other three quantities upon w@ich the probability of a perfect model resulting ind at least as
depends. large as 2025.4 is the incredibly small value 810 2°,
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TABLE VI. Eight adjusted parameters of best fits at fixed values of temperdtuptus calculated
Bproj- Physically relevant solutions correspond only to a limited region surrounding the absolute minimum at
T=92.9 MeV. For values ol below 82 MeV, the calculated lower limit 0B, exceeds the number of
nucleons in the projectile. Solutions fée=125 MeV in the lower portion of the table correspond to a new
branch which is unphysical for the reason mentioned in the text.

X T Mol T Ay R Ut ay Ys 70 Tt B proj
(MeV) (fm) (c) (fm/c)

3280.7 50 16.4 1.02 21.1 0.971 0.232 1.467 1.75 10.2 566
2557.2 60 12.7 0.868 14.2 0.920 —0.523 1.428 1.70 10.8 204
2043.2 70 9.98 0.777 111 0.854 —0.671 1.394 1.64 10.5 88.9
1678.9 80 7.76 0.723 9.64 0.778 —0.738 1.375 1.55 9.65 41.9
1494.6 90 6.28 0.667 8.39 0.705 —-0.818 1.361 1.49 8.47 27.8
1534.4 100 5.35 0.613 7.07 0.631-0.999 1.341 1.46 7.55 23.6
1739.1 110 4.68 0.544 6.13 0.568 —0.999 1.315 1.47 6.44 21.6
2025.4 120 4.17 0.486 5.24 0.502 —0.999 1.284 1.49 5.69 20.1
2323.9 130 3.81 0.473 3.42 0.383 —0.999 1.266 1.54 7.40 19.2
2437.8 135 3.70 0.545 237 0.281-0.999 1.268 1.57 10.3 19.3
2304.5 125 7.17 0.530 135 0.872-0.999 1.380 1.47 0.133 72,5
2294.2 130 7.05 0.530 13.3 0.866 —-0.999 1.379 1.47 0.102 68.2
2273.1 140 6.85 0.529 13.0 0.854-0.999 1.375 1.45 0.0630 60.3
2252.2 150 6.69 0.528 12.7 0.839 —0.999 1.371 1.43 0.0407 53.2
2230.9 160 6.60 0.528 12.4 0.823 —0.999 1.268 1.41 0.0269 45.8
2209.3 170 6.54 0.530 12.1 0.804 —0.999 1.365 1.39 0.0183 375
2190.9 180 6.41 0.532 11.9 0.783 —0.999 1.364 1.36 0.0139 311
2182.1 190 6.20 0.533 11.6 0.760 —0.999 1.361 1.35 0.0116 28.4
2185.2 200 5.96 0.536 114 0.738-0.999 1.359 1.33 0.0103 27.7
2199.9 210 5.76 0.537 11.1 0.713-0.999 1.353 1.32 0.00905 26.4
2228.1 220 5.57 0.537 109 0.690 -0.999 1.347 1.32 0.00805 27.0
2271.9 230 5.28 0.542 10.7 0.666 —0.999 1.333 1.33 0.00765 26.7
2335.3 240 4.99 0.544 10.5 0.637 —0.999 1.325 1.34 0.00756 28.1
2407.0 250 4.73 0.545 10.2 0.605 —0.999 1.319 1.34 0.00748 28.7

Above T=129 MeV, the minimumy? solution switches to a transverse radiusR in the infinitesimally small time
different branch. This high-temperature branch is actuallyt,=7\/1+ a,.

unphysical, as can be seen by examining Table VI and noting Another result of the model is the size and shape of the
that it is impossible for the system to expand to the larggreeze-out hypersurface. Sinag for the best fit is negative,

3000

freeze-out begins at timé=t,=3.1 fmt at z=0 and

2500

2000

1500

Minimum of %2 for Fixed T

T T T T [ T T T T [ T T T T [ T T 77T

p=R=8.0 fm, and takes 5.1 fro/to reach the center of the
source az=p=0 at timet=t,=7=8.2 fmk. Freeze-out
along the symmetry axis then occurs at a constant proper
time, finally ending at source-frame time
t3= 7rcoshy,=18.8 fmk. As mentioned previously, Figs. 1
and 2 pictorially show the freeze-out process for these pa-
rameter values.
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Si + Au, central 7% V. FUTURE ISSUES

Pan/A=14.6 GeV/c

The actual “freeze-out” process taking place in these col-
lisions is undoubtedly far more complicated than in our

1000
50

FIG. 12. Minima of y? for fixed values ofT, when all other

model. Azimuthal symmetry may be broken, the local tem-
perature and chemical potentials may have some spacetime
dependence, the expansion flow velocity may be neither
boost-invariant nor linear ip, the hypersurface may have a

100 150 200
Temperature T (MeV)

250

parameters are allowed to vary. Solid circles connected by a solidifferent shape and/or some four-dimensional fuzziness, ka-
line identify one branch which contains some physically relevantons may freeze out before pions, chemical equilibrium may
solutions near the minimum, while open circles connected by &0t be fully achieved, etc. One may even question whether
dashed line represent a different branch containing only unphysicatquilibrium hydrodynamical concepts are valid at all. Al-

solutions(see Table V).

though this paper does not definitively settle these questions,
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the remarkable agreement between theory and experimeniust pick a&¢, such that the equality of E¢39) is satisfied.
suggests that our realistic nine-parameter expanding sour¢dugging Eq.(Al) into Eq.(39) and solving foré,, we find
model nevertheless provides a very good description of the —r
most important physics taking place at freeze-out. 26—+ (D" %aa
One parameter which definitely needs to be better under- a - A
stood is the incoherence parameter. Does the fact that it ] o )
is less than one mean that a significant number of pions ar@here again the indicesare not summed over. Inserting Eqg.
being produced coherently, or could the reduced intercep®2) into Eq. (A1), we find the values of all of the param-
instead be largely an artifact arising from the way the corre&tersd, corresponding to each extremumdyfon the hyper-
lation function was determined experimentdI86]? eIhpspld. In partlgular, the one-dimensional error estimate on
We hope that our model will be used in the future to fa iS just proportional to the square root of taath element
systematically analyze the dependence of the freeze_O@@f the covariance matrixthe inverse of the curvature ma-
quantities upon bombarding energy and the sizes of the coftiX):
liding nuclei. A sharp discontinuity in one or more of these 0, O.=+ m

(A2)

guantities could be a signal of quark-gluon-plasma forma- (A3)
tion. By inverting the curvature matrix to get the covariance ma-
trix, one can then just read off the one-dimensional error
ACKNOWLEDGMENTS estimate on each parameter by taking the square root of the

We are grateful to Arnold J. Sierk for his participation in product of the appropriate diagonal element times

the_ early stages of this work, to Bernd_ R. Schlei for illumi- APPENDIX B: ADDITIONAL CALCULATED

nating discussions abou_t hydrodyn_amu_:s and freez_e-_out hy- QUANTITIES

persurfaces, and to T. Vincent A. Cianciolo for permitting us

to use his preliminary data on two-particle correlations in our Here we list some additional physical quantities of inter-
adjustments. This work was supported by the U.S. Departest which can be calculated from the nine parameters. From

ment of Energy. Egs.(7) and(18), it can be seen that the maximum longitu-

dinal velocity achieved by the source is given by

APPENDIX A: ONE-DIMENSIONAL ERROR v ,=tanhy,. Also, in Sec. Il B the times that freeze-out be-
PROJECTIONS gins, reaches the center of the source, and ends were shown

. _ to bet;= 71+ ay, t,= 7, andtz= rscoshy,, respectively.

The simplest way to determine the largest and smallesthe maximum longitudinal extension of the source is given
values attained by parametgy on the hyperellipsoid defined by z5= rsinhs,, while the duration of freeze-out at=0 is
by Eq.(39) is to use a Lagrange multipligt,. We begin by  given by At=t,—t,. The total baryon numbeB,, of the

finding the maximumor minimum of the quantity source is given by the denominator of the second equation in
M (21). Section Il C also explains how the chemical potentials
0,— &, 2 (6~ 0,) Dol Bo— 6.).- Hs a.n.d u; are found. The numbers of projectile gnd target
b,c=1 participants can be deduced from Eg3) and are given by
By differentiating with respect té,, we find the coordinates B BoSINN(Ys— Yiar)
0. of the extrema as a function @f,: PO Sinh(Ys— Viar) +sinh(Ypr—Ys) '
—_1 BioSinN(Ypro— Ys)
0e— Oc=57"(D )ea, (A1) Biar= = pro . B1
¢ ¢ 258 e tar Smr(yproj_ys)"'smr(ys_ ytar) ( )

where the subscripts are not summed over. To impose the  The local density of particles of type is given by the
constraint that the solution lies on the hyperellipsoid, weintegral

1 d®p
Ny(p)= y,,CThr]f ?f dtS(x,p)

‘]a(Ja+1) - k k’)/pmt KYpptvtp
_szpgl (—1) exp(kMa/T)f mdm, th1< 7 |lo| —R/T
aPp 7 Ky,m Ky,pwwp
- Ko 1 , (B2)
R2\1+ a((p/R)? T RT
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whereK; and |; are modified Bessel functions of ordir M
Due to the boost invariance assumed in everything but the 1p§=1. (B6)
spatial limits of the modeh,, is a function of onlyp and not a=1
of #. The local baryon density is just given by
Since the surface isM —1)-dimensionalM —1 angles are

_ sufficient to identify any point on it. We now redefine the
nb(p)—za: BaNa(p). (B3) ¥, In terms of the angleg, through
To calculate error estimates on these quantities, we could 1= o ),

in principle use a more general form of the Lagrange-

multiplier method introduced in Appendix A. We have

found, however, that a quicker and more reliable method is Yo=sin(¢p1)coq ¢,),

to first find M — 1 new variables which can parametrize just

the surface of the hyperellipsoid, express the quantities as

functions of these new variables, and then find the extrema

of these functions. We begin this process by numerically ] ) )

finding the unitary matrixJ which transformsD into the Im-1=SIN(p1)SiN(2) - - - SIN( Py —2)COL Py - 1),
diagonal matrixD, namely

B=U-1pU. (B4) P =siN(¢1)siN( ;) - - -SiN(py—2)siN(py-1). (B7)

Next we use thédiagona) elements oD to define the vec- Since the inverse of EBS) tells us
tor

Dees o= Oat \/ig Uant (B8)
Ya= Aaa;l(uil)ab(ab_eb), (B5) a— "a Baab:1 ab¥p

where there is no summation over the indexUsing these we now have thé/l parameterd), expressed in terms of the
variables, we can see that the equality of B89) reduces to M —1 parameterg,. As mentioned previously, the extrema
the equation of the surface of a sphereMnhdimensions, on the hyperellipsoid for any functiof{6(¢)) can be found

namely simply by allowing theg, to vary freely.
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