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Realistic expanding source model for invariant one-particle multiplicity distributions and two-
particle correlations in relativistic heavy-ion collisions

Scott Chapman and J. Rayford Nix
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 8 March 1996!

We present a realistic expanding source model with nine parameters that are necessary and sufficient to
describe the main physics occurring during hydrodynamical freeze-out of the excited hadronic matter produced
in relativistic heavy-ion collisions. As a first test of the model, we compare it to data from central Si1 Au
collisions atplab/A514.6 GeV/c measured in experiment E-802 at the Brookhaven Alternating Gradient
Synchrotron. An overallx2 per degree of freedom of 1.055 is achieved for a fit to 1416 data points involving
invariantp1, p2, K1, andK2 one-particle multiplicity distributions andp1 andK1 two-particle correlations.
The 99%-confidence region of parameter space is identified, leading to one-dimensional error estimates on the
nine fitted parameters and other calculated physical quantities. Three of the most important results are the
freeze-out temperature, longitudinal proper time, and baryon density along the symmetry axis. For these we
find values of 92.96 4.4 MeV, 8.26 2.2 fm/c, and 0.022220.0069

10.0096 fm23, respectively.
@S0556-2813~96!04808-X#

PACS number~s!: 25.75.2q, 21.65.1f, 24.10.Jv, 24.10.Nz
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I. INTRODUCTION

It is a widely accepted theory that if nuclear matter attai
a high enough energy density, it will undergo a phase tra
sition from normal hadronic matter into a quark-gluo
plasma~QGP! @1–4#. Since the discovery of such a QGP
would represent a significant advancement in the fundam
tal understanding of nuclear interactions, there are a num
of relativistic heavy-ion experiments both currently runnin
and being planned which hope to test this theory. Unfort
nately, if a QGP is formed in the laboratory, its quick expa
sion and cooling will cause it to transition back into norma
hadronic matter long before anything can be detected. Th
any signals for the prior existence of a QGP will necessar
be subtle and indirect.

In order to work backwards from the final observed sta
of the detected hadrons to an earlier state which may or m
not have included a QGP, it is necessary to use a relia
transport model. One approach which has been quite s
cessful in the past is to treat the expanding nuclear matter
a hydrodynamical fluid. This fluid is very hot and dense im
mediately after the collision, but with time it expands an
cools. When some criterion is met~e.g., falling below a cer-
tain temperature or density!, it is assumed that the fluid
‘‘freezes out’’ and becomes a collection of noninteractin
free-streaming hadrons. The freeze-out hypersurface is t
some three-dimensional surface which separates hydro
namically interacting nuclear fluid from free-streaming ha
rons. According to this picture, when these hadrons are o
served in detectors, their distributions and correlatio
contain information about the temperature, expansion velo
ties, chemical potentials, size, and shape of the fluid duri
freeze-out.

The purpose of this paper is to present a physically re
sonable parametrization of the freeze-out process, and t
to find the best values for the freeze-out parameters by co
paring theoretical distributions and correlations to expe
54556-2813/96/54~2!/866~16!/$10.00
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mental data through a minimization ofx2. This approach is
somewhat different from a standard nuclear hydrodynam
approach, in which some equation of state must be assu
in order to determine how the fluid evolves from its initia
condition to its final freeze-out@5#. One problem with stan-
dard nuclear hydrodynamics is that the formidable compu
tions involved make a minimization ofx2 impractical, so
even when the agreement with experiment is quite good,
can never be sure that thebest point in the infinite-
dimensional space of all possible initial conditions, equatio
of state, and freeze-out criteria has been found. Our m
limited goal is to tackle just the problem of determining th
properties of the system during freeze-out.

We begin by reviewing the Wigner-function formulatio
of hydrodynamical freeze-out and defining nine paramet
that are necessary and sufficient to properly describe
gross properties of the source during freeze-out. Although
Sec. II B we use the language of hydrodynamical evolut
~e.g., rarefaction waves and cooling! to motivate our ap-
proach, it should be noted that our calculations are actu
concerned only with freeze-out — not with the hydrod
namical evolution which might have led to it. Section II D
then includes a short explanation of how resonance dec
are taken into consideration. Once the model is defined, S
III outlines our general method for constructingx2, deter-
mining the goodness of the fit, and estimating uncertain
in the model parameters. With these tools in hand, we co
pare our nine-parameter model to data from central Si1 Au
collisions atplab/A514.6 GeV/c, measured in experimen
E-802 at the Brookhaven Alternating Gradient Synchrotr
~AGS! @6–8#. The 1416 data points used consist of invaria
p1, p2, K1, andK2 one-particle multiplicity distribution
measurements as well asp1 andK1 two-particle correlation
measurements. This paper represents an attempt to sim
neously find the best fit to one-particle distribution and thre
dimensional two-particle correlation data with a single e
panding source model. We found that the fits converg
866 © 1996 The American Physical Society
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54 867REALISTIC EXPANDING SOURCE MODEL FOR . . .
rapidly and consistently, yielding an overallx2 per degree of
freedom of 1.055.

II. DETAILS OF THE MODEL

A. Wigner function formulation

The Wigner function for particles of typea with spin
Ja coming directly from a hydrodynamical system involvin
a sharp three-dimensional freeze-out hypersurface is@9#

Sa
dir~x,p!5

2Ja11

~2p!3
p•n~x!

exp$@p•u~x!2ma~x!#/T~x!%71
,

~1!
g

where the2 (1) sign is for bosons~fermions!. The quanti-
tiesum(x), T(x), ma(x), and

nm~x!5E
S
d3sm~x8!d~4!~x2x8! ~2!

denote the local hydrodynamical flow velocity, temperatur
chemical potential, and normal-pointing freeze-out hypers
face element, respectively. Throughout the paper we u
units in which \5c5k51, where\ is Planck’s constant
divided by 2p, c is the speed of light, andk is the Boltz-
mann constant~except in the figures and tables, where w
reinsert c). Integrating the direct Wigner function ove
spacetime generates the Cooper-Frye formula for the o
particle distribution@10#:
Pa
dir~p!5E d4xSa

dir~x,p!5
2Ja11

~2p!3
E

S
d3sm

pm

exp@„p•u~x!2ma~x!…/T~x!#71
. ~3!
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The subscriptS on the integral denotes the limits to th
hypersurface for a finite-sized system. Because the obse
particles are on mass shell,Pa

dir depends only on the three
vectorp rather than on the four-vectorp.

In addition to particles coming directly from the freez
out surface, there are also some which come from the de
of resonances. The total Wigner function for particlea is
then comprised of two parts:

Sa~x,p!5Sa
dir~x,p!1Sres→a~x,p!, ~4!

where the second term is determined by the direct Wig
functions of the contributing resonances~see Sec. II D!. The
total observed multiplicity distribution for particlea is

Pa~p!5E d4xSa~x,p!. ~5!

The correlation function for two particles of typea with
momentap1 andp2 can similarly be expressed in terms o
the Wigner function@11–15#

Ca~q,K !516la

u*d4xSa~x,K !exp~ iq•x!u2

Pa~p1!Pa~p2!
, ~6!

where the deviation from unity of the parameterla measures
the amount of coherent production of particles of typea.
Although the on-shell momenta of the two particles is co
pletely specified by the six momentum components inK5
1
2(p11p2) andq5p12p2, it is nevertheless notationally con
venient to make the full off-shell four-vector definition
K5 1

2(p11p2) and q5p12p2. Since both the one-particle
distribution and the two-particle correlation function are d
termined by the Wigner function, we need only find a su
able parametrization of this function in order to compare
hydrodynamical model to these data.
ved
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B. Definition of the model parameters

Our model is applicable to nearly central collisions
ultrarelativistic nuclei. For large sets of many nearly cent
collisions, the data should be azimuthally symmetric, so
assume azimuthal symmetry in our model. Immediately af
the collision, we assume the formation of a hot, dense sou
which moves with some velocityvs5tanhys relative to the
lab while it expands and cools in its own rest frame. If t
incoming nuclei are relativistic enough in the source fram
their strong Lorentz contraction makes their thickness in
beam (z) direction negligible, so it should be a good ap
proximation to assume that the collision took place on
single plane att5z50. Assuming also that the longitudina
flow velocities subsequently imparted to each bit of t
nuclear fluid remain constant throughout the expansi
these velocities take the simple form first suggested
@16,17#, namely

bz~h!5
z

t
5tanhh, ~7!

whereh5tanh21(z/t) is the spacetime rapidity of that bit o
fluid in the source frame. We will show shortly that this flo
profile leads to a longitudinally boost-invariant local energ

Unlike in the longitudinal direction, there is no initial mo
tion in the transverse direction. After the collision, howeve
rarefaction waves work their way radially inward, causin
the matter to accelerate transversally outward. The resul
three-dimensional expansion causes the fluid to cool u
eventually a low enough temperature is reached so that
matter effectively stops interacting and ‘‘freezes out.’’ W
consider a model in which both the temperatureT and
chemical potential are constant at freeze-out. For the lat
we define

ma5Bamb1Sams1I am i . ~8!
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868 54SCOTT CHAPMAN AND J. RAYFORD NIX
HereBa , Sa , andI a are the baryon, strangeness, and isosp
numbers of particle typea, while mb , ms, andm i are the
corresponding chemical potentials.

Although there are many possible ways to parametrize
radial flow at freeze-out, the actual profile chosen may not
nearly as important as the average transverse velocity of
profile @18#. Recent hydrodynamical studies have obtain
transverse flow profiles which are relatively linear i
r5Ax21y2 out to a certain radius, outside of which the
drop off quickly @19–21#. For simplicity, we assume a linea
profile, and to preserve boost-invariance, we follow@21–23#
by defining it to be independent ofz and t in the longitudi-
nally comoving frame of the source. In other words, we p
rametrize the total flow velocity of the system in the sour
frame by

um~x!5gr~coshh,brcosf,brsinf,sinhh!, ~9!

wheregr51/A12br
2, with

br~r!5v tS r

RD . ~10!

HereR is the maximum transverse radius of the source a
v t is the magnitude of the transverse velocity of the fluid
r5R. Note thatbr is the flow velocity in the longitudinally
comoving frame, but that the transverse component of
total flow velocity in the source frame isbr /coshh.

That the flow profile is in fact boost-invariant can be mo
easily seen by first rewriting the source-frame particle fou
momentum in the form

pm5„mtcosh~yp2ys!,p' ,mtsinh~yp2ys!…, ~11!

where mt5AE22pz
2 is the ‘‘transverse mass,’’

yp5tanh21(pz/E) is the rapidity of the particle in the lab
frame, andp' is the transverse momentum two-vecto
Throughout this paper, we will use the subscript' to denote
the vector made from the two transverse components o
four-vector. Note that the quantity
in
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p•u~x!5grmtcosh@~yp2ys!2h#2p'•u'~r! ~12!

depends on the rapidity of the particle and the spacet
rapidity of the source only through their difference. Sin
boosting to a frame moving with longitudinal velocityU
relative to the source frame can be done by subtrac
tanh21(U) from both (yp2y s) andh, the difference of these
quantities is boost invariant.

In keeping with the boost-invariant profile, we assum
that freeze-out along ther50 symmetry axis of the sourc
occurs at a constant proper time@17#. Due to transverse ex
pansion effects, however, freeze-out may occur sooner
matter withrÞ0. These assumptions are incorporated i
the following equation describing the freeze-out hypers
face:

t22z2

11a t~r/R!2
5t f

25const., ~13!

wherea t parametrizes the radial behavior of the freeze-
process. At a given constant slice inz, for 21,a t,0,
freeze-out proceeds radially from outside to inside. For
ample, freeze-out for thez50 slice begins on the outsid
(r5R) at time t5t15t fA11a t and continues until the in
side (r50) freezes out at timet5t25t f . The casea t.0
corresponds to the less-likely possibility of freeze-out p
ceeding radially from the inside to the outside, whilea t50
represents a freeze-out which occurs at the same time fo
points with a givenz. The temporal duration of freeze-out fo
the z50 slice is just given by

Dt~z50!5ut22t1u5t fu12A11a tu. ~14!

To derive the prefactorp•n(x) for the spacelike hyper
surface defined by Eq.~13!, it is most convenient to use th
spacelike variablesh, x, andy. We have@21#

d3sm~x!5emnab

dXn

dh

dXa

dx

dXb

dy
dhdxdy, ~15!

where the coordinate vector on the hypersurface is given
Xm5~t fA11a t~r/R!2coshh,x,y,t fA11a t~r/R!2sinhh!. ~16!

Doing the algebra, we find

p•d3s~x!5t f$A11a t~r/R!2mtcosh@~y p2ys!2h#2a tp'•x't f /R
2%dhdxdy, ~17!
n
-

wherex'5(x,y). Again, since the only (yp2y s) andh de-
pendencies come through the difference@(y p2ys)2h#, the
above expression is longitudinally boost invariant.

Since we are interested in realistic finite systems, it
necessary to put some spacelike limits on the hypersurfa
We have already mentioned the maximum transverse rad
R; we also assume the existence of a maximum longitudi
radiusz35t fsinhh0 which is achieved by the source at tim
t35t fcoshh0. Because colliding nuclei have more matter
the center (r50) than on the outside, we take our source
be spheroidal inr andh ~as opposed to cylindrical, for ex-
is
ce.
ius
nal
e
in
to

ample!. In other words, on the hypersurfaceS, the spacelike
coordinatesr andh satisfy the inequality

r2

R2 1
h2

h0
2<1 . ~18!

Since in the above equation,h appears alone and not i
combination with (yp2ys), these limits break boost invari
ance. Using Eq.~2! and the definitiont5At22z2, we obtain
in the source frame
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p•n~x!5Hmtcosh@~yp2ys!2h#2
a tp'•x't f

R2A11a t~r/R!2
J

3d~t2t fA11a t~r/R!2!u~12~r/R!2

2~h/h0!
2!. ~19!

The freeze-out hypersurface as a function oft, r, andz
shown in Fig. 1 corresponds toR58.0 fm, t f58.2 fm/c,
h051.47, anda t520.86, which are parameters that we de
termine in Sec. IV B for the reaction considered here@6–8#.
As mentioned before, sincea t is negative, freeze-out begins

FIG. 1. Freeze-out hypersurface, which specifies the positions
spacetime where the expanding hydrodynamical fluid is conver
into a collection of noninteracting, free-streaming hadrons. The p
rameters used areR58.0 fm, t f58.2 fm/c, h051.47, and
a t520.86.

FIG. 2. Seven snapshots at equal spacings in the source-fra
time t of the part of the source of Fig. 1 that is freezing out~inner
surfaces! or has not yet frozen out~end caps!. To draw the end caps
at each timet, we usedv t50.683c and assumed that none of the
fluid was accelerated prior to reaching the freeze-out hypersurfa
-

on the outside atr5R and works its way in, reaching the
center att5t25t f . Figure 2 shows an illustration of the
hydrodynamical fluid for seven different instances in sourc
frame time. The inner surfaces at each time are actu
freezing out, while the outer end caps are the boundarie
fluid which will freeze out later. Since the end caps are n
yet on the freeze-out hypersurface, their exact shapes are
actually determined by our model and are shown only
illustrate the finite nature of the source. By timet5t f ,
freeze-out has worked its way to the center, so for later tim
the source becomes two separated receding fireballs of
tinually decreasing size.

For symmetric projectile-target collisions, the rapidityys
of the source frame relative to the lab is given simply by t
average of the projectile and target rapidities. For asymm
ric collisions, however, the precise value ofys depends on
how many ‘‘participant’’ nucleons in each nucleus collide
form the hydrodynamical source. The center of mass of
source is just the center of mass of the incoming participa
rather than the total center of mass of all of the incomi
nucleons~participants1 spectators!. Given the masses of the
incoming nuclei,ys could be estimated either purely on ge
metrical grounds or it could be treated as another varia
parameter to be fit to data. For the asymmetric Si1 Au
collisions studied in this paper, we choose the latter
proach.

Although at first we considered separate incoherence
rameters for pions and for kaons, we subsequently found
very good fits could be obtained by settinglK51 and allow-
ing only lp to vary as a parameter. Moreover, two of th
chemical potentials,ms andm i , can be determined from the
remaining nine parameters by imposing the constraints
the total strangeness of the sum of all particles in the sou
vanishes and that the total isospin per baryon is the sam
that of the participants before the collision~see next subsec
tion!. The nine adjustable parameters of our model can
grouped in the following way:T, mb /T, and lp describe
intrinsic properties of the fluid;R, v t , anda t describe trans-
verse aspects of the freeze-out; andys, h0, andt f describe
longitudinal and boost-invariant aspects of the freeze-out

C. Constraint equations

The total number of particles of typea which freeze out
on the hypersurface is given by

Na
dir5E d3p

E
Pa
dir~p!, ~20!

wherePa
dir is defined by Eq.~3!. Given the numbers of each

particle species, the total strangeness and isospin per ba
of the system are simply

Stot~ms,m i!5(
a

SaNa
dir~ms,m i!,

I tot~ms,m i!

Btot~ms,m i!
5

(aI aNa
dir~ms,m i!

(aBaNa
dir~ms,m i!

, ~21!
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where we have suppressed all parameter dependencies
cept those ofms andm i . The sum ina is over all mesons
with masses below 900 MeV and all baryons with mass
below 1410 MeV. For particles of a given mass, all of th
isospin, baryon, and strangeness states are considered
rately since the different chemical potential of each@see Eq.
~8!# leads to a different value ofNa

dir .
The initial isospin per baryon of the system depends

the number of participant protons and neutrons from ea
nucleus. We define the target proton number, nucleon nu
ber, and number of participants asZtar, Atar, andBtar, re-
spectively. Making similar definitions for the projectile an
noting that each proton~neutron! has isospin 1/2 (21/2!, we
find the total isospin of the incoming participants:
in

q

n
a

e
p
o

ex-

es
e
sepa-

on
ch
m-

d

I u05
Bproj

2Aproj
@Zproj2~Aproj2Zproj!#1

Btar

2Atar

3@Ztar2~Atar2Ztar!#. ~22!

To get the isospin per baryon of the participants, we simpl
divide the above equation byB5Bproj1Btar. The quantities
Bproj /B and Btar/B can be determined by equating the in-
coming target and projectile momenta in the participan
center-of-mass frame. Explicitly,

mNBprojsinh~yproj2ys!5mNB tarsinh~ys2ytar!, ~23!

whereyproj andytar are the initial projectile and target rapidi-
ties andmN is the nucleon mass. Using this relation, it is easy
to show that the initial isospin per baryon of the system i
given by
I

B U
0

52
1

2
1

~Zproj /Aproj!sinh~ys2ytar!1~Ztar/Atar!sinh~yproj2ys!

sinh~ys2ytar!1sinh~yproj2ys!
. ~24!
s
m-
x-
-
f

-
l

r,

ns.

-
-

n

In general, the initial isospin per baryon depends upon
parameterys, but for symmetric collisions~or any collision
in which Zproj /Aproj5Ztar/Atar), I /Bu0 is independent ofys.

We are now ready to write down explicitly the constra
equations forms andm i :

Stot~ms,m i!50 ,

I tot~ms,m i!

Btot~ms,m i!
5

I

B U
0

. ~25!

For a given set of the nine remaining parameters, these e
tions allow one to find unique values ofms andm i as well as
their derivatives~e.g.,dms/dT).

Notice that the baryon number of this model reflects o
the participant baryons and is not constrained to be the s
as the total baryon number of the two incoming nuclei. T
rationale behind this is that in many collisions there a
‘‘spectator’’ nucleons whose evolution is not well describ
by a hydrodynamically expanding source. Since these s
tators may nonetheless end up in detectors, this model w
the

t

ua-

ly
me
he
re
d
ec-
rks

best when it is used to fit only data from produced particle
such as mesons and antiprotons. Of course, once the para
eters have been determined from a fit to mesons, for e
ample, it is always possible to compare the proton distribu
tion predicted by the model with the data to get an idea o
how many of the measured protons are ‘‘participants’’ and
how many are ‘‘spectators.’’

It is significant that even if only meson data are consid
ered, it is still possible to determine the baryon chemica
potential m b from the relative abundances ofK1’s and
K2’s. For any system which has a positive baryon numbe
there are moreL ’s andS ’s produced thanL̄’s andS̄’s. This
leads to a net negative strangeness among all of the baryo
From the constraint of Eq.~25!, it follows that moreK1’s
thanK2’s are produced. In other words, the difference be
tweenK1 andK2 abundances provides an indirect measure
ment of baryon number and hence ofmb .

D. Resonance decays

For single-generation decays, the resonance contributio
to the Wigner function is given by@24,25#
Sres→a~x,p!5(
b

E d3pb

Eb
E d4xbE

0

`

dtbGbexp~2Gbtb!d4S x2Fxb1
tb

mb
pbG DFb→a~pb ,p!Sb

dir~xb ,pb!, ~26!

where the sum inb is over each decay channel of each resonance that will produce a particlea. The quantity
Fb→a(pb ,p) is the probability density that a resonance with momentumpb will decay into a particlea with momentum
p. For a two-body decayb→a1X that is isotropic in the rest frame of the resonance,

Fb→a1X~pb ,p!5
bb

4pp0~mb ;ma ,mX!
dSE0~mb ;ma ,mX!2

pb•p

mb
D , ~27!

wherebb is the branching ratio of the particular decay channel and
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E0~mb ;ma ,mX!5
1

2mb
~mb

21ma
22mX

2!

p0~mb ;ma ,mX!5
1

2mb
A@mb

22~ma1mX!2#@mb
22~ma2mX!2#. ~28!
rs
x-

g
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e
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A three-body decayb→a1X1Y can be treated as a
two-body decay intoa and a system with the combined in-
variant massM of particlesX andY. SinceM can vary from
mX1mY to mb2ma , it must be integrated over with an
appropriate probability density. In@24,26#, this has been
shown to be

P~M !5
p0~mb ;ma ,M !p0~M ;mX ,mY!

*mX1mY

mb2madMp0~mb ;ma ,M !p0~M ;mX ,mY!
.

~29!

Using this probability density, we have for three-body de
cays

Fb→a1X1Y~pb ,p!5E
mX1mY

mb2ma
dMP~M !Fb→a1M~pb ,p!.

~30!

The resonances included which contribute to the charg
pion distributions are@27#

h→p11p21p0,

h→p11p21g,

r→p1p,

v→p11p21p0,

v→p11p2,

K*→K1p,

D→N1p,

S~1385!→L1p,

S~1385!→S1p,

L~1405!→S1p. ~31!

The K* andD resonances also contribute to the kaon an
nucleon distributions, respectively.

Since the model uses separate isospin, baryon, a
strangeness chemical potentials, each species of each r
nance must be treated separately. For example, there are
different channels by which negative pions can be produc
from delta decay:

D2~ I523/2,B51!→n1p2, b50.994,

D0~ I521/2,B51!→p1p2, b50.994/3,

D̄22~ I523/2,B521!→ p̄1p2, b50.994,

D̄2~ I521/2,B521!→n̄1p2, b50.994/3. ~32!
-

ed

d

nd
eso-
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III. DETERMINATION OF THE PARAMETERS BY x2

MINIMIZATION

A. Construction of x2

A single point i of an experimentally measured one-
particle distribution for a particle of typea can be charac-
terized by the set (pi ,Pa

i ,s i
stat), wheres i

stat is the statistical
error of the measurement. There are also systematic erro
associated with these measurements, which are usually e
pressed in terms of a percentage ofPa

i for each particlea.
We denote the percent systematic error byf a , so that the
total error for pointi is given by

sa,i
tot 5As i

stat21~ f aPa
i !2. ~33!

For each type of particlea, we construct its contribution
xa
2 to the totalx2 in the following way:

xa
2~u!5(

i

@Pa
i 2Pa~pi ,u!#2

sa,i
tot 2 , ~34!

wherePa(p,u) is defined by Eq.~5!, u is used to represent
all of the model parameters (T, v t , etc.!, and the sum is over
all of the measured data points.

A similar contribution tox2 can be constructed by com-
paring two-particle correlation data to the correspondin
model calculations. The main difference with correlation
measurements is that most of the systematic errors are
moved when dividing the two-particle distribution measure
ment in the numerator by the product of the one-particl
distribution measurements in the denominator. All of the in
dividual one- and two-particle contributions tox2 can be
combined into an overallx2 of the form

x2~u!5(
a

(
i

@Pa
i 2Pa~pi ,u!#2

s i
stat21~ f aPa

i !2

1(
b

(
i

@Cb
i 2Cb~qi ,K i ,u!#2

s i
2 , ~35!

where we explicitly show the dependence ofx2 on the model
parametersu. By varying these parameters to minimizex2,
we can find the best fit of the model to the data. Our pro
grams can minimizex2 by using either the Simplex method
or the Levenberg-Marquardt method@28#.

B. Confidence in the overall fit

By the central limit theorem, it is well known that the
probability distribution of the sum of a very large number of
small random deviations almost always converges to a no
mal distribution. In the remainder of this paper, we will as-
sume that a sufficiently large number of measurements ha
been taken so that the measurement errors are normally d
tributed around their true values. With this assumption a
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well as the assumption of a perfect model, the probabi
densityPn of obtaining a minimum ofx2 equal toxmin

2 is
given by the chi-square function@28,29#

Pn~xmin
2 !5

1

2G~n/2!
exp~2xmin

2 /2!S xmin
2

2 D n/221

, ~36!

wheren is the number of degrees of freedom of the fit. Fo
model withM adjustable parameters fit toN data points,n is
simply N2M . Since the above distribution is single-peak
with a mean ofn and a variance ofA2n, it follows that for a
perfect model the most probable values ofxmin

2 per degree of
freedom are close to one. A value ofx min

2 /n much larger
than one corresponds to a small probability density and c
sequently leads one to question whether the model used
good one or whether the error bars on the data have b
underestimated. Conversely, a value ofxmin

2 /n much less
than one seems too good to be true and leads one to que
whether the error bars on the data have been overestima

A more quantitative way to determine the ‘‘goodness’’
the fit is to integratePn(x

2) overx2 from thex min
2 actually

found in the fit to infinity. The resulting functionPn(xmin
2 ) is

the probability that random measurement errors and a per
model would lead to a minimum ofx2 at least as big as the
one actually found,x min

2 A fit to a ‘‘good’’ model results in
a small x min

2 and aPn(xmin
2 ) which is greater than some

acceptable probability~e.g., 5%!. A fit to a ‘‘poor’’ model,
on the other hand, results in a largexmin

2 and a small value of
Pn(xmin

2 ). If, for example, one obtainedPn(xmin
2 )510210, it

would be very difficult to believe that the large value
xmin
2 giving rise to that small probability had come abo

purely by way of random measurement errors; it is far mo
likely that there is something seriously wrong with th
model. Of course, the choice of which probability shou
actually be used to draw the line between ‘‘good’’ an
‘‘bad’’ models is a purely subjective judgement. For our c
terion, we choose that probability to be a few percent.

C. Estimated errors in the parameters

Assuming the model is determined to be a ‘‘good’’ on
the parameters found atxmin

2 may reveal some interestin
physics. If, for example, an unexpectedly low freeze-o
temperature is discovered in a fit, it is necessary to kn
how confident one can be in that particular low value.
other words, we need to estimate the possible error in
fitted parameter due to random measurement errors in
experiment. More generally, one would like to determine t
region inM -dimensional parameter space which has a h
probability of containing the underlying true parameter v
ues. For example, we would like to be able to say ‘‘there i
99% chance that the true parameter values fall within s
and such region of parameter space.’’

For normally distributed measurement errors, the relev
region is one consisting of all combinations of paramet
u which would lead to a value ofx2(u) less thanx min

2 1D,
where D is some constant number. The confidence le
‘‘C.L.’’ for a specific D and a specific number of paramete
M is given by the integral of anM -degree-of-freedom chi-
square distribution@28,29#:
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0

D

dx2PM~x2!. ~37!

For example, if we choose a region defined byD521.666 for
a model withM59, Eq. ~37! tells us that C.L.50.99. This
means that we have 99% confidence that the true parame
set lies among all possible sets which result in ax2(u) less
than xmin

2 121.666. By inverting Eq.~37!, it is possible to
find the appropriateD for M parameters which leads to any
desired confidence level.

OnceD has been determined in this way, the desired r
gion in parameter space is found by making a Taylor expa
sion ofx2(u) about its minimum atū:

x2~u!5xmin
2 1

1

2 (
a,b51

M

~ua2 ūa!~ub2 ūb!
]2x2

]ua]ub
U

ū

1•••.

~38!

Notice that the gradient terms disappear because we are
panding around a minimum. If we assume that higher-ord
terms are also negligible close to the minimum, then th
desired region of parameter space is just th
M -dimensional hyperellipsoidal volume defined by

(
a,b51

M

~ua2 ūa!Dab~ub2 ūb!<D, ~39!

where the curvature matrixDab is just one-half of the second
derivative matrix ofx2.

From Eq.~35!, it is apparent that the exact curvature ma
trix Dab involves terms of the form

F Pa
i 2Pa~pi ,u!

s i
stat21~ f aPa

i !2
G]2Pa~pi ,u!

]ua]ub

and

FCb
i 2Cb~qi ,K i ,u!

s i
2 G]2Cb~qi ,K i ,u!

]ua]ub
.

For a good model,Pa
i 2Pa andCa

i 2Ca are nothing more
than the random measurement errors at the pointi . Since
these errors can have either sign and should in general
uncorrelated with the model, terms of the above form tend
cancel out when summed overi . By dropping these terms,
we obtain the approximate curvature matrix that is actual
used in the model:

Dab5(
a

(
i

1

s i
stat21~ f aPa

i !2
S ]Pa~pi ,u!

]ua
D S ]Pa~pi ,u!

]ub
D U

ū

1(
b

(
i

1

s i
2 S ]Cb~qi ,K i ,u!

]ua
D S ]Cb~qi ,K i ,u!

]ub
D U

ū

.

~40!

The best and most complete way to specify the parame
confidence region is to calculate the above curvature mat
and then employ Eq.~39!. However, in order to get a quick
idea of the size of the region, it is useful to provide one
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dimensional error estimates on each parameter. One wa
do this is by determining the largest and smallest values
each parameter that can be obtained on the hyperellips
For example, suppose we had only two parameters,T and
v t , and we determined that the confidence region was
interior of the ellipse shown in Fig. 3. The one-dimension
error estimatesdT and dv t shown in the figure would give
one a rough idea of the size of the ellipse. One must
careful in using these one-dimensional simplifications, ho
ever, since for example the point (T1dT,v t1dv t) lies out-
side the confidence region. Mathematical determination
the one-dimensional error estimates is derived in Appen
A for the adjusted parameters and in Appendix B for ad
tional calculated quantities of physical interest.

IV. FITTING TO E-802 DATA

A. Description of the data

Having developed our model, we used it to fit meson d
from central Si1 Au collisions atplab/A514.6 GeV/c mea-
sured in experiment E-802 at the AGS@6–8#. As mentioned
previously, we did not attempt to fit proton or deuteron da
due to the difficulty of disentangling spectators from parti

FIG. 3. An example 99%-confidence ellipse for a model w
two parameters showing how one-dimensional errors on those
rameters are estimated.
y to
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pants. The invariant one-particle multiplicity distributions fo
p1, p2, K1, andK2 were obtained from an on-line data
base@7# and then organized into input files in which eac
line contained the information

yp,i , pt,i , Pi , s i
stat.

These data were presented in graphical form in@6#, where it
was estimated that systematic errors for all of the partic
exceptK2’s were 10–15 %, while those for theK2’s may
have been as much as 20%. For our fits, we used cons
systematic errors of 15% for pions andK1’s and 20% for
K2’s.

In addition to these data, we obtained preliminary thre
dimensional correlation data for bothp1 andK1 @8#. For the
correlation data, the momenta of the identical particles w
measured relative to a fixed frame atylab51.25. Each two-
particle event was then three-dimensionally binned acco
ing to the componentsqz , qout, andqside of its momentum
difference. We use here the standard notation ofz denoting
the beam direction, ‘‘out’’ denoting the direction parallel t
the component of the average momentumK which is per-
pendicular to the beam, and ‘‘side’’ denoting the remaini
transverse direction@30#. The convention was used tha
qout5p1,out2p2, out is always positive@31#. Since this con-
vention identifies which particle is ‘‘particle 1’’ and which is
‘‘particle 2,’’ the remaining two momentum differences
qz5p1,z2p2,z andqside5p1,side2p2,side, can and did take ei-
ther sign. In other words, there were bins with negative v
ues ofqz andqside as well as those with positive values. Fo
each bin in q, the average values ofY5 1

2(y11y2) and
K t5

1
2(p1,out1p2,out) for the pairs in that bin were calculate

and recorded. Thus, in the correlation input files, each l
contained the information

^Y& i , ^K t& i , qz,i , qout,i , qside,i , Ci , s i ,

where^ & i represents the average value over the bini .
Due to the very large number of correlation data poin

not all of the data were used. In particular, forp1 we used
only points for which theqi at the center of the bin satisfie
the inequality

h
pa-
t

TABLE I. Nine adjusted source freeze-out parameters.

Value and uncertainty
Parameter at 99% confidence

Nuclear temperatureT 92.96 4.4 MeV
Baryon chemical potentialmb /T 5.976 0.56
Pion incoherence fractionlp 0.656 0.11
Transverse freeze-out radiusR 8.06 1.6 fm
Transverse freeze-out velocityv t 0.6836 0.048c
Transverse freeze-out coefficienta t

a 20.8620.14
10.37

Source rapidityys 1.3556 0.066
Longitudinal spacetime rapidityh0 1.476 0.13
Longitudinal freeze-out proper timet f 8.26 2.2 fm/c

aPhysically,a t cannot be less than21, since that value corresponds to freeze-out beginning immediately a
t50.
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TABLE II. Curvature matrixD. Derivatives with respect to the parameters are ordered in rows
columns in the same way as for the parameters in Table I. The units of each element are given by the
of the units of the associated row and column parameters@e.g., the units ofD14 are 1/~MeV fm!#.

65.72 117.4 211.16 175.6 1859 254.69 606.7 524.4 140.5
117.4 393.1 29.373 295.8 1717 236.53 867.3 740.1 222.9

211.16 29.373 2017 2127.6 368.7 100.0 2110.7 2124.2 282.88
175.6 295.8 2127.6 509.4 4641 2169.9 1761 1501 395.3

D51859 1717 368.7 4641 87117 22530 13964 14133 4107
254.69 236.53 100.0 2169.9 22530 313.5 2678.5 2580.9 2123.0
606.7 867.3 2110.7 1761 13964 2678.5 19418 10296 1315
524.4 740.1 2124.2 1501 14133 2580.9 10296 7643 1158
140.5 222.9 282.88 395.3 4107 2123.0 1315 1158 319.0
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S qz
200D

2

1S qout100D
2

1S qside100D
2

,1 , ~41!

with the components ofq measured in MeV/c. Similarly, for
K1 we used only data points satisfying

S qz
250D

2

1S qout125D
2

1S qside125D
2

,1 . ~42!

Our rationale for omitting some of the data points was th
most of the physically important information is contained
low momentum differences. For momentum differenc
greater than those specified above, the model predicte
correlation function very close to one, while the actual d
fluctuated wildly about this value with huge error bars. Fu
thermore, we found that the use of different momentu
difference cutoffs did not significantly affect our results.

Combining both the one-particle distributions and t
two-particle correlations, we used a total of 1416 data po
in our fits. Since there are nine adjustable parameters, t
are 1407 degrees of freedom.

B. Results of the fit

The best-fit parameter values and their estimated er
~see Appendix A! at a 99% confidence level for the min
mum x2 found are listed in Table I. Since the 99%
confidence hyperellipsoid overlaps an unphysical region
which a t,21, the lower error estimate ona t has been re-
at
at
es
d a
ta
r-
-
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-
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duced to reflect only the physical region. The curvature ma
trix D and its inverse, the covariance matrixD21, are pre-
sented in Tables II and III, respectively. Having found the
minimum, it is possible to calculate a number of other relate
quantities of physical interest. Some of these are constrain
parameters such asms, while others are calculated quantities
such as the maximum longitudinal expansion velocity
v l 5tanh(h0) achieved by the source in its center-of-mass
frame. One of the most interesting of these quantities is th
local baryon density at freeze-out. Appendix B describe
how each of the related quantities is calculated, while Tab
IV shows all of these quantities with their estimated errors

The ‘‘goodness’’ of the fit can be seen by looking at Fig.
4, which shows a plot of the probability densityPn of Eq.
~36! for 1407 degrees of freedom versusxmin

2 . The high
probability density of the resultingxmin

2 51484.6 is good evi-
dence that there is nothing seriously wrong with the mode
In fact, integration of the shaded region determines that the
is a 7.4% chance of obtaining a value ofxmin

2 at least that
large when fitting an absolutely perfect model to the data. T
get an idea of how much each data set contributed to th
overallxmin

2 , we have broken down the individual contribu-
tions in Table V. Obviously, all of the data sets are fit rea
sonably well, although thex2 per degree of freedom for the
negative-pion one-particle distribution is slightly higher than
the rest.

The goodness of fit for the one-particle distributions can
also be seen qualitatively by looking at direct comparisons o
e
TABLE III. Covariance matrixD21. The ordering of the rows and columns is the same as in Table II. Th
units of each element are 104 times the inverse of the units in Table II@e.g., the units of (D21)14/10

4 are
MeV fm#.

8860 2891.5 253.42 21180 261.21 2121.3 211.63 229.23 2935.8
2891.5 143.9 2.678 76.55 7.407 5.523 1.195 4.962 81.77
253.42 2.678 5.827 6.837 20.04256 21.918 0.04292 20.3064 15.44
21180 76.55 6.837 1244 24.25 146.0 1.24128.943 21302

D215261.21 7.407 20.04256 24.25 1.080 4.091 0.1796 0.04903221.53
2121.3 5.523 21.918 146.0 4.091 61.51 0.1794 0.90642164.8
211.63 1.195 0.04292 1.241 0.1796 0.1794 1.99823.112 3.576
229.23 4.962 20.3064 28.943 0.04903 0.9064 23.112 8.359 2.626
2935.8 81.77 15.44 21302 221.53 2164.8 3.576 2.626 2193
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TABLE IV. Additional calculated physical quantities.

Value and uncertainty

Quantity at 99% confidence

Source velocityvs 0.87520.016
10.015 c

Longitudinal velocityv l 0.90020.029
10.023 c

Longitudinal freeze-out radiusz3 16.924.9
15.6 fm

Beginning freeze-out timet1 3.123.1
12.5 fm/c

Freeze-out timet2 at source center 8.262.2 fm/c

Final freeze-out timet3 18.825.3
15.8 fm/c

Freeze-out widthDt in proper timea 5.922.6
14.4 fm/c

Baryon chemical potentialmb 554236
134 MeV

Strangeness chemical potentialms 75212
113 MeV

Isospin chemical potentialm i 25.321.1
11.0 MeV

NumberBproj of baryons originating from projectile 26.126.7
18.8

NumberBtar of baryons originating from target 57215
120

Total numberBtot of baryons in source 83221
128

Baryon densityn1 at beginning of freeze-outb 0.05720.032
1` fm23

Baryon densityns along symmetry axis 0.022220.0069
10.0096 fm23

aCalculated under the additional assumption that the exterior matter atz50 that freezes out first has been
moving with constant transverse velocityv t from time t50 until time t1.
bThe upper limit of̀ for this quantity arises because the beginning freeze-out timet1 could be zero, at which
time the shape is an infinitesimally thin disk.
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the model to the data. Figures 5–8 show the theoretical
experimental meson invariant one-particle multiplicity dist
butions as functions ofmt2m for various rapidities. As ex-
pected from the low value ofxmin

2 , the overall agreemen
looks excellent.

Although proton data were not used for the main fit, on
the best parameters have been found, it is possible to ca
late the proton distribution and compare it with the expe
mental data. Figure 9 shows that the model predictions ag
with the proton data moderately well for rapidities of 1.3
greater. For lower rapidities, however, the data show

FIG. 4. The probability densityPn of Eq. ~36! for obtaining a
particular minimum ofx2 from a fit with 1407 degrees of freedom
n to a perfect model. There is a 7.4% chance that a perfect m
would have given rise to axmin

2 at least as large as the one actua
found, 1484.6.
and
ri-

t

ce
lcu-
ri-
ree
or
far

more low-pt protons than are predicted by the model. In o
picture, we consider these protons to be target specta
which may have interacted somewhat, but not enough to
considered part of the hydrodynamical system. It should a
be noted that since our model does not distinguish betwee
deuteron and a separate proton and neutron, some of
excess when the model overpredicts the proton data may
due to leaving out deuteron coalescence.

As mentioned before, the main problem with includin
proton data in the fits is figuring out how to eliminate con
tamination by spectators. Nevertheless, in order to get so
idea of how the inclusion of protons might affect our result
we made four different fits in which we included all proto
data in the following rapidity ranges: 1.5<yp<1.9,
1.3<yp<1.9, 1.5<yp<2.1, and 1.3<yp<2.1. These fits all
give extremely similar results, so we will discuss only th
last case. The 190 proton data points for this case bring

TABLE V. Individual contributions tox2.

Type of data Ndata n a x2 x2/n

p1 one particle 231 229.5 238.0 1.037
p2 one particle 239 237.5 266.2 1.121
K1 one particle 137 136.1 140.6 1.033
K2 one particle 49 48.7 51.2 1.051
p1 correlation 464 461.1 498.0 1.080
K1 correlation 296 294.1 290.7 0.988
Total 1416 1407.0 1484.6 1.055

aIn determining the number of degrees of freedom for the individu
contributions, we have allocated the nine adjustable parame
among each type of data in proportion to the number of data poin

odel
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876 54SCOTT CHAPMAN AND J. RAYFORD NIX
number of degrees of freedom up to 1597. The minim
x2 of 1730.4 (x2/n51.084) is obtained with the following
parameters: T595.863.9 MeV, mb /T55.3060.28,
lp50.6660.11, R57.861.5 fm, v t50.64060.034c,
a t520.8720.13

10.35, y s51.32060.072, h051.4860.14, and

FIG. 5. Comparison between model predictions and experim
tal data@6,7# for the invariantp1 one-particle multiplicity distribu-
tion Ed3N/dp351/(2pmt)d

2N/dypdmt as a function ofyp and
mt2m. For visual separation, the results at a particular part
rapidity yp relative to the laboratory frame are scaled by the fac
105(0.72yp). Although not always distinguishable on the scale of
graphs, statistical errors are given by the inner error bars, and
errors are given by the outer error bars in Figs. 5–9.

FIG. 6. Comparison between model and experimentalp2 dis-
tributions, scaled as in Fig. 5.
um

t f58.162.1 fm/c. The central values themselves for all
the parameters exceptmb /T lie within the individual 99%-
confidence intervals of the original fit~see Table I!. Even for
m b /T, the 99%-confidence interval for the fit with proton
overlaps that for the original fit. In other words, inclusion
the proton data changes the best-fit parameter values
within their stated uncertainties. It does, however, lead t
significant reduction in the calculated number of projec
participants. For the fit with protons included, the number
projectile participants is reduced to 17.761.4, which is to be
compared to 26.126.7

18.8 found in Table IV and to 28 nucleon

en-

icle
tor
the
total

FIG. 7. Comparison between model and experimentalK1 dis-
tributions, scaled as in Fig. 5.

FIG. 8. Comparison between model and experimentalK2 dis-
tributions, scaled as in Fig. 5.
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54 877REALISTIC EXPANDING SOURCE MODEL FOR . . .
in a 28Si nucleus. If one were to take the proton fit serious
one might wonder how a central Si1 Au collision could
possibly give rise to 10 projectile spectators. It is our vie
that the unresolved issues of coalescence and spectator
ration in our model make it better to simply neglect the p
tons altogether, just as we did in our original fit. For t
remainder of the paper, we will always refer only to th
original fit.

Since the preliminary correlation data that was used
not yet been published, we show here in Figs. 10 and
(qz ,qout) projections of the correlation functions calculat
by the model. Notice that whereas the kaon correlation fu
tion intercepts theq50 axis at 2, the pion correlation func
tion intercepts the axis at 1.65, corresponding to a value
lp50.65. Notice also that since nonvanishing values of b

FIG. 9. Comparison between model and experimental pro
distributions, scaled as in Fig. 5. Note that these proton data w
not included in the fit.

FIG. 10. Dependence of the predictedp1 two-particle correla-
tion functionC upon the longitudinal and ‘‘out’’ momentum differ
ences, for fixed values of the other three quantities upon whicC
depends.
ly,

w
sepa-
o-
e
at

has
11
d
nc-
-
of

oth

K t andY2ys are used for the plots, the effects of the ‘‘out
long’’ cross term@22,32,33# can be seen~especially in the
kaons! as a slight twisting in the major axes of the correla
tion function.

Data from central Si1 Au collisions at the AGS have
also been compared to a thermal model in@34#. There it was
argued that a freeze-out temperature of 120–140 MeV w
consistent with these data. We, on the other hand, have fo
a much lower temperature of 92.964.4 MeV ~see Table I!.
To explain this significant discrepancy, we would like t
point out a few differences between our approach and tha
@34#. First of all, they assumed that transverse and longitu
nal flow are completely separable. This led them to compa
a thermal model that had been integrated over all rapidit
@21# with data from a single midrapidity bin. In contrast, w
make no such assumption. Secondly, the model used in@34#
never specifies the size or shape of the freeze-out hyper
face. In addition to preventing comparisons to two-partic
correlations, this ambiguity forces them to multiply each
their one-particle distributions by an arbitrary normalizatio
factor before comparing to the normalized data of@6#. Not
only does our unambiguous parametrization of the freeze-
hypersurface allow us to compare to two-particle correl
tions, it also allows us to see the significant effects that d
ferent temperatures have on the absolute normalizations
one-particle distributions. Another significant difference b
tween the two approaches is that in@34# only two points in
temperature were studied, whereas in our approach the wh
nine-dimensional parameter space is explored, resulting
the absolute minimum ofx2.

In order to see how much worse higher temperature fi
would be, we made a number of runs at various fixed te
peratures, allowing all of the other parameters to vary. T
results are given in Table VI and in Fig. 12, a plot of th
minimum x2 at a fixed temperature vs that temperature. A
Table VI shows, the value ofx2 for T5120 MeV is 2025.4.
Again by integratingPn of Eq. ~36!, we can determine that
the probability of a perfect model resulting in ax2 at least as
large as 2025.4 is the incredibly small value 5.1310225.

ton
ere

h

FIG. 11. Dependence of the predictedK1 two-particle correla-
tion functionC upon the longitudinal and ‘‘out’’ momentum differ-
ences, for fixed values of the other three quantities upon whichC
depends.



m at

w
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TABLE VI. Eight adjusted parameters of best fits at fixed values of temperatureT plus calculated
Bproj . Physically relevant solutions correspond only to a limited region surrounding the absolute minimu
T592.9 MeV. For values ofT below 82 MeV, the calculated lower limit onBproj exceeds the number of
nucleons in the projectile. Solutions forT>125 MeV in the lower portion of the table correspond to a ne
branch which is unphysical for the reason mentioned in the text.

x2 T mb /T lp R v t a t ys h0 t f B proj

~MeV! ~fm! (c) ~fm/c)

3280.7 50 16.4 1.02 21.1 0.971 0.232 1.467 1.75 10.2 566
2557.2 60 12.7 0.868 14.2 0.920 20.523 1.428 1.70 10.8 204
2043.2 70 9.98 0.777 11.1 0.854 20.671 1.394 1.64 10.5 88.9
1678.9 80 7.76 0.723 9.64 0.778 20.738 1.375 1.55 9.65 41.9
1494.6 90 6.28 0.667 8.39 0.705 20.818 1.361 1.49 8.47 27.8
1534.4 100 5.35 0.613 7.07 0.631 20.999 1.341 1.46 7.55 23.6
1739.1 110 4.68 0.544 6.13 0.568 20.999 1.315 1.47 6.44 21.6
2025.4 120 4.17 0.486 5.24 0.502 20.999 1.284 1.49 5.69 20.1
2323.9 130 3.81 0.473 3.42 0.383 20.999 1.266 1.54 7.40 19.2
2437.8 135 3.70 0.545 2.37 0.281 20.999 1.268 1.57 10.3 19.3
2304.5 125 7.17 0.530 13.5 0.872 20.999 1.380 1.47 0.133 72.5
2294.2 130 7.05 0.530 13.3 0.866 20.999 1.379 1.47 0.102 68.2
2273.1 140 6.85 0.529 13.0 0.854 20.999 1.375 1.45 0.0630 60.3
2252.2 150 6.69 0.528 12.7 0.839 20.999 1.371 1.43 0.0407 53.2
2230.9 160 6.60 0.528 12.4 0.823 20.999 1.268 1.41 0.0269 45.8
2209.3 170 6.54 0.530 12.1 0.804 20.999 1.365 1.39 0.0183 37.5
2190.9 180 6.41 0.532 11.9 0.783 20.999 1.364 1.36 0.0139 31.1
2182.1 190 6.20 0.533 11.6 0.760 20.999 1.361 1.35 0.0116 28.4
2185.2 200 5.96 0.536 11.4 0.738 20.999 1.359 1.33 0.0103 27.7
2199.9 210 5.76 0.537 11.1 0.713 20.999 1.353 1.32 0.00905 26.4
2228.1 220 5.57 0.537 10.9 0.690 20.999 1.347 1.32 0.00805 27.0
2271.9 230 5.28 0.542 10.7 0.666 20.999 1.333 1.33 0.00765 26.7
2335.3 240 4.99 0.544 10.5 0.637 20.999 1.325 1.34 0.00756 28.1
2407.0 250 4.73 0.545 10.2 0.605 20.999 1.319 1.34 0.00748 28.7
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AboveT5129 MeV, the minimumx2 solution switches to a
different branch. This high-temperature branch is actua
unphysical, as can be seen by examining Table VI and noti
that it is impossible for the system to expand to the larg

FIG. 12. Minima ofx2 for fixed values ofT, when all other
parameters are allowed to vary. Solid circles connected by a so
line identify one branch which contains some physically releva
solutions near the minimum, while open circles connected by
dashed line represent a different branch containing only unphysi
solutions~see Table VI!.
lly
ng
e

transverse radiusR in the infinitesimally small time
t15t fA11a t.

Another result of the model is the size and shape of th
freeze-out hypersurface. Sincea t for the best fit is negative,
freeze-out begins at timet5t153.1 fm/c at z50 and
r5R58.0 fm, and takes 5.1 fm/c to reach the center of the
source atz5r50 at time t5t25t f58.2 fm/c. Freeze-out
along the symmetry axis then occurs at a constant prop
time, finally ending at source-frame time
t35t fcoshh0518.8 fm/c. As mentioned previously, Figs. 1
and 2 pictorially show the freeze-out process for these pa
rameter values.

V. FUTURE ISSUES

The actual ‘‘freeze-out’’ process taking place in these col
lisions is undoubtedly far more complicated than in our
model. Azimuthal symmetry may be broken, the local tem
perature and chemical potentials may have some spacetim
dependence, the expansion flow velocity may be neithe
boost-invariant nor linear inr, the hypersurface may have a
different shape and/or some four-dimensional fuzziness, ka
ons may freeze out before pions, chemical equilibrium ma
not be fully achieved, etc. One may even question whethe
equilibrium hydrodynamical concepts are valid at all. Al-
though this paper does not definitively settle these question
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the remarkable agreement between theory and experim
suggests that our realistic nine-parameter expanding so
model nevertheless provides a very good description of
most important physics taking place at freeze-out.

One parameter which definitely needs to be better und
stood is the incoherence parameterlp . Does the fact that it
is less than one mean that a significant number of pions
being produced coherently, or could the reduced interc
instead be largely an artifact arising from the way the cor
lation function was determined experimentally@35#?

We hope that our model will be used in the future
systematically analyze the dependence of the freeze
quantities upon bombarding energy and the sizes of the
liding nuclei. A sharp discontinuity in one or more of the
quantities could be a signal of quark-gluon-plasma form
tion.
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APPENDIX A: ONE-DIMENSIONAL ERROR
PROJECTIONS

The simplest way to determine the largest and smal
values attained by parameterua on the hyperellipsoid defined
by Eq. ~39! is to use a Lagrange multiplierja . We begin by
finding the maximum~or minimum! of the quantity

ua2ja (
b,c51

M

~ub2 ūb!Dbc~uc2 ūc!.

By differentiating with respect toud , we find the coordinates
ue of the extrema as a function ofja :

ue2 ūe5
1

2ja
~D21!ea , ~A1!

where the subscriptsa are not summed over. To impose th
constraint that the solution lies on the hyperellipsoid,
ent
urce
the

er-

are
ept
re-

to
-out
col-
se
a-

in
i-
hy-
us
ur
art-

lest

e
we

must pick aja such that the equality of Eq.~39! is satisfied.
Plugging Eq.~A1! into Eq. ~39! and solving forja , we find

2ja56A~D21!aa
D

, ~A2!

where again the indicesa are not summed over. Inserting E
~A2! into Eq. ~A1!, we find the values of all of the param
etersue corresponding to each extremum ofua on the hyper-
ellipsoid. In particular, the one-dimensional error estimate
ua is just proportional to the square root of theaath element
of the covariance matrix~the inverse of the curvature ma
trix!:

ua2 ūa56AD~D21!aa. ~A3!

By inverting the curvature matrix to get the covariance m
trix, one can then just read off the one-dimensional er
estimate on each parameter by taking the square root o
product of the appropriate diagonal element timesD.

APPENDIX B: ADDITIONAL CALCULATED
QUANTITIES

Here we list some additional physical quantities of int
est which can be calculated from the nine parameters. F
Eqs.~7! and ~18!, it can be seen that the maximum longit
dinal velocity achieved by the source is given
v l 5tanhh0. Also, in Sec. II B the times that freeze-out b
gins, reaches the center of the source, and ends were s
to be t15t fA11a t, t25t f , and t35t fcoshh0, respectively.
The maximum longitudinal extension of the source is giv
by z35t fsinhh0, while the duration of freeze-out atz50 is
given by Dt5t22t1. The total baryon numberBtot of the
source is given by the denominator of the second equatio
~21!. Section II C also explains how the chemical potenti
ms andm i are found. The numbers of projectile and targ
participants can be deduced from Eq.~23! and are given by

Bproj5
Btotsinh~ys2ytar!

sinh~ys2ytar!1sinh~yproj2ys!
,

Btar5
Btotsinh~yproj2ys!

sinh~yproj2ys!1sinh~ys2ytar!
. ~B1!

The local density of particles of typea is given by the
integral
na~r!5
1

grcoshh
E d3p

E E dtS~x,p!

5
Ja~Ja11!

2p2gr
(
k51

`

~21!kexp~kma /T!E mtdmtFmtK1S kgrmt

T D I 0S Kgrptv tr
RT D

2
a tptrt f

R2A11a t~r/R!2
K0S kgrmt

T D I 1S Kgrptv tr
RT D G , ~B2!
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whereKi and I i are modified Bessel functions of orderi .
Due to the boost invariance assumed in everything but
spatial limits of the model,na is a function of onlyr and not
of h. The local baryon density is just given by

nb~r!5(
a

Bana~r!. ~B3!

To calculate error estimates on these quantities, we co
in principle use a more general form of the Lagrang
multiplier method introduced in Appendix A. We hav
found, however, that a quicker and more reliable method
to first findM21 new variables which can parametrize ju
the surface of the hyperellipsoid, express the quantities
functions of these new variables, and then find the extre
of these functions. We begin this process by numerica
finding the unitary matrixU which transformsD into the
diagonal matrixD̃, namely

D̃5U21DU. ~B4!

Next we use the~diagonal! elements ofD̃ to define the vec-
tor

ca5AD̃aa

D (
b51

M

~U21!ab~ub2 ūb!, ~B5!

where there is no summation over the indexa. Using these
variables, we can see that the equality of Eq.~39! reduces to
the equation of the surface of a sphere inM dimensions,
namely
-

n

.

t

the

uld
e-

is
t
as
ma
lly

(
a51

M

ca
251 . ~B6!

Since the surface is (M21)-dimensional,M21 angles are
sufficient to identify any point on it. We now redefine the
ca in terms of the anglesfa through

c15cos~f1!,

c25sin~f1!cos~f2!,

A

cM215sin~f1!sin~f2!•••sin~fM22!cos~fM21!,

cM5sin~f1!sin~f2!•••sin~fM22!sin~fM21!. ~B7!

Since the inverse of Eq.~B5! tells us

ua5 ūa1A D

D̃aa
(
b51

M

Uabcb , ~B8!

we now have theM parametersua expressed in terms of the
M21 parametersfa . As mentioned previously, the extrema
on the hyperellipsoid for any functionf „u(f)… can be found
simply by allowing thefa to vary freely.
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